Economic Growth for Advanced Students

David Hémous

Fall 2019

1 General Information

This course covers advanced topics on economic growth. After a quick review of neoclassical growth theory and endogenous growth theory, we will cover a few modern topics: firm dynamics, inequality and factor shares and environmental sustainability.

2 Lecture Schedule

Date	Topic
14.10.2019	A quick review of Neoclassical Growth
14.10.2019	Endogenous growth
15.10.2019	Schumpeterian Growth
15.10.2019	Firm Dynamics
16.10.2019	Capital and labor
16.10.2019	Directed technical change and inequality
17.10.2019	Modeling automation
17.10.2019	Measuring automation
18.10.2019	Environment and Growth
18.10.2019	Environment and Innovation

3 Presentation and Lecture Material

The following textbooks are references in Economic Growth and will be useful for the class.

• Acemoglu D.: Introduction to Modern Economic Growth Princeton University Press, Princeton NJ, 2009 (DA).

• Aghion P. and P. Howitt *The Economics of Growth* MIT Press, Cambridge MA, 2009 (AH).

4 Neoclassical Growth, Endogenous Growth and Schumpeterian Growth

- DA chapters 8, 13 and 14.
- Aghion P. and P. Howitt (1992) "A Model of Growth through Creative Destruction". *Econometrica* 60, 323–351.
- Aghion, P., N. Bloom, R. Blundell, R. Griffith and P. Howitt (2005) "Competition and Innovation: an Inverted-U Relationship," *The Quarterly Journal of Economics*, 120 (2): 701–728.
- Aghion, P., Acemoglu, D. and F. Zilibotti (2006), "Distance to Frontier, Selection and Economic Growth", *Journal of the European Economic Association*, 4(1): 37-74.
- Bloom, N., Jones, C., Van Reen, J. and M. Webb (2016) "Are Ideas Getting Harder to Find?". *mimeo.*
- The Committee for the Prize in Economic Sciences in Memory of Alfred Nobel (2018), "Economic Growth, Technological Change and Climate Change"
- Grossman, G. and E. Helpman (1991) "Quality Ladders in the Theory of Growth". *Review of Economic Studies*, 68: 43-61.
- Howitt, P. (1999) "Steady Endogenous Growth with Population and R&D Inputs Growing." *Journal of Political Economy* 107:715-730.
- Jones, C. (1995) "R&D-Based Models of Economic Growth." Journal of Political Economy 103: 759-784.
- Jones, C. (1999) "Growth with or without Scale Effects?" The American Economic Review: Papers and Proceedings 89: 139-144.
- Jones, C. (2016) "The Facts of Economic Growth", Handbook of Macroeconomics, Volume 2, Chapter 1, 3-69
- Romer, P. (1990), "Endogenous Technological Change." Journal of Political Economy 98: 71-102.

4.1 Firm Dynamics

- Acemoglu, D. and D. Cao (2015) "Innovation by Incumbents and Entrants." *The Journal of Economic Theory* 157: 255-294.
- Acemoglu, D., U. Akcigit, N. Bloom and W. Kerr (2013) "Innovation, Reallocation, and Growth" *The American Economic Review*, 2018, 108 (11): 3450-3491.
- Aghion P, Bloom N, Blundell R, Griffith, R, Howitt P. (2005), "Competition and Innovation: An Inverted U Relationship." *Quarterly Journal* of Economics, 120 (2), 701-728.
- Akcigit, U., D. Hanley and N. Serrano-Valerde (2016) "Back to Basics: Basic Research Spillovers, Innovation Policy and Growth". *mimeo*.
- Akcigit, U. and W. Kerr (2018), "Growth through Heterogeneous Innovations." *Journal of Political Economy*, 126 (4): 1374-1443.
- Atkinson, A. and A. Burstein (forthcoming), "Aggregate Implications of Innovation Policy". *Journal of Political Economy.*
- Garcia-Macia, D., C. Hsieh and P. Klenow (2016), "How Destructive is Innovation?". *mimeo*
- Hopenhayn, H. (1992), "Entry, Exit and Firm Dynamics in Long-run Equilibrium", *Econometrica*, 60 (5): 1127-1150.
- Klette, T. and S. Kortum (2004), "Innovating Firms and Aggregate Innovation." *Journal of Political Economy*, 112: 986-1018.
- Lentz, R. and D. Mortensen (2008), "An Empirical Model of Growth through Product Innovation." *Econometrica*, 76: 1317-1373.
- Luttmer, E. (2007), "Selection, Growth, and the Size Distribution of Firms," *Quarterly Journal of Economics*, 122: 1103-1144.
- Luttmer, E. (2011), "On the Mechanics of Firm Growth," *Review of Economic Studies*, 78 (3): 1042-1068.

4.2 Capital and labor, automation and inequality

• Acemoglu, D. (1998), "Why Do New Technologies Complement Skills? Directed Technical Change and Wage Inequality", *Quarterly Journal* of Economics, 113: 1055-1089.

- Acemoglu, D. (2002), "Directed Technical Change", Review of Economic Studies, 69: 781-810.
- Acemoglu, D. (2010), "When Does Labor Scarcity Encourage Innovation?" Journal of Political Economy, 118(6): 1037-1078.
- Acemoglu, D. and Autor, D. (2011), "Skills, Tasks and Technologies: Implications for Employment and Earnings," *Handbook of Labor Economics*, 4(B).
- Acemoglu, D. and Restrepo, P. (2018), "The race between machine and man: Implications of technology for growth, factor shares and employment", *The American Economic Review*, 108 (6): 1488-1542.
- Acemoglu, D. and P. Restrepo (2017), "Robots and Jobs: Evidence from US Labor Markets,"NBER wp 23285.
- Aghion, P., Jones, B. and C. Jones (2017), "Artificial Intelligence and Economic Growth", mimeo.
- Atkinson, A., Piketty. T. and E. Saez, (2011) "Top income in the longrun of history" *Journal of Economics Literature*, 49 (1): 3-71.
- Autor, D. and Dorn, D. (2013), "The Growth of Low-Skill Service Jobs and the Polarization of the U.S. Labor Market", *American Economic Review*, 103(5): 1553-1597.
- Autor, D., D. Dorn, L. Katz, C. Patterson and J. Van Reenen (2017). "The Fall of the Labor Share and the Rise of Superstar Firms" *mimeo*.
- Autor, D., Katz, L., and Krueger, A. (1998), "Computing Inequality: Have Computers Changed the Labor Market?" *Quarterly Journal of Economics*, 113(4): 1169-1213.
- Autor, D., Levy, F., and Murnane, R. (2003), "The Skill Content of Recent Technological Change: An Empirical Exploration." *Quarterly Journal of Economics*, 118(4): 1279-1333.
- Bartel, A., Ichniowski, C., and Shaw, K. (2007), "How Does Information Technology Really Affect Productivity? Plant-Level Comparisons of Product Innovation, Process Improvement and Worker Skills", *Quarterly Journal of Economics*, 122 (4): 1721-1758.

- Dauth, W., Findeisen, S., Suedekum. J. and N. Woessner (2017). "German Robots – The Impact of Industrial Robots on Workers", CEPR Discussion Paper DP12306
- De Loecker, J. and J. Eeckhout (2017), "The Rise of Market Power and the Macroeconomic Implications", NBER wp 23687.
- Dechezleprêtre, A., D. Hémous, M. Olsen and C. Zanella (2019), "Automating Labor: Evidence from firm-level panel data", *mimeo*.
- Gollin, D. (2002): "Getting Income Shares Right", Journal of Political Economy, 110 (2): 458-474
- Graetz, G. and G. Michaels (2018), "Robots at Work", *Review of Economics and Statistics*.
- Greenwood, J., Z. Hercowitz, and P. Krusell (1997): "Long-Run Implications of Investment-Specific Technological Change," *American Economic Review*, 87 (3), 342–62.
- Hémous, D. and M. Olsen (2016), "The Rise of the Machines: Automation, Horizontal Innovation and Income Inequality", *R&R at the American Economic Journal: Macroeconomics.*
- Jones, C. (2015), "Pareto and Piketty: The Macroeconomics of Top Income and Wealth Inequality", *The Journal of Economic Perspectives*, 29 (1): 29-46.
- Karabarbounis, L. and Neiman, B. (2014), "The Global Decline of the Labor Share" *The Quarterly Journal of Economics*, 129 (1): 61-103
- Karabarbounis, L. and Neiman, B. (2014), "Capital Depreciation and Labor Shares Around the World: Measurement and Implications" *mimeo*.
- Kehrig, M. and N. Vincent (2018), "Growing Productivity without Growing Wages: The Micro-Level Anatomy of the Aggregate Labor Share Decline", *mimeo*.
- Koh, D., Santaeulàlia-Llopis, R. and Y. Zheng (2016), "Labor Share Decline and Intellectual Property Products Capital", *R&R at the Journal of Political Economy*

- Krusell, P., Ohanian, L., Ríos-Rull, J. and Violante, G. (2000), "Capitalskill Complementarity and Inequality: A Macroeconomic Analysis", *Econometrica*, 68 (5): 1029-1053.
- Krusell, P. and A. Smith (2015), "Is Piketty's "Second Law of Capitalism" Fundamental?" *Journal of Political Economy*, 123 (4): 725-748.
- Peretto, P. and Seater, J. (2013), "Factor-Eliminating Technical Change," Journal of Monetary Economics, 60 (4): 459-473.
- Piketty, T. and E. Saez (2003), "Income Inequality in the United States, 1913-1998" The Quarterly Journal of Economics, 118 (1): 1-39.
- Piketty, T. and G. Zucman (2014), "Capital is back: wealth-income ratios in rich countries 1700-2010" *Quarterly Journal of Economics*, 129 (3): 1255-1310.
- Zeira, J. (1998), "Workers, Machines, and Economic Growth," *Quarterly Journal of Economics*, 113 (4): 1091-1117.

4.3 Environment

- Acemoglu, D., P. Aghion, L. Bursztyn and D. Hémous (2012), "The Environment and Directed Technical Change", American Economic Review, 102 (1): 131-66.
- Acemoglu, D., U. Akcigit, D. Hanley and W. Kerr (2016) "Transition to Clean Technology" Journal of Political Economy, 124 (1): 52-104.
- Aghion, P, A. Dechezleprêtre, D. Hémous, R. Martin and J. van Reenen (2016), "Carbon taxes, path dependency, and directed technical change: Evidence from the auto industry", *Journal of Political Economy*, 124 (1): 1-51.
- Barrage, L. (forthcoming), "Optimal Dynamic Carbon Taxes in a Climate-Economy Model with Distortionary Fiscal Policy", *Review of Economic Studies*.
- Calel, R. and A. Dechezleprêtre (2016), "Environmental Policy and Directed Technological Change: Evidence from the European Carbon Market", *Review of Economics and Statistics*, 98 (1): 173-191.
- Dasgupta, P and G. Heal (1974), "The Optimal Depletion of Exhaustible Resources", *The Review of Economic Studies*, 41: 3-28.

- Gerlagh, R. and M. Liski (2017), "Carbon Prices for The Next Thousand years", *mimeo*.
- Gerlagh, R. and M. Liski (2017), "Carbon Prices for The Next Hundred Years," *The Economic Journal*, 128 (609): 728–757.
- Golosov, M., J. Hassler, P. Krusell and Aleh Tsyvinski (2014), "Optimal Taxes on Fossil Fuel in General Equilibrium", *Econometrica*, 82(1)
- Hassler, J., P. Krusell, and C. Olovsson (2012): "Energy-Saving Technical Change," Working Paper 18456, NBER.
- Hémous, D. (2016), "The Dynamic Impact of Unilateral Environmental Policies", *Journal of International Economics*, 103: 80-95.
- Newell, R., A. Jaffe and R. Stavins (1999), "The Induced Innovation Hypothesis and Energy-Saving Technological Change", *The Quarterly Journal of Economics*, 114 (3): 941–975.
- Nordhaus, W. (2008), A Question of Balance: Weighing the Options on Global Warming Policies. New Haven, CT: Yale University Press.
- Popp, D. (2002), "Induced Innovation and Energy Prices." *American Economic Review*, 92 (1): 160-180.
- Popp, D. (2006) "ENTICE-BR: The effects of Backstop Technology R&D on Climate Policy Models Energy Economics," *Energy Econo*mics, 28 (2), 188–222.
- Stern, N. (2007), *The Economics of Climate Change: The Stern Review*. Cambridge, U.K. : Cambridge University Press.
- Stiglitz, J. (1974): "Growth With Exhaustible Natural Resources: Efficient and Optimal Growth Paths," *Review of Economic Studies*, 41, 123–137.
- Weitzman, M. (2009), "On Modeling and Interpreting the Economics of Catastrophic Climate Change," *Review of Economics and Statistics*, 91, 1–19.
- Weitzman, M. (2014), "Fat Tails and the Social Cost of Carbon." American Economic Review, 104 (5): 544-46.