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1 Introduction

Recent literature has started to consider the role of social interdependencies be-
tween individual decisions. The potential importance of social interactions has
been highlighted in analyses of such diverse phenomena like human capital ac-
quisition (Bénabou, 1996), drug addiction (Jones, 1994), social pathologies due
to peer group effects (Glaeser, Sacerdote and Scheinkman, 1996) or herding in fi-
nancial markets (Kirman, 1993; Lux, 1995). Early work on social spillovers that
are not mediated by markets include Follmer’s analysis of economies with in-
terdependent preferences and Schelling’s (1971) study of the emergence of strict
racial segregation as the overall outcome of the locational choice of individuals
who only have a weak preference for neighbors of the same race. Existence and
uniqueness of equilibria in large economies with both local or global interactions
have been studied recently by Horst and Scheinkman (2006).

Empirical work on social interactions has mostly been based on an adap-
tation of the discrete choice framework allowing for social spillovers in agents’
utility functions. Brock and Durlauf (2001a,b) provide an introduction into
the econometric implementation of this approach. Extensions and applications
of this approach can be found in Ioannides (2006) and Krauth (2006), among
others. While the discrete choice approach typically studies social interactions
in cross-sectional data and assumes that the configuration of choices represents
a self-consistent equilibrium (i.e. expectations conditional on agents’ beliefs
concerning the behavior of others are rational), we are interested in a dynamic
process of ongoing opinion formation within a group of agents. While our in-
corporation of social influences is very close (both in its spirit and its formal
implementation) to Brock and Durlauf’s more static approach to social interac-
tion, we do not necessarily impose that agents have settled at an equilibrium.
Another difference is that we do not model social interaction effects as due to
spillovers in utility or payoff functions. Due to the nature of the time series
we wish to model, we are profoundly ignorant about the relevant underlying
incentives of agents. In fact, there might be no incentive component of any
importance in our particular setting.

One area in which a dynamic process of opinion formation could arguably
be of some relevance, is survey data on business expectations or so-called sen-
timent indices that are published by academic and private institutes in most
developed countries. While these indices attract quite some public attention
upon their regular compilation, they have only found scarce consideration in
the macroeconomics literature. Due to the underlying motivation for collect-
ing such data, much of the limited body of available literature focuses on the
predictive power for macroeconomic activity of these surveys (cf. Hiifner and
Schroder, 2002; Gelper et al., 2007, Taylor and McNabb, 2007). However, as
far as we know, attempts at formulating behavioral models for the underly-
ing data-generating process of these surveys are practically non-existent. It has
been noted that there has been little effort to test positive models of expectation



or opinion formation on the base of the rich collection of survey data available
in macroeconomics. While social interactions have been hypothesized to be of
some importance in expectation formation (Caroll, 2003), such factors have to
my knowledge not been incorporated explicitely in the small sample of papers
testing positive models of expectation formation. The hypothesis underlying our
present study is that these survey data might be viewed as the result of a social
process of opinion formation among the respondents. If these data could be
explained via social interactions, they would represent behavioral components
of macroeconomic activity quite different from rational attempts at forecasting
the future development of the business cycle. Rather than representing rational
forecasts of future economic developments they could be interpreted as mani-
festations of animal spirits.

Fig. 1 gives an intuitive preview on our subsequent results. The figure
contrasts the monthly observations of the ZEW Business Climate Index for
the German economy compiled by the Centre for European Economic Research
(German acronym: ZEW) at the University of Mannheim from about 350 re-
spondents with a frequent measure of real economic activity (HP filtered indus-
trial production). The business climate index is computed so that it is bounded
by +1 and -1 from above and below (see sections 2 and 4 for details). Quite
obvious, positive (negative) values are meant to indicate an optimistic (pes-
simistic) majority among respondents. The higher the absolute value, the more
pronounced the positive (negative) outlook for the German economy. A glance
at the lower panel shows a striking contrast to the real thing: while the out-
put gap as measured by the residuals from the HP filter appears quite noisy,
the climate index has much more obvious swings between low and high values.
It appears that there is a much clearer image of the business cycle dynamics
in the eyes of the observers compared to what can be extracted from real eco-
nomic activity. The ZEW index is also characterized by very abrupt and drastic
switches between more optimistic or more pessimistic majorities than any switch
between positive or negative realizations of the output gap. The much lower
noise ratio of the climate index is somewhat reminiscent of the higher volatility
of stock prices compared to ex-post rational prices based on realized dividends,
cf. the literature on excess volatility of financial markets (e.g. Shiller, 1981).
Proponents of the excess volatility hypothesis argue that rational expectations
of future dividends entering the present value model should be less volatile than
their realizations. Similarly, one might argue that rational predictions of the
business cycle should also be smoother than the subsequent realizations thereof
as there will almost certainly be stochastic factors that are not known at the
time when the forecast is formulated. However, since respondents are not re-
quested to make a prediction of some measurable statistics of the business cycle
but only issue qualitative opinions, it is not clear how to map the climate index
into a prediction of GDP growth rates or industrial production.
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The pronounced swings of our sentiment series is quite typical of such data.
While one could, in principle, imagine that these swings are caused by the rev-
elation of important news about the subsequent development, the hypothesis
we are going to explore in this paper is that these swings are imprints of a
process of social interaction among respondents. It is not difficult to imagine
that respondents’ changing assessments of the economic outlook are at least in
part influenced by the evolution of the opinion of their peers. Interpersonal
affects might come into play via private exchange of opinions but probably even
more so via the influence of a ‘social field’ of the average mood of their peer
group of which they learn through a variety of professional and private channels
of communication. To test for the existence of such an interactive element in
opinion formation, we will use a formalization close in spirit to that of Brock
and Durlauf’s discrete choice with social interactions, albeit without including
any elements of utility or payoff maximization (there may be no such element
in survey responses).

We adopt a framework of stochastic transitions between discrete alterna-
tives along the lines of Weidlich and Haag (1983) and Lux (1995). While the
basic goal is to identify potential interaction effects, this framework is general
enough to allow us to also cover exogenous factors of influence on the opin-
ion dynamics. Naturally enough, macroeconomic data would be our candidate
explanatory variables. Including both these exogenous forces and an intrinsic
feedback allows us to study their interplay in the formation of group expec-
tations. There is another important issue we explore in our study: while we
have a relatively constant number of respondents in our survey (about 350), it
is not clear whether all these participants would, in fact, act as independent
decision makers. This issue is quite subtle: apart from the overall hypothesized
interaction effect, there might be coherence within subgroups of the entire pool
of respondents that is so strong as to lead to entirely synchronized behavior.
The behavior of such synchronized subgroups would simply collapse onto that
of a single agent (and any member of the group would be a representative agent
of it). The dynamics of the opinion formation process would look differently if
certain subgroups would always move together. The framework to be formalized
below allows us to cope with this phenomenon: first, we start by specifying the
opinion dynamics for a given number of independent actors, equal to the average
number of respondents in the survey. Since the number of agents explicitly ap-
pears as a variable in our model, we may, however, also adopt an agnostic view
and let the model speak on the number of effectively independent agents. As it
turns out, endogeneizing the number of active groups of agents allows a huge
improvement in the goodness-of-fit of the model. Subsequent statistical analy-
ses confirm that this specification covers the salient features of the data much
better than alternative specifications. Further explanatory power is obtained by
allowing for a ‘momentum’ effect in addition to the baseline social interaction.
In contrast to these refinements of the social part of the dynamics, allowing for
an additional feedback from macroeconomic data (e.g., industrial production)
only improves slightly the goodness-of-fit with a more modest increase of the



likelihood. While the statistical properties (in terms of matching conditional
and unconditional moments) of the model remain almost unchanged, the macro
factor leads to synthetic replications from Monte Carlo simulations that are bet-
ter able to match the particular patterns of ups and downs observed during the
sample period. Our simple stochastic model also allows to compute confidence
bounds for future observations from the transient density. We use these to as-
sess whether the empirical series could be a likely realization of the process of
social interaction given the initial condition and the macro influence. We also
explore whether any single entry would be a probable realization conditional on
the last month’s entry and the contemporaneous macro feedback. As it turns
out, in both cases the empirical data hardly ever move out of the pertinent 95
percent confidence intervals which nicely confirms the explanatory power of the
model.

The rest of the paper is structured as follows: in section 2, the basic stochas-
tic framework of social interactions will be introduced together with a review of
its properties. Section 3 contemplates the problem of estimating the parameters
of such a stochastic framework with an ensemble of interacting agents. Section 4
provides some results on Monte Carlo experiments with small samples to arrive
at insights on the reliability and accuracy of our subsequent estimates. Section
5 then contains the application to the ZEW index of the business climate and
section 6 provides a detailed analysis of the statistical properties of Monte Carlo
replications of the estimated models to explore their explanatory power together
with an assessment of their goodness-of-fit. Section 7 concludes.

2 A ‘canonical’ stochastic model of social inter-
action

As a simple formalization for the process of social opinion formation, we adapt
an approach that goes back at least to Weidlich and Haag (1983) and that had
been used in a macroeconomic setting by Kraft, Landes and Weise (1986) among
others and in behavioral finance models by Lux (1995, 1997). The model deals
with a binary choice problem and stochastic transitions of agents between both
alternatives due to exogenous factors and group pressure. Let the two groups
have occupation numbers ny and n_ respectively, with the overall population
size being 2N (multiplication by 2 simply serves to avoid the case of an odd
number of individuals).

The aggregate outcome of this choice process at any point in time can be de-
scribed via the difference between the number of individuals in the “4” and

“—7 groups:
1
{n’:i(’n”r_n*)? (1)

or an equivalent opinion indez:
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T=w = oy with z € [-1,1]. (2)

Agents’ beliefs are either optimistic or pessimistic; they change their beliefs
in continuous time, with a Poisson process describing the changes from the “4”
to the “—” group or vice versa within the next instant. We denote the pertinent
transition rates by wy and w; and assume that they are the same for all agents
within each group.

For the sake of illustration, we follow the earlier literature quoted above by
assuming an exponential functional form of the transition rates wy and wy:

wy = v exp(U), w) = v exp(—U). (3)

The function U might be labeled the ‘forcing function’ for transitions and is
analogous to the utility function in a proper discrete choice setting. It is assumed
to consist of a constant factor (bias) ag and a second component formalizing
group pressure in favor or against homogeneous decisions, a;x:

U=aqay+ ajx. (4)

The parameters of the model are, thus: v which determines the frequency
(time scale) of moves between groups, «g which generates a bias towards the
choice of “+” (“—") opinions if positive (negative) and a; which formalizes the
degree of group pressure (if it is positive, if negative it would rather imply a ten-
dency of non-conformity). With this set-up the opinion dynamics is described
as the aggregate outcome of 2NN coupled Markov processes for agents’ choices
in continuous time. During small time increments At, the probability of an
agent to switch from his previous group (decision) to the other alternative, is
approximately equal to wy At and w|At, respectively. Note that this formalisa-
tion implies that the strength of the social influence is the same for all agents.
Interpersonal differences are covered in the stochasticity of the process, i.e. by
the very fact that individual choices are not deterministic, but are only deter-
mined in expectation. In utility-based discrete choice models, this stochasticity
is generated via the assumption of stochastic terms in individuals’ utility func-
tions that are random draws from an extreme-value distribution.

Models with the above basic ingredients have been thoroughly investigated
in the literature. The basic features of the model can be summarized by the
following findings!:

i) For a; < 1, the group dynamics defined by (3) and (4) is characterized
by a stationary distribution with a unique maximum. If ay = 0, this
maximum is located at x* = 0. It shifts to the right (left) for ag > 0
(< 0).

Lef. Weidlich and Haag, 1983, chap. 2; Lux, 1995, essentially the same jump-Markov

process is used by Blume and Durlauf (2003) as a dynamic process of strategy revisions in a
discrete choice framework with social interactions.




ii) For a1 > 1 and «p not too large, the stationary distribution has two
maxima z4y > 0 and z_ < 0. If g = 0, the distribution is symmetric
around 0. It becomes asymmetric if ag # 0 with right-hand (left-hand)
skewness and more concentration of probability mass in the right (left)
maximum if ap > 0 (< 0) holds.

iii) If |ag| becomes very large, the smaller mode vanishes and the station-
ary distribution becomes uni-modal again. This happens if |ag| increases
beyond the bifurcation value ag given by:

cosh?(@g — oy (ag — 1)) = oy (5)

with cosh (.) denoting the hyperbolic cosine, cosh(z) = 3(e* + e*). One
might note that these findings are perfectly analogous to those in models of
discrete choice with social interactions, cf. Brock and Durlauf (2001b, proposi-
tions 1 through 3): Moderate influence of social interaction (a; < 0) leads to a
balanced distribution of the population on both alternative choices while strong
interaction leads to the emergence of a majority in one alternative. A positive
(negative) bias ag generates asymmetry as it introduces a preference for one of
both alternatives.

In most applications, the first step towards an analysis of the above group
dynamics consists in the derivation of a quasi-deterministic law of motion for
the first moment of z:

T = v(1 —T)etMT _y(1 4 T)e” *0MT (6)

= 2u[tanh(ag + a1 T) — T] cosh(ag + a1 T).

(6) is exact in the limit of an infinite population size and provides a first-
order approximation of the dynamics of x for finite populations. One easily
recovers that the features of the unconditional distribution ((i) to (iii)) are re-
flected in the existence and stability of steady states of (6).

However, it is worthwhile to emphasize that in the case of a finite population
eq. (6) is only an approximation to the mean value dynamics, i.e. it gives the
most likely path that the average opinion takes from some initial condition. It
is neither exact nor is it necessarily close to any particular realization of the
process. Although the mean value equation becomes exact in the limit of an
infinite population, with a finite pool of agents the stochastic elements of the
dynamics would lead to non-negligible fluctuations in the composition of the
opinion index. For example, in the case of multiple equilibria, switches between
both modes of the distribution might occur due to the inherent stochastic fluctu-
ations of the opinion dynamics while the mean value equation could only predict
convergence towards the nearest equilibrium from any set of initial conditions.



3 Estimation: The Basic Framework

While the stochastic properties of population processes like the one depicted in
sec. 2 have been studied in great detail (Weidlich and Haag, 1983; Aoki, 1996;
Weidlich, 2000), this literature has not developed a systematic approach towards
estimation of such models. In the following I will outline, how such models can
be estimated via a fairly conventional maximum likelihood procedure.

The basic ingredient in our estimation procedure is the so-called Fokker-
Planck equation for the time development of the transitional density of macro-
scopic observables of the process. The Fokker-Planck equation associated to a
stochastic process is a parabolic partial differential equation that occupies a very
prominent place in statistical physics (Risken, 1989; Frank, 2005). However, it
seems that due to the different research perspectives in this discipline, it has
never been used as a tool for estimation of parameters of physical models.

Nevertheless, the use of the Fokker-Planck equation for parameter estima-
tion seems straight forward: if on has available discrete observations of a dif-
fusion process and if the Fokker-Planck equation of the hypothesized process
could be solved explicitly, the time-dependent solution to the transient den-
sity at the times of observations could be used to compute the likelihood of
each observation conditional on the realization of the process in the previous
period. Unfortunately, in models of interacting agents, a closed-form solution
to the Fokker-Planck equation is usually not available. In this case, however,
we could still resort to numerical approximations of the Fokker-Planck equa-
tion. Numerical integration of partial differential equations via finite difference
of finite element methods is also a well developed field (Thomas, 1995) and has
found important applications both in statistical physics and financial mathe-
matics (Seydel, 2002, part IIT). A well-known area of application is the pricing
of American options and exotic options for which no closed-form solutions of
the modified Black-Scholes equation exist. The only application within an esti-
mation framework can be found in a different branch of computational finance,
namely diffusion processes of the term structure of interest rates. The first to
propose approximate ML estimation on the base of a numerical integration of
transitory densities has been Poulsen (1999) whose approach has been compared
to alternative methods by Jensen and Poulsen (2002). Hurn et al. (2006) pro-
pose refinements using finite elements rather than finite differences.

In order to set the stage for the presentation of this methodology, consider
a parabolic partial differential equation:

of(x) 0 02
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If (7) refers to a Fokker-Planck equation, the unknown function f(x,t) is the
transitory density of z, and u(z,0) = —A(z,0) , g(z,0) = 3 D(x,6) with A(z,0)
and D(z, ) are the drift and diffusion functions of the process, and 6 is a set of
unknown parameters that one wants to estimate.

If no closed-form solution for f(x,t) is available (which will mostly be the
case), one can study the time development of the density via numerical integra-
tion of eq. (7). Various methods for discretisation of the stochastic equation
(7) can be used. Applying a finite difference approach, the first and second
derivatives on both sides of eq. (7) could be approximated either via forward
differences of backward differences (called explicit or implicit methods). Higher
accuracy of the approximation can be achieved by combining both forward and
backward differences by computing central differences around intermediate grid
points.

To concretize the finite difference approximation, consider a ‘space’ grid with
distance h between adjacent knots: z; = x9+j-h; j =0,1,..., N, and similarly
equally spaced points along the time axis between ¢ = 0 and the final time T":
ti =ik withi=0,..,N;and k = 7.

In a forward discretization, (7) would have to be replaced by

F =1 S —wifi giafio — 20+ 9511y 8
K h * 2 ®)

with f; = f(xo +j - h,ik) and p; = p(xo+j - h,0), g; == g(xo +j - h,0).
This forward approximation is also known as the explicit finite difference ap-
proximation as it provides a closed-form solution for the mesh points at time
i+ 1. Replacing the forward difference on the left-hand side by the backward dif-
ference f; — f;fl, we obtain the implicit finite difference approximation. While
the forward and backward approximations are of local accuracy (at the mesh
points) O(k) + O(h?), higher accuracy can be obtained by taking the average of
both the forward and backward difference approximation. This is known as the
Crank-Nicolson method and can be shown to have local accuracy O(k?)+O(h?).
Note that the Crank-Nicolson approach effectively approximates the continuous-
time diffusion at intermediate points (i+ %)k’ rather than those on the grid itself.

Because of the necessity of restricting the approximation to a finite inter-
val, boundary conditions have to be imposed in order to prevent transitions to
inaccessible states. In the present application boundary conditions should pre-
vent a leakage of probability mass to points outside the support of the transient
density. The very natural condition to conserve mass within the support is,
therefore:

; 1. ; 1., .
1y = flao=5hik) =0 and £, = Flao+(Nat3)h,jk) = 0. (9)



While such simple Dirichlet boundary conditions preserve the local second
order accuracy, more complex derivative boundary conditions in certain appli-
cations would require a careful analysis of the errors brought about by their
discretization. In our setting, the no-flux boundary conditions guarantee con-
servation of probability mass within the underlying x-interval if (7) governs the
dynamics of a transient density (i.e. if (7) is a Fokker-Planck equation).

The drift and diffusion term of the Fokker-Planck equation for our process
are given by?:

Alz) = s—wi(z) — swi(z) = v(1 — 2)e®FTNIT —y(1 4 z)e” 04T (10)

which, of course, coincides with the right-hand side of (6), while the diffusion
term is:

D(z) = *(LWT(CU)*niwi(m)) = %(U(lfx)ea”a”+v(1+x)e"”‘°’°‘1"”).
(11)

This is certainly a case in which the conditional density can not be solved for
explicitly due to the high degree of non-linearity of both the drift and diffusion
components. For numerical integration, we can, however, resort to the Crank-
Nicolson scheme as introduced above. Fig. 2 shows an example with a strongly
peaked initial distribution which evolves into a bi-modal distribution over time.
Underlying parameters are: v = 3, a9 = 0,17 = 1.2, N = 50 for the parameters
of the agent-based model, h = 0.0025 and k£ = 0.01 for the discretization in
“space” and time, T' = 3 for the time horizon of the numerical integration and
a space grid extending ;jfrom —1 to 1 in accordance with the support of the
variable  has been used. The initial condition, xy = 0, has been approximated
by a Normal distribution with density ®~ (z¢ + A(x)k, D(x)k) evaluated at grid
points —1 + jh;j =0,1,..., N, in the x direction for the first time increment
k. This avoids the problems of a Dirac d-function as initial condition and can
be interpreted as a first-order Euler approximation using the known drift and
diffusion functions for the initialization of the approximation.

Fi1G. 2 ABOUT HERE

On the base of the Crank-Nicolson (or any other finite difference approxi-
mation), we can estimate the parameters of a diffusion process with discretely

2The Fokker-Planck equation is obtained as a second-order approximation to the com-
plete charaterization of the probability flux over all states (the so-called Master equation, cf.
Weidlich and Haag, 1983; Lux, 1995)
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spaced observations via approximate maximum likelihood: The negative log-

likelihood of a sample of observations Xg,..., X7 is
T—1
—log fo(Xo | ) = Y logf(Xss1 | Xs,0) (12)
s=0

where fo(Xo | 0) is the density of the initial state (which in practical appli-
cations will be skipped because of its negligible influence and the possible lack
of a closed-form solution for the stationary density) and f(Xsy1 | Xs,0) is the
value of the transitional density at s+1 conditioned on the previous observation
at time s, X;. This continuous density is approximated by our finite difference
scheme. Poulsen (1999) shows that the pertinent estimator is consistent, asymp-
totically normal and can be asymptotically equivalent to full ML estimates, at
least under the Crank-Nicolson approximation scheme. In his Theorem 3, he
shows that the grid size has to behave like k(T) = T° with § > % which
will be guaranteed in our applications. He also points out that - in contrast to
simulated ML approaches - there is no stochastic approximation error and the
accuracy of the approximation is directly controlled by the user. Appendix A
provides an illustration of the second-order accuracy of our discretisation via
some worked-out numerical examples.

4 Monte Carlo Simulations of Approximate ML
Estimation

We now turn to estimation of model parameters on the base of the numerical
approximation to the Fokker-Planck equation. In order to study the perfor-
mance of the method we conduct a small simulation experiment on the base of
our canonical interaction model. Because of the time needed for approximate
ML with numerical integration of the transient density we have to restrict this
Monte Carlo study to a few selected parameter values. The following sets of
parameters have been chosen:

e set . v=3,a9=0, a; =0.8,

e set II: v =3, ap = 0.2, oy = 0.8,

set IIT: v =3, ag =0, 1 = 1.2,
e set IV:v=3,ap=0.2, ;g =1.2.

In all scenarios, N = 50, i.e. the population size is equal to 100 (2N). Our
choice of parameters is governed by our interest to compare the performance in
situations with uni-modal and bi-modal distributions, with and without a bias
term ag # 0.

Because of the computational demands of this method, the sample size has
been restricted to T' = 200 observations at discrete integer time intervals which

11



have been extracted from a true multi-agent simulation with small time incre-
ments At = 0.01. The order of magnitude of this sample size is also in line with
the number of available monthly observations of the ZEW index in our sample
(which is 176). The time scaling parameter v has been fixed in order to have
a certain number of switches between both modes in the bi-modal case as oth-
erwise we would not expect the estimation procedure to detect a bi-modal dis-
tribution (whether this conjecture really holds, might be checked in subsequent
Monte Carlo experiments). The Crank-Nicolson finite difference discretization
is applied with widths k = % (k= %)and h = 0.02 in the time and space direc-
tion, respectively (note that in the space direction A = 0.02 corresponds exactly
to the discreteness of the index z for our setting with N = 50). In order to have
a certain benchmark for comparison of accuracy of the parameter estimates, we
compare the resulting estimates with those obtained under £ = 1. The later
can be interpreted as an Euler approximation since it approximates the tran-
sient density by a Normal distribution (with mean and standard deviation taken
from the drift and diffusion functions of the Fokker-Planck equation) which in
the Crank-Nicolson approach is used only for the initialization of the iterations.
This Euler approximation does, of course, not yield consistent estimates and
so we would expect it to be inferior to the Crank-Nicolson-ML approach. In
order to get some insight into the dependence of the parameter estimates on the
step size used in the Crank-Nicolson approximation, we also compare results
obtained with time increments k = é and k= %.

Table 1 shows our results exhibiting the mean estimates, finite sample stan-
dard errors and root-mean squared errors for all underlying parameters. The
main message is that we can estimate the parameters v, ag and a; quite ac-
curately even for our relatively small sample of 200 observations. In all cases,
the Crank-Nicolson estimates are by far better than those obtained on the base
of the Euler approximation, in terms of bias and standard error. One also in-
fers that estimated parameters become somewhat less reliable in the cases of
parameter sets II and IV as compared to I and III, respectively. The reason is
probably that a positive bias interferes with the effects of interaction so that the
variability of estimated parameters across samples increases. Nevertheless, the
overall bias and standard error still remain reasonable even in those cases with
ap = 0.2 (with the exception perhaps of the estimates of v for parameter set
IV). In contrast, Euler estimates appear essentially useless in these cases. As
concerns the influence of the density of the grid, we observe only minor differ-
ences between the Crank-Nicolson approximations with k = % and k = %.
In fact, results do not uniformly improve when reducing the time increments:
while one obtains slight improvements for the parameters o and oy, the esti-
mates of v seem to deteriorate. The near equivalance of both settings together
with seemingly reasonable biases and standard errors suggests the conclusion
that using finer grids would probably not improve significantly the quality of the
parameter estimates. In Appendix A we also provide evidence for the alleged
second-order accuracy of the Crank-Nicolson approximations which underscores
its suitability for ML estimation.
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TABLE 1 ABOUT HERE

Another set of Monte Carlo experiments is motivated by realizing that the
number of agents (the system size) N appears as a variable in the diffusion
part of the Fokker-Planck equation. Neglecting the issue of discreteness of NV,
we can, in principle, also use our approach to arrive at an estimate of the
number of active agents instead of imposing a predetermined value of N. In
our pertinent Monte Carlo experiments, we use again parameter sets I through
IV, with N =25, N =50 or N = 175 in both cases. The results are exhibited
in Table B1 in the Appendix. Given the small sample size, the behavior of
the estimates seems also quite satisfactory. We comment on a few particular
observations in the Appendix.

5 Empirical Application: Interaction Effects in
a Business Climate Index

Since we have focused on a very simple interaction scheme, it is not obvious that
its structural features should be easily applicable to economic data. Weidlich
and Haag (1983, ¢. 5) and Kraft, Landes and Weise (1986) had proposed sim-
ple business cycle models with, for example, investment decisions being driven
by an opinion process like the one outlined in Sec. 2. Such models could be
estimated using the above methodology. We leave this more demanding multi-
variate application to future research and turn to a particular type of uni-variate
time series in which interaction effects could arguably play some role. Various
surveys of business climate or sentiment are regularly conducted in many coun-
tries that seem to receive much more attention by the public than by academic
researchers. The leading examples are the Michigan Consumer Sentiment In-
dex and the Conference Board Index for the U.S. economy, which have been
reported monthly since the end of the 70ties (Ludvigson, 2004, Souleles, 2004).
In Germany, similar surveys are conducted by the Ifo Institute (Ifo Business Cli-
mate Index) and the Center for European Research (ZEW) at the University of
Mannheim (denoted the ZEW Index of Economic Sentiment). A broader range
of confidence indices is compiled by the European Commission for the member
states of the European union (European Commission, 2007). Many of these in-
dices are close to the simple structure of our ‘canonical’ model in that they very
literally ask for wether respondents are optimistic (“+”) or pessimistic (“-”) con-
cerning the prospects of their economy. The only difference to our above model
is that these indices mostly also allow for a neutral assessment. To accomodate
this additional possibility we might assume that neutral subjects can be assigned
half and half to the optimistic and pessimistic camp which, then, would allow
us to apply our model directly to these data3. Here we focus on the ZEW index

3As detailed in Weidlich and Haag (1983, c. 6) the above framework could easily be
extended by allowing for a neutral valuation and various degrees of positive or negative sen-
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as one particularly interesting example. What makes it particularly suitable for
our purpose is that in contrast to many other sentiment indices it represents the
average of binary resp. tertiary responses in a very direct way, i.e. without any
further aggregation involved, and that it has a rather constant number of partic-
ipants (about 350 respondents) while other indices exhibit more fluctuations in
their number of respondents over time. The group of respondents is furthermore
more homogeneous than in most other surveys as it consists mainly of leading
professionals from the finance industry. This selection of respondents implies
on the one hand, that there should be more communication within this group
(directly and indirectly via targeted media) than in a more anonymous sample
selected via randomized nation-wide telephone interviews. On the other hand,
one could hypothesize that financial experts should be less prone to interaction
effects which lends further interest to our results.

The index is, in fact, reported as the percentage of optimists minus pessimists
so that it can be directly used as the opinion index z in Sec. 2. In contrast, the
indices for the U.S. economy are computed as weighted averages over categorial
answers to different questions while the second important index of the German
business climate, Ifo, starts with sector-specific surveys and aggregates them to
an overall business climate indicator. The available monthly record of the ZEW
sentiment index (starting in December 1991 and running through July, 2006)
had already been displayed in Fig. 1 above. Despite quite a number of differ-
ences in the data collection process, its development is broadly parallel to that
of the Ifo index. What is striking is the very pronounced cyclical behavior of the
ZEW index with very sudden movements upward and downward and a certain
stagnation at times at a high or low plateau. One could, in fact, argue that the
dynamics of the ZEW index is reminiscent of a bi-modal stochastic dynamics
switching between a high positive and a moderately negative equilibrium. In
the introduction, we had already compared this series with what it is designed
to predict, the cyclical component in economic activity. This cyclical compo-
nent appears in the lower panel of Fig. 1 in the form of residuals of monthly
industrial production from the Hodrick-Prescott filter, which is widely seen as
the state-of-the-art approach for disentangling trend components and cyclical
components in economic activity. Somewhat surprising, the perception of the
business cycle dynamics as reflected in the survey allows a much more clear-cut
categorization of its phases than the much more random appearance of filtered
IP.

The ZEW surveys are based on about 350 respondents so that we might
take this information as a parametric restriction on N (assuming N=175). We,
then, have to estimate the parameters v, ag and «a; in a baseline application of
our interacting-agents framework. Results are shown in Table 2. Interestingly,
the crucial parameter «; is significantly larger than unity indicating bi-modality
of the limiting distribution. Despite the impression of a dominance of positive

timents by slight changes of individuals’ transition rates. Adopting the formalization of tran-
sition rates proposed by Weidlich and Haag, the macroscopic dynamics of the index would
indeed remain unchanged.
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assessment over the whole sample period (quite in contrast to stereotypes of
German angst) the bias term «aq turns out to be not significantly different from
0. Unfortunately, simulations of the estimated model show, that it most likely
would get stuck within one mode over a time horizon of the length of our sam-
ple (176 observations) and would on average at most switch only once from one
mode to the other (cf. Figs. 3 and 5 below). This is due to the fact that, in
our framework, transitions between modes are governed by chance fluctuations
and become more and more unlikely the higher the number of agents. Vice
versa, frequent switches would only occur for a relatively small size of the un-
derlying population. In order to reconcile our observation of a relatively large
number of apparent switches of the mood of the respondents with the ‘official’
system size of 350 respondents, we could argue that the ‘effective’ system size is
smaller than the official number. This would happen if some respondents would
actually move broadly synchronously and would, therefore, not act like inde-
pendent agents (independent in performing their movements, not independent
in the sense that their movements between “4” and “-” were not influenced by
other agents). While we cannot check this assertion due to the anonymity of
the data, we could let the index itself speak on the underlying effective system
size by adding NN to the list of parameters estimated via approximate ML. Table
2 shows that this added flexibility leads to a relatively large increase in the log
likelihood and is preferred over the baseline model by both the AIC and BIC
criteria. The ‘effective’ number of agents in our estimation is only about 40 (2IV)
compared to the much higher official sample size of about 350. As concerns the
other parameters, aq still is insignificant, while the interaction coefficient falls
marginally below 1 indicating uni-modality albeit with possibly large excursions
into extreme configurations. Remarkably, the estimate of the parameter v de-
creases from 0.78 to 0.15 when proceeding from model 1 to model 2. The likely
reason is that the first estimation would have to come up with a higher mobility
of the population (higher propensity to change opinion) in order to compensate
for the stagnatory tendency of the larger imposed population of model 1.

TABLE 2 ABOUT HERE

We have remarked in sec. 2 that our framework allows to incorporate exoge-
nous effects on the opinion formation process. In order to do so we simply could
expand the influence function U by introducing additional factors that could be
of importance to the assessment of the business cycle by the respondents of the
survey:

Ui = ag + a1 + oy (13)

Most naturally, y could be macroeconomic data of the same frequency itself
(i.e. monthly), although our framework could also accommodate data of higher
or lower frequency. Various such macro feedbacks have been investigated. As
typical macroeconomic data at monthly frequency we tried interest rates, indus-
trial production and changes of unemployment rates. In our model 3 we report
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the influence of industrial production (deseasonalized and HP filtered, as dis-
played in Fig. 1). Note that the direction of the feedback is not predetermined
in our model, i.e. as could turn out positive or negative. The outcome of the
exercise shows that industrial production adds some explanatory power: we ob-
tain a significantly negative coefficient together with lower values of the AIC and
BIC criteria. For interest rates, in contrast (results are available upon request),
the estimated coefficients as are not significant and overall improvements com-
pared to model 2 are smaller. Quite the same holds for various measures of
unemployment (with the change over the past 12 months entering as regressor
because of the non-stationarity of the raw data): parameter estimates oscillate
between significant and insignificant depending on which measure is used, the
AIC and BIC values are between those of models 2 and 3 and the parameter
estimates of the interaction components are hardly affected. Remarkably, the
coefficient for the influence of changes of unemployment is positive in all cases.
Combining two or three macroeconomic factors leads to very modest improve-
ments (logL =~ 649). Mostly, at most the coefficient for IP remains significant,
while again the parameters for the interaction components are barely affected.
However, even for the model 3, the improvement compared to model 2 is much
smaller than the increase in logL, AIC and BIC achieved by adding N as a free
parameter (the step from model 1 to model 2). What is perhaps puzzling is
the negative sign of the feedback effect from industrial production (similarly we
obtained counterintuitive positive coefficients for unemployment and somewhat
more plausible negative ones for interest rates) which is in contrast to a positive
contemporaneous correlation of about 0.28 between both series. It appears to
depict some type of ‘contrarian’ behavior: if the economic data is indicating
a boom phase, our respondents already appear to forestall the overheating of
the economy and the subsequent downturn and vice versa.* In the estimation
exercise reported in Table 2, the realization of industrial production is that of
the previous period (which, in fact, in the case of IP is not known at this time to
survey participants since the first statistical estimates are only released some-
what later). We have also experimented with various leads and lags without
much change of the results.

Models 4 and 5 in Table 2 depict another extension of our baseline model:
here we include a kind of ‘momentum’ effect in the opinion dynamics. Eq. (13)
is now modified to include the change of the climate index from the month ¢ —1
to the last observation:

Ui = ag + oy + ooy + oz — 24-1) (14)

One may interpret this as respondents reacting not only to the net influence
of their environment but being particularly sensitive to changes of the business

4At the time of writing this version (June 2007) the ZEW index declined ‘unexpectedly’
despite the German economy experiencing a long-term maximum of its growth rate.
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climate themselves.® While one could argue that they might try to extract
information on trends, it would certainly be hard to come up with a fully ra-
tional explanation for why the change of the index should have an influence
on its subsequent development. Note also that a priori both a positive as well
as negative feedback (if any) could be imagined. In fact, the negative coeffi-
cient on industrial production might suggest a similar contrarian element for
the perceived momentum. As it turns out (cf. Table 2), the momentum effect is
significantly positive. It again leads to a remarkable improvement of the model,
but does not affect previously estimated parameters by too much. Adding in-
dustrial production as an explanatory variable (model 5) again leads to a further
increase of the likelihood which is, however, again much more modest compared
to the gain obtained from model 4. Smaller gains would result from alternative
macroeconomic factors. In summary it, therefore, appears that macroeconomic
variables add only a very slight fraction of the explanatory power, while the ma-
jor improvements are obtained via refinements of our social opinion formation

process.6

6 Specification Tests

How closely do time series from the estimated models mimic the empirical be-
havior of the ZEW index? Fig. 3 exhibits three simulations over the same time
horizon (T' = 176 integer periods) of model 5 together with the empirical data.
For these simulations, we have used time increments At = 0.01 for the ongoing
opinion formation between integer time steps and have injected the knowledge
of the current exogenous factor (HP-filtered industrial production) as well as
the ‘momentum’ of the index itself at integer time steps. As it can be seen,
the visual appearance of the three Monte Carlo runs is pretty similar to that
of the index itself and the feedback from industrial production seems to direct
the simulations towards a pattern that is broadly synchronous with the ups
and downs of the empirical record. Model 2 to 4 are not too different in their
appearance. In contrast, model 1 yields a very different pattern as shown in
the lower right panel of Fig. 3 since with the higher ‘official’ number of respon-
dents shifts between equilibria become less frequent than with N ~ 20. Fig. 4
shows the mean and 95 percent confidence bounds from the transient density

5We have to be a bit careful about the interpretation of the momentum term in our
stochastic process: in order to guarantee that the process has Markov properties, we assume
that Az = x4 — x+—1 only becomes public knowledge at the time when the new survey result
is available (at time t). Respondents are, therefore, assumed to not update this variable
between surveys (i.e. they only become aware of the current ‘momentum’ at the time when
the survey is released). In this way, we can use it as an independent variable in the transition
rates without having to modify the structure of the Fokker-Planck equation. If, in contrast,
agents would update Ax; between integer time steps, we would have to deal with a continuous
time dynamics with delays for which even finite difference approximations would become quite
cumbersome.

6This holds at all stages of our estimation exercise: if we add industrial production as an
explanatory variable in model 1 (with fixed N=175), the likelihood only increases to -722.9
with virtually unchanging parameters for the social dynamics.
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computed for model 3 over the whole observation period given the first obser-
vation of the index as the initial condition and incorporating the feedback from
industrial production. Since the empirical record stays within the 95 % bounds
for practically the entire time horizon, we may conclude that we have no rea-
son to reject the hypothesis that the empirical data could have emerged as one
particular sample path from our stochastic model. We note that simulations of
models 2, 4, and 5 would lead to very similar patterns. However, for models 2
and 4 the sample paths would not be synchronous to the empirical series simply
because there is no exogenous factor.” As can be seen from Fig. 5, the 95 per-
cent confidence interval from model 1 excludes the better part of the empirical
record, so that this baseline model could be clearly rejected as a potential data-
generating process. For model 5, we could not perform the same exercise since
the discrete momentum effect is hard to capture in the Fokker-Planck equation.
We can, however, resort to numerical simulations in this case which gave a 95
percent confidence interval (from 1000 repetitions) that improves slightly on the
analytical results for model 3 in Fig. 4 (not shown here because it is almost
undistinguishable from Fig. 3). Overall, our models 3 and 5, in fact, show how
the fuzzy exogenous information in the lower panel of Fig. 1 could be trans-
lated into a much clearer image of the business cycle dynamics in the view of
the respondents’ sentiments (upper panel of Fig. 1) via the self-referential and
self-reinforcing dynamics of the opinion formation process.

FIGURE 3 ABOUT HERE
FIGURE 4 ABOUT HERE

Since the estimated interaction parameter, a;, in models 2 through 4 is
marginally below the bifurcation value of unity, the ups and downs of the sen-
timent index during the observation period would likely reflect shifts of unique
equilibria that alternate between optimistic and pessimistic majorities. Note,
however, that a standard, say 95 confidence interval for c; would not exclude
the possibility a3 > 1 so that we could as well have an underlying bimodal pro-
cess with switches between both modes triggered by exogenous forces together
with the inherent volatility of the opinion dynamics.

As another specification test® we try to assess whether the abruptness of the
up and down movements of the index is captured by our model. For this purpose
we compute a series of one-period iterations of the transient density and extract
the 95 percent confidence intervals conditional on the realization in the previous

“While this synchronous behavior appears quite striking in simulated time series, the sta-
tistical improvement by models 3 and 5 compared to models 2 and 4 in terms of the ‘distance’
criteria in Table 3 is relatively modest.

8For a more direct test we could use the test for uniform residuals of out-of-sample density
forecasts (Pedersen, 1994, Diebold et al., 1998). Using as in-sample data for parameter esti-
mation the observations until the end of 2000 this relatively weak test does not reject models
2 and higher on the base of the remaining out-of-sample density forecasts.

18



period. Fig. 6 shows the 95 % confidence bounds for the subsequent period’s
realization from model 5 which apparently is never left by the empirical record.
Upon close investigation one might, however, find some of the downturns are
getting close to the lower boundary while the ups are pretty much in the center
of the 95 percent bound.

FIGURE 5 ABOUT HERE
FIGURE 6 ABOUT HERE

Table 3 provides a statistical analysis of 1000 Monte Carlo replications of
models 1 through 5 on the base of the estimated parameters displayed in Ta-
ble 2. In order to get an impression of how closely we match the statistical
features of the data, we compare a selection of conditional and unconditional
moments. The table shows the means and simulated 95 percent boundaries for
the first four unconditional moments together with the relative deviation (the
squared value of the mean divided by the variance) as defined in Chen (2002)
and the mean absolute distance between the entries of each simulation and the
176 empirical observations. As we can see, for the first to third moments as
well as the relative deviation, models 2 to 5 are all pretty close to the empirical
numbers while model 1 (using the ‘official’ number of 350 active agents) is far
off the mark in all cases. This confirms the visual impression reported above
that the patterns of all models with an endogenous number of effective agents
are relatively similar while model 1 stands out by its tendency of getting frozen
in the lower mode due to the negative initial condition and the high level of
persistence caused by the large number of 350 agents. For the remaining statis-
tics, we first see that kurtosis is relatively poorly matched by all models, which
might however be attributed to the volatility of this measure for small samples.
The distance between the empirical observations and synthetic data again shows
the greatest discrepancy for model 1 compared to all others while the feedback
from industrial production in models 3 and 5 seems to have contributed to a
better fit compared to models 2 and 4. Again, this provides a confirmation of
our visual impression reported above.

Table 4 reports autocorrelations of the index for lags 1 to 10. A glance at
smaller lags again indicates that ACFs from models 2 to 5 are all very close
to their empirical counterpart while model 1 has a much lower degree of de-
pendence. Interestingly, models 2 and 3 are only able to match about the first
four lags while the autocorrelations remain much higher than the empirical ones
for the longer lags. Inclusion of the ‘momentum’ effect leads to a better fit of
the entire range of autocorrelations between 1 and 10 lags and also achieves a
close agreement in the estimate of the parameter of fractional differentiation as
given in the last row of Table 4. This statistics is the parameter for hypoth-
esized hyperbolic decay of the autocovariances, Elx;z:—,| ~ 7241 and it is
estimated via the method proposed by Geweke and Porter-Hudak (1983). The
motivation for inclusion of this statistics comes from the finding that various
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survey data in the political arena are characterized by long-term dependence
in the sense of hyperbolic decay of their autocovariances and autocorrelation
functions (Box-Steffensmeier and Smith, 1998).°

TABLE 3 ABOUT HERE

TABLE 4 ABOUT HERE

7 Conclusion

Given the immense public attention devoted to survey measures of business cli-
mate or economic sentiment, there has been surprisingly little work trying to
model these data. Of course, under a rational expectations perspective, the most
interesting aspect would be to test unbiasedness of such survey expectations and
to find out whether they have predictive power beyond that of other macroe-
conomic data. However, not all economists do firmly believe in the ubiquitous
validity of the rational expectation hypothesis. If we go to the other extreme,
business climate surveys might rather reflect Keynes’ notorious animal spirits
at work. In this paper we have adopted the latter viewpoint. However, rather
than taking the state of prevailing animal spirits as given, we have proposed
a positive model to explain the fluctuations in respondents’ confidence in the
economic development. As it turned out, this model appears to have significant
explanatory power for the ups and downs of the consumer climate: the model’s
parameters for the conjectured social interaction are strongly significant and ap-
parently this social component of the opinion dynamics is much more important
for the goodness-of-fit of various variants of our model than added macroeco-
nomic variables. In the absence of alternative explanatory models, we conducted
a series of specification tests that on the whole suggest that the empirical record
could have been envisaged as a particular sample path from our model. Alter-
native ‘rational’ explanations of the development of the business climate would
have to show that the pronounced swings could be explained by the release
of important bits of information within the pertinent time intervals.'® This is
a problem similar to the identification of important news at the time of large
changes of financial prices (cf. Cutler et al., 1989) and a casual search for such
explanations did not reveal any plausible candidates for such information shocks.
While we cannot exclude such explanations, we leave the burden of the proof
to proponents of rational expectations and reiterate that the social contagion of
animal spirits apparently provides us with a framework that explains the data
well without having to rely on homogeneous information shocks.

9 Alfarano and Lux (2007) show that models with multi-modal distributions might lead to
time series with apparent long memory.

100ne could certainly argue that the supposed interaction effects can be explained away by
correlated information. In the absence of individual data, we cannot discriminate between
unobserved endogenous factors and interaction effects (as shown by Lee, 2007, such an iden-
tification would require a sample with multiple groups of different sizes). In any case, an
alternative explanation based on unobserved common shocks would be empirically void.
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There are many directions into which research would fruitfully proceed from
here: first, one should obviously study similar data sets from other countries to
see whether interaction patterns are similar or not. We have already started such
a comparative projet and found quite similar results to those reported above
in quite a number of cases. Second, if business cycles are, in fact, generated
(at least partially) by animal spirits, the business climate measures would inter-
act with objective economic quantities like industrial production.!' It would,
therefore, be worthwhile to include the opinion dynamics into a multi-variate
setting of both objective measures of economic activity and more subjective sur-
vey indices. While conceptionally not too difficult to imagine, such a framework
would be computationally extremely demanding and would require the devel-
opment of more efficient numerical algorithms. Third, one would also like to
identify animal spirits in cases where no survey data exists. This would present
one with the challenge of developing indirect methods of inference to identify
hidden psychological states.

11Note that causality tests cannot distinguish between rational expectations and animal
spirits: while positive causation between contemporaneous survey expectations and future
realizations of economic activity are routinely interpreted as evidence for rational expectations
(if unbiased), they could as well be the imprint of a true causality running from survey
expectations to subsequent economic development.
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A Appendix A - Accuracy of Finite Difference
Scheme

The second order accuracy of the Crank-Nicolson scheme can be checked in
applications by trying different step sizes h or k. Denote by vy, vo and vz the

. . . . . . h
approximations of the continuous solution f, using step sizes k and h, 5 and

%, respectively. Then by expanding the error of the approximation in a Taylor

series:

vy = f—hc—kd—h*l—km+.. (A1)
vy = f—0.5hc—kd—0.25h%1 — k*m + ... (A2)
v = f—0.25hc — kd — 0.0625R%] — k*m + ... (A3)

It follows that the quotient of the differences of these approximations yields:

Vg —U1 c—+ 1.5h1
v3—vs ¢+ 0.75hRl

(A4)

Hence, if the method is first-order accurate, ¢ # 0 should be the dominating
component and evaluating (A4) at the grid points, we would expect to see
values close to 2. On the contrary, prevalence of values around 4 all over the
place would be seen as a confirmation of the theoretical second-order accuracy
of the Crank-Nicolson scheme. The same operation can be performed in the
time direction as well using differences k, g, and %.

We proceed by checking the theoretical second-order accuracy of our approx-
imation. We perform the order determination separately in each direction for
the approximation exhibited in Fig. 2. Table A1l exhibits results for selected
grid points with (A4) applied to both the h and k distances. As can be seen,
the expected dominance of values close to 4 is nicely confirmed and we can
convince ourselves that the algorithm has no problem in tracking the transition
from uni-modality to bi-modality with the required degree of accuracy.
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zlt 1025 05 075 1 125 15 175 2

-0.75 | 40 40 39 40 40 40 40 39
-0.5 40 40 40 40 40 40 40 4.0
-0.25 | 40 40 40 40 40 40 40 4.0

0 40 40 40 40 40 40 40 40
025 | 40 40 40 40 40 40 40 40
0.5 40 40 40 40 40 40 4.0 4.0
0.7 | 40 40 39 40 40 40 40 39

h-ratio

zlt 1025 05 075 1 125 15 1.7 2

-0.75 | 40 39 40 40 40 40 40 40
-0.5 39 40 40 40 40 40 40 4.0
-025 1 39 40 40 40 40 40 40 4.0

0 6.1 40 40 40 40 40 40 4.0
025 | 39 40 40 40 40 40 40 4.0
0.5 39 40 40 40 40 40 40 40
0.75 | 40 4.0 4.0 40 40 40 40 4.0

k-ratio

Table Al: Order determination for the Crank-Nicolson method applied to the
interacting agent model. All parameter values and settings like in Fig. 2.
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zlt 1025 05 075 1 125 15 175 2
-0.75 1 6.1 42 40 4.0 40 4.0 41 4.1
-0.5 5.0 41 4.0 40 41 41 42 42
-0.25 | 44 40 40 41 42 45 49 48

0 41 40 41 72 34 35 33 21
025 | 40 42 37 37 36 32 59 44
0.5 41 36 57 42 41 41 40 4.0
0.7 | 44 40 40 40 40 40 40 4.0

h-ratio

zlt 1025 05 075 1 125 15 1.7 2
-0.75 | 133 41 40 40 40 40 40 40
-0.5 58 40 40 40 40 4.0 4.0 4.0
-0.25 | 43 40 40 40 40 40 40 4.0
0 40 40 40 40 40 40 40 4.0
025 | 40 41 40 40 40 40 40 4.0
0.5 41 40 40 40 40 40 40 40
075 | 39 4.0 4.0 40 40 40 40 4.0

k-ratio

Table A2: Order determination with a different initial value, g = 0.9. All
other parameters and settings as in Fig. 2 and Table 1.

Results become slightly worse if one considers more extreme starting points:
Table A2 exhibits error ratios at selected grid points for the same model pa-
rameters and approximation scheme like in Table A1 but with zg = 0.9 rather
than zy = 0. As can be seen, the approximation suffers somewhat at small
t for values very far from the initial value. This deviation from second-order
accuracy is likely due to the initialization via the Euler approximation (which is
not second order accurate) but this effect gets nicely washed out with increasing
time horizon.

B Appendix B: Monte Carlo Runs with Endoge-
nous N

Table B1 provides the results on our Monte Carlo runs with estimated parame-
ters v, ag, a1, and N. The basic message is that even for the small sample sizes
of our study, the extended sets of parameters can be efficiently estimated. The
average biases across the 200 replications are small in most cases except for a
few outliers. One particular outlier is the case ap = 0,01 = 0.8, N = 175 for
which N is strongly biased upwards. However, as the medians show this bias
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might be due to some extreme realizations. Another interesting observation is
that our algorithm has problems in disentangling the effects of a large bias and
strong social interaction (cy = 0.2, ; = 1.2). This is perhaps not too surprising
since with z fluctuating around a unique positive mode the factor ayz would
exhibit only small fluctuations. Interestingly, however, this effect diminishes
with increasing N.

Crank-Nicolson (k = 1/8) Crank-Nicolson (k = 1/16)
v g aq N v g aq N
ag = 0.000 means 3.390 0.001 0.777 32.400 4.024 0.001 0.774 32.618
ai = 0.800 medians 3.268 0.000  0.807 26.011 3.401 0.000 0.812 26.726
N = 25 FSSE 2.471 0.007  0.172 19.703 2.565 0.007  0.180 20.063
RMSE 2.634 0.007  0.173 21.000 2.756 0.007  0.181 21.414
ag = 0.000 means 4.766 0.002 0.736 80.047 4.840 0.002 0.713 80.058
ai = 0.800 medians 3.595 0.000  0.847 61.461 3.876 0.000 0.856 64.865
N = 50 FSSE 3.763 0.007  0.277 62.459 3.950 0.007  0.303 64.302
RMSE 4.149 0.007 0.284 69.170 4.349 0.008 0.314 70.834
ag = 0.000 means 6.589 0.001 0.673 392.688 8.252 0.002 0.673  479.833
ai = 0.800 medians 3.385 0.000  0.824 191.185 4.362 0.000 0.863 243.992
N = 175 FSSE 7.136 0.005 0.359  433.211 10.354 0.009 0.475 588.831
RMSE 7.972 0.005 0.380  483.861 11.587  0.009 0.490 661.749
ao = 0.200 means 1.696 0.220  0.759 28.370 27.620 0.221 0.758 28.118
ai = 0.800 medians 3.718 0.191 0.813 26.637 4.215 0.190 0.813 26.711
N = 25 FSSE 20.696 0.123 0.229 9.451 38.345 0.120 0.222 8.707
RMSE 23.250 0.125 0.232 10.012 45.488 0.122 0.225 9.228
ag = 0.200 means 6.965 0.249 0.711 52.319 7.048 0.259 0.694 50.922
ay = 0.800 medians 3.216 0.208 0.790 50.401 3.410 0.208 0.789 48.795
N = 50 FSSE 16.054 0.158 0.281 19.450 14.627  0.168 0.300 18.396
RMSE 16.497  0.165 0.294 19.539 15.141 0.178 0.318 18.379
ag = 0.200 means 4.035 0.279 0.662 185.145 4.985 0.294  0.637 184.206
ay = 0.800 medians 3.196 0.209 0.784 175.450 3.334 0.219 0.770 164.994
N = 175 FSSE 2.992 0.229 0.399 86.822 5.742 0.240 0.418 92.877
RMSE 3.159 0.242 0.422 87.197 6.062 0.258 0.448 93.101
ag = 0.000 means 3.161 0.000 1.197 26.372 3.110 0.000 1.196 26.050
ai = 1.200 medians 3.001 0.000 1.197 26.168 3.065 0.000 1.197 26.021
N = 25 FSSE 0.746 0.009 0.015 3.975 0.598 0.009 0.015 3.563
RMSE 0.762 0.009 0.015 4.196 0.606 0.009 0.015 3.705
ag = 0.000 means 3.097 0.004 1.187 51.587 3.099 0.004 1.187 51.468
ai = 1.200 medians 3.053 0.000 1.197 51.526 3.072 0.000 1.196 51.356
N = 50 FSSE 0.761 0.031 0.050 6.593 0.686 0.031 0.050 6.516
RMSE 0.765 0.032 0.052 6.766 0.691 0.031 0.052 6.664
ag = 0.000 means 3.825 0.026 1.127 176.176 3.781 0.055 1.138 175.935
ai = 1.200 medians 2.967 0.011 1.172 159.542 2.999 0.011 1.174 158.175
N ES 175 FSSE 7.201 0.356 0.513 242.764 3.902 0.723 0.666 242.663
RMSE 7.230 0.357 0.517 242.159 3.970 0.724 0.667 242.057
ao = 0.200 means 3.410 0.669 0.619 19.130 4.556 0.656 0.635 19.296
ay = 1.200 medians 1.501 0.596 0.715 18.465 1.705 0.588 0.736 18.976
N = 25 FSSE 9.547 0.390  0.488 5.205 14.034 0.391 0.489 5.183
RMSE 9.531 0.609 0.758 7.837 14.086 0.600 0.747 7.699
ag = 0.200 means 22.016 0.256 1.134 54.254 39.919 0.342 1.042 52.693
a = 1.200 medians 10.118 0.173 1.244 54.290 20.864 0.210 1.186 53.523
N = 50 FSSE 30.421 0.338 0.414 12.290 40.372 0.367  0.449 12.193
RMSE 35.811 0.341 0.419 12.976 54.633 0.393 0.481 12.457
ag = 0.200 means 5.686 0.318 1.059 171.394 5.994 0.341 1.031 170.926
a = 1.200 medians 2.834 0.195 1.209 174.389 3.027 0.280 1.102 167.431
N = 175 FSSE 15.959 0.520  0.628 48.890 15.518 0.544  0.658 53.062
RMSE 16.144 0.532 0.642 48.901 15.766 0.561 0.677 53.086

Table B1: Note: The table reports the statistics of 200 Monte Carlo runs of each parameter set

with a sample size of T' = 200.
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v g aq 1o %) Qs N logLL AIC BIC

Model 1 0.78 0.01 1.19 -726.9 | 1459.8 | 1464.1

(baseline) (0.06) | (0.01) | (0.01)

Model 2 0.15 0.09 0.99 21.21 | -655.9 | 1319.7 | 1322.0

(end. N) (0.07) | (0.06) | (0.14) (9.87)

Model 3 0.13 0.09 0.93 -4.55 19.23 | -650.4 | 1310.9 | 1311.1
(feedback from IP) | (0.06) | (0.07) | (0.16) | (2.53) (8.78)

Model 4 0.14 0.10 0.91 2.11 27.24 | -627.5 | 1265.1 | 1265.4
(momentum effect) | (0.05) | (0.06) | (0.14) (0.76) | (9.63)

Model 5 0.12 0.11 0.86 -2.82 2.23 25.12 | 624.9 | 1261.9 | 1260.1
(momentum + IP) | (0.05) | (0.06) | (0.16) | (1.65) | (0.81) | (8.95)

Table 2: Parameter Estimates for Stochastic Models of Interacting Agents.
Note: Details on the underlying models appear in the main text. The num-
bers in brackets are standard errors of parameter estimates.
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models

(-0.343 0.978)

(0.338 1.261)

(0.455 1.346)

(0.027 0.992)

ACF data 1 2 3 4 5

1 0.935 0.630 0.923 0.939 0.904 0.930
(95 %) (0.456 0.963) | (0.845 0.967) | (0.908 0.968) | (0.844 0.944) | (0.890 0.955)

2 0.830 0.404 0.853 0.880 0.796 0.848
(0.162 0.929) | (0.715 0.936) | (0.820 0.934) | (0.674 0.879) | (0.769 0.901)

3 0.709 0.266 0.789 0.819 0.691 0.762
(0.013 0.890) | (0.595 0.907) | (0.732 0.900) | (0.523 0.811) | (0.653 0.845)

4 0.584 0.175 0.729 0.758 0.592 0.675
(-0.080 0.857) | (0.496 0.883) | (0.652 0.866) | (0.393 0.751) | (0.541 0.784)

5 0.465 0.116 0.673 0.696 0.499 0.589
(-0.133 0.820) | (0.398 0.860) | (0.566 0.833) | (0.266 0.699) | (0.432 0.723)

6 0.363 0.075 0.620 0.633 0.419 0.508
(-0.171 0.784) | (0.319 0.840) | (0.478 0.797) | (0.169 0.638) | (0.335 0.662)

7 0.272 0.048 0.571 0.571 0.355 0.434
(-0.188 0.747) | (0.241 0.813) | (0.392 0.759) | (0.092 0.594) | (0.250 0.616)

8 0.186 0.032 0.525 0.512 0.302 0.366
(-0.197 0.703) | (0.184 0.793) | (0.317 0.722) | (0.049 0.553) | (0.171 0.565)

9 0.094 0.022 0.482 0.454 0.251 0.298
(-0.213 0.668) | (0.121 0.774) | (0.239 0.678) | (-0.013 0.516) | (0.088 0.514)

10 0.017 0.014 0.442 0.398 0.196 0.228
(-0.220 0.631) | (0.078 0.752) | (0.167 0.640) | (-0.084 0.468) | (0.002 0.463)

d 0.553 0.194 0.826 0.923 0.551 0.668

(0.202 1.051)

Table 4: Autocorrelations and estimated parameter of fractional differentiation
d from 1.000 Monte Carlo simulations (95 percent confidence intervals from the

simulations are given in brackets).
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ZEW Index, 1991 — 2006
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Figure 1: ZEW Sentiment Index and Industrial Production.
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Figure 3: Simulated trajectories from models 5 and 1 (lower right-hand panel).
The broken lines show the empirical data
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