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Abstract

Risk aversion plays a central role in decisions in the face of uncertainties, and

climate change mitigation should be no exception. However, the interlinkage of risk

aversion and climate change uncertainties has been hardly investigated numerically

in part due to computational difficulties of stochastic optimization. In this paper,

we apply numerical techniques of stochastic optimization to the economic modeling

of climate change with the aim to model decision preferences of a risk-conscious

agent in the face of unpredictable climate change. The model underlines the critical

role played by the risk aversion parameter in determining the effects of uncertainties

on mitigation, not only in level but also in sign.
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1 Introduction

Uncertainty has been regarded as a key issue in the economics of climate change (for

reviews, see Heal and Kriström (2002), Peterson (2006) and Pindyck (2007)), as the

climate system involves highly unknown, and to some extent inherently random, long-

term behavior. Much of the discussions by economists regarding this issue have been

about the meaning of quasi-option value in climate change,1 and little has been investi-

gated about how the risk aversion by the economic agent influences optimal mitigation

in the face of climate uncertainties. As Heal and Kriström (2002) sketch with their sim-

ple model, the risk aversion can be a key determinant for optimal mitigation decisions.

Their simple model lacks a representation of economic growth, and a more comprehen-

sive model should identify a more precise picture on the issue. However, the previous

analyses of integrated assessment models incorporating uncertainty do not address this

question explicitly. Many of those studies (e.g. Peck and Teisberg (1993), Nordhaus

(1994), Nordhaus (2008), Scott et al. (1999), Pizer (1999)) are simply not able to pro-

vide any insights on risk aversion because of a constraint of their methodological choice

(the Monte-Carlo approach). Others, (e.g., Peck and Teisberg (1993), Nordhaus and

Popp (1999), Bosetti et al. (2009)) where risk-averse decisions are in principle incor-

porated, utilize a very simple representation of uncertainty (often in a binary form) to

specifically answer different research questions (the effect of learning, etc.) and also do

not discuss risk aversion directly.

In this study, we address the question of risk aversion and climate uncertainties by

performing numerical stochastic optimization of a climate-economy system with climate

randomness represented as a Brownian motion. Stochastic dynamic optimization has an

established body of analytical model studies (in the field of environmental and resource

economics, e.g.: Arrow and Chang (1982) and Tsur and Zemel (1998)), but has been

generally considered difficult in finding numerical solutions. Recently, however, stan-

dardized techniques are developed (e.g. Judd (1998)), and some simple models are now

able to be solved readily.

1Major studies on this question include the following: Arrow and Fisher (1974), Henry (1974), Kolstad
(1996b), Ulph and Ulph (1997), Heal et al. (1998), Pindyck (2000), Gollier et al. (2000), and Fisher and
Narain (2003).
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Our modeling approach is different from the previous economic modeling studies

of climate change in two important ways. The first difference is methodological: In

our modeling framework, the risk-conscious agent makes decisions in anticipation of the

future climate system that is uncertain but is also partly influenced by the agent’s own

decisions. In other words, the agent faces a decision making problem with risk that is

partly endogenous. This feature is not captured in the above Monte-Carlo studies of

integrated assessment models, which treat system variability uncertainties as external

to decision makers considerations, while the endogeneity of risk decisions does not have

much significance under a binary or other simplified uncertainty representations adopted

in the other studies. This difference gives our model an advantage in examining the

effects of climate uncertainty with a variety of risk preferences. The second concerns

the focus of analysis: Their models investigate parameter uncertainties, that is, lack

of knowledge on key parameters (e.g., the damage coefficient), whereas in our model,

uncertainties come from the variability of the system itself, which follows a process that

is not predictable yet affected by the decision makers actions (i.e. Brownian motion).

Note that our assumption of climate uncertainty deals with the fluctuations of the

climate system itself and thus somewhat differs from that taken by most studies in

the economics of climate change, which concerns the parameter levels and is to be

resolved through human learning. But our modeling choice is also consistent with the

current scientific understanding that the climatic system embodies some highly non-

linear, in part inherently unpredictable mechanisms,2 and should provide a perspective

complementary to the previous studies.

Our analysis is composed of two parts. In a first step we perform a stochastic per-

turbation analysis (Judd (1998)) of the model. The advantage of perturbation methods

is the fact that they produce an asymptotically exact solution to the mitigation policy

function near the deterministic steady state. However, perturbation methods are limited

in the range of their validity.3 Therefore, to complement our analysis, we also solve the

model by using projection methods (see Judd (1992) for an introduction of projection

2It is well known that the climate system is subject to the so-called butterfly effect, which enables
minuscule changes in the system to influence large-scale patterns. Also, random disruptions of the
climate system are evidenced by paleoclimatic records of abrupt temperature changes, e.g., NRC (2002).

3see Judd and Sy-Ming (1997) for a discussion of the range of validity of perturbation methods.
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methods to economic studies). Despite a lower guarantee of accuracy than perturbation

methods the advantage of projection methods is their ability to examine the optimal

policy functions over a more global range of states.

Our results show that the effects of uncertainty are different with different levels of

agent’s risk aversion. Indeed, the effects of stochasticity differ even in sign as to miti-

gation with varying parameters: introduction of stochasticity may increase or decrease

mitigation depending on parameter settings, in other words, uncertainties of climatic

trends may induce peoples precautionary emission reduction but also may drive away

money from abatement.

We proceed as follows: In section 2 we describe the model framework. In section 3

we perform a stochastic perturbation analysis. In section 4 we conduct an analysis by

using the projection method. Section 5 concludes.

2 The Model

Consider an economy where total output Y is a function of the capital stock K, with

YK > 0 and YKK < 0. The production process generates emissions ǫ · Y , where ǫ

denotes the emissions coefficient of output. With additional expenditure, the amount

of emissions is reduced; m represents the fraction of carbon emissions which is under

control, i.e. not emitted in the atmosphere. Consequently, the atmospheric stock of

carbon S evolves with

dS = (ǫ · Y (K) · (1−m)− β · S)dt (1)

where β is the constant removal rate of atmospheric carbon into the ocean. At this

point we assume that the atmospheric stock of carbon causes a rise in the level of global

mean temperature. Let T (S) be the increase of global mean temperature from the pre-

industrial level with TS > 0 and TSS ≤ 0. We assume that rising levels of global mean

temperature cause damage to output and the damage is subject to randomness. Denote

the damage by D(T, η) with η being a scaling factor of the temperature’s impact on

damage: we assume DT ,Dη > 0, DTT ,Dηη > 0, DT,η > 0 and D(T, 0) = D(0, η) = 1.
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For the rest of the paper we assume that η is stochastic with

dη = (θ · (η̄ − η))dt + σdB (2)

i.e, the damage coefficient follows an Ornstein-Uhlenbeck process, the continuous time

equivalent of a mean-reverting AR(1) process.4 The mean of η is denoted by η̄ and θ is

the strength of mean reversion. For the diffusion, we assume B ∼ (0, σ2). Furthermore,

the output balance condition reads

Y (K)

D(T (S), η)
= I + c+M(m,Y (K)) (3)

The left-hand side of (3) is the net output inclusive of damage. The net output is

in balance with the sum of the following: (i) consumption c ; (ii) M(m,Y (K)), the

mitigation costs with Mm > 0, Mmm > 0, MY > 0, MmY > 0 and MY Y = 0; (iii)

capital accumulation via investment I. The stock of capital K evolves according to

dK = (I − δ ·K)dt (4)

where δ is the capital depreciation rate. Our purpose is to investigate the dynamically

optimal choice of consumption, mitigation and capital investment given uncertainty

about the temperature’s impact on damage to gross output. To this end, we formulate

the problem from the social planner’s perspective. Given the uncertainty over η, the

social planner maximizes the expected present value welfare.

max
ct>0,0≤mt≤1

E

∫ ∞

0
e−ρt [U(ct)] dt (5)

4Note that our focus is randomness of the climate system itself rather than knowledge uncertainty
(as stated in the Introduction) The choice of the Ornstein-Uhlenbeck process has an advantage from
a computational standpoint, too. We choose the Ornstein-Uhlenbeck process for numerical reasons.
Without it, the stochastic process would be non-stationary and therefore move outside the η grid.
This would require imposing boundary conditions on η. Our alternative formulation solves the non-
stationarity problem and, provided the mean reversion is relatively strong at the grid bounds (compared
to the diffusion force), the stochastic process will remain within the grid. From a purely climatic
perspective mean reversion implies that if η̄ = 1 and a high damage is observed today (i.e: η = 1.5),
tomorrow’s η of 1.4 is more likely than 1.6. This feature is reasonable as it is a representation of
fluctuations of climate trend, rather than learning uncertainty.
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subject to (1)-(4) and S(0) = S0, K(0) = K0 and η(0) = η0. Here we assume a

standard CRRA form of utility that satisfies Uc > 0 and Ucc < 0.5 To solve (5) we

perform stochastic control, the continuous time version of stochastic programming. The

corresponding Hamilton-Jacobi-Bellman (HJB) equation is 6

0 = max
c>0,0≤m≤1

{U(c) + VS(S,K, η)(ǫ · Y (K) · (1−m)− β · S)

+ VK(S,K, η)(
Y (K)

D(η, S))
− c−M(m,Y (K))− δ ·K)

+ Vη(S,K, η)(θ · (η̄ − η))

+
1

2
σ2Vηη(S,K, η) − ρV (S,K, η)} (6)

where V (S,K, η) is the value function. A solution to (6) requires finding a value function

and policy functions c(S,K, η) and m(S,K, η) which constitute explicit control rules.

The first-order conditions for c and m are

Uc = VK(S,K, η) (7)

Mm(m,Y (K) = −VS(S,K, η) · ǫ · Y (K)

VK(S,K, η)
(8)

Equation (7) states that the marginal utility from consumption should be equal to the

derivative of the value function with respect to capital, i.e. the shadow price of capital.

From (8) it can be easily seen that VS ≤ 0. The optimal choice of m, the mitigation

rate, thus positively depends on the shadow price of atmospheric carbon (in absolute

terms) and instant emissions. It negatively depends on the shadow price of capital.

A closed form solution to (6)-(8) could be obtained by applying specific function

5In favor of comparability with the existing literature, we adopt the standard framework of CRRA
utility, in which risk aversion, preferences for intertemporal substitution and inequality aversion are
represented by the same parameter (in our case α). However, we are aware that the validness of
this framework is debated. For example, it is indicated that the formulation of risk aversion as used
in the CRRA utility is not applicable to the case in which risk aversion concerns many commodities
(Kihilstrom and Mirman (1974)). Also, a utility formulation to disentangle risk aversion and preferences
for intertemporal substitution exists (Epstein and Zin (1989)). See Atkinson et al. (2009) for an analysis
of this issue in the climate change context.

6Notice that by setting up the maximization problem as in (6), we do not restrict capital investments
I to be non-negative. In fact, for some areas of the state and parameter space optimal investment is
negative.
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forms to Y,D,M, T and U and using an intelligent guess for the value function V (S,K, η).

However, due to the dimension of the state space and the nonlinearities of the functional

forms we are not able to derive a closed form solution. Reflecting this fact, here we de-

rive solutions by using two alternative methods, which are complementary to each other.

In the next section we conduct stochastic perturbation analysis to determine an asymp-

totically exact solution to the mitigation policy function near the deterministic steady

state. In section 4, we determine the value function and the policy functions numerically

and present a more detailed analysis.

3 Stochastic Perturbation Analysis

A stochastic perturbation analysis finds closed form solutions that are valid around a

steady state. The basic idea of stochastic perturbation analysis is that for small vari-

ances, the dynamical system will stay close to the deterministic steady state. Formally,

let m(S,K, η, σ) be the mitigation policy when the system is in the state (S,K, η) and

the variance is v = σ2. If v = 0 then the system will converge to the steady state

(Sss,Kss, ηss). For values of (S,K, η) close to the steady state (Sss,Kss, ηss), the miti-

gation policy can be approximated by the second-order Taylor series:

m(S,K, η, v) = m(Sss,Kss, ηss, 0) + (η − ηss)
∂m(Sss,Kss, ηss, 0)

∂η

+ (K −Kss)
∂m(Sss,Kss, ηss, 0)

∂K
+ (S − Sss)

∂m(Sss,Kss, ηss, 0)

∂S

+ v
∂m(Sss,Kss, ηss, 0)

∂v
+ 0.5(η − ηss)

2∂
2m(Sss,Kss, ηss, 0)

∂2η

+ (K −Kss)(η − ηss)
∂2m(Sss,Kss, ηss, 0)

∂η∂K
+ 0.5(K −Kss)

2 ∂
2m(Sss,Kss, ηss, 0)

∂2K

+ (S − Sss)(η − ηss)
∂2m(Sss,Kss, ηss, 0)

∂η∂S

+ (S − Sss)(K −Kss)
∂2m(Sss,Kss, ηss, 0)

∂S∂K
+ 0.5(S − Sss)

2 ∂
2m(Sss,Kss, ηss, 0)

∂2S

As the above formulation shows, one explicitly defines the optimal mitigation policy to

depend also on variance v. The mitigation function is computed as follows: First, one

computes the known deterministic steady state solution. The partial derivatives, ∂m
∂(·) are

obtained analytically by solving systems of linear equations of first- and second-order
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expansion around the known deterministic steady state. Then, one builds a second-order

Taylor series expansion around the known deterministic solution and
√
v.7 Gaspar and

Judd (1997) and Judd (1996) describe the mathematical foundations for the validity of

this approximation and how to compute the partial derivatives, built on Fleming (1971)

and Magill (1977).

In order to find a closed form solution we need to specify the model equations and

parameters. We choose the following functional forms for our analysis:8 Y (K) = A ·Kν ,

D(η, T (S)) = 1+κ ·η ·T (S)2, T (S) = τ · (S−SPI), M(m,Y (K)) = ψ · ǫ ·Y (K) ·m2 and

U(c) = c1−α

1−α
. In addition, we choose the following parameter values for the basic model:

A = 1, SPI = 400, β = 0.01, δ = 0.1, η̄ = 1, ǫ = 0.1, κ = 0.005, θ = 0.1, ν = 0.75,

τ = 0.003, ρ = 0.01 and ψ = 2.

Given the simplified model structure, a rigorous calibration warranting a perfect

match with empirical data is not feasible. Despite this difficulty, we choose the levels

of parameters to make the simulation as realistic as possible. Here, we give reasonings

behind our parameter choices. The level of damage coefficient κ corresponds to a world

GDP loss of around 3 percent with a doubling of carbon dioxide from the pre-industrial

level. This level is similar to DICEs (Nordhaus (2008)) and lies within the range of

levels adopted by other major integrated assessment models. The combination of τ and

SPI is set to agreement with the current scientific consensus that the increase of the

global average surface temperature from the preindustrial time to the present is in the

order of 1 degree Celsius and the doubling of carbon dioxide from the pre-industrial

level would most likely result in an increase of the global average temperature by 2 to

3 degrees Celsius. Computational demand necessitates us to adopt a relatively high

level of ψ (mitigation cost parameter), a parameter whose estimation is subject to a

great deal of speculation. We choose a ψ corresponding to the cost of 20% GDP to

realize 100% mitigation. This level is significantly higher than the level implied by

DICEs assumption of a backstop price at USD 1,200 per ton CO2 (corresponding to

approximately a 5% world GDP loss for a 100% emission reduction). On the other hand,

however, a different set of evidence suggests that our choice may rather be optimistic:

7Note that ∂m(Sss,Kss,ηss,0)
∂v

is the crucial derivative which denotes the effect of stochasticity on
mitigation.

8with A, ν, κ, τ, ǫ, ψ, SPI , α > 0.
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many technology-oriented integrated assessment models estimate that a deep cut of

emissions (stabilization of greenhouse gases at 450ppm CO2e) is infeasible even with

worlds best effort (Clark et al. (2009)). The GDP-emission conversion factor ǫ reflects

the current world GDP and carbon dioxide emissions data and is nearly equal to the

DICE models. Other economic parameters are set to yield general economic trends in

the model that are as close as possible to those of the actual economy.

With these parameter values we numerically compute the deterministic steady state

and obtain S̃ = 1551.56, K̃ = 1188.62. Assuming α = 2 we find that the mitigation

policy is approximately

m = mss

+ 2.36 · 10−4(K −Kss) + 1.43 · 10−8(K −Kss)
2 + 1.02 · 10−4(S − Sss)

+ 8.18 · 10−8(K −Kss)(S − Sss)− 2.04 · 10−8(S − Sss)2 + 5.97 · 10−2(η − ηss)

+ 4.15 · 10−5(K −Kss)(η − ηss) + 1.58 · 10−5(S − Sss)(η − ηss)

+ 7.71 · 10−3(η − ηss)
2 + 0.78v

The key derivative for us is how v affects mitigation policy. We find that ∂m
∂v

= 0.78.

Therefore, mitigation increases as the variance increases if the current state (S,K, η) is

around to the steady state (Sss,Kss, ηss). The same analysis is performed for different

levels of α, the risk aversion parameter. Table 1 shows how optimal mitigation policy

α = .5 α = 2 α = 5

∂m
∂v

= 0.33 ∂m
∂v

= 0.78 ∂m
∂v

= 1.43

Table 1: The effect of uncertainty (variance) on optimal mitigation

is affected by rising uncertainty for different levels of risk aversion. We observe the

risk aversion has a significantly positive effect on the effect of uncertainty on optimal

mitigation policy. However, we also note that this effect is weaker with lower levels of

risk aversion. It is important to keep in mind that these results are exact in the near

proximity of the steady state but do not reliably apply for the entire state space. In

order of investigate the effect described above at different areas of the state space we
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solve the model numerically using projection methods.

4 Stochastic Projection Analysis

4.1 Application of the Chebyshev Collocation Method

As mentioned above, validity of a perturbation analysis is limited in the neighborhood

of a steady state. In the climate change context, this is a problematic property because

climate policy is normally discussed for periods well before a steady state is reached.

Projection methods can provide complementary insights to the ones we obtain from a

perturbation analysis. A projection analysis necessitates approximation of equations.

In this light, we use the Chebyshev collocation method.9 From the first-order conditions

(7) and (8) we can obtain explicit solutions for the optimal stochastic control of c and

m as functions of the state variables.

c̃ = Γ−1
U (VK(S,K, η)) (9)

m̃ = Γ−1
M

(

−VS(S,K, η) · ǫ · Y (K)

VK(S,K, η)

)

(10)

Inserting (9) and (10) into (6) we obtain the concentrated HJB equation in terms of

the value function and its derivatives with respect to the states. Thus, the concentrated

HJB equation is three-dimensional in S, K and η and reads

0 = VS(S,K, η)(ǫ · Y (K) ·
(

1− Γ−1
M

(

−VS(S,K, η) · ǫ · Y (K)

VK(S,K, η)

))

− β · S)

+ VK(S,K, η)(1 +
Y (K)

D(η, S))
− Γ−1

U (VK(S,K, η)) +
VS(S,K, η) · ǫ · Y (K)

VK(S,K, η)
− δ ·K)

+ Vη(S,K, η)(θ · (η̄ − η)) +
1

2
σ2Vηη(S,K, η) − ρV (S,K, η) (11)

Equation (11) constitutes a nonlinear second-order partial differential equation which

can be solved numerically using projection methods. For that purpose, we approximate

the value function with the Chebyshev collocation method which approximates the so-

lution to (11) with a linear combination of Chebyshev polynomial basis functions. The

9Judd (1998) describes computational applications of this method in detail.
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approximated value function is

Ṽ (S,K, η) =

ni
∑

i=1

nj
∑

j=1

nk
∑

k=1

gijkTi(xS)Tj(xK)Tk(xη)

and Ti(xS), Tj(xK) and Tk(xη) are ni, nj , nk-degree Chebyshev polynomials which are

evaluated at the states with xS, xK , xη being the mapping [Smin, Smax]× [Kmin,Kmax]×

[ηmin, ηmax] 7−→ [−1, 1] × [−1, 1] × [−1, 1]. The collocation coefficients gijk are then

estimated in order to deliver a good approximation of (11).

4.2 Results of projection analysis

The formulations of approximation described in 4-1 allow us to compute solutions of the

model that are valid for a broad range of states. Here, we derive numerical solutions by

using the same parameterization and functional forms we have used in the perturbation

analysis of section 3. We set up the projection grid by discretizing the spate space

around the steady state. We choose S ∈ [800, 3500], K ∈ [500, 3000] and η ∈ [0, 2].

The Chebyshev polynomials are of degree 10 in all states i.e.: ni, nj, nk = 10. Figure 1
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Figure 1: Value function

illustrates the value function for the stochastic case (σ = .05) in the S −K grid.10 For

this simulation we assume α, the degree of risk aversion to be .9. Later in the analysis we

will cover a range for α between .025 and 3. The value function is concave and smooth. It

increases with larger volumes of the capital stock and decreases with rising atmospheric

10For the graphical presentation of the results we choose η = 1 unless stated otherwise.
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carbon concentrations.11 Figure 2 displays the shadow values of the atmospheric
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Figure 2: Shadow prices of atmospheric carbon stock (λS) and capital stock (λK)

carbon stock (VS) and the capital stock (VK). Notice that VS is negative over the entire

state space - an intuitive result, since rising temperature levels are proportional to the

atmospheric carbon stock. This fact also explains why VS decreases with rising levels of

the carbon stock while it is rather invariant to changes in capital. An analogous picture

is obtained for VK , the shadow value of the capital stock (right plot in Figure 2). It is

positive over the entire state space and decreases with rising levels of the capital stock.

Figure 3 maps the policy functions for consumption c, mitigation m and investment I

into the K − S space, again for the stochastic case. The optimal consumption policy

rule follows the Euler equation which sets equal marginal utility to the shadow price of

capital. Consumption thus increases with the level of capital.

The mitigation policy generally replicates the tendency that most integrated assess-

ment models exhibit, i.e., both carbon stock and capital accumulation increase enhances

mitigation (e.g., Nordhaus, 1994). Notice that for a constant level of K, a higher atmo-

spheric carbon concentration generates more damage to output, and that less output is

available to be divided between consumption, mitigation and investment. Also, for any

11Notice that low levels of the capital stock imply low levels of gross output. This in turn results in
low emissions. On the other hand, lower output volumes are available for consumption, investment and
mitigation. Furthermore, for any level of capital a higher S invokes more damage and consequently less
net output while the level of gross output is unchanged.

12



1000
2000

3000

1000

2000

3000

50

100

150

1000
2000

3000

1000

2000

3000
0

0.2

0.4

0.6

0.8

1000

2000

3000

1000

2000

3000

50

100

150

200

1000
2000

3000

1000

2000

3000

0.3

0.4

0.5

0.6

1000
2000

3000

1000

2000

3000
0

0.05

0.1

0.15

1000
2000

3000
1000

2000
3000

0.3

0.4

0.5

0.6

0.7

γ
m

γ
I

m I

S

SS

K

K K

K
K

K

S

c

γ
C

S

S

Figure 3: Policy functions for consumption (c), mitigation (m), investment(I) and shares
of net output spent on c, m and I.

level of K optimal mitigation increases with higher values of S. Since consumption is

constant, capital investments must decrease in order to balance the economy’s budget

(Equation 3). This behavior is shown in the lower left plot of Figure 3. On the other

hand, higher levels of the capital stock invoke more investment. The lower right plot

in Figure 3 displays the shares of net output12 spent on consumption, mitigation and

investment which we define as γM = M(m)
Y net , γC = C

Y net and γI = I
Y net respectively.13

We observe that γC and γM both follow the same pattern. They increase with higher

levels of capital and atmospheric carbon stock. However, while the share of net output

spent on consumption ranges from 25% (low K, low S) to 60% (high K, high S), a lower

fractions of net output is used for mitigation. Its share ranges from 1% (low K, low S)

to 15% (high K, high S). On the contrary, the policy function for investment implies

lower investment values for rising levels of capital and atmospheric carbon stock.

In order to shed more light on the effect of uncertainty on the distribution of net

output over consumption, mitigation and investment Figure 4 displays the absolute

change in γC , γM and γI when including uncertainty. We define ∆gM = γM (σ =

12Net output is defined as Y net = Y
D
.

13Consumption, mitigation and investment are defined in units of output. It holds that: γM+γC+γI =
1.
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Figure 4: Difference in the shares of net output spent on mitigation, investment, and
consumption (∆gM ,∆gI ,∆gC) when uncertainty is included.

0.05)−γM (σ = 0), ∆gC = γC(σ = 0.05)−γC(σ = 0) and ∆gI = γI(σ = 0.05)−γI (σ = 0).

Three important points can be made: 1) For low values of the atmospheric carbon

stock, uncertainty leads to higher mitigation and consumption while it lowers capital

accumulation. 2) The previous effect is reversed for high values of the atmospheric

carbon stock. When uncertainty is included, a larger share of net output is spent on

capital accumulation while a lower share of net output is used for consumption and

mitigation. 3) The impact of uncertainty on reallocating net output optimally among c,

m and I decreases (lower amplitude) with smaller levels of the capital stock. The latter

effect mirrors the fact that a low value of the capital stock limits the freedom of action

to adapt to stochasticity. Meanwhile, as for the absolute level of impact of stochasticity

on mitigation, the figure shows that the effect remains well less than 1%, although the

deviation of the realized time path can be much greater in response to a random pattern

of climate (see also Section 4.3 for intuitions about this point).

From Figure 4 it becomes clear that if the carbon content in the atmosphere is large,

uncertainty about damage to output induces a reallocation of net output towards capital

services. A striking feature of this result is that in the latter case mitigation is reduced.

Note that the apparent difference between this result and the one in perturbation anal-

ysis comes from the fact that the focus of the perturbation analysis is only the vicinity

of the steady state. To obtain more insights on the effect of stochasticity on mitigation,

we examine the optimal levels of mitigation with varying levels of risk aversion and un-
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certainty (Figure 5). We show nine contour plots in the α− σ space for different levels

of S and K. Again, the absolute differences that stochasticity causes on mitigation

are small, but general qualitative features are noteworthy. They exhibit three major

patterns. (1) The general tendency is that high capital and high carbon stock result in

high mitigation. A large carbon stock corresponds to a large emission reduction, while a
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large capital stock is linked to a low capital return and thus a diversion of resource from

investment to mitigation. (2) The risk aversion is a very influential parameter on the

level of mitigation. Interestingly however, the risk aversion exerts different effects on the

control level depending on the level of capital.14 For moderate or high levels of capital,

more risk aversion leads to more abatement. Mitigation decreases with higher levels of

risk aversion when the capital level is low. This is because a risk averse agent prefers

capital investment over mitigation when the return to capital is relatively high (i.e.,

for low levels of capital), In other words, capital investment facilitates inter-temporal

income smoothing more effectively than mitigation does. (3) When the level of risk

14Note that this feature is in contrast with the result of a simple but similar analysis carried out by
Heal and Kriström (2002). With a simple model with a constant income flow, they show that high risk
aversion always raises precaution against climate change. As explained below, the opportunity of capital
investment and income growth has a critical meaning for the behavior of our model and also explains
the difference from Heal and Kriström’s.
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aversion is low, the effect of stochasticity on mitigation crucially depends on the size of

the carbon stock. Higher uncertainty leads to higher mitigation with a low S but lower

emission reduction with a high S. In other words, with a low risk aversion, the agent

rather prefers consumption over mitigation when climate mitigation needs considerable

effort. Among the above findings, the ambiguity regarding the effect of uncertainty and

the influence of risk aversion on this ambiguity are consistent with the findings by Gol-

lier et al. (2000) and Lange and Treich (2008) obtained from simple analytical models.

However, this feature has never been tested in a more realistic model of climate change

that embodies feedback mechanisms with the carbon and capital stocks. In fact, this

ambiguity is a persistent feature of our model, and in some cases it is clearly identifiable

from the patterns. Figure 6 is a contour plot for low K and high S when the climate
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Figure 6: Optimal mitigation - Contour plot in the α − σ space for high S and low K,
i.e. (S,K)=(3500,500).

change damage coefficient is set low (η = 0.5). It clearly shows that the effect of un-

certainty on the sign of change in mitigation even depends on the level of risk aversion.

With a low risk aversion, uncertainty decreases emission reduction, whereas it increases

emission reduction with a high risk aversion.15

An interesting point regarding these patterns is that uncertainty may in fact reduce

the optimal level of mitigation. The general pattern (reduction of mitigation tends to

occur with a low risk aversion) is consistent with the finding by Gollier et al. (2000)

15Fisher and Narain (2003) also discuss cases in which the risk aversion parameter plays a decisive
role in determining the effect of climate change uncertainty, although the context is different (the effect
of capital convertibility).
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that the precautionary effect, the effect due to the shape of the utility function, can

work negatively for mitigation when risk aversion if low. Besides, the negative effect

of uncertainty on mitigation could be also attributed to the structure of irreversibility

our model possesses. Previous studies already clarified that if investment in abatement

involves sunk costs, uncertainty in stock pollution can either enhance or decrease abate-

ment, dependent on the parameter choice (e.g., Pindyck (2000)). This is because both

the installation of abatement equipment and the pollution stock have irreversibility. Our

model does not have an explicit representation of sunk investment on abatement, but

there is a similar, though indirect, mechanism at work. Abatement costs (flow) are

subtracted from the output, and thus reduce either consumption, capital investment, or

both, if the output is unchanged. Capital produces a continuous flow of income from the

time of investment onwards, and foregone capital investment due to excessive abatement

therefore sets irreversibility in the other direction. This argument could be paraphrased

as follows: The presence of uncertainty leads to increasing abatement of stock pollu-

tion because one cannot reduce the pollution stock later in case the pollution damage

is greater than expected. Since the risk goes in both directions, a similar argument

holds for the other direction. If we overspend our resource on abatement, capital invest-

ment could be decreased. Lower investment leads to lower capital accumulation. By

the time we realize the overspending on abatement, the accumulated abatement cannot

be converted into capital, and one cannot recover the income flow that capital would

bring about if our resource was allocated in investment, not abatement. The relative

significance between capital returns on one hand and climate damage on the other hand

determines the dynamics to either of the two directions.

4.3 Monte-Carlo Analysis of the Optimal Solution

From the solution of the dynamic programming problem in section 4.1 we obtained the

value function and the optimal policy functions for mitigation and consumption. Given

these results we perform 10,000 optimal Monte-Carlo runs16 for a selected initial state.

16It should be noted that each Monte-Carlo run is based on the optimal solution of the stochastic
model, i.e.: each underlying Monte-Carlo run represents an optimal path with stochasticity, in other
words, under a diffusion process. Thus, our ”ex-post” Monte-Carlo analysis which is based on stochastic
optimization internalizing uncertainty differs substantially from the ”ex-ante” Monte-Carlo approach to
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The Monte-Carlo simulations provide more intuitions about the general behavior of our

model and also visual evidence that supports the validity of our modeling approach. The

resulting distributional statistics are reported in Figure 7. We report 1) the mean of all

10,000 runs at each point in time, 2) the outer envelopes of the runs, i.e. the minimum

and maximum over all runs at each point in time (i.e.: all 10,000 simulation runs are

within the shaded area), and 3) the 25% (75%) quartiles, i.e.: at each period the 2500th

lowest (highest) value obtained. All simulations start at (S,K, η) = (800, 500, 1) and run

for 300 time periods. The upper-left plot of Figure 7 illustrates the distribution of the
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Figure 7: Statistical results from 10,000 Monte-Carlo runs

optimal level of temperature increase (T ). We observe that for the first 50-75 time steps

of the simulation interval there is little difference in the level of temperature increase

among the runs. This feature reflects the fact that atmospheric carbon levels and con-

sequently global temperature are mainly determined by past emissions and thus exhibit

a slow response to stochasticity. After about 100 periods, when the temperature is near

its deterministic steady state level, we observe a min-max range of the Monte-Carlo

runs of roughly 0.5 degree points. The Monte-Carlo distribution for consumption (c) is

depicted in the upper-right plot of Figure 7. After about 50 time periods consumption is

near its deterministic steady-state level and the distribution range of the simulation runs

uncertainty which is common to some IAM and critically discussed in the Introduction.
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widens. Looking at the 25% and 75% quartiles we can state that that in 50% percent of

the simulation runs consumption can deviate by roughly 10% of its steady-state level.

A similar characteristic is observed in the distribution plot for mitigation (m: the lower

plot in Figure 7). Here again, in 50% of the simulation runs the optimal mitigation

policy paths show a variation in size by more than 10%. The variation among all 10,000

runs however is as large as 18 percentage points (0.3-0.18). This variation is about 0.5

degree for temperature and about 25% for consumption.

The Monte-Carlo analysis also provides an illustration regarding the effect of risk

aversion. Figure 8 shows the mean levels of mitigation (Figure 8a) and the differences

between the 10% and 90% quantiles (Figure 8b) with different levels of risk aversion.

The parameter specifications other than risk aversion levels are identical to those for

Figure 7. Figure 8a indicates a long-run convergence of mitigation levels for the cases
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Figure 8: Mitigation policy - statistical results from 10,000 Monte-Carlo runs

of different risk aversion levels, after relatively high mitigation levels in initial periods

with low risk aversion corresponding to high consumption and low investment (i.e., low

consumption smoothing). By contrast, the differences in quantiles shown in Figure 8b,

amounting to roughly one tenth of the mean values, exhibit significantly high long-run

levels with high risk aversion - in other words, stochasticity has greater influence on

the mitigation trends under higher risk aversion. This effect of high risk aversion is

consistent with the results shown in 4.2. It is worth noting that the effect is invisible in

the pure comparison of the mean levels shown in Figure 8a. In sum, this Monte-Carlo

analysis underlines the findings from the previous sections; namely that uncertainty

about the climate system has an significant impact on the optimal control policies and
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the climate system itself.

5 Concluding Remarks

We carried out a numerical stochastic optimization in the context of climate change.

We applied standardized numerical techniques of stochastic optimization to the climate

change issue with uncertainty about the climate system. A novelty of this study is

that we directly performed stochastic dynamic optimization, rather than reproducing

randomness by conducting a large number of simulation runs, to see changes of key

determinants of climate policy. An advantage of our stochastic optimization approach

over previous climate-economy simulation studies is that the model internalizes agent’s

preference about risk in optimization. Our analysis covers a large range of the parameter

space, in particular the degree of risk aversion and the level of uncertainty. We identify

regions of the state space for which higher levels of uncertainty or risk aversion result

in different optimality rules for mitigation.

The results show that the effects of uncertainty are indeed different with different

levels of risk aversion by the agent. A main finding is that the effects of stochasticity

on mitigation differ even in sign with varying parameters: Uncertainty may increase

or decrease mitigation depending on parameter settings, in other words, uncertainties

of climatic trends may induce people’s precautionary emission reduction but also draw

away money from abatement. Our results show some consistency with the somewhat

counterintuitive argument by Nordhaus (2008) that the risk of high climate change could

carry a negative risk premium – high climate change could in fact be outweighed by en-

hanced wealth. It should be noted, however, that in our case, reduction in mitigation

due to uncertainty appears only with certain combinations of the wealth, the level of

atmospheric carbon dioxide concentrations, and importantly, the level of risk aversion.

Meanwhile, the model shows that the absolute level of impact of stochasticity on mitiga-

tion could be small at least from the standpoint of the current policy planning, although

it could be magnified in the future in response to random climatic patterns.

This paper’s conclusions stress the fact that from a decision making standpoint,

the meaning of climate change uncertainty cannot be formulated purely scientifically

but is fundamentally intertwined with human risk perceptions. In policy discussions,
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we would need a more precise conceptualization of uncertainties than, for instance,

the way phrased in the United Nations Framework Convention on Climate Change’s

objective to ”prevent dangerous anthropogenic interference with the climate system.”

As our model implies, the policy meaning of climate uncertainty (i.e., what constitutes

”dangerous” interference) is shaped both by the mechanisms of the natural system and

by our perception (risk aversion tendency).

As a final note, while our model highlights some important features of uncertainties

and climate change, the simulations are admittedly simple for explaining the complex

phenomena of climate change. A more comprehensive numerical stochastic model, per-

haps with uncertainties in technological change and global business cycle in addition to

climate indicators, would allow us to conduct a complete sensitivity analysis of parame-

ters. In particular, the lack of technological change in our model might have resulted in

somewhat pessimistic patterns of mitigation as well as in consumption in comparison to

the ones might be achieved in reality with autonomous technological change. Impacts

of uncertainties about large discrete shocks, a feature that could be represented with a

jump process, should also be a future research question.
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