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1 Introduction 
Since the work of von Neumann and Morgenstern (1944) expected utility (EU) has been the 

dominant framework for analyzing decision situations under risk and uncertainty. Starting 

with the well-known paradoxes of Allais (1953) and Ellsberg (1961), however, a large body 

of experimental evidence has been gathered which indicates that individuals tend to violate 

the assumptions underlying EU systematically. This empirical evidence has motivated 

researchers to develop alternative theories of choice under risk and uncertainty able to 

accommodate the observed patterns of behavior. These models are usually referred to as non-

expected utility. Nowadays the rank-dependent models, in particular prospect theory, have 

become the most prominent alternative and, accordingly, these models will also be the main 

focus of our paper.  

If the decisions of subjects are not in line with EU, applied models which rest on it 

may make wrong predictions. Therefore, applications of non-expected utility models may lead 

to a better accommodation of real world data. In general, applications of non-expected utility 

can be regarded as part of behavioral economics, a research stream which integrates 

psychological concepts into economis analysis and has received increasing attention in recent 

years. Non-expected utility models can in principle be applied to every economic setting 

involving risk. Due to this fact, it is impossible to cover all fields of applications in the present 

article. We have decided to focus on three fields, insurance economics, auctions, and health 

economics. Health economics is treated more extensively than the two other fields because it 

has become recently a very important research topic and to our knowledge no review of 

applications non-expected utility in the health domain exists. 

The article is organised as follows. Section 2 gives notation and basic concepts. 

Section 3 describes expected utility and Section 4 describes important non-expected utility 

models. Section 5 to 7 are devoted to a discussion of applications of non-expected utility. 

Section 5 discusses applications in insurance, Section 6 to auctions, and Section 7 survey 

applications of non-expected utility in the health domain.  
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2. Notation and Basic Concepts 

Let X denote a set of outcomes, which can be quantitative, for example money 

amounts or life durations, but also qualitative, e.g. states of health. The set of all probability 

measures or prospects over X will be denoted by P. A prospect p ∈ P assigns a nonnegative 

probability pi to outcome xi ∈ X and we have p(X) = 1. The set P includes all riskless 

prospects, i.e. prospects that assign probability one to one of the outcomes. The probability 

measure which assigns probability one to outcome x is denoted by δx. For convenience we 

restrict attention to probability measures with finite support, i.e. for all p ∈ P there exists a 

finite W ⊂ X with p(W) = 1.  

 Models of decision making analyze the preference of a decision maker between 

prospects which will be formalized by the binary relation í ⊂ P × P. For p, q ∈ P, p í q 

means that p is at least as good as q (weak preference). The strict preference relation ê and 

indifference relation ~ are defined as usual. By restricting attention to riskless prospects the 

preference relation í defines a preference relation over outcomes, i.e. for all outcomes x,y∈X, 

x í y iff δx í δy. A real-valued function V on P is called utility function if it represents í on 

P, i.e.  

 

(1) p í q ⇔ V(p) ≥ V(q) for all p, q ∈ P.  

 

We will denote prospects giving outcome xi with probability pi, i = 1,…,n, as (p1, 

x1;….;pn, xn). Within this notation we implicitly assume that outcomes are rank-ordered from 

best to worst, i.e. x1 í ...í xn. Binary prospects, i.e. prospects that yield just two outcomes x1 

and x2 with positive probabilities p1 and p2 = 1−p1 will be denoted (p1, x1; x2) for short. 

 

3. Expected Utility 

Expected utility (EU) holds if the utility function representing preference can be restricted to 

be of the following form: 

 

(2) 
n

i i
i 1

V(p) u(x )p
=

=∑ , 

 

i.e. the utility of a prospect equals the expected value of the utility of the single outcomes. The 

central condition in EU is the well known independence axiom: for all λ ∈ [0, 1] and for all r 

∈ P, p í q ⇒ λp + (1-λ)r í λq + (1-λ)r. The independence axiom has intuitive appeal and is 
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accepted as a principle of rational choice by most authors. However, it is often violated in 

empirical studies. This empirical evidence has motivated the development of non-expectd 

utility models which usually rely on weakened variants of the independence axiom. 

 A decision maker is defined to be risk-averse if she dislikes mean-preserving spreads 

in risk. A mean-preserving spread results from increasing one outcome and decreasing a 

worse outcome without affecting the expected value of a prospect. Consequently, risk 

aversion holds if (p1, x1;...; pi, xi; ...; pj, xj; ...; pn, xn) í (p1, x1;...; pi, xi + ε/pi; ...; pj, xj - ε/pj;...; 

pn, xn) for all positive ε. It follows that risk aversion in EU is equivalent to a concave utility 

function u.   

Two common graphical representations, the two-outcome diagram and the triangle 

diagram, may help to clarify some properties of EU . The two-outcome diagram (see Panel A 

of Figure 1) restricts attention to binary prospects with outcomes x1 and x2, which occur with 

probabilities p1 and 1−p1. Setting the total differential of a constant utility V = p1u(x1) + (1-

p1)u(x2) equal to zero yields the slope of indifference curves 

 

(3) 
dx1
dx2

  =  
1 − p1

p1
 
u′(x2)
u′(x1)

 . 

 

Indifference curves have a negative slope and are convex if risk aversion is assumed. 

Moreover, their slope equals the negative probability ratio along the 45°-axis which is also 

called certainty line since we have x1 = x2, i.e. the individual is in a riskless position along this 

line. 

 In the triangle diagram (Panel B of Figure 1) there are three fixed outcomes, x1 > x2 > 

x3 with varying probabilites. Taking p2 = 1 – p1 – p3, a fixed utility level is given by V = 

p1u(x1) + (1 – p1 – p3)u(x2) + p3u(x3). Solving for the best outcome, we get the equation for an 

indifference curve: 

(4) 2 32
1 3

1 2 1 2

u(x ) u(x )V u(x )p p
u(x ) u(x ) u(x ) u(x )

−−
= +

− −
. 

 

It follows, that indifference curves are upwards sloping, parallel lines since the slope is 

independent of the utility level V. Note that a higher degree of risk aversion leads to steeper 

indifference curves. Consequently, parallel indifference curves mean that the degree of risk 

aversion is constant for all prospects consisting of these three outcomes. 
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      A: The Two-outcome Diagram                                           B: The Triangle Diagram 

 
Figure 1: Graphical Representations of EU 

 

 The descriptive validity of the independence axiom of EU was first questionend by 

Allais (1954). A well-known experimental design is the so-called common-ratio effect: there 

is a choice between p = (1, $3000) and q = (0.8, $4000; 0.2, $0)  and a second choice between 

p* = (0.25, $3000; 0.75, $0) and q* = (0.2, $4000; 0.8, $0). It turns out that many people 

choose p in the first problem and q* in the second one which violates EU. If we normalize 

utility by u(4000) = 1 and u(0) = 0, choosing p implies u(3000) > 0.8 while choosing q* 

implies 0.25u(3000) < 0.2 which is obviously a contradiction.  

 

4. Non-expected utility 

The experimental evidence against the independence axiom has motivated the development of 

various alternative models, for overviews see Starmer (2000), Schmidt (2004), and Sugden 

(2004). Two classes of models can be distinguished, utility theories with the betweenness 

property and rank-dependent models. These classes are disjoint in the sense that only the EU 

belongs to both. Utility theories with the betweenness property generalize EU by implying 

that indifference curves in the triangle diagram are also linear but not necessarily parallel. By 

this generalization the Allais paradox can be explained if indifference curves become steeper 

for higher utility level. This means that subjects are more risk averse when choosing between 

“good” prospects than for the choice between “bad” prospects, which is also called fanning 

out hypothesis (Machina 1982). Formally, betweenness is defined by p ê (~) q ⇒ p ê (~) λp 

+ (1-λ)q ê (~) q for all 1 > λ > 0.  

p3 

p1 

x2 

x1 
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 In the following we will focus on the family of rank-dependent models since these are 

currently the most popular in applications. One central model within this family is prospect 

theory (Tversky and Kahneman 1992, Wakker and Tversky 1993).1 Prospect theory (PT) has 

three important differences compared to EU. First, it assumes that decision makers to not 

evaluate outcomes as final wealth levels but rather as deviations from a status quo, i.e. as 

gains and losses relative to a reference point. Second, decision makers are loss averse, which 

means that a given loss has a greater impact on the desirability of a prospect than a gain of 

equal size. Third, people do not evaluate probabilities linearly as in EU, but transform 

probabilities. Compared with EU, probabilities are replaced by decision weights πi in all rank-

dependent models. These decision weights are constructed by transforming probabilities 

through a weighting function w. In prospect theory, probability weighting can be different for 

gains and losses. Altogether, for a prospect consisting of k gains and n-k losses, we have in 

PT the following representation of preferences (recall that outcomes are rank-ordered from 

best to worst): 

(5) 
k n

i i i i
i 1 i k 1

V(p) v(x ) v(x )+ −

= = +

= π + π∑ ∑ . 

In this equation, the outcomes xi are gains and losses relative to a reference point and not final 

wealth positions as in EU. The decision weights are defined as follows: 

(6) 
i i 1

i j j
j 1 j 1

w ( p ) w ( p )
−

+ + +

= =

π = −∑ ∑  and 

(7) 
n n

i j j
j i j i 1

w ( p ) w ( p )− − −

= = +

π = −∑ ∑ , 

with both weighting functions strictly increasing and satisfying w+(0) = w-(0) = 0 and w+ (1) = 

w-(1) = 1. Note that in the domain of gains decumulative probabilities are transformed 

whereas in the domain of losses cumulative probabilites are transformed.  

 The value function v plays the same role as the utility function u in EU and is strictly 

increasing. The hypothesis of loss aversion can be captured by assuming that v is steeper in 

the domain of losses than in the domain of gains. A second important hypothesis is 

diminishing sensitivity according to which marginal utility is decreasing as one moves away 

from the reference point. Consequently, the value function is concave for gains and convex 

for losses. This leads to the reflection effect, according to which people are often risk averse 

for gains and risk seeking for losses. 

                                                 
1 Prospect theory is sometimes referred to as cumulative prospect theory to distinguaish it from the original 
version of prospect theory proposed by Kahneman and Tversky 1979. 
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 Empirical evidence confirms concave utility for gains and convex utility for losses 

(Tversky and Kahneman 1992, Abdellaoui 2000,  Abdellaoui et al. forthcoming). There is 

also a lot of evidence supporting loss aversion, both in the laboratory and in field studies 

(Camerer 2000, Schmidt and Traub 2002, Pennings and Smidts 2003, Abdellaoui et al. 

forthcoming). Empirical evidence on probability weighting indicates that w has an inverse-S 

shaped form, indicating that people are sensitive to changes in probability around 0 (the 

impossibility effect) and 1 (the certainty effect) and much less so for intermediate 

probabilities (Tversky and Kahneman 1992, Tversky and Fox 1995, Wu and Gonzalez 1996, 

Gonzalez and Wu 1999, Abdellaoui 2000, Bleichrodt and Pinto 2000). 

 The development of PT was influenced by the rank-dependent utility (RDU) model of 

Quiggin (1982) which differs from EU only by probability weighting. Formally, RDU is 

given by  

(8) 
k

i i
i 1

V(p) u(x )
=

= π∑ .  

The construction of the decision weights is identical to that in Eq. 6 with a weighting function 

w. An interesting special case of RDU is the dual theory (DT) of Yaari (1987) which is given 

by (8) with the restriction u(xi) = xi. Although utility is linear, due to probability weighting we 

may also have risk averion in DT. More precisely, a decision maker in DT exhibits risk 

aversion if the weighting function is convex. This is because a convex weighting function, 

compared to untransformed probability, underweighs the probabilities of the best outcomes 

and overweighs the probabilities of the worst outcomes. In RDU risk aversion can be 

produced either by a convex weighting function or a concave utility function or both 

(Chateauneuf and Cohen 1994). 

 The utility of prospects in a two-outcome diagram for RDU is given by 

(9)   V = w(p1)u(x1) + (1−w(p1)u(x2) if x1íx2 

 V = w(1−p1)u(x2) + (1−w(1−p1))u(x1) if x2êx1 

  

Calculating the slope of indifference curves yields 

 

(10) 
dx1
dx2

  =  
1 − w(p1)

w(p1)  
u′(x2)
u′(x1)

  if x1íx2 

 
dx1
dx2

  =  
w(1 − p1)

1 − w(1 − p1)
 
u′(x2)
u′(x1)

  if x2êx1 
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In case of a convex weighting function we have 1 – w(p1) > w(1 – p1) and w(p1) < 1 – w(1 – 

p1). Consequently, risk aversion implies that indifference curves have a kink at the 45°-line. 

This kink is an important difference between EU and RDU (as well as PT and DT) and can be 

characterized by the concepts of first-order and second-order risk aversion. Consider a 

random variable ε with E(ε) = 0 and variance σε
2. From Pratt (1964) it is known that the risk 

premium RP for avoiding tε in the case of EU with differentiable utility function can for a 

sufficiently small t be approximated by RP ≅ – (t2/2) σε
2u’’(x)/u’(x). The risk premium is, 

thus, proportional to t2 and approaches zero faster than t which means that for small risks no 

risk premium will be demanded. This behavior has been termed second-order risk aversion by 

Segal and Spivak (1990). Second-order risk aversion does not only hold for EU with 

differentiable utility function but for all non-expected utility models which are smooth in the 

sense of Frèchet-differentiability. If we have a kink along the 45°-axis, however, Segal and 

Spivak (1990) have shown that RP is proportional to t which is called first-order risk aversion 

and yields dRP/dt t=0+ ≠ 0. First-order risk aversion implies that a decision maker will 

demand a risk premium also for infinitesimal small risks.   

 
5. Applications of non-expected utility in insurance economics 

Insurance Economics is a straightforward field for applying non-expected utility. In an 

important article Machina (1995) has shown that all classical results in insurance economics 

derived under EU carry over to non-expected utility as long as the representing utility 

functional exhibits second-order risk aversion. In the case of first-order risk aversion, 

however, some differences occur. We will show this by considering classical results by 

Mossin (1968), Arrow (1971), and Borch (1960).  

  Consider an individual with wealth y > 0 which is subject to a random loss L . If the 

individual insures the loss, she will receive an indemnity I(L) for paying a premium P(I(L)). 

In the case of coinsurance the indemnity is given by I(L) = αL where α can be chosen by the 

insured and is between zero and unity. The premium is usually given by P(I(L)) = (1 + 

λ)αE( L ) where λ ≥ 0 is a loading factor for profits and fixed costs of the insurer. A well-

known theorem by Mossin (1968) now states that the insured will choose full coverage (α = 

1) if and only if insurance is fair (λ = 0). For λ > 0 partial coverage (α < 1) will be chosen. 

Mossin´s theorem can be easily explained in the case where L  has only two possibe 

realizations, L > 0 with probability p1 and L = 0 with probability 1 – p1. Final wealth x is now 
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given by x1 =  y – L + αL – (1 + λ)αp1L and  x2 =  y – (1 + λ)αp1L, where (1 + λ)αp1L is the 

premium for a coverage of α. Taking differentials with respect to α yields dx1 = (1 – (1 + 

λ)p1)Ldα and dx2 = −(1 + λ)p1Ldα. Consequently, the slope of the budget line in a two 

outcome diagram is  

(11) 
dx1
dx2

  = − 
1 − (1 + λ)p1

 (1 + λ)p1
 . 

If full coverage is demanded, the individual is at a position on his certainty line. We know 

from Eq. 3 that the slope of indifference curves along the certainty line equals –(1 – p1)/p1. 

Full coverage is, thus, only optimal if λ = 0 since only then the slope of the budget line equals 

the slope of indifference curves along the certainty line.    

 The demand for coinsurance with non-expected utility prefernces was analyzed, 

among others by Doherty and Eeckhoudt (1995), Schmidt (1996), Schlesinger (1997), and 

Segal and Spivak (1990). Recall from Eq. 10 that the slope of indifference curves at the 

certainty line for RDU equals −w(1 – p1)/(1 − w(1 – p)) for the case x2 > x1 which is the only 

relevant case if overinsurance is ruled out. Therefore, full coverage is optimal as long as the 

indifference cure is flatter than the budget line, i.e. 

(12) − 
1 − (1 + λ)p1

 (1 + λ)p1
  ≥ 

−w(1 − p1)
1 − w(1 − p1)

 , 

which yields 1 + λ ≤ (1 – w(1 – p1))/p1. In the case of risk aversion w is convex and, 

therefore, (1 − w(1 – p1))/p1 > 1. Consequently, due to the kink of indifference curves in the 

case of first-order risk aversion full coverage is also optimal for strictly positive loading 

factors. This means that Mossin´s (1968) theorem carries over only partly to non-expected 

utility preferences. Note that in the case of DT indifference curves are linear. Therefore, the 

individual either demands full coverage in case that inequality (12) holds or no coverage at 

all.     

 An alternative to coinsurance is deductible insurance. For deductible insurance the 

indemnity is given by 

(13) 
L d if L d

I(L)
0 if L d.
− ≥

=  <
 

 Arrow (1971) has shown that for a given loading factor deductible insurance is the 

most preferred form of insurance contract for every insured who is a risk averse expected 

utility maximizer. Moreover, it can be shown that the optimal deductible d equals zero if and 

only if the loading factor equals zero.  
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 Deductible insurance with non-expected utility has been analyzed by Karni (1992), 

Schlee (1995), and Schlesinger (1997). Karni (1992) has shown that the optimality of 

deductible insurance carries over to all non-expected utility models which satisfy second-

order risk aversion. Schlesinger (1997) has generalized this result by showing that final 

wealth under every possible insurance contract is a mean-preseving spread in risk of final 

wealth under deductible insurance. Consequently, also every risk averse non-expected utility 

maximizer will prefer deductible insurance. In contrast to EU, however, the optimal 

deductible under first-order risk aversion may equal zero even for strictly positive loading 

factors.  

 Let us finally analyze efficient risk sharing. Consider n individuals who have to share 

state-dependent outcomes. For simplicity we assume that there exist only two possible 

outcomes x1 and x2 with x1 > x2.  Borch (1960) has shown that efficient risk sharing under EU 

can be characterized by equal marginal rates of substitution, i.e. for any two individuals i and j 

it must be true that 

(14)  
ji

j 21 i 2 1
i j

1 i 1 1 j 1

u '(x )1 p u '(x ) 1 p
p u '(x ) p u '(x )
− −

− = − , 

where p1 is the probability of final wealth level x1. An important conclusion from this 

equation is that an efficient risk sharing agreement leaves each individual with some residual 

wealth uncertainty. This can be explained as follows: suppose i is in a riskless position. This 

means that her marginal rate of substitution equals –(1 – p1)/p1. According to Eq. 14, the 

marginal rate of substitution for all other individuals has to equal also –(1 – p1)/p1, i.e. they 

are also in a riskless position. But this is impossible if there is aggregate risk.  

 Schmidt (1996, 1999a) has shown that this result does not carry over to first-order risk 

aversion, i.e. it is possible that some individuals are in a riskless position. Recall from Eq. 10 

that the marginal rate of substitution at a riskless position is, in contrast to EU, not identical 

for all individuals but determined the probability weighting function. If one individual has a 

rather convex weighting function while the weighting function of the other individual is 

nearly linear indifference curves may have identical slope at the certainty line of the first 

individual. In the case of DT indifference curves are linear and their slope is solely 

determined by the weighting function. It turns out that efficient risk sharing here assigns all 

risk to the least risk averse individual while all others enjoy a riskless position. 

 For further applications of non-expected utility to insurance economics the reader is 

referred to Konrad and Skaperdas (1993),  Wang et al. (1997), and Schmidt (1999b).    
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6. Applications of non-expected utility in auctions  

 Due to the increasing importance of auctions in the real world, the literature on 

auctions has grown rather rapidly in recent years. Since the analysis of many auction designs 

like combinatorial auctions is rather complex even for risk neutral bidders, applications of 

non-expected utility are rare in this context. In the present chapter we will focus on auctions 

of a single object and stick to the independent private values framework. In this framework 

each bidder i has a private valuation vi of the auctioned object Z which is not known by the 

other bidders. Formally, we have [Z – vi] ~ δ0 where [Z – vi] denotes receiving the object for 

paying vi. All valuations are drawn from the same distribution over an interval [v+, v-].  

 

 first-price second-price 

open bids descending bid auction ascending bid auction 

sealed bids first-price sealed-bid auction second-price sealed-bid auction 

 

Table 1: The standard auction formats 

 The basic literature (see Engelbrecht-Wiggans 1980 for a review) assumes risk 

neutrality of bidders and analyzes four auction formats stated in Table 1. In the ascending bid 

auction open bidding prevails until no bidder is willing to raise the last bid. It is obvious that 

the optimal maximal bid of bidder i is vi since on the one hand it does not make sense to bid 

more than vi and on the other hand it is always possible to make a gain if the highest bid 

among the other bidders is below vi. In the second-price sealed bid auction each bidder 

submits secretly a bid to the auctioneer and the highest bidder wins the auction and has to pay 

the second highest bid. Note that the own bid does not determine the price one has to pay 

(because this is determined by the second highest bid) but only whether one will buy the 

object for a given price or not. Since bidder i is willing to buy the object for all prices which 

do not exceed vi the optimal bid is vi. Consequently, the the two second-price auctions are 

demand revealing and the revenue of the auctioneer is the second highest valuation in both 

cases as long as bid increments are infinitesimal small in the ascending bid auction. 

 The first-price sealed bid auction equals the second-price sealed-bid auction but the 

highest bidder has to pay his own bid and not only the second highest bid. In this auction there 

is no dominant bidding strategy as the optimal bid is a trade-off between winning probability 

and profit. If valuations are distributed uniformly, optimal bids in the unique Nash 

equilibrium are given by vi(n – 1)/n where n is the number of participating bidders. This is 

also the Nash equilibrium of the descending bid auction which runs as follows: the auctioneer 
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starts anouncing a prohibitively high price for the object and then continously decreases the 

price until one bidder accepts to buy the object for the current price. It is obvious that both 

first-price auctions are strategically equivalent because in both cases the bidder determines his 

bid without knowing any bid of her competitors. Moreover, the bid is also the price in both 

cases. Since also the two second-price auctions are strategically equivalent it remains to 

compare first-price with second-price auctions. Note that vi(n – 1)/n is precisely the expected 

value of the second highest valuation if vi is the highest valuation. Consequently, the expected 

price for the bidder and, therefore, the expected revenue of the auctioneer is identical in all 

four standard auctions. This well-known revenue equivalence theorem first established by 

Vickrey (1961) is also valid if valuations are not uniformly distributed. However, if bidders 

are not risk neutral but risk averse expected utility maximizers, optimal bids in the first-price 

auctios exceed those in second-price auctions (Milgrom and Weber 1982). This can be 

explained as follows: the optimal strategy in second-price auctions is independent of risk 

attitude. In first-price auctions, however, the optimal bid is determined in a trade-off between 

winning probability and potential profit. Risk averse bidders are willing to solve this trade-off 

at a higher bid which increases the winning probability but decreases potential profit.  

 In the case of non-expected utility let us first analyze the ascending bid auction. 

Suppose a bidder j ≠ i was bidding slightly less than vi − ε for an infinitesimal small ε so 

bidder i has to choose between bidding vi or quitting the auction. If he quits the auction, the 

consequence is obviously δ0. If he bids vi, he will win the auction with some probability λ and 

get [Z – vi]. However, with probability 1 − λ another bidder bids more and i will also get δ0. 

Consequently, a maximal bid of vi is optimal if δ0 ~ λ[Z – vi] + (1 − λ)δ0. Suppose that the 

auctioned object Z is a lottery which is often the case in the real world due to uncertainty of 

the precise quality of the object. Then this indifference is obviously only satisfied if 

betweennes holds (see the definition of betweenness in section 4). Consider now 

quasiconcave preferences defined by p ~ q ⇒ λp + (1 − λ)q ê p. Since δ0 ~ λ[Z – vi] 

quasiconcavity implies λ[Z – vi] + (1 − λ)δ0 ê δ0 and, thus, the optimal bid exceeds vi. 

Quasiconcavity can be interpreted as preference for randomization. This preference causes 

bidders to stay in the auction even for prices above vi since doing so yields a random 

consequence compared to quitting the auction. This result was first obtained by Karni and 

Safra 1989a, b). Analogously, the optimal bid is lower than vi in the case of quasiconvex 

preferences defined by by p ~ q ⇒ p ê λp + (1-λ)q.  Karni and Safra (1989a, b) also analyzed 

the second-price sealed-bid auction. In this auction  the maximal bid is determined without 

knowing that another bidder will continue bidding until vi − ε. Thus there is a chance that the 
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bidder will get the object for a price much lower than vi which is not longer the case in the 

ascending bid auction if another bidder was already bidding vi − ε. Thus, the optimal bid is 

determined on a higher indifference curve than in the ascending bid auction. If in contrast to 

EU the degree of risk aversion may vary for different utility levels, the evaluation of the 

auctioned lottery and consequently the optimal bid may change. More precisely, Grimm and 

Schmidt (2000) have shown that the optimal bid in the second-price sealed-bid auction is 

lower that in the ascending bid auction if the preferences satisfy betweenness and fanning out. 

Altogether it turns out that the advantage of second price auctions, i.e. the fact that they elicit 

true valuations, does not carry offer to non-expected utility if the auctioned object is a lottery. 

In other words, there does not exist an incentive-compatible mechanism to elicit certainty 

equivalents for non-expected utility models. If, however, a deterministic object is auctioned 

second price auctions elicit true valuations for all preferences which are consistent with first-

order stochastic dominance.   

 First-price auctions with non-expected utility were analyzed by Weber (1982), Karni 

(1988), and Grimm and Schmidt (2000). Consider a bidder in a descending bid auction whose 

valuation is already larger than the actual price b. The choice between accepting the actual 

price and waiting slightly longer is a choice between a sure gain of [Z – b] and the lottery λ[Z 

– b – ε] + (1 – λ)δ0 where λ is the probability that no other bidder will accept the price b – ε. 

The optimal bid is thus determined by [Z – b] ~ λ[Z – b – ε] + (1 – λ)δ0. In the first-price 

sealed-bid auction bidder i lacks information that he can make a sure profit because there is 

the possibility that another bidder will place a higher bid than vi. Consequently, the optimal 

bid is determined on a lower indifference curve. Since only for EU preferences the degree of 

risk aversion is equal on different indifference curves we can conclude that optimal bids in the 

descending bid auction and in the first-price sealed-bid auction are always identical if and 

only if EU holds. Suppose in contrast that preferences are consistent with the fanning out 

hypothesis. This means that the degree of risk aversion is higher for the decision in the 

descending bid auction which leads to a higher bid.      

 

7. Applications of non-expected utility in the health domain 

Utility theory is widely applied in medical decision making. The common way to evaluate 

new medical technologies is through cost-utility analysis in which the benefits of these 

technologies is expressed in terms of utility. The most popular utility model is the quality-

adjusted life-years (QALY) model. The QALY model combines the two dimensions of health, 
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life duration and health status, in a single index number and claims that the utility of a T years 

in health state Q is equal to 

 

(15) U(Q,T) = V(Q)*T, 

 

where V(Q) denotes a weight that reflects the utility (or attractiveness) of health state Q.  

QALYs play an important role in health policy in many countries. For example, in the UK the 

National Institute for Clinical Excellence (NICE) requires a cost-utility analysis based on 

QALYs before a treatment is eligible for inclusion in the NHS. In the Netherlands, the 

Council for Public Health and Care, the main advisory board of the Dutch government on 

health policy, recently recommended that only treatments that cost less than €80,000 per 

QALY gained should be included in the basic insurance package. Treatments costing more 

can only be insured through supplementary insurance. 

Sometimes a more general form of the QALY model is proposed in which the utility 

for life duration is not linear, as in Eq. 13, but can be curved: 

 

(16) U(Q,T) = V(Q)*W(T), 

 

where W(T) denotes the utility for life duration. In what follows we will refer to Eq. 16 as the 

nonlinear QALY model to distinguish it from Eq. 15. 

 QALYs have two important advantages, they are tractable, which makes them 

attractive for practical applications, and they are intuitive, one QALY can be interpreted as 

one year in good health, which makes them easy to communicate to policy makers. There are, 

however, also important methodological questions surrounding QALYs. In this chapter we 

will focus on two of these and, in particular, on the insights that non-expected utility has 

offered to solve these methodological questions. The first question relates to the validity of 

the QALY model. The QALY model is a simple model, which as explained above has clear 

advantages. However, this simplicity may also have a price: the QALY model could be too 

simple and may misrepresent people’s preferences for health. To obtain insight into the 

descriptive validity of the QALY models, Eqs. 15 and 16, we need behavioral foundations 

that identify the conditions on which the models depend. These conditions can then be tested 

in experimental studies. As we will explain, non-expected utility has been very useful in fine-

tuning these tests.  
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 A second question on which we will focus is the estimation of the utilities V(Q) and 

W(T). The measures commonly used to measure V(Q) and W(T) yield systematically 

different results, which cannot be explained under expected utility. The insights from non-

expected utility, most notably prospect theory, can help to reconcile some of these differences 

as we will show in what follows. 

 

7.1. Non-expected utility and tests of the descriptive validity of QALYs 

Pliskin et al. (1980) were the first to give a behavioral foundation for the QALY model. Their 

model was later simplified by Bleichrodt et al. (1997) and Miyamoto et al. (1998). Bleichrodt 

et al. (1997) and Miyamoto et al. (1998) showed that the crucial condition of the QALY 

model is that people be risk neutral with respect to life duration. That is, for a given health 

quality Q they should be indifferent between a risky treatment that gives life duration T1 with 

probability p and T2 with probability 1−p and p*T1 + (1−p)*T2 for sure. Empirical evidence 

has generally observed that people do not behave according to this condition but are risk 

averse with respect to life duration. For example, the median subject in Stiggelbout et al. 

(1994) was indifferent between 4 years for sure and a risky treatment, giving 10 years with 

probability ½ and 0 years (death) with probability ½.  

The analyses of Pliskin et al. (1980), Bleichrodt et al. (1997), and Miyamoto et al. 

(1998) relied crucially on the assumption that people behave according to expected utility. 

Without this assumption their behavioral foundations are no longer true. For example, under 

rank-dependent utility it is very well possible that people have linear utility and are risk 

neutral with respect to life duration. Consider, for example, the median preference observed 

by Stiggelbout et al. (1994). If w(½) = 0.40 then this response is consistent with a linear 

utility for life duration.  

As mentioned before in Section 3, evidence abounds that people violate expected 

utility. These violations of expected utility cast doubt on the validity of previous tests of the 

QALY model. Several authors have derived tests of the QALY model that are robust to 

violations of expected utility. Bleichrodt and Quiggin (1997) derived a test of the QALY 

model that is valid under a large class of non-expected utility models including rank-

dependent utility. Recall that (p,(Q1,T1); (Q2,T2)) denotes the risky prospect that gives (Q1,T1) 

with probability p and (Q2,T2) with probability 1−p. As before, we assume that all prospects 

are rank-ordered, i.e. (Q1,T1) í (Q2,T2). The condition Bleichrodt and Quiggin (1997) 

imposed, constant marginal utility, says that for all Q and for all ε small enough that the 

prospects involved are still rank-ordered and the life durations do not exceed the maximum 
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possible life duration,  (p,(Q,T1);(Q,T2)) ~ (p,(Q,T3);(Q,T4)) iff (p,(Q,T1+ε);(Q,T2)) ~ 

(p,(Q,T3+ε);(Q,T4)) and (p,(Q,T1);(Q,T2)) ~ (p,(Q,T3);(Q,T4)) iff (p,(Q,T1);(Q,T2+ε)) ~ 

(p,(Q,T3);(Q,T4+ε)). Constant marginal utility was tested and rejected by Bleichrodt and Pinto 

(2005). Bleichrodt and Miyamoto (2003) extended the analysis of Bleichrodt and Quiggin 

(1997) to prospect theory where outcomes can be both gains and losses.  Miyamoto (1999) 

proposed another condition, constant proportional coverage, that allows to test the QALY 

model under rank-dependent utility. Constant proportional coverage holds if for all Q and for 

all T1>T2>T3 and T′1> T′2> T′3 whenever (Q,T2) ~ (p,(Q,T1);(Q,T3)), (Q,T′2) ~ (p′,(Q,T′1);(Q,T′3

)), and (T2 − T3)/(T1 − T3) = (T′2 − T′3)/(T′1 − T′3) then p = p′.  Doctor et al. (2004) showed that 

the condition is also valid under prospect theory if a plausible assumption about the location 

of the reference point is made. They tested constant proportional coverage and obtained 

support for it.  

Miyamoto and Eraker (1988) were the first to test the nonlinear QALY model under a 

general utility theory and obtained support for it. Bleichrodt and Pinto (2005) considered an 

even more general utility theory and also obtained support for the nonlinear QALY model. 

In summary, the insights from non-expected utility have helped to perform more 

robust tests of the QALY model. It is more plausible that people have linear utility for life 

duration under non-expected utility models because under these models risk attitude is 

captured not only by the utility function, as in expected utility, but also in other functions and 

parameters. For example, in rank-dependent utility part of people’s risk attitude is captured by 

the probability weighting and in prospect theory also loss aversion plays an important part in 

the explanation of attitudes towards risk. The available on QALYs under non-expected utility 

is still limited but indicates that the QALY model may have been too easily dismissed. The 

QALY model may not describe people’s preferences for health better than commonly thought. 

This is of course an important finding given the dominant role that the QALY model plays in 

practical health economics research. 

 

7.2. Non-expected utility and the measurement of health state utilities 

 Non-expected utility theory also has implications for the main methods to determine 

V(Q) and W(T). One of the most widely used methods to measure the health state utilities 

V(Q) is the standard gamble. The standard gamble is, for example, used in the SF-6D a very 

popular valuation method in applied health economics (Brazier et al. 2002). In the standard 

gamble method people face a choice between an impaired health state Q for T years for sure 
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and a risky treatment option that gives full health with probability p and death with 

probability 1−p.2 The purpose of the standard gamble is to determine the probability p that 

leads to indifference between these two options. Under expected utility and the nonlinear 

QALY model it then follows that V(Q) = p.  

 It is well known that the standard gamble gives systematically higher utilities than 

other methods to determine health state utilities that do not involve risk. This obviously raises 

the question as to which method should be preferred. The traditional view was that the 

standard gamble should be considered the preferred method as it is based on expected utility. 

The idea was that medical decision analysis is a prescriptive exercise and that expected utility 

is a prescriptive theory and, hence, health utility measurement should be based on expected 

utility. The problem with this point of view is that the measurement of utility is a descriptive 

exercise and that if people do not behave according to expected utility then utilities that are 

derived under expected utility will be biased. Using biased utilities in cost-utility analysis runs 

the risk of resulting in the wrong recommendations for health policy. 

 Conclusive evidence of such biases was observed by Llewellyn-Thomas et al. (1982). 

They used two different ways to ask the standard gamble. The first way was as described 

above with full health and death as endpoints in the risky treatment option. We will refer to 

this format as the direct method. In the chained method they first established indifference 

between (Q,T) for sure and a risky treatment (q,(full health,T); (Q′,T)) where Q′ is a worse 

health state than Q, and then they established indifference between (Q′,T) for sure and a risky 

treatment (r,(full health,T); death). Under expected utility the first indifference in the chained 

method entails  

 

(16) V(Q) = q + (1 − q)*V(Q′). 

 

The second indifference implies V(Q′) = r and, hence, the chained method gives V(Q) = q + 

(1 − q)*r. Except for random error, we should therefore observe that p = q + (1 − q)*r when 

expected utility holds. However, Llewellyn-Thomas et al. observed that the chained method 

led to systematically higher utilities V(Q) (see also Rutten-van Mölken et al. 1995, Bleichrodt 

2001), a clear violation of expected utility casting doubt on the validity of standard gamble 

measurements.  

                                                 
2 In principle it is not necessary to use full health and death as the outcomes of the risky treatment but this is the 
way the standard gamble is commonly asked. 
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 To determine W(T) two methods are commonly used. In the probability equivalence 

(PE)  method people are asked for the probability p that makes them indifferent between T2 

years in some health state Q for sure and a risky treatment that gives probability p of T1 years 

in health state Q and probability 1−p of T3 years in health state Q. In the certainty equivalence 

(CE) method people are asked for the number of years S2 in some health state Q for sure and a 

risky treatment that gives probability q of T1 years in health state Q and probability 1−q of T3 

years in health state Q. Of course, if we use the same T1 and T3 in the PE and the CE and if 

we substitute the response from the PE in the CE (i.e. p = q)3 then we should observe that S2 = 

T2 under expected utility. In fact, what is typically observed is that S2 > T2
4, which leads to a 

more concave utility for life duration under the PE method than under the CE method  and 

which, obviously violates expected utility (Bleichrodt et al. 2001). 

 Several authors have tried to solve the above inconsistencies by using non-expected 

utility. Wakker and Stiggelbout (1995) explored the impact of correcting the standard gamble 

for probability weighting as in rank-dependent utility. They showed that if people have an 

inverse S-shaped probability weighting function then the resulting utilities are generally 

pushed downwards leading to more consistency with other utility measurement methods. 

Their conjectures were confirmed by two empirical studies. Bleichrodt et al. (1999) observed 

that correcting the standard gamble for inverse-S shaped probability weighting leads to 

utilities that are  more consistent with people’s preferences than using the uncorrected 

standard gamble utilities. Bleichrodt and Pinto (2000) developed a new parameter-free 

method to examine the shape of the probability weighting function and tested their method in 

a medical setting. They found that the probability weighting function was indeed inverse S-

shaped. On the other hand, Bleichrodt (2001) showed that correcting the standard gamble for 

inverse S-shaped probability weighting did not resolve the difference between the direct 

version of the standard gamble and the chained version of the standard gamble that was first 

observed by Llewellyn-Thomas et al. (1982) but, instead, exacerbated this difference. 

Correcting for probability weighting cannot resolve the difference between the PE and the CE 

either even though the difference tends to be mitigated (Bleichrodt et al. 2001). Finally, 

Stalmeier and Bezembinder (1999) observed that correction for probability weighting reduced 

the difference between risky and riskless utilities for life duration but was not sufficient to 

resolve the difference. 

                                                 
3 Or for that matter substitute the response from the CE in the PE (i.e. T2 = S2). 
4 For money outcomes this was already observed by  
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 The missing element in the corrections by Wakker and Stiggelbout (1995) was that 

they did not account for loss aversion, the other main deviation from expected utility modeled 

by prospect theory. Bleichrodt et al. (2001) derived new formulas that allow the measurement 

of health state utilities under prospect theory. The crucial step in their analysis was the 

location of the reference point. Bleichrodt et al. (2001) conjectured that in the standard 

gamble and in the PE method  people take the sure outcome as their reference point, because 

this outcome is given. In the CE method, however, the sure outcome has to be determined and 

it is therefore unlikely to serve as the reference point. People will adopt a reference point in 

the CE but it will not be the sure outcome. Their data confirmed these hypotheses. Bleichrodt 

et al. (2001) tested whether their formulas could explain the discrepancy between the PE and 

the CE methods and their results were very encouraging: the corrections made the discrepancy 

vanish. Further support for the hypotheses in Bleichrodt et al. (2001) comes from several 

studies in the literature, some of which recorded people’s though processes in responding to 

PE and CE questions (Stalmeier and Bezembinder 1999, Morrison 2000, Robinson et al. 

2001, van Osch et al. 2004,2006). Bleichrodt et al. (forthcoming) extended the analysis of 

Bleichrodt et al. (2001) to other utility measurement procedures and found that prospect 

theory performed clearly better than expected utility and rank-dependent utility and solved 

many inconsistencies that were observed under expected utility.  

Oliver (2003) observed, however, that the corrections of Bleichrodt et al. (2001) could 

not entirely explain the differences between the direct version of the standard gamble and the 

chained version of the standard gamble. He found that the best performing model was a 

version of prospect theory in which there was loss aversion but no probability weighting. 

Stalmeier (2002) found evidence, however, that the difference between the direct version of 

the standard gamble and the chained version of the standard gamble is produced by a more 

elementary violation of rationality than probability weighting or loss aversion. He observed 

that people tended to give the same probability in the direct version and to both questions in 

the chained version, i.e. p = q = r. That is, people anchor on their response and do not adjust it 

for differences in health quality. Such basic violations of rationality are hard to accommodate 

by any formal theory of decision under risk. 

In summary, the insights from prospect theory seem to have improved the 

measurement of the utility in the health domain. Inconsistencies are significantly reduced 

when corrections for probability weighting and loss aversion are applied. An important 

implication of these findings is that the standard gamble as it is commonly used will result in 

utilities that are far too high. As was shown by Bleichrodt et al. (2001), under the common 



 19

findings in the literature (inverse-S shaped probability weighting and losses loom larger than 

gains) uncorrected standard gamble utilities are clearly biased upwards. In particular, there are 

serious reasons to suspect that the widely used SF-6D method produces biased utilities and 

care should be taken in applying this algorithm.  
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