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Scientific literature on carbon dioxide
removal revealed as much larger through
AI-enhanced systematic mapping

Sarah Lück1 , Max Callaghan1, Malgorzata Borchers2, Annette Cowie3,
Sabine Fuss 1,4, Matthew Gidden 5,6,7, Jens Hartmann8, Claudia Kammann9,
David P. Keller10, Florian Kraxner 5, William F. Lamb 1,11, Niall Mac Dowell 12,
Finn Müller-Hansen 1, Gregory F. Nemet13, Benedict S. Probst 14,15,16,
Phil Renforth 17, Tim Repke1,18, Wilfried Rickels 19, Ingrid Schulte1,
Pete Smith 20, Stephen M. Smith 21, Daniela Thrän2, Tiffany G. Troxler22,
Volker Sick 23, Mijndert van der Spek 17 & Jan C. Minx 1,11

Carbon dioxide removal plays an important role in any strategy to limit global
warming to well below 2 °C. Keeping abreast with the scientific evidence using
rigorous evidence synthesis methods is an important prerequisite for sus-
tainably scaling thesemethods. Here, we use artificial intelligence to provide a
comprehensive systematic map of carbon dioxide removal research. We find a
total of 28,976 studies on carbon dioxide removal—3–4 times more than
previously suggested. Growth in research is faster than for the field of climate
change research as a whole, but very concentrated in specific areas—such as
biochar, certain research methods like lab and field experiments, and parti-
cular regions like China. Patterns of carbon dioxide removal research contrast
with trends in patenting and deployment, highlighting the differing develop-
ment stages of these technologies. As carbon dioxide removal gains impor-
tance for the Paris climate goals, our systematic map can support rigorous
evidence synthesis for the IPCC and other assessments.

To comply with the Paris agreement and to limit global warming well
below 2 °C, rapid and deep GHG emissions reductions, need to be
complementedwith CarbonDioxide Removal (CDR), potentially at the
gigaton scale by the mid-century and beyond1,2.

CDR has three distinct roles in climate changemitigation1: first, to
reduce net CO₂ and greenhouse gas emissions in the near term, spe-
cifically in the land sector; second, to offset residual emissions from
“hard to mitigate” sectors like industry, long-distance transport, and
agriculture in the medium term3,4; and third, to support sustained net-
negative emissions in the long term, helping to lower global tem-
peratures in overshoot scenarios and stabilising warming at or below
1.5 °C1. Of course, CDR cannot compensate for stringent emission
reductions, which need to be prioritised even in hard to mitigate
sectors5. There are also deep uncertainties with respect to how fast

CDR can be sustainably scaled-up, and whether the reversal of tem-
perature overshoot can be safely achieved6. This underlines the need
to reduce emissions as fast as possible, while providing sufficient
policy support that CDR can actually deliver gigatons of removals in
the second half of the 21st century2,7.

CDR has been a key part of climate changemitigation discussions
in the scientific literature, but has often been separated into distinct
knowledge domains. A streamof literature going back to the first IPCC
assessment reports has considered the potential contributions of
enhanced natural sinks through afforestation or soil carbon seques-
tration to achieve net emissions reductions8,9. This area has since
broadened to include analogous nature-based approaches in other
ecosystems, such as coastal blue carbon10, alongside options aimed at
enhancing ecosystems’ ability to absorb and store CO₂, like ocean

Received: 27 May 2024

Accepted: 23 June 2025

Check for updates

A full list of affiliations appears at the end of the paper. e-mail: sarah.lueck@pik-potsdam.de; jan.minx@pik-potsdam.de

Nature Communications |         (2025) 16:6632 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-8681-9839
http://orcid.org/0000-0002-8681-9839
http://orcid.org/0000-0002-8681-9839
http://orcid.org/0000-0002-8681-9839
http://orcid.org/0000-0002-8681-9839
http://orcid.org/0000-0003-0687-414X
http://orcid.org/0000-0003-0687-414X
http://orcid.org/0000-0003-0687-414X
http://orcid.org/0000-0003-0687-414X
http://orcid.org/0000-0003-0687-414X
http://orcid.org/0000-0003-3832-6236
http://orcid.org/0000-0003-3832-6236
http://orcid.org/0000-0003-3832-6236
http://orcid.org/0000-0003-3832-6236
http://orcid.org/0000-0003-3832-6236
http://orcid.org/0000-0003-3273-7878
http://orcid.org/0000-0003-3273-7878
http://orcid.org/0000-0003-3273-7878
http://orcid.org/0000-0003-3273-7878
http://orcid.org/0000-0003-3273-7878
http://orcid.org/0000-0001-7179-2701
http://orcid.org/0000-0001-7179-2701
http://orcid.org/0000-0001-7179-2701
http://orcid.org/0000-0001-7179-2701
http://orcid.org/0000-0001-7179-2701
http://orcid.org/0000-0002-0425-1996
http://orcid.org/0000-0002-0425-1996
http://orcid.org/0000-0002-0425-1996
http://orcid.org/0000-0002-0425-1996
http://orcid.org/0000-0002-0425-1996
http://orcid.org/0000-0002-1149-8938
http://orcid.org/0000-0002-1149-8938
http://orcid.org/0000-0002-1149-8938
http://orcid.org/0000-0002-1149-8938
http://orcid.org/0000-0002-1149-8938
http://orcid.org/0000-0002-1460-9947
http://orcid.org/0000-0002-1460-9947
http://orcid.org/0000-0002-1460-9947
http://orcid.org/0000-0002-1460-9947
http://orcid.org/0000-0002-1460-9947
http://orcid.org/0000-0002-5407-6364
http://orcid.org/0000-0002-5407-6364
http://orcid.org/0000-0002-5407-6364
http://orcid.org/0000-0002-5407-6364
http://orcid.org/0000-0002-5407-6364
http://orcid.org/0000-0002-3784-1124
http://orcid.org/0000-0002-3784-1124
http://orcid.org/0000-0002-3784-1124
http://orcid.org/0000-0002-3784-1124
http://orcid.org/0000-0002-3784-1124
http://orcid.org/0000-0002-5737-0155
http://orcid.org/0000-0002-5737-0155
http://orcid.org/0000-0002-5737-0155
http://orcid.org/0000-0002-5737-0155
http://orcid.org/0000-0002-5737-0155
http://orcid.org/0000-0001-5756-9714
http://orcid.org/0000-0001-5756-9714
http://orcid.org/0000-0001-5756-9714
http://orcid.org/0000-0001-5756-9714
http://orcid.org/0000-0001-5756-9714
http://orcid.org/0000-0002-3365-2289
http://orcid.org/0000-0002-3365-2289
http://orcid.org/0000-0002-3365-2289
http://orcid.org/0000-0002-3365-2289
http://orcid.org/0000-0002-3365-2289
http://orcid.org/0000-0002-2862-0178
http://orcid.org/0000-0002-2862-0178
http://orcid.org/0000-0002-2862-0178
http://orcid.org/0000-0002-2862-0178
http://orcid.org/0000-0002-2862-0178
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-61485-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-61485-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-61485-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-61485-8&domain=pdf
mailto:sarah.lueck@pik-potsdam.de
mailto:jan.minx@pik-potsdam.de
www.nature.com/naturecommunications


fertilisation and macroalgae afforestation11,12. Bioenergy with carbon
capture and storage (BECCS) technologies have gained prominence in
the early 2010s as an explicit option for achieving negative emissions
in the integrated assessment modelling (IAM) literature13–15; while a
range of other technologies such as biochar produced by pyrolysis,
direct air carbon capture and storage (DACCS), enhanced weathering
(EW), and ocean-based approaches such as ocean alkalinity enhance-
ment (OAE) are now gaining more scientific attention15–17.

In the policy domain, CDR has gained increasing attention in
recent years18,19, but many countries still lack concrete policies to scale
CDR2. This has led to a considerable gap between countries’ (so far
limited) plans to develop and deploy CDR versus CDR’s estimated role
inmitigation scenarios that stabilise global temperatures at an increase
well below 2 °C2,19–21. One of the challenges here is that there is a large
spread of possible CDR levels that countries might aim for, in part
driven by model assumptions of technological innovation and poten-
tial market adoption22.

In the age of big literature23,24—where the scientific literature
grows at increasing rates—balancing a research question’s scope and
the resource demands for reviews, like reviewer time, is increasingly
challenging25. To address this issue, systematic mapping methodolo-
gies (systematic maps, evidence gap maps, etc.) have been developed
by the evidence synthesis community26,27, to map existing literature,
identify knowledge gaps and clusters, and guide where reviews are
most beneficial. However, these methods remain resource-intensive,
prompting discussions about the prospects of automation28,29. Pro-
posals for implementing such automated synthesis approaches have
been developed across various scopes and scales23,30–32.

There is currently little systematic oversight of the available CDR
literature. As the IPCC’s 7th Assessment Cycle is starting and CDR-
related policies and targets are being established, it is timely to assess
the current landscape of evidence for CDR. Previous research suggests
that there is a large and fast-growing evidence base on CDR, but the
few available overviews of the field have rapidly become outdated33,34,
only give a coarse overview2,35 or are limited in scope bymanual efforts
supported by community-crowdsourcing36.

The diverse range of CDR options and multidisciplinary fields
involved in CDR research also adds to the complexity of this task, as
researchers from different disciplines, each with their own specialised
languages and methodologies, may be working on the same issues
without fully knowing or engaging with each other due to misaligned
terminology. It is also crucial to identify and keep track of gaps in the
literature in order to effectively allocate research resources.

Here, we follow a systematic mapping methodology to compre-
hensively lay out the body of knowledge on CDR. We ask an open-
framedquestion—“what is the available evidenceonCDR?”—and follow
a robust, stepwise methodological procedure that ensures transpar-
ency, comprehensiveness and reproducibility. Traditionally, systema-
tic maps have been compiledmanually and therefore are often limited
in scope. Here, we use an approach that deploys machine learning
methods to automate labour intensive tasks to provide an assessment
at scale. Bydoing so,we are not only able toquantify the size and scope
of the research landscape of CDR and its temporal dynamics, but are
also able to assess the distribution of research efforts across various
dimensions, including CDR options, research methodology, dis-
ciplinary structure and geographic focus. Furthermore, our machine-
learning approach enables swift updating of the dataset in the future.
Given the growing importance of CDR in the context of net-zero
strategies and temperature overshoot, our publicly available database
of CDR research will be of benefit to the research community as well as
upcoming scientific assessments of CDR.

In this article, we first quantify the total volume of CDR literature
and examine its temporal trends, as well as dissecting the literature by
individual CDR options to highlight shifts in research focus. Next, we
investigate the origins of these studies, exploring regional profiles and

analysing research that specifies geographic locations to identify pat-
terns in CDR research distribution. We then assess the focus of the
studies, including the scientific methods employed, to understand
how research approaches have evolved. Additionally, we evaluate the
representation of CDR literature in the recent IPCC report, comparing
it to the overall CDR literature to highlight any discrepancies. Finally,
we compare the attention given to different CDR options across var-
ious contexts, including IntegratedAssessmentModel (IAM) scenarios,
deployment strategies, and investment patterns.

Results
Literature on CDR is much larger than previously estimated
There is a much larger body of CDR research than previously sug-
gested. Based on our machine learning assisted approach that
enables us to identify CDR studies with high precision (0.88 ±0.0119,
meaning the proportion of relevant studies among those identified is
high) and recall (0.93 ± 0.005, indicating most relevant studies are
captured)—see “Methods”, Supplementary Methods 3 and 4 and
Figs. 1 and 2—we predict a total of 28,976 ± 3800 scientific studies in
the Web of Science and Scopus (the two largest bibliographic core
collections). This is 3–4 times larger than what previous scientometric
studies33 or ongoing community efforts to manually track CDR
research36 have suggested when comparing the same time range. For
the former study, this discrepancy likely arises from their reliance on
non-machine learning methods, which forced a high-precision, low-
recall search approach. In the case of the manual tracking efforts, the
rapid expansion of CDR literature has simply made comprehensive
tracking unfeasible.

CDR research today comprises only 5% of the overall scientific
literature on climate change23, but growth in CDR research is faster
than for climate overall. We observe an average annual growth rate of
17% over the past ten years compared to a 12% growth rate for the
literature on climate change (Fig. 3).

Patterns of CDR research are uneven and dominated by biochar
studies
The distribution of research across different CDR options is highly
concentrated on biochar and land-based methods such as soil carbon
sequestration and afforestation/reforestation. Most growth rates of
the different CDR options are generally higher compared to the cli-
mate change literature as a whole (Fig. 3 and Supplementary Table 1).

Biochar research is covered in 56% of the 28,976 scientific pub-
lications on CDR. Considering 2022 only, the share of publications
covering biochar even increases to 62%.

With an annual growth rate of 18% in the past 5 years and its large
number of publications, biochar is the main driver of the high growth
rate of the entire CDR literature. The second largest category, SCS,
with 24% of the total literature, is also growing fast at 14% per year in
the past 5 years.

Other biological CDR options make up a sizable amount of the
CDR literature, such as afforestation/reforestation with 12% of all stu-
dies, agroforestry with 9.7% of all studies, coastal wetland (blue car-
bon) management with 4.7% and landscape restoration, such as
peatlands with 3.5%. Growth rates in the past 5 years are generally in
the range of 20–22%, except for the long establishedCDRoptions such
as afforestation/reforestation and forest management with 14% and
15% respectively. Growth in newly emerging research areas tends to be
particularly high, as initial literature numbers are low, making each
new publication a relatively larger addition to the existing body
of work.

BECCS is represented in only 5.6% of all studies on CDR, despite
being the most common CDR option in most scenario pathways for
meeting the Paris temperature goal37–39. DACCS accounts for only 2.8%
of all CDR studies. The annual growth rate of BECCS is volatile and the
average of the past 5 years is 12%.
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Other CDR options are much less represented in the scientific
literature: for ocean fertilisation, EW and OAE, we found less than
50 studies for each option per year.

CDR research is concentrated in China and OECD countries
We use the first author affiliation to infer the origin of the studies. This
approach simplifies the complexities of international collaborations,
where authorship, lead roles, and funding often span multiple coun-
tries. However, we consider it a valuable proxy for drawingmeaningful
conclusions about the research origins. With our approach, we find
that China is responsible for the largest amount of research on CDR
with 6452 studies (30% of all studies where author affiliation is avail-
able), followed by the United States (2667 studies, 13%) and the United
Kingdom (953 studies, 4%). Only 3.4% of all studies with author
affiliation have a first author affiliation from South America and 2.8%
come from Africa, see Supplementary Fig. 6.

Though global research trends favour land-based CDR options,
specialisation varies. China focuses more on biochar research, Europe
on BECCS, and North America, particularly the US, on DACCS in
comparison to the average shares per CDR option across all countries.
Research on ocean-based CDR options is more predominant in Ocea-
nia andNorthAmerica (Fig. 3).Weprovidedetailed country profiles for
CDR research in the Supplementary Fig. 5.

Roughly one third of CDR research refers to specific geographic
locations, identified through named entity recognition in titles and
abstracts40. Place-based research is important for evaluating CDR
implementation in situ, including aspects such as effectiveness of
removing CO2 and environmental or social side-effects. Out of
28,976 studies, 9305 mention a location, of which 74% are countries
and 25% are sub-national locations such as federated states, counties

or cities. Soil and vegetation-based CDR options feature more place-
specific research, with afforestation/reforestation studies at 65%,
compared to 33% for enhanced rock weathering, and only 10% for
DAC(CS) research, Fig. 4. Further information on regional based
research with details to the specific regions can be found in the Sup-
plementary Figs. 7 and 8.

CDR literature focuses on technology research using experi-
mental methods and modelling
OurML approach further enabled us to classify CDR research contents
along key dimensions. In particular, we used our classifiers to distin-
guish research methods and the broad area of research. Additionally,
we used the journal, in which a publication appeared, to determine
academicdisciplines in linewith the relevantOECDCategory scheme41.

We refer to CDR research that aims to understand, design or
further develop CDR options, their efficiency and side-effects as
“technology research”. As indicated by Supplementary Fig. 10, tech-
nology research accounts for about 89% of all studies across all indi-
vidual CDR options. We refer to survey or focus group research on
public perceptions and attitudes to CDR as “public perception” (0.8%
of the total), and integrated assessment scenario research as “socio-
economic pathways” (9% of the total). We further classify “policy and
governance” research, and studies on the “earth system” that evaluate
global carbon cycle or land aspects of CDR implementation, see for
example42,43, even though these categories remain relatively rare (at
3.8% and 0.6%, respectively).

In general, patterns of research vary across the technology cate-
gories. The literature on CDR in general features mainly policy and
governance (28% of papers on CDR in the general category) as well as
integrated scenario research (45%). We also find larger shares of

Fig. 1 | Overview of the data retrieval for this study. Squares symbolise docu-
ments, a coloured square a document with labels, either assigned by hand (solid
colour) or automatically (faded colour). Red documents are excluded, blue ones
included. Step 1: 70,000 documents were retrieved from databases using search
queries. Step 2: Of these about 6000 documents are sorted (=coded) by hand into
being on CDR (relevant, blue squares) or being not on CDR (irrelevant, red

squares). Documents on CDR were additionally described with CDR options, see
Fig. 2, and other categories. Steps 3 and 4: The relevance labels and additional
categories were used to train machine learning classifiers. Step 5: The trained
classifiers were used to extend all labels to the unseen ~64,000 documents.
Detailed information on methods can be found in the “Method” Section and the
Supplementary Methods 3 and 4.
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scenario research for some individual CDR options—particularly for
BECCS (31%) and forest-related CDR options (21–22% for Forest Man-
agement and Afforestation/Reforestation), which were the first to be
implemented in the modelling community38,44.

CDR research is published to a large extent in journals with a
natural science or engineering focus and tends to be rooted in
experimental and modelling study designs. In particular, 50% of the
studies are published in natural sciences, 26% in agricultural sciences
and 22% in engineering and technology journals (see Fig. 5). Only 3% of
the publications are published in journals with a focus on social sci-
ence, including economics.

Research designs vary substantially across CDR options, but
experiments, reviews and modelling studies are most common.
Overall, 86% use experimental methods, either laboratory (48%) or
field (38%) experiments, drivenmainly by research on biochar and soil
carbon sequestration. Reviews (21%) and modelling (18%) make up
another large proportion. However, certain research designs are more
dominant in the literature for specific CDR options. For example, field
studies typically make up a substantial share of forest-based CDR
options, but also blue carbon and ocean fertilisation, while laboratory
experiments, i.e., experiments in a controlled environment45, are
dominant for biochar, soil carbon sequestration, but also some engi-
neered CDR options such as DACCS. Interestingly, BECCS studies to
date focus strongly on modelling, highlighting their prominent role in
climate protection scenario work. Across all CDR options, reviews are
widely available—from 11% for forest management up to 32% for OAE,
and 34% for the literature on CDR in general (Fig. 4).

IPCC reports differ greatly from scientific literature
Next, we analyse how the research landscape is reflected in the most
recent 6th Assessment Report by the IPCC. For this, we extract all

citations from the IPCC AR6, all working groups, and identify those
studies which are present in the literature on CDR by matching titles.
Although it is clear that the IPCC cannot assess all of the large and
growing body of available research33, it is essential to understand
which main topics are emphasised or overlooked. We also acknowl-
edge that differences between the two literature bodies can arise from
various factors and that the main topic distributions should not
necessarily align—asHume remarked,what “is”doesn’t necessarily lead
us to what “ought to be”.

We find that IPCC assessments are not a broad reflection of
attention patterns in the underlying scientific literature on CDR
options (Fig. 6). Overall, only a small fraction (2% of the CDR literature)
of CDR studies are directly assessed. While the IPCC includes a rela-
tively higher proportion of reviews (19% vs. 15%) and systematic
reviews (3% vs. 1%) compared to the overall CDR literature, we believe
incorporating even more of these could further enhance its ability to
fulfil a stated goal of the IPCC—which is to comprehensively evaluate
the available evidence.

IPCC assessments cite a wide range of CDR options, but are pre-
dominantly concerned with BECCS (27%)—probably due to its promi-
nence in climate changemitigation scenarios (see Fig. 6)2,46. Themajor
focus on biochar in the research community is not reflected in IPCC
citation patterns.

The fact that IPCC assessments have tended to focus on scenarios
is underlined by an observed shift from experimental research (86% of
CDR research; 10%of IPCC citations) tomodellingwork (13% of all CDR
research; 37% in IPCC citations) and data analysis (10% of all CDR
research, 19% in IPCC citations). The focus on technology research in
the literature (89% of all CDR research; 44% in IPCC citations) is
replacedbymuchmoreprominenceof scenariowork (socio-economic
pathways) (9% of all CDR research; 33% in IPCC citations) as well as

Fig. 2 | Schematic overview of the coding guidelines used for inclusion in the systematicmap. The definitions of each carbon dioxide removal (CDR) option shown in
this figure served as the baseline for inclusion. Additional coding guidelines are provided in the Supplementary Methods.
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research on policy and governance (4% of all CDR research; 22% in
IPCC citations). All this reflects that IPCC assessments focus on the
exploration of alternative scenarios with different climate outcomes,
societal development pathways and mixes of mitigation strategies,
intended to inform policy development33,47,48.

Shares of CDR options vary across indicators of policy and
practice
Finally,wefind that theCDRoptions being researchedmost intensively
are not the ones being most actively deployed, developed or invested
in (Fig. 7, ref. 2, Chapter 3,6,7). Again, we do not imply that these
distributions should necessarily be similar; rather, we aim to highlight
and reflect on the differences between these categories. For example,
while CDR research strongly focuses on biochar and soil carbon
sequestration, the vast majority of current deployment (2Gt yr-1 or
99.9%49) is from afforestation and reforestation. Conversely, even
though only 2Mt yr-1 of CO2 removal is currently delivered by more
novel CDR options—mainly BECCS (78%) and biochar (21%)2 —these
technologies receive an enormous amount of scientific attentionor are
widely discussed in the scenario literature. Similarly, about 80% of the
CDR patents are for BECCS and DACCS2,50. 75% of announced invest-
ments in CDR focus on DACCS projects51. In long-term mitigation
scenarios that achieve the Paris long-term temperature goals52 mainly
BECCS (99%), afforestation (67%) and DACCS (29%) are the CDR
options included. There is not a single scenario dealing with biochar or

soil carbon sequestrationdue to a lack of implementationof theseCDR
options despite their potential co-benefits, such as food security or
N2O emission reduction53.

Discussion
In this article, we provide a comprehensive evidence map of the CDR
literature. Our machine learning assisted approach follows a sys-
tematic mapping methodology26,27, and automates key labour-
intensive parts of the process28. This allows our systematic map to
cover the entire research domain around CDR rather than being lim-
ited to a niche area of literature due to resource limitations29. As a
result, we were able to quantify the CDR research landscape in an
unprecedented way. Moreover, the automated classification can also
be applied to newly published CDR research, representing a critical
step forward in accelerating learning on CDR and providing high-
quality evidence syntheses on the topic. This is particularly important
as we continue to face a rapidly growing evidence base.

At the heart of our map of CDR research is a classification system
trained with about 5300 manually labelled documents that is able to
predict not only if a scientific publication is relevant for the evidence
map, but also the CDR option, the broad area of research it is situated
in, and the research methodology applied. This literature base serves
as a foundation for further analysis and can be easily expanded with
additional features that provide more detailed descriptions of the
scientific literature. In this context, a simple keyword search can enrich

Fig. 3 | Time development of the scientific literature on CDR inWeb of Science
and Scopus. a Total number of publications per year between 1990 and 2022.
Additionally, we note the number of publications released during each Assessment
Report (AR) cycle of the Intergovernmental Panel on Climate Change, the latest
AR6 considered publications until 2021.b Share of CDRoption covered in scientific
publications. Multiple options per publication are possible. Amore complete list of

all counts per option is published in the Supplementary Fig. 1. c Annual growth rate
of the scientific literature on CDR, climate change and individual options. Growth
rate is only calculated if there were more than 50 publications in total available.
Colorblind-friendly versions of the middle and lower panel can be found in the
Supplementary Figs. 2 and 3. Source data is provided as a Source Data file.
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the literature landscape across a diverse range of interests. All docu-
ments together with their categories can be downloaded from our
literature hub: climateliterature.org/#/project/cdrmap.

We find that the CDR literature is 3–4 times larger than previously
estimated33,36 when comparing the same time frame. The reason for
this is that our machine learning assisted approach enables us to be
systematic in our procedure and at the same time achieve both high
levels of precision and recall. Previous approaches had either designed
precise search strings that lack recall33 or relied on manual tracking of
the field, which has simply grown too large36.

While our CDR map represents the most comprehensive work in
this area to date, it does not offer a complete portrayal of CDR science.
Our search, focusedonEnglish-language articles inWebof Science and
Scopus, overlooks significant portions of literature in other languages
andgrey literature, particularly relevant for emerging technologies like
BECCS and DACCS. Estimates suggest that Web of Science captures
only about 40% of scientific publications54, implying potentially
another 50,000 CDR-related publications. Additionally, the large
opportunities for CDR functionality that are provided by converting
captured CO2 into long-lived economically viable products (Carbon
Utilization Infrastructure, Markets, and Research and Development
2024) has not yet been implemented in this review but is subject of
ongoing work.

Our machine learning classification system is not perfect and
varies in accuracy across tasks. For example, while we are able to

predict biochar with a F1-score of 0.98, our classifiers perform much
poorer for classifying agroforestry. However, our supervised machine
learning procedures involve in-depth validation and as such, we
establish transparency about our uncertainty in quantifying the evi-
dence base—something rarely provided in manually compiled evi-
dence maps, which are commonly viewed as gold standard.

Here we confirm previous research33 that the expansion of the
scientific literature on CDR is taking place more rapidly than for cli-
mate change as a whole. Overall, we find that CDR research is highly
concentrated on particular CDR options, specific areas of research as
well as research approaches. The CDR literature is dominated by bio-
char research today—with a geographical centre in China. This devel-
opment is relatively recent and driven by much higher publication
rates than observed for any other CDR option. There could be a
number of drivers that explain the large uptake of biochar research in
China, including institutional developments (e.g., increased core
funding at agricultural universities, publishing incentives, or research
grants), strengthening scientific networks (e.g., new societies, journals,
project collaborations and exchanges), or a concerted push from the
policy sphere (e.g., strategic research funding, support for public-
private enterprises). Of course, applied research cannot be abstracted
from its surrounding geographic and economic contexts. It is there-
fore not unexpected to find CDR research niches in different contexts
(e.g., biochar in agriculturally productive regions, ocean-based CDR in
coastal regions, DACCS and BECCS in industrialised regions).

Fig. 4 | Chinadominates the scientific literature onCDR. aNumberof studiesper
country based on first author affiliation. The three highest study counts are added.
bWe sort the origin of the study into the world regions. For each world region, we
compare the percentage difference of the investigated CDR options against all
others from the complete dataset. Displayed are only the three highest and the

three lowest differences. c Location-based research derived from locations men-
tioned in title and abstract. Displayed is the share of location-based research in all
scientific literature per CDR option. A colorblind-friendly version of panel b can be
found in the Supplementary Fig. 4. Source data is provided as a Source Data file.
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Patterns of research are also distinctly different from what
we observe in policy and practice. In part, this reflects the dif-
fering technological readiness levels of each CDR option, which
vary from early stage research (e.g., enhanced weathering), to
pilots and demonstrations (e.g., DACCS), and full-scale commer-
cialisation (e.g., afforestation/reforestation)55. This may explain
why—compared to the available research—patenting and invest-
ment activity has been relatively more active for DACCS, where a
series of recent demonstrations have taken place. The tendency
for scenarios to include a very significant share of BECCS also
reflects path dependencies in model development, which already
started to implement this technology option in the 2010s. It
should be noted, though, that there are active developments to
expand the range of CDR options in IAMs56. CDR deployment is
also driven by issues like social acceptance, where methods with
higher perceived “naturalness” and a longer history of practice
(e.g., afforestation/reforestation) have a clear advantage57.

We show that IPCC assessments do not reflect publication pat-
terns in the underlying scientific literature. Systematicmapping efforts
can help identify topical areas worthy of focus, and thesemay need to
be adopted into assessment procedures. Indeed, a first practical step is
to identify, evaluate and utilise the existing body of reviews and

metastudies, which too have been under-cited in the IPCC in favour of
a limited set of primary studies.

We identify a few “evidence hubs”where systematic reviews, i.e., a
complete and robust assessment of the available literature, would be
feasible based on the current body of work. For example, the extensive
literature surrounding afforestation policies offers an opportunity for
an ex-post analysis to yield insights on the long-term effectiveness and
social impacts of these efforts. Updated assessments of CDR costs and
potentials are also needed—expanding beyond previous efforts, such
as those by ref. 37—to reflect recent advancements in the underlying
evidence base. Additionally, there is sufficient evidence to support a
systematic review on monitoring, reporting, and verification, as iden-
tified by ref. 58, which is instrumental to developing reliable certifi-
cation schemes for CDR.

Finally, in terms of evidence gaps, we note less of a research focus
on ocean alkalinization, EW, and agroforestry. We also observe there
are few studies on more novel CDR options, such as DACCS, that are
place-specific. More localised research is needed, given that the suc-
cessful implementation of these methods is often dependent on local
geographies (e.g., geological reservoir access) and socio-economic
contexts (e.g., social acceptance, energy prices and availability).
Additionally, our results point to a need for more research on CDR in

Fig. 5 | Most studies focus on investigating the CDR option from a technical
perspective, where the technology or ecosystemmanagementmethod itself is
investigated. a The number of studies which report on each of the CDR options.
One study can report onmultiple CDR options. b For each CDR option the share of
research fields the studies were published in. This is based on meta-data from the

Web of Science and follows the OECD Category scheme41. c For each CDR option
the share of scientificmethod used in the studies as identified by our classifier. One
study can use multiple methods, see Supplementary Table 3. Source data is pro-
vided as a Source Data file.
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the social sciences and humanities, for example, to support evidence-
based decision-making on questions of governance and equity. This
type of research will be increasingly important as focus shifts towards
the implementation of CDR at scale and policy design to support this,
as is implied by the ambition of net-zero targets in the context of
relatively slow action of mitigation policies.

Methods
Systematic map - protocol
We use an approach assisted by machine learning to provide the a
comprehensive evidence map of CDR research. We follow the well
established guidelines for systematic mapping25, wherever possible,
and adjust them as needed to align with our machine learning
approach. We document all steps in a detailed systematic map pro-
tocol for transparency and reproducibility45, which is summarised in
Fig. 1 and Supplementary Fig. 11.

Document search
We started by developing, for each CDR option, search strings with
high levels of recall to make sure that as few scientific articles are
missed as possible. The search strings include keywords describing the
CDR technology, see Supplementary Information for the full search
queries. For long established CDR options, such as afforestation, we
included keywords that make sure the CDR option is evaluated with a

focus on carbon sequestration. The development of search strings was
done iteratively by validating against an independent list of publica-
tions on the various CDR options ensuring that all documents are
returned. The validation dataset was extracted from IPCC AR659,60 and
50 randomly selected publications from the CDR bibliography36 pub-
lished by the Climate Protection and Restoration Initiative. The search
queries are available in the Supplementary Table 3. We then ran the
final search strings onWebof Science and Scopus onMarch 28th, 2022
andMay 3rd, 2023 and retrieved 75,518 bibliographic records after de-
deduplication. Further information on this procedure and information
on the validation dataset is available in Supplementary Table 1 and
Supplementary Method 1.

Document relevance through machine learning
In the next step, we work towards precision by developing a
machine-learning classifier to distinguish relevant, namely all
studies on negative emissions and CDR, from irrelevant scientific
studies in our query. We manually screen and annotate a total of
5339 documents— 100–600 per CDR option—if they should be
included in the map (distinction between blue and red squares in
Fig. 1) according to our codebook. To ensure reproducibility61,62,
each document is screened and annotated by two coders as
recommended by the relevant guidelines25. We use our annota-
tions to train and validate binary classifiers, i.e., automatic sorting

Fig. 6 | Comparison of all literature on CDR with CDR papers cited by the 6th
assessment of the IPCC (reports of all three working groups). Reading guide for
colorblind people: The categories follow the order listed in the legend, beginning

from the top of each circle and proceeding counterclockwise. Source data is pro-
vided as a Source Data file.
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into predefined categories, to predict inclusion, using the title
and abstract of the documents as inputs. The best performing
classifier (F1: 0.91; ROC-AUC: 0.85) is derived from ClimateBERT—
a transformer-based pre-trained language model, which has been
fine-tuned to better represent domain-specific language used in
the climate change context, including in scientific abstracts63.
Further details and an explanation of our model validation pro-
cedure are available in the Supplementary Methods 2 and 3.

Document classification through machine learning
We further annotated all relevant scientific articles from our
manually coded training and validation set with regard to the
CDR options covered (Afforestation/Reforestation, Restoration of
landscapes/peats, Agroforestry, Soil Carbon Sequestration (SCS),
Blue Carbon Management (mangroves, macroalgae, seagrasses,
and salt marshes), EW, OAE, Ocean Fertilisation/Artificial Upwel-
ling, Bioenergy Carbon Capture and Sequestration (BECCS),
Direct Air Carbon Capture and Sequestration (DACCS), Biochar,
additionally we include General Literature on CDR with no focus
on a specific technology), the scientific method used, as well as
the broad area of research (technology study, policy & govern-
ance, equity, public perception, socio-economic scenarios, earth
system science). Definitions of all CDR methods used to code the
documents are shown in Fig. 2. Additional information on how we
distinguished the different classes can be found in our coding
protocol45. The additional categories are represented in Fig. 1 by
the different blue shades for each annotated relevant document.
We used these annotations to train three multi-label classifiers for
second stage predictions, and apply them to documents pre-
dicted relevant at the first stage. We achieve Macro F1/Macro ROC
AUC scores 0.77/0.87 for the “technology” classifier, 0.69/0.89

for the “methodology” classifier and 0.62/0.77 for the main “area
of research” classifier.

Machine learning validation
Throughout this process,we evaluate and validate ourmethodological
choices. We test our ClimateBERT classifications against classifications
from DistilBERT64 as well as a much simpler classification approach,
where we use tf idf-encoding together with an SDGClassifier with
Huber-loss65. ClimateBERT is chosen here due to its better perfor-
mance (see Supplementary Table 3). We optimise classifier perfor-
mance by tuning the hyperparameters of our model using the Python
package RayTune66. Finally, we test the complete training strategy of
all classifiers in a threefold cross validation providing us with com-
prehensive estimates of how the classifiers perform on the complete
dataset (cf. Supplementary Table 4–6). To estimate the confidence
intervals for absolute counts, we estimated the True Positive Rate and
False Positive Rate from our validation procedure and calculated their
confidence intervals using binomial proportion confidence intervals,
see Supplementary Method 4.

Locations in title and abstract
To find the locations in title and abstract, we deployed the Python
package Mordecai40.

Data availability
All documents, including their classification, are available for down-
load on our literature hub at climateliterature.org/#/project/cdrmap.
The interactive website allows users to search for documents and filter
by category. Sourcedata to Figs. 3–7 are provided as a SourceData file.
The data generated in this study have been deposited in ref. 67. Source
data are provided with this paper.

Fig. 7 | Share of CDRoptions for current deployment ofCDR, patenting activity, scientific literature, invested capital and considerations in the scenarios assessed
in the recent IPCC report. Data was taken from ref. 2. Source data is provided as a Source Data file.
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Code availability
All code used for training the machine learning models and analysing
the data is accessible at https://github.com/mcc-apsis/cdr-map68.
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