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I. Motivation 

Non-market interaction in issuers’ and investors’ decision making is a key element of 

primary equity markets. The notion of non-market interaction is central to recent 

explanations of volatility in primary equity markets that allow for significant welfare 

gains from bubbles manifesting themselves as hot issue markets. The conventional 

perception of stock market bubbles has focused on the large wealth losses suffered by 

investors who buy at or near market peaks as well as on the additional investment risks 

and economic instability that bubbles tend to generate. But this view has overlooked the 

potential for welfare gains from temporary reductions in the private costs of raising 

equity finance. As long as the private costs of equity finance exceed the social costs of 

capital in normal times, a bubble in the primary equity market may help to bring private 

and social costs into line and may thus enhance welfare by improving the allocation of 

capital. Non-market interaction may create a social multiplier, or multiple equilibria, and 

large variances in aggregate investment volumes across time and space. Stolpe (2004) 

argues that this can explain Europe’s experience with venture capital in the 1990s, in 

which a temporary surge of investment volumes across countries has not eliminated 

persistent international differences in investment levels. 

In the present paper, I distinguish initial public offerings (IPOs) according to their 

issuer’s area of technology in order to examine the empirical relevance of non-market 

interaction within different technological neighbourhoods. For a variety of reasons, the 

difference between the private and the social costs of equity capital is likely to be 

particularly large for start-up firms from the most dynamic areas of high technology, 

such as biotechnology and software. Due to the inability of using human capital as 

collateral for bank credit, these firms are more dependent on equity capital to finance 

their expansion when they have a profitable product. However, equity investors will 

require higher rates of return because the prospects of high-tech start-ups are particularly 
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uncertain and much of the available information is distributed more unevenly among 

potential investors as well as between the entrepreneur and any outside investor. The 

required rate of return is part of the cost of raising capital. In the absence of a bubble, 

these firms are hence likely to face suboptimal access to equity finance, and the rate of 

innovation is likely to be too small.  

The idea that bubbles in primary equity markets can remedy this market failure – at least 

partially – rests on three stylized facts: First of all, these bubbles tend to be concentrated 

in the very same subsectors of high technology that are likely to face the highest cost of 

equity capital during normal times. Secondly, hot issue markets are typically 

accompanied by a rapid shortening of firms’ average lifetime before the IPO. And 

thirdly, the observation that average underpricing tends to increase with the aggregate 

volume of IPOs suggests that hot issue markets boost investors’ willingness to buy IPO 

shares so that the need and opportunity for rationing increases. In a similar vein, 

increased average underpricing may indicate an increased willingness to bet on more 

risky firms, whose IPOs are normally shunned. The social returns from the real 

investments financed with issuers’ proceeds often exceed their private returns by a 

substantial margin. In the context of high technology, private research and development 

(R&D) often generates positive technological externalities in the form of knowledge 

spillovers for other firms and the introduction of radically new products can generate 

substantial pecuniary externalities such as product complementarities and system-wide 

increasing returns to scale. Hot issue markets in high technology are therefore likely to 

yield welfare gains that exceed the private wealth losses suffered by investors who buy 

at the peak of the bubble when almost all IPOs under-perform the general stock market 

price index in the long term – over periods of three to five years – as shown by Ritter 

(1991).  
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The literature has not dealt comprehensively with these issues. The few studies that do 

examine welfare gains from bubbles have mainly been theoretical, almost none – to my 

knowledge – have been done on the empirical end. In earlier theoretical analyses, 

Samuelson (1958) showed that speculative bubbles could be welfare-enhancing if they 

completed a limited set of existing markets and Tirole (1985) argued that bubbles in 

non-productive assets could help to reduce the over-accumulation of physical capital in 

dynamically inefficient economies. More recently, Olivier (2000) argued that a 

speculative bubble in equities may reduce the cost of capital and showed that this may 

raise the sustainable market value of firms and so encourage entrepreneurship, 

investment and growth. In a more comprehensive model, Caballero and Hammour 

(2002) have analysed the possibility of extended episodes of economic growth driven by 

the formation of a bubble in stocks of firms that belong to a newly emerging industry 

based on radical technological innovation.  

Looking at the impact of information technology in the 1990s, this analysis provides an 

explanation for the acceleration of productivity growth in the US, in which the stock 

market bubble is part of a feedback mechanism that raises savings in response to 

improved growth prospects. The bubble essentially facilitates the real investments 

required for faster productivity growth. In a cross-section of countries, Harris (1997) 

found evidence that stock market activity is indeed positively correlated with 

investment, as predicted by Olivier’s and Caballero and Hammour’s models of 

speculative growth, but not with the marginal productivity of capital, as it would be if 

stock markets’ impact on investment was mainly via their role in improving the 

selection of investment projects (Greenwood and Jovanovic 1990) and in diversifying 

away any remaining risks (Saint-Paul 1992b).  

The remaining sections of the paper are organized as follows. Section II discusses 

competing explanations of bubbles with special reference to primary equity markets and 
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policy implications. Section III discusses the testable implications and choice of 

empirical methods. Section IV provides descriptive statistics. Section V presents the 

results from statistical inference. Section VI discusses related literature and Section VII 

concludes. 

II. Exogenous and Endogenous Explanations of Bubbles – Review and Synthesis 

Economists’ conventional definition of a bubble is that prices for a certain class of assets 

deviate from these assets’ fundamental value for an extended period of time. Observed 

stock prices Pt are thus made up of two components – the fundamental value f
tP  and the 

bubble Bt: ∑∞
= + +δ=+= 1i titt

i
t

f
tt BDEBPP  where itt DE +  is the dividend payment in the 

period between t and t+i expected on the basis of information at time t and δ  is the 

discount factor. In practice, this implies that fundamental value is determined by a firm’s 

price history in the stock market and by the prices of shares in similar firms observed 

over the long term. This definition largely relates to secondary equity markets: a bubble 

is viewed as a market-wide phenomenon, a period of abnormally high stock prices in 

general. It is often explained as a consequence of irrational behavior on the part of 

investors. But beginning with Blanchard and Watson (1982), economists with a 

penchant for self-consistent explanations have learned to model stock market bubbles in 

the context of rational behaviour. A bubble can arise when the solution to a rational 

expectations equilibrium is indeterminate and the socalled Euler equation, 

( )1tt1ttt DEPEP ++ +δ= , fails to give a unique price level at each point in time. The bubble 

is then a case of self-fulfilling expectations, which create the opportunity of making a 

profit from stock bought at a price above fundamental value because someone else will 

pay an even higher price in the future. This sort of bubble is clearly exogenous to the 
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prediction of stock returns on the basis of fundamentals.1 An alternative model of a 

rational bubble, also consistent with the Euler equation, has been developed by Froot 

and Obstfeld (1991) and dubbed an intrinsic bubble because it is a non-linear function of 

the level of dividends and thus driven by fundamentals. For an excellent review, see 

Shiller (2000), chapter 9. 

In primary equity markets, the concept of fundamental value is elusive. The main 

problem in any IPO is in fact how to determine the true value of the issuing firm and to 

find an offer price which closely approximates this value by discounting long term 

prospects for profitability. Neither a price history, nor a sufficient number of comparable 

IPOs will normally be observed for an individual IPO firm. There will thus be no basis 

to quantify the bubble component in actual prices. This casts doubt on the validity of 

theoretical models, such as Ljungqvist et al. (2001), in which “irrationally exuberant 

investors” are a source of inefficiency that provides a single explanation for the three 

phenomena underpricing, temporal clustering and long-term underperformance. Instead 

of using market prices, bubbles in primary equity markets are better defined with 

reference to IPO volume, the number of IPOs during a given interval of time. Bubbles 

are therefore synonymous with hot issue markets, characterized by an unusually high 

volume of offerings, large underpricing, frequent over-subscription of offerings, a 

preponderance of small issues and often by concentrations in particular industries, as 

described in Helwege and Liang (1996), p. 1, and more up-to-date in Ploog and Stolpe 

(2003), pp. 129. The intervening periods, known as cold issue markets, have much lower 

issuance, lower underpricing, fewer instances of over-subscription and larger offerings 

on average.  

                                           

1 As Cuthbertson (1996), p. 159, notes, this model of a rational bubble satisfies the martingale 
property and is uninformative about the cause, size, beginning and end point of the bubble. 
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To gain some insight into the potential welfare benefits from hot issue markets, I 

propose to distinguish between exogenous and endogenous sources of bubbles. 

Exogenous sources lie outside the stock market and expansive monetary policy is a 

prime example. Endogenous sources, by contrast, arise from some kind of feedback 

between stock market prices and the real economy that turns rising prices into a self-

fulfilling prophecy. For example, the interdependence of timing choices by individual 

investors and issuers planning to list in the stock market can lower the cost of raising 

equity capital and therefore expand the scale at which innovative firms exploit their 

ideas. This interdependence is a form of non-market interaction, a natural implication of 

externalities associated with the revelation of private information through investors’ and 

issuers’ choices.  

Exogenous and endogenous sources of bubbles are not mutually exclusive, but making 

the distinction helps to define the conditions under which a hot issue market may have 

welfare benefits. The exogenous bubble is not expected to generate welfare gains. 

Instead, it is likely to cause welfare losses. Endogenous bubbles, by contrast, reflect the 

presence of multiple equilibria with different welfare levels. For reasons spelled out 

below, an endogenous bubble concentrated in high technology may be interpreted as a 

focusing device that coordinates individual behaviour so that it becomes consistent with 

the efficient equilibrium. It is of course an empirical question which source of bubbles 

dominates in a given situation. An empirical assessment is therefore indispensable to 

solve a variety of policy issues, including the regulation of markets and the oversight of 

financial intermediaries. 

Exogenous Bubbles. The classic analysis of a bubble in non-productive assets has 

emphasized the additional demand for savings and the implied increase in the cost of 

capital for productive investments. In the absence of production externalities, this may 

actually be a boon since bubbles can only arise in economies that are dynamically 
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inefficient at the outset: obviously a bubble cannot grow faster than the economy’s 

growth rate in the long term, yet the growth rate must equal the interest rate in 

equilibrium. Since the bubble’s crowding out of real investment will increase the interest 

rate, this rate must fall short of the economy’s growth rate before the bubble starts, 

which implies that capital has been accumulated at a rate in excess of its rate of return.  

Olivier (2000) departs from the classic analysis by focusing on bubbles in productive 

assets whose prices directly enter agents’ maximization problem. When agents have the 

choice of being either workers or entrepreneurs, an IPO market price of firms above 

their ‘fundamental’ value will affect the optimal choice, with implications for wages, the 

rate of firm formation and the growth rate of the economy. Olivier’s model builds on 

Romer’s (1990) model of endogenous technological change in which long-term growth 

is sustained by positive externalities from private firms’ R&D. The larger the bubble and 

the lower the interest rate, the more valuable is each firm. The growth-enhancing effect 

is therefore unambiguous when the interest rate is constant, as it is in a small open 

economy. However, when the interest rate is flexible, as it must be in a closed economy 

model, the impact of the bubble on growth is ambiguous, because increased asset prices 

will tend to raise the interest rate via the implied increase in consumer demand and real 

investments. 

In either case, Olivier’s (2000) model highlights the salient feature of exogenous 

bubbles that they are not specific to any particular industry or area of technology; the 

general optimism rather improves the opportunities for all firms seeking expansion 

finance in primary equity markets. Yet, the assumption of non-diminishing social returns 

in excess of the private returns on investment – the driving force in Olivier’s model – is 

more likely to be relevant in the small number of high-tech industries where positive 
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externalities from the creation of knowledge and a perpetual flow of new ideas are 

strong.2 

Although an economy need not be dynamically inefficient to accommodate a rational 

bubble in the presence of externalities (Saint-Paul 1992a), the economy as a whole is 

likely to see over-investment and excess capacity as a result of an exogenous bubble that 

reduces the private costs of capital for all firms, if most firms are outside of high 

technology and do not face a market failure. With over-investment in IPOs of low-tech 

firms accompanied by under-investment in IPOs from high-tech industries, the existing 

distortions in favour of low-tech firms remain in place and capital continues to be 

wasted. The relative number of high-tech IPOs is too small, and the relative number of 

low-tech IPOs is too large. Hence, the smaller the share of high technology the larger is 

the waste of capital in other sectors that an exogenous bubble will cause. This 

intersectoral distortion is likely to be further exacerbated by a decrease in the average 

quality of investment projects that are selected during an exogenous bubble. 

Entrepreneurs both within and outside the high-tech sector will usually be uncertain 

about the economic prospects of their ideas. When a bubble makes it easier to raise 

funds through an IPO, the entrepreneurs may feel less pressure to generate the best 

ideas. Instead, they may be tempted to rush to the market with premature and possibly 

bad ideas so that an increasing share of the available capital is allocated to firms that 

turn out to be failures.  

Endogenous Bubbles. Over-investment is much less likely in an endogenous bubble 

where growth effects are mainly due to a reduction of the capital market’s inherent 

distortion against high-tech firms. Given that the creation of high technology is often 

associated with strong increasing returns to scale, it is natural to assume that there are at 

                                           

2 See Peri (2003) for a comprehensive empirical study and Griliches (1992) for an earlier survey. 
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least two equilibria of steady state growth when a new high-tech industry is about to 

emerge: a distorted market equilibrium in which the level of high-tech investment is too 

low and the undistorted social planner equilibrium in which the optimal level is reached. 

Within a model that allows for these two equilibria, the endogenous bubble may serve as 

a catalyst, a kind of self-fulfilling prophecy, that facilitates the transition to the more 

efficient equilibrium with higher growth, as in Krugman (1991). In the following, I will 

argue that the bubble can only play this role if there is an effective feedback mechanism 

between the valuation of firms in the stock market and the real economy. Such a 

feedback mechanism may take a variety of forms, based either on linkages in 

macroeconomic aggregates or on non-market interdependence in microeconomic 

choices due to the co-ordinating role of information revealed in primary equity markets. 

Whatever feedback mechanism is in force, the theory of self-fulfilling prophecies must 

be clearly distinguished from theories of information cascades in which multiple 

equilibria in stock market prices arise without any feedback from the real economy. 

Banerjee (1992) and Bikhchandani et al. (1992), have developed models of herdlike 

behaviour arising from an information cascade where it is rational for an individual, 

possessing only partial information, to take into account the judgments revealed by other 

people’s choices, even if the group behaviour is known to result in a suboptimal, and 

hence irrational equilibrium. If hot issue markets were pure herding under unobservable 

private information, as in Banerjee (1992), a privately held firm would decide about 

going public or staying private under the condition that it possesses an exclusive signal 

with a certain probability fα  which is expected to be correct with probability fξ . By the 

same token, investors would decide about buying stock from a particular IPO after 

receiving a private signal with probability iα  that is correct with probability iξ . On 

either side, a second agent will follow the first if she has no signal; and after a sufficient 

number of agents act in a certain way, all following agents will do the same. Lock-in at a 
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suboptimal activity is therefore possible, in which case a pure information externality 

would have persistent negative welfare implications.  

These results are not inconsistent with the observed clustering and underperformance of 

IPOs: a bubble may simply indicate the enforcement of the subjective probabilities fξ  

and iξ  after a certain number of agents have bet on rising prices. It is clear that such a 

temporary lock-in at unsustainable valuation levels is a market failure. It results from the 

inefficient generation of new information when free-riding decision makers cease to 

engage in socially valuable experimentation and from the incomplete diffusion of 

information when the range of observable actions is too small to reveal the full set of 

private information, as in Morris and Shin (2002), p. 1523. Ultimately, this market 

failure hypothesis rests on the idea that fundamental value is exogenous and stays 

constant through the bubble. As Shiller (2000), p. 152, notes “all information cascade 

theories are theories of the failure of information about true fundamental value to be 

disseminated and evaluated”. 

The essential difference in an endogenous bubble is that the seemingly irrational group 

behaviour is subsequently justified by a rise in the fundamental value of the assets that 

are subject to the bubble. Within an endogenous bubble, it is precisely the appropriate 

valuation of new issues that is endogenous because lower costs of equity capital enable 

firms to better exploit the increasing returns to scale inherent in high technology. 

Obviously, the expected valuation in the primary equity market plays a crucial role in 

high-tech firms’ decision to go public. During a bubble, firms can expect to receive 

higher proceeds from the IPO and to finance operations on a larger scale. With a faster 

build-up of capacity, they can expect greater profitability and a higher rate of return on 

their original investment, which justifies at least part of the higher market valuation of 

the IPO (see Olivier 2000). Because in high-tech firms, fixed costs from R&D account 

for a bigger share of total cost, average costs can decline more as output is increased. 
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The ability to expand quickly and to appropriate as much as possible of a new product’s 

social value is the principal reward for innovation in high-tech firms. A larger scale and 

a higher fundamental value is more likely to be achieved in hot issue markets than in 

cold issue markets where prices are depressed, because in the absence of information 

spillovers, risk averse investors often do not know how to value an individual IPO. It is 

for this endogeneity of fundamental value that an endogenous bubble cannot be fully 

explained as an information cascade.  

A generic model. To define more precisely the conditions under which endogenous 

bubbles can arise, consider a reinterpretation of Krugman’s (1991) stylized model of a 

stochastic allocation process in which multiple equilibria are selected either by historical 

events, reflected in an economy’s initial conditions, or by self-fulfilling prophecies, 

formed by collective expectations. This model features a two-sector open economy 

model with labour as the only factor of production and has two long-term stable 

equilibria – motivated by the assumption that workers’ decentralized decision making is 

interdependent through positive feedback, with labour productivity in one sector being 

an increasing function of the sector’s total labour input due to positive externalities. 

Workers will tend to move to the sector offering the higher wage, but individual 

decisions may be subject to some noise so that the allocation must be modelled as a 

stochastic process. 

Krugman (1991) establishes three conditions for collective expectations to play a 

decisive role in the selection of long-term equilibria in such a stochastic allocation 

process: (i) The speed with which resources can be reallocated must be high relative to 

the rate of time preference with which future income differentials are discounted. The 

potential future benefits of the first-best long-term allocation must outweigh the benefits 

of whatever allocation may be initially realized. In other words, the cost of reallocating 

resources and the real rate of interest must be low. (ii) There must be increasing returns 
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to scale of sufficient strength in one sector so that a redirection to this allocation lets 

incomes rise rapidly. (iii) The initial historical situation must not already be irreversibly 

‘locked’ into the inferior long-term equilibrium. 

These insights are sufficiently general to hold also if we consider a fixed number of new 

entrepreneurs K, with limited access to capital as their only factor of production, who 

must decide in which industry to set up as an initially unlisted firm. Given the common 

denial of bank credit for human capital investments and the practice of rationing and 

staging in the venture capital sector, it is plausible to assume that entrepreneurs indeed 

have limited financing for each project in an emerging high-tech industry. The story can 

then be summarized as follows: The economy with an initial real capital endowment κ  

distributed equally among the given number of start-up firms produces two kinds of 

goods for which prices are fixed at world market levels: a basket of conventional goods 

C with constant returns and a variety of high-tech goods X with increasing returns to 

scale and subject to a positive externality. In the context of this model, the externality 

can provisionally be thought of as sector-specific knowledge spillovers from R&D for 

the creation of new product varieties. More specific mechanisms, which I will describe 

below, can replace the rather general assumption of knowledge spillovers. Formally, the 

larger the number of start-up firms in X, the higher the rate of return in that sector: 

( )XKπ=π  with ( )XKπ  being continuously differentiable so that 0>π′ , ( ) 100 <π< , 

( ) ∞+<κπ<1 . The world market rate of interest is fixed at 0r > . As long as discounted 

present values of future capital income in the high-tech industry exceed that in the low-

tech industry, entrepreneurs will want to start a high-tech venture, but they are slowed 

by positive adjustment costs since R&D and learning-by-doing take time to bear fruit. 

For simplicity, the economy’s total cost of moving a start-up into high-tech, instead of 

low-tech, can be assumed to be quadratic in the rate at which start-ups are set up, 

reflecting the ‘congestion’ from parallel R&D and parallel learning. The more start-ups 
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go into high technology, the more likely will be the involuntary and wasteful duplication 

of research projects and the larger will be the percentage of start-ups that fail due to the 

obsolescence of their investments. The set-up cost for each entrepreneur is 0K X >γ&  

where γ  is an inverse index of the adjustment cost that determines the speed of 

adjustment. The economy is therefore described by the dynamic system qKX γ=&  and 

( ) ,1Krqq X +π−=&  where q is the present value of a start-up located in the high-tech 

industry instead of the established industry and q&  is the rate of capital gains on this 

value. The qualitative laws of motion of this dynamic system are as follows: whenever q 

is positive, KX is rising; whenever it is negative, KX is falling. A higher value of q can 

result only if q is expected to rise, a lower value only if q is expected to fall. No 

movement is expected at the critical allocation, ∗= XX KK , where 0q =  and an unstable 

equilibrium is reached. In the long term, only two equilibria are stable, one where all 

start-ups are in the established industry and one where they are all in high technology. 

To understand how one of these equilibria gets selected through history or expectations, 

I follow Krugman (1991), pp. 661, and adopt a simple linear function for ( )XKπ , such 

that ( )*
XX KK1 −β+=π , where β  represents the strength of the external economies in high 

technology. The dynamic system now consists of two linear differential equations and – 

as shown by Krugman (1991) – self-fulfilling expectations can only play a role in the 

selection of a long-term equilibrium if βγ< 4r2 , that is if the future is not heavily 

discounted (r must be small), if interdependence among decisions is strong (β  must be 

sufficiently large), and if the economy does not adjust too slowly ( γ  must be sufficiently 

large).  

It is clear that the last two conditions are more likely to be met in the case of an 

emerging high-tech industry than in long-established industries. Because R&D and 

learning-by-doing take time, there are significant adjustment costs, but they are not 
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prohibitive. In the absence of adjustment costs, either equilibrium could be obtained as a 

self-fulfilling prophecy from any initial position of the economy. With adjustment costs, 

the decision of an entrepreneur to set up in the high-tech sector instead of the established 

industry will depend on both the current rate of return differential and on expected future 

rates of return. In the high-tech industry, these depend on expectations about the 

decisions of other entrepreneurs and this is where the valuation of firms in the primary 

equity market comes in. A change in collective expectations can be brought about by 

price movements in the stock market, which immediately changes q by changing the 

prospects of high-tech start-ups to finance their expansion through an IPO. 

The formal analysis of the linearized system’s transitional dynamics (Fukao and 

Benabou 1993) reveals that the equilibrium adjustment paths of KX towards the two 

long-term stationary equilibria EX and EC can be either steady in the sense that the 

adjustment is monotonous or oscillating in the sense that the path changes its direction 

several times. Starting from the unstable stationary point at 0q = , ∗= XX KK , the system 

will diverge in expanding oscillations if βγ< 4r2 . It is in this case that there will not only 

be two long-term stable equilibira, but also multiple equilibrium adjustment paths so that 

collective expectations can be self-fulfilling if the initial KX lies inside a certain range 

around the unstable stationary point *
XK . This range is defined by the condition that the 

adjustment costs are not yet so large that the current rate of return differential dominates 

any difference in the discounted present value of future rates of return. 

In line with Krugman (1991), p. 663, the economic intuition behind the oscillating, and 

thus potentially cyclical, adjustment paths is that due to the positive externalities and 

scale economies in high technology, every entrepreneur wants to set up in the industry 

chosen be everybody else. If an entrepreneur believes the others will switch industries, 

she will do the same; and if they all act on the same expectation, their shared belief will 

in turn be validated. However, the existence of several cyclical equilibrium paths need 



 

 

15 

not imply that cyclical adjustments are actually observed. Instead, there may be 

additional stochastic paths that jump to one of the deterministic paths with a positive 

probability. For example, even if the rate of return at the current allocation is higher in 

the established industry, entrepreneurs may not move into that sector if they believe that 

high technology will begin to attract all other entrepreneurs at same point in the future. 

It is natural to assume that the valuation of high-tech IPOs in primary equity markets is 

the place where collective expectations are formed and then spread to entrepreneurs and 

other investors. Hot issue markets can therefore be represented by sudden jumps in q 

that are consistent with a stochastic equilibrium and with perfect rationality on the part 

of market participants. Because these self-fulfilling prophecies influence the number of 

start-up firms and the rate of return in high technology, they do affect the real economy 

and may therefore validate the initial jump in the market value of IPOs. This clearly 

distinguishes self-fulfilling prophecies from information cascades, which can be a 

source of welfare losses if they reinforce false expectations about the future. In the 

recent literature, both macroeconomic and microeconomic mechanisms have been 

invoked to justify the existence of multiple equilibrium paths and their selection through 

self-fulfilling expectations that are formed and spread through a stock market bubble. 

Feedback mechanisms. Consider first the hypothesis of macroeconomic feedback from 

the real economy. In a theoretical contribution, Caballero and Hammour (2002), pp. 15, 

argue that the emergence of a new production sector creates a natural feedback from 

growth to investment funding in support of a potentially efficient speculative growth 

equilibrium. They draw this conclusion from an endogenous growth model in which a 

speculative bubble in productive assets that are specific to the emerging sector may lead 

to accelerated productivity growth. The feedback that validates the bubble results from 

the additional savings generated by the economy’s emerging sector. Moreover, the 

model predicts a negative feedback from the speculative growth to the interest rate so 
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that investment volume can expand in a highly elastic fashion as new investment 

opportunities are opened by the emerging area of technology. Key to the model is that 

only an emerging high-tech sector provides these conditions and is thus poised to trigger 

an episode of speculative growth: Successful IPOs will help to finance the expansion of 

high-tech firms and lead to an increased demand for skilled labour that drives up wages 

and enlarges the amount of savings available for investment. Due to larger economies of 

scale in the high-tech sector, the returns on capital will diminish at a smaller rate than in 

established industries, or not at all. For a given investment volume, the interest rate will 

hence be lower if the capital is invested in the emerging high-tech industry. The bubble 

facilitates the transition from a high-cost-of-capital equilibrium, in which a relatively 

large share of capital is invested in the slow-growing established sector, to a low-cost-

of-capital equilibrium, in which a larger share of capital is invested in the fast-growing 

high-tech sector. In the presence of an externality, such as technological spillovers in the 

high-tech sector, the bubble can be shown to enhance welfare provided it is sustainable 

(Caballero and Hammour 2002, p. 25). 

The hypothesis of microeconomic feedback in an endogenous bubble is best understood 

on the basis of Tobin’s Q. A firm will expand and invest when its market value exceeds 

the replacement costs of its capital. By implication, a privately held firm will seek 

expansion finance through an IPO if the expected market value of the firm exceeds the 

costs of expanding the firm’s operations. Private expectations about market value are 

formed on the basis of information revealed by previous IPOs of similar firms. Firms’ 

timing choices in primary equity markets are therefore interdependent, and this may give 

rise to multiple equilibria even if macroeconomic feedback mechanisms are absent. A 

bubble can then be interpreted as an equilibrium outcome of a very specific kind of 

endogenous non-market interaction.  



 

 

17 

Two channels of interdependence in issuers’ timing choices have been the focus of the 

recent literature on primary equity markets. On the one hand, firms will seek to time 

their issues so as to take advantage of fluctuations in the demand for equity shares. On 

the other hand, firms will seek to time their issues so that expansion finance arrives 

when the prospects for growth are favorable. Information externalities in investors’ 

choices are thus part of the story. They can induce investors to reduce their individual 

effort to search for independent information about specific IPO candidates. But 

information externalities can also induce firms to change the timing of a planned IPO by 

helping them to predict investor sentiment and the demand for equity shares more 

accurately and by providing information about investment volumes and expansion plans 

of other firms in the industry. 

When the externalities reveal good news about the prospects of an industry, privately 

held firms may seek to exploit the opportunity by speeding up an IPO that will help to 

finance a timely expansion. A hot issue market may hence be set off by a short series of 

successful IPOs from one particular industry where an unexpectedly high degree of 

underpricing is interpreted as a clue to positive prospects for the entire industry. In the 

model by Hoffmann-Burchardi (2001), firms go public as soon as the proceeds from 

selling shares begin to exceed the expected utility from the uncertain stream of future 

profits that accrues to these shares. The expected utility will be lower, the more risk 

averse the party offering the shares. The perception of improved industry prospects will 

be reflected in an increase in the average prices at which shares can be sold during the 

bubble. Moreover, consistent with stylized facts, the average underpricing will also rise 

because outside investors must be compensated for taking the additional risk of buying 

stock without scrutinizing each issuing firm individually.  
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In contrast to the case of macroeconomic feedback, the microeconomic interdependence 

of issuers’ choices implies that hot and cold issue markets are opposite sides of the same 

coin. During a cold issue market, many firms are waiting for conditions to improve and 

no IPO may be observed for a prolonged period of time. Although each entrepreneur 

evaluates her own firm’s prospects separately, the foreknowledge that there will be 

another hot issue market at some point in the future serves as a coordinating mechanism 

even during long spells of inactivity.  

The special case of high technology. A closer look at the rationale behind the behaviour 

of issuers and investors is required to understand why the cycles in IPO markets are 

particularly pronounced in high-tech industries. From the point of view of the 

entrepreneurs, they face a fundamental trade-off with respect to their timing decisions of 

going public. On the one hand, a firm may want to rush the IPO since delaying it might 

give a competitor the chance to be the first to receive scarce expansion finance. In this 

vein, Maksimovic and Pichler’s (2001) formal model predicts that hot issue markets will 

occur in industries where a technological pioneer faces a significant risk of reduced 

profits through the entry of imitators. On the other hand, a firm may want to delay going 

public in order to avoid revealing information that may help competitors. Both the 

prospectus and the valuation of the firm by investors in primary and secondary equity 

markets often reveal specific information that competitors might use. From an economic 

point of view, there is an information spillover – a technological externality because the 

issuing firm cannot charge a price for it. This lets entrepreneurs hold back the IPO in 

order to minimize the spillovers.  

Under an endogenous bubble, this tradeoff will be relaxed and many firms will be 

enticed to go public. The information revealed in the IPOs of the firms going public 

early will enable followers to predict more accurately the valuation that their own firm 

will experience in its IPO. By giving away valuable information to potential 
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competitors, the earliest firms bear most of the cost of information revelation during a 

hot issue market. As more and more firms go public, these costs will decrease since any 

additional information from an IPO at a later date will only be incremental compared to 

what the investing public already knows at that point in time. Hence, the gains from 

going public will be higher than the informational costs for most of the firms, giving 

them strong incentives to rush to the market. Yet, the improved incentive to go public 

does not only rest in the decreasing cost of information revelation, but also in an 

increasing likelihood that an IPO will be successful. The IPO market can support more 

firms going public during a hot issue market because more capital is made available to 

firms in a particular field of technology when investors benefit from the greater 

availability of public information that lowers the costs of valuing the individual IPO. 

This adds a further reason why hot issue markets are more pronounced in high-tech 

industries: High-tech investors rely to a greater extent on the information revealed by 

early high-tech IPOs than investors do in the case of IPOs from an established industry. 

Without any public information, it would be much more costly for an investor to acquire 

accurate information for the valuation of IPOs in high-tech industries than in long 

established industries. The latter can be easily valued, for example by looking at similar 

firms in the secondary market, but there are no track records or useful benchmarks for an 

emerging high-tech industry. The information spillovers during a bubble reduce the 

costs of investors’ search for information and lure them into investing in the IPOs of 

firms belonging to the area of technology in which recent IPOs have provided the largest 

public pool of relevant information. Like privately held firms, investors thus face a trade 

off in their timing of investments that is relaxed during a hot issue market: on the one 

hand, investors want to buy early when prices are still low; on the other hand, they want 

to wait until the hot issue market has created more public information on specific areas 

of technology. 
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Since most of the relevant information spillovers are within narrowly defined areas of 

technology, rather than across different fields of technology, endogenous bubbles arise 

in much the same way as localized externalities create spatial clustering, only that IPO 

volumes concentrate over time rather than geographically.3 This suggests that a long-

term view should be taken on the efficiency of primary equity markets. Just as spatial 

agglomerations, in which cities are catalysts of economic growth because they help to 

exploit knowledge spillovers more efficiently4, hot issue markets can be viewed as an 

implication of agents’ attempt to internalize information spillovers. This idea is 

supported by the empirical observation that financial intermediaries are actively 

involved in the timing decisions revealed in hot issue markets (Benveniste et al. 2002, 

2003). Moreover, when financial intermediaries, such as investment banks and venture 

capital firms, have reputational capital at stake, they can be expected to take a long-term 

view, at least on average. 

This may serve as a cushion against the adverse selection in favour of premature 

business ideas and against the general over-investment that is endemic during an 

exogenous bubble. In a sufficiently competitive underwriter market, financial 

intermediaries would have stronger incentives than one-time actors in primary equity 

markets to avoid falling prey to temporary fashions of the kind generated by information 

cascades (see Ploog and Stolpe 2003, pp. 143). Instead, there is evidence of underwriters 

attempting to internalize information spillovers by bundling the IPOs of their client 

firms in a specific area of technology and by scheduling them in a temporal sequence so 

that public information generated by the earlier IPOs is optimally exploited by those 

coming later (Benveniste et al. 2002, 2003). Obviously, individual IPO firms cannot 

                                           

3 A similar comparison between spatial agglomerations and the general business cycle was made by 
Hall (1991). 

4  See Glaeser et al. (1992) for empirical evidence. 
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themselves internalize the information externalities because they go public only once. 

Hence, the role of financial intermediaries in primary equity markets is a bit like that of 

real estate developers in economic geography, which make a living from finding the mix 

of shops in a mall that provides optimal variety and maximizes overall value to 

consumers within a given region. Underwriters often appear to provide an equivalent 

service for outside investors in primary equity markets, which may be efficient because 

the social risk of aggregate over-investment is thus linked with underwriters’ private risk 

of loosing their reputation. By the same token, it is clear that financial intermediaries 

cannot mitigate over-investment during an exogenous bubble or during a hot issue 

market not driven by information spillovers. The behaviour of financial intermediaries 

can therefore help to distinguish between exogenous and endogenous bubbles in 

empirical data. 

Policy implications. I propose to distinguish between exogenous and endogenous 

bubbles not only for the sake of academic curiosity, but also because these hypotheses 

have rather different policy implications. The idea that exogenous bubbles create welfare 

losses can justify government intervention to suppress or pop such a bubble, for example 

through a sharp tightening of monetary policy. By contrast, the potential welfare gains 

of endogenous bubbles suggest that policies should be designed to allow them to take 

place and perhaps even to facilitate them. The essential difference in the welfare 

implications of exogenous and endogenous bubbles is that the former lowers the cost of 

raising equity capital for all firms equally, while the latter lowers the costs of raising 

equity capital merely for high-tech firms. The endogenous bubble may thus help to 

mitigate a market failure that is specific to high-tech firms in primary equity markets. 

The inherent uncertainty about new technology and about the prospects of individual 

high-tech firms makes information spillovers particularly important for the valuation of 

high-tech IPOs by their issuers, underwriters and by outside investors.  
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As pointed out above, the role of financial intermediaries in internalizing information 

spillovers also gives them special incentives to avoid excessive investment in the 

aggregate. Were some underwriters to encourage reckless over-investment in an 

endogenous bubble, they would lose their reputation and would have difficulty finding 

outside investors for client firms wishing to go public in the future. In turn, they would 

also cease to be an attractive partner for privately held firms planning an IPO. However, 

while reputational capital can be considered a conditio sine qua non for the 

internalization of information externalities, it also endows individual underwriters with 

varying degrees of monopoly power. But the extraction of excessive monopoly rents 

would drive a wedge between the available gross volumes of investment and the net 

proceeds obtained by the issuers in primary equity markets. The hypothesis of 

endogenous bubbles therefore suggests that government policy should be designed to 

safeguard a sufficiently competitive underwriter market, especially against incipient 

monopoly power due to the accumulation of reputational capital. 

At the same time, policy makers must note that the role of financial intermediaries in 

processing and evaluation decentralized information about investment opportunities is 

indispensable and that the monopoly power this creates cannot be completely 

eliminated. One may wish to accommodate an endogenous bubble by regulating primary 

equity markets so that issuers must disclose more of the relevant valuation information; 

the information used by investors might then be more accurate and complete and the 

influence of financial intermediaries might be reduced. However, Morris and Shin 

(2002) have shown that the welfare effect of increased public disclosures is ambiguous 

when agents possess independent private information as well as a motive to seek the 

coordination of their individual choices. In this case, agents will place more weight on 

the public information than a social planner would do so that the negative consequences 

of errors in the public information are exacerbated. The same caveat also applies to the 
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public dissemination of information about broad technological developments in an 

attempt to provide a basis for ‘realistic’ expectations.  

Policy action at the industry level, such as changes in intellectual property rights, may be 

required when there is widespread uncertainty about the private appropriability of the 

social returns to innovation in an emerging field of technology. Such uncertainty may 

not only increase private investor risk for a given information set, but may also frustrate 

investors’ efforts to improve the valuation of individual IPOs by searching for additional 

private information. Moreover, my framework suggests the possibility that an 

aggregation of endogenous bubbles in different industries looks like an exogenous 

bubble and therefore erroneously triggers policies that suppress potential welfare gains. 

III. Empirical Methods and Hypotheses 

In this section, I introduce and discuss the methods that can be used to test the empirical 

implications of competing explanations for bubbles. Due to data limitations and the lack 

of a fully fledged econometric model, one cannot examine the impact of different 

bubbles on real economic activity over a sufficiently long time to come up with a full 

quantitative comparison of the welfare benefits and costs from different types of 

bubbles. Moreover, there are inherent limits to the empirical identification of a model 

that is based on multiple equilibria when only one historical realization of the stochastic 

process is available.  

An appropriate time series model must therefore have some cross section dimension in 

order to exploit the available evidence fully and to clearly distinguish the empirical 

implications of the no-bubble benchmark case, the exogenous bubble scenario and the 

endogenous bubble hypothesis. Five methods will be used to present the evidence: 

descriptive statistics, an exploratory regression analysis of the determinants of time 

distances between arbitrarily paired IPOs, the Markov chain model of stochastic 
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processes, duration models for independent observations and duration models with non-

market interaction.  

Distribution of IPOs in time. In the absence of any bubbles in primary equity markets, I 

would expect a uniform distribution of IPOs over time; within any given time interval, 

IPOs would occur with equal probability. This is the no-bubble benchmark case. By 

definition, the presence of a bubble implies an unequal distribution over time. In the case 

of exogenous bubbles, the peaks of IPO activity and of the general price index in the 

secondary market would occur in the same sub-period; moreover, the peaks of IPO 

activity would not vary across time for the different areas of technology to which IPO 

firms may belong. In the case of endogenous bubbles, I expect the peaks for different 

technology areas at different points in time. Moreover, since they are driven by 

information spillovers, the technology-specific peaks in primary equity market activity 

will not necessarily coincide with high market valuations in the secondary market. Thus, 

in a disaggregated analysis, the observed clustering of IPOs will be revealed as a 

sequence of sectoral clusters where each area of technology concentrates its IPOs in a 

certain interval of time. To uncover these patterns, I will look at area-specific histograms 

of the length of time between consecutive IPOs and equally disaggregated histograms of 

the duration from the market opening to the IPO date. 

Determinants of time distance between paired IPOs. A simple linear regression analysis 

of the determinants of duration between arbitrary pairs of IPOs provides a first look at 

the role of financial intermediaries in the formation of IPO clusters. It is natural to 

consider the process of intermediation as a potential co-determinant of hot issue markets 

– in addition to issuers’ characteristics and investors’ choices in primary equity markets. 

In a preliminary test of the influence of financial intermediaries, I will ask whether the 

equality of underwriters or of venture capital firms backing any two randomly selected 

IPOs has a significant influence on the time distance between them. Besides controlling 
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for the influence of technology focus, additional interaction terms will be used to study 

the influence of financial intermediaries in different areas of technology. However, 

unless the temporal sequence of IPOs is explicitly specified, causal relationships cannot 

be tested rigorously. In the following, I will therefore introduce two empirical models 

which do take the sequence of IPOs into account – the Markov chain, which analyses a 

sequence of discrete events in discrete time, and the survival model, which analyses 

discrete events in continuous time. 

State-dependent probabilities of IPOs from specific areas of technology. The Markov 

chain5 is a simple formalization of the idea that clustering can be defined as the increase 

of the probability that the next firm going public is from the same area of technology as 

the last IPO at any given point in time. I thus consider the technology area observed for 

each in a series of IPOs as the outcome of a stochastic process with a finite number of 

states. The essence of a Markov chain is that the probabilities of the recurrence of events 

in a discrete stochastic process depend on the state of the system after the preceding 

event. These conditional probabilities are called transition probabilities. How they are to 

be estimated depends on whether there are additional exogenous explanatories. 

The most general Markov chain model has a multitude of elements which may or may 

not experience a transition during any given interval of time. Tracking all firms 

simultaneously, the general Markov chain model could in principle be applied to our 

problem by defining the process ( )tyi
j  = 1 if the ith firm is listed in the stock market at 

time t and ( )tyi
j  = 0 otherwise (unlisted) – like a generalized qualitative response (QR) 

model. The standard QR model would require that the realizations of ( )tyi
j  are 

independent over t, but this assumption would rule out the possibility of state 

                                           

5 See Basawa and Rao (1980) and Amemiya (1985), chapter 11, for rigorous introductory surveys. 
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dependence. A more useful variant is the first-order Markov model, in which the 

distribution of ( )tyi
j  depends on ( )1tyi

k − , so that the model is completely characterized 

by the set of transition probabilities ( )tPi
jk , defined as the probability that the ith firm is 

in state j at time t given that it was in state k at time t–1 and by the distribution of initial 

conditions, ( )0yi
j . The matrix ( )tPi  of the nonnegative transition probabilities is called 

the Markov matrix, in which the entries of each row sum to unity. In a stationary 

Markov model ( ) ( ) ttPtP jk
i
jk ∀=  and in a homogeneous model ( ) ( ) itPtP jk

i
jk ∀= . While a 

general Markov model can be parameterized similar to QR models by specifying 

( ) ( )[ ]β′= txFtP i
jk

i
jk  for some function jkF  such that 1FM

1k jk =∑ =
, the simplest case of a 

Markov model that is both homogeneous and stationary is given by ( ) t,iPtP jk
i
jk ∀= . 

Because the stationary Markov chain does not consider time-varying exogenous 

variables as determinants of the transition probabilities, one can estimate these 

probabilities using a simple non-parametric maximum likelihood estimator (MLE).  

However, since each firm going public does so only once, one cannot hope to identify a 

fully parameterized Markov model in the data. Instead, one must rely on homogeneity 

and stationarity, although the latter assumption will be somewhat relaxed below where I 

include time-varying determinants of the transition probabilities. For now, I ignore all 

exogenous or predetermined explanatories except for the technology area of the 

preceding IPO. I thus rely on groupwise homogeneity as an identifying assumption. Two 

different methods can then be used to estimate the transition probabilities: First, 

assuming that the IPO process gives us the proportion of firms within a technology area 

that are either listed or still unlisted at varying times, I can use least-squares or 

minimum-χ-squared methods, as described in Basawa and Rao (1980), pp. 72. Second, I 

can consider the technology area of the preceding IPO as the only determinant of the 

(conditional) probabilities with which the present IPO falls into each of the technology 
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areas. Essentially, this is like assuming that the same stochastic process holds for every 

firm, as implied by homogeneity and stationary. If I let the observed sequence of n+1 

consecutive IPOs, characterized by their affiliation to k = {1, 2, …, m} areas of 

technology, be contained in xn+1 = (x0, x1, …, xn), the likelihood function for an ergodic 

Markov chain is given by ∏∏ ==
==

−

m
1k,j

n
jk

)0(
x

n
1h xx

)0(
x

jk

0h1h0
PPPPL , where )0(

x0
P  is the vector of 

initial probabilities. Pjk are the probabilities of transition from the jth to the kth area of 

technology between any two consecutive IPOs, and njk is the frequency of the one-step 

transitions from state j to k in the sample xn+1. After taking logs, the log-likelihood 

function, jkjkk,j
)0(

x PlognPlogLlog ∑+=  is straightforward to maximize with respect to the 

Pjk’s, conditional on ∑ =k jk 1P , so that the maximum likelihood estimators are 

jjkjk nnP̂ =  where ∑= k jkj nn . Since n is large, I can ignore the effect of the first term of 

the log-likelihood function. 

Various hypotheses tests in the homogeneous stationary Markov model – and the 

asymptotic properties of the MLE estimator given by jkkjkjk nnP̂ ∑=  – are discussed in 

Anderson and Goodman (1957). For example, if the homogeneous and stationary 

Markov model is to be tested against a homogeneous but non-stationary model the 

likelihood ratio test uses the statistic ( )[ ] ( )
( ) ( )∏∏∏ −χ−

t j k

2
1mm1-T

tn
jkjk ~tP̂P̂log2 jk , where 

( ) ( ) ( )∑ =
= m

1k jkjkjk tntntP̂  is based on the number of IPOs, n (t), during each of t = 1, 2, 

…, T time intervals, since normally no more than one IPO is observed at each point in 

time. Apart from this specification tests, it will be useful to test the hypothesis that the 

transition probabilities for the different technology areas are independent random 

variables { }kx , k = 1, 2, …m under the assumption of stationarity. Basawa and Rao 

(1980), p. 62, show that the test statistic ( ) ( )nnnnnnnV kj
k,j

2
kjjk∑ −=  has a limiting 2χ -
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distribution with (m2–m)–(m–1)=(m–1)2 degrees of freedom. Finally, one row or the 

entire transition matrix consists of certain prespecified values ∗
jkP . Anderson and 

Goodman (1957) show that under the null hypothesis 0PP jkjk ≠= ∗  for k = 1, 2, …m and 

for a given j the test statistic ( ) ( ) 2
1m

Am
1k jk

2
jkjk

m
1k jkj ~PPP̂nS −=

∗∗
=

χ−≡ ∑∑ , where jkP̂  is the 

MLE. The null hypothesis s
kjk PP = , where s

kP  may be defined as the sample distribution 

or the stationary distribution to which the Markov chain will converge after a sufficient 

number of iterations, is rejected for large values of the test statistic. If the null 

hypothesis cannot be rejected, the stationary distribution should equal the population 

distribution: nnP k
s
k = . If ∗

jkP  is prespecified for j = 1, 2, …. m as well as k, the 

appropriate test statistic is ( )∑ = −χm
1j

2
1mm

A
j ~S . 

In the no-bubble scenario, the probability of the next IPO being from any particular area 

of technology will be independent of the previous IPO’s technology area and the 

estimated probabilities in each row of the transition matrix will equal the population 

distribution. The same holds under exogenous bubbles. But the endogenous bubble is 

characterized by persistence in the sense that the probability of the next IPO coming 

from the same area of technology as the current IPO will be higher than the relative 

frequency of that area in the sample. This is the observational equivalence of sectoral 

clustering defined by an increase in probability that a second firm goes public from an 

area of technology that has already had an IPO recently. 

Markov models with exogenous variables. There may be several reasons why estimation 

of the stationary Markov model fails to detect persistence. The most important is that 

transition probabilities cannot be expected to be stationary over the course of a hot issue 

market confined to any one particular area of technology. For a complete cycle in 

technology-specific IPO activity that is not fully synchronized with the overall bubble, 
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persistence must be more pronounced before the peak of the hot issue market and less 

pronounced thereafter. The transition probabilities must therefore be allowed to change 

in response to changes in exogenous variables, including – for example – the degree of 

lagged underpricing observed in the IPOs from a given area of technology and – as a 

control – the general stock market price index. This requires a non-stationary Markov 

model that tries to explain the transition probabilities on the basis of their exogenous 

determinants. 

Toikka (1976) has proposed an estimator for a homogeneous and non-stationary Markov 

model in which transition probabilities are assumed to depend linearly on the exogenous 

variables. With m being the number of technology areas to which an IPO firm may 

belong, the model comprises m–1 equations, because the mth equation – a linear 

combination of the others – can be eliminated: ( ) ( )[ ] ( )′+∏′⊗′−=′ tux1tyty i
t

ii . This in turn 

is a multivariate heteroscedastic linear regression equation for which two asymptotically 

efficient estimators of ∏  are available. First, as Amemiya (1985), p. 429, shows, a 

generalized least squares estimator ∏
)

 is given by 

( )[ ] ( )∑∑ = −
−

= −− ⊗′′⊗′=∏ T
1t tt1t

1T
1t tt1t1t xYYxxYY

)
 where tY  is MN×  matrix with rows ( )′tyi  

and tY  is the )1M(N −×  matrix made up of the first M–1 columns of tY . To derive a 

feasible generalized least squares estimator, Amemiya uses a consistent estimator of the 

variance–covariance matrix of the error term. Second, Toikka’s own estimator of ∏ , 

denoted ∏
~ , is given by ( )[ ] ( )[ ]∑∑ = −

−
−−

−

=
⊗′′′⊗=∏ T

1t tt1t
1

1t1t
1T

1t tt xYYYYxxI
~ . Amemiya 

argues that this estimator can be interpreted as the least squares estimator in the 

regression of ( )tP̂  on tx , because ( ) t1t
1

1t1t YYYY −
−

−− ′′  contains the first m–1 columns of the 

unconstrained MLE of the Markov matrix ( )tP . Alternatively, Toikka’s estimator can be 

interpreted as applying least squares after premultiplying 
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diagonal matrix, where tU  is analogous to tY . In our application, these formulae can be 

greatly simplified because there is never more than one contemporaneous observation, 

so that N=1 and tt Y,Y  and tU  have only one row. 

Two exogenous variables should be considered to determine the transition probabilities 

for a given technological affiliation of the current IPO: Besides the stock market price 

index as a control for general market conditions and the degree and differential of 

underpricing observed in the two preceding IPOs from the given area of technology. 

Under the endogenous bubble hypothesis, persistence should be positively correlated 

with the observed prior underpricing, but not necessarily with the general stock market 

price level. In the no-bubble case, there should be no significant influence of the 

exogenous variables on the transition probabilities, and just as in the stationary Markov 

model, the estimated transition probabilities should equal the population distribution of 

IPOs. In an exogenous bubble, persistence should also be absent from narrowly defined 

areas within high technology.  

Duration analysis of independent observations. An obvious weakness of the Markov 

model is that it does not account properly for the time dimension, but only for the 

sequence of events assumed to take place in discrete time. To analyze the empirical 

determinants of the length of time between two events, a model of duration in 

continuous time is needed. Of interest here is the duration between the opening of the 

Neuer Markt and Nouveau Marché, respectively, and the IPO date of a specific firm. 

Given the pre-announcement more than two years before the opening of these markets, 
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one can safely assume that a large number of firms had already anticipated to go public 

when the markets were launched. Empirical duration models can thus be used to 

understand what factors have influenced the subsequent waiting time of the many 

different firms that have eventually gone public. Some of the reasons for timing a 

specific IPO, relative to other IPOs, will be related to time-invariant characteristics of 

the individual IPO firm, so that my estimates of the influence of previous IPOs within 

the same technology area might be biased if I did not explicitly consider the influence of 

those exogenous firm characteristics. In this vein, Bottazi and DaRin (2003) have 

studied the impact of venture capital-backing on the time-to-listing of firms going public 

on the Euro.nm group of stock markets, controlling for the sector of activity, for country 

of origin, for the return on asset, and for leverage, measured at the IPO. They do not find 

a significant influence of the return on asset and leverage, but estimate that the time-to-

listing is about 60 percent longer on the Nouveau Marché. 

Duration models are derived from the probability distribution of a random variable T, 

the time at which a particular firm decides to go public. If I let T denote the duration 

from the start of the two markets until the date of the firm’s IPO, three equivalent ways 

of describing the probability distribution can be used: The first is the cumulative 

distribution function (CDF), F(t) = Pr (T ≤ t), defined as the probability that T will be 

smaller than or equal to the value t, and its complement, the survival function 

S(t) = Pr (T>t) = 1 – F(t), the probability that T will be greater than t. Secondly, a 

probability distribution function (PDF) or density function can be defined as 

( ) ( ) dttdSdttdF)t(f −== , by taking the first derivative of the CDF. Thirdly, a hazard 

function can be derived, which gives the conditional probability that a firm will go 

public in the next infinitesimally short period given that it has stayed private as long as it 

has. Since the hazard function describes the probability distribution conditional on T ≥ t, 
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it has the form ( ) ( )( ) ( ) ( )tStftF1tFt)tTttTtPr(lim)t(h
0t

=−′=∆≥∆+<≤=
→∆

, where h(t) is the 

hazard rate and ∆t is the next short time interval.  

In general, firm i’s hazard function of going public can be written: ( ) ( )( )tf,xhth ii = , 

where xi are time-invariant characteristics of the firm and f(t) are time-varying variables, 

such as exogenous market conditions measured by the relevant market price index6. The 

time-invariant and exogenous firm characteristics, observed at the market opening date, 

include firm age as a measure of maturity, employment as a measure of size as well as 

the growth rate of sales over the growth rate of employment and the debt-equity ratio as 

two measures of financing constraints before the IPO. The larger the debt-equity ratio 

and the greater the rate of sales growth relative to employment growth, the less binding 

should be the financing constraint. In addition, a dummy variable for the area of 

technology is expected to have an influence if IPOs from different areas of technology 

cluster in time, as implied by the endogenous bubble hypothesis.  

I hypothesize that the firm-specific hazard rate will be greater, the more conventional its 

technology, the older the firm, the larger the firm, the lower the debt-equity ratio and the 

lower the ratio of sales growth over employment growth. In the no-bubble case, I do not 

expect the hazard to be correlated with the general stock market price index. In the 

exogenous bubble, the hazard rate of going public is hypothesized to increase for all 

firms with the stock market price index since this raises the expected market valuation of 

firms still privately held. In the endogenous bubble, not the general stock market price 

index, but price indices of shares from the specific area of technology to which an IPO 

candidate belongs may be expected to have a positive impact on the hazard rate. 

                                           

6 Direct estimation of the influence of the market price index on the hazard rate of going public 
requires a parametric model, such as an accelerated failure model, in which the distribution of the 
baseline-hazard over time can be specified. 
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However, this theoretical distinction provides little opportunity to discriminate between 

the endogenous and exogenous bubble hypotheses empirically, since most of the 

subindices will be strongly correlated with the general stock market price index during 

the sample period. A more appropriate test will therefore be proposed next. 

Duration models with non-market interaction. Although the Markov chain and the 

duration analysis of independent observations are both apt to capture potentially 

important aspects of the timing of IPOs, they cannot directly discriminate between the 

influence of exogenous characteristics of an IPO firm and information spillovers from 

previous IPOs. Only within a model that encompasses exogenous characteristics and 

endogenous spillovers can a nested test of the endogenous and exogenous bubbles 

hypotheses be constructed. For this purpose, I propose to use a new method of duration 

analysis that allows for non-market interaction in the time dimension, so that the impact 

of endogenous interactions on the timing of IPOs can be estimated explicitly. In this new 

class of duration models with non-market interaction, developed by Brock and Durlauf 

(2001), the payoff function of any given agent takes as direct arguments the choices of 

other agents. This captures the idea of social interactions not mediated through the 

market via a change in relative prices. The primary objective of these models is to 

identify the aggregate properties that emerge in a population of agents with non-market 

interaction. In the timing of IPO decisions, non-market interaction stems from the 

information inevitably revealed by each IPO of a high-tech firm, since this new 

information can give valuable clues to subsequent issuers and investors in primary 

equity markets. Since they cannot be charged a price for receiving and using this 

information, the revealing firm cannot appropriate the benefits to others and the 

aggregate outcome may be inefficient. 

It follows that the hazard function for firm i – defined as ( ) )s,yx( e
)i(mim,ii λ=λ  – depends 

on covariates that include the exogenous characteristics of the firm, xi, its 
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neighbourhood characteristics, ym(i), and its subjective expectation of a neighbourhood 

behavioral measure, e
)i(ms . The exogenous characteristics from the conventional duration 

analysis – age, employment, debt-equity ratio and sales over employment growth of 

each firm – are retained. The neighbourhood of firm i, denoted by m(i), is assumed to be 

its area of technology. To account for time-invariant neighbourhood characteristics, m–1 

dummy variables for technology areas are employed. The term e
)i(ms , finally, is a vector 

of neighbourhood behavioral measures that vary with time. For example, ( )
e

ims  may be 

the expected value of either the within-neighbourhood duration or the median group 

duration.7 Alternatively, one could use the average duration until the IPO in a given area 

of technology, the median time of privately held firms from the beginning of the two 

markets to the date of their IPO, or the number of prior IPOs in the respective area of 

technology relative to some general benchmark as a measure of neighbourhood 

behaviour. 

Following the exposition in Brock and Durlauf (2001), pp. 3338, the density function 

now has the form, exp)s,yx()s,y,xt(f e
)i(m)i(m,i

e
)i(m)i(mi λ=  )t)s,y,x(( e

)i(m)i(miλ− , and the 

expected duration for firm i, conditional on specific realizations of the covariates, is 

( ) ( )( ) ( ) ( )( ) 1e
imimi

e
imimi s,y,xs,y,xtE −λ= . The median of the duration is given by the solution 

∗t  of ( ) ( )( )( ) ( ) 21tF1ts,y,xexp e
imimi =−=λ− ∗∗ , which is found by solving 

( ) ( )( ) ∗∗λ= tforts,y,x2log e
imimi . This condition defines two requirements for self-consistent 

estimates. Self-consistency with respect to expected duration requires that 

( ) ( ) ( ) ( )( )∫ −λ== x
1

imimiim
e

im dFs,y,xss  and self-consistency with respect to the 

                                           

7 Although the neighbourhood characteristics and my neighbourhood behavioral measure are time-
varying variables, the time index has been suppressed for notational convenience. 
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neighbourhood median requires that ( ) ( ) ( ) ( )( )∫ −λ== x
1

imimiim
e

im dFs,y,x2logss , where Fx is 

the probability distribution of characteristics within neighbourhood n(i) and ( )
e

ims  is the 

expected value of either the within-neighbourhood duration or the median group 

duration. 

It seems natural to assume adaptive expectations, so that the expected neighbourhood 

behavioral measure depends on previous realizations of observable variables. Intuitively, 

the assumption of adaptive expectations is consistent with the selection of multiple 

equilibria by historical event or initial conditions. Agents adapt their behaviour 

according to the prior behaviour of other agents, which in turn can be traced back to the 

initial conditions of the system. By contrast, assuming rational expectations implies that 

the firms’ expectations are subsequently realized on average; rational expectations are 

therefore consistent with the selection of multiple equilibria by self-fulfilling prophecies 

since it is the essence of a self-fulfilling prophecy that individual expectations are 

validated ex post – at least on average. 

The simplest parametric specification of the duration model for estimation purposes 

would be the exponential. If the hazard function for firm i is assumed to be, 

)sJyxexp( e
)i(m)i(mii ′+β′+α′=λ , the likelihood function for a given data set will then be 

]t)Jsyx(exp[exp)Jsyx(expL i
e

)i(m)i(mi
e

)i(m)i(m
i

i +β′+α′−+β′+α′=∏ , where α, β, and J are the 

parameter estimates that maximize the likelihood function. However, since this paper is 

concerned with testing hypotheses, not with making quantitative forecasts, I will only 

provide semi-parametric estimates, which are much simpler to compute, because the 

baseline hazard is left unestimated. Consider the following specification of the Cox 

(1972) proportional hazard model: ( ) ( )( ) ( ) ( ) ( )( )e
imimi0

e
imimi sJyxexpts,y,x,t ′+β′+α′λ=λ , where 

ix  is the vector of time-invariant firm characteristics, ( )imy  is the vector of 



 

 

36 

neighbourhood characteristics and ( ) ( ) ( ) ( )( )′υ= e
im

e
im

e
im

e
im v,w,s  is the time-varying 

neighbourhood behavioural measure. It includes for each firm the expected number of 

IPOs by some duration τ , denoted ( )
e

imυ , the average duration ( )
e

imw , and the median 

duration within the neighbourhood. These measures can be obtained either under the 

assumption of rational expectations, as in Sirakaya (2003), or under adaptive 

expectations, as in Nigmatullin (2003). In either case, expectations must be formed 

under the constraint that the solution is self-consistent.  

Under rational expectations, agents’ subjective beliefs are the best prediction of future 

events, based on the available information.8 Hence,  

( ) ( )

( ) ( )( )
( )
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where Fx is the probability distribution of individual characteristics within 

neighbourhood m(i), ( )inψ  is the set of firms going public by duration τ  in 

neighbourhood m(i), and  

( ){ }

( )







 ψ∈

=
ψ∈ else0

,iif1 imII
imi

. 

                                           

8  Kalai and Lehrer (1993) derive conditions for observational learning to generate rational 
expectations and a Nash equilibrium. 
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Under adaptive expectations, the neighbourhood behavioural measures are a function of 

the prior realizations of the corresponding observables. For example, the measures could 

be based on the average or median time distance of past IPOs within the neighbourhood 

or on the observed underpricing. 

Both types of expectations offer a way to solve the identification problem which arises 

when the same observed outcome may be due to a multitude of alternative interaction 

processes. For example, Manski (1993) found that observed equilibrium outcomes do 

not allow the researcher to distinguish endogenous interaction from contextual 

interactions when the data generating model is linear in means, such that individual 

behaviour varies linearly with mean behaviour and mean values of exogenous 

characteristics within a neighbourhood. Since in this case, mean behaviour is itself 

determined by the individual behaviour in the neighbourhood, the observations cannot 

reveal whether the group behaviour actually affects individual behaviour or whether 

group behaviour is simply the aggregation of individual behaviours (Manski 2000, 

p. 25). This is known as the ‘reflection problem’. 

As a caveat, I note that the assumption of adaptive expectations can only solve the 

identification problem if the lag length of mean behaviour is known with which 

individual behaviour in a neighbourhood varies. To solve the identification problem, the 

lag must be correctly specified. The assumption of rational expectations, by contrast, 

makes no such demands for solving the identification problem because it lets individual 

behaviour vary with mean behaviour in the neighbourhood in a nonlinear fashion – 

determined by the probability distribution of individual characteristics within 

neighbourhood m(i).9 Rational expectations guarantee global identification since group 

                                           

9 As a third alternative, according to Manski (2000), the identification problem may be solved by 
letting individual behaviour vary with the median, instead of the mean of neighbourhood behaviour. 
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and individual determinants of individual behaviour are nonlinearly related – according 

to a specified function (see Manski 2000, p. 26, or Brock and Durlauf 2001, p. 3340). 

For the case of rational expectations, I follow Sirakaya (2003) and define 

( ) ( )( )′′′= e
iminii s,y,xz  and ( )′′β′α′=θ J,, . The Cox likelihood function for the data can then be 

written as ( ) ( ) ( ) ( )[ ]∏ =
θ′Λ−θ′λ= n

1i ii0ii0 zexptexpzexptL  ( ) ( )[ ]∏ +=
θ′Λ−I

1si ii0 zexptexp , 

where ti for i=1, 2, …, n are the completed spells (firm i went public at time ti) and 

( ) ( )∫ λ=Λ
t

0 00 dzzt  is the integrated baseline hazard. Identification requires that the 

expected value of the Hessian matrix of log L is nonsingular at the self-consistent 

solution. 

The empirical predictions from my hypotheses about the nature of bubbles can be tested 

under either adaptive or rational expectations. In the no-bubble case, the hazard rate is 

only influenced by time-invariant and exogenous characteristics of the individual firm. 

In an exogenous bubble, I expect the hazard rate to be influenced by neighbourhood 

characteristics, in addition to firm characteristics, but not by our neighbourhood 

behavioral measure. I will therefore interpret a significant impact of the neighbourhood 

behavioral measure as evidence in support of the endogenous bubble hypothesis. 

Moreover, the impact of the expected duration of IPOs should be negative in an 

endogenous bubble: The shorter the expected time of the next IPO within the 

neighbourhood, the higher should be the propensity to go ahead with the IPO of one’s 

own firm. 

IV. Descriptive Statistics 

The creation of France’s Nouveau Marché in March 1996 and Germany’s Neuer Markt 

in 1997 has been a real-life experiment waiting to be evaluated. These new markets set 

out to improve the access of small and young, but innovative firms without a track 
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record of performance to the primary equity market and therefore adopted more 

stringent reporting requirement and disclosure regulations as well as rules to limit 

opportunistic behaviour by insiders. Because the creation of these market segments was 

preannounced, it is reasonable to assume that a large number of firms anticipated to go 

public even before the start of these new markets. The empirical analysis thus has a 

natural starting point for the build-up of the bubble at the end of the 1990s and for 

testing the implications of my hypotheses on the bubble’s causes.10 My disaggregated 

data set reveals considerable variance in the primary equity market experience of firms 

that differ in terms of the technological focus of their business activity. 

IPO volumes and percentage shares by technology area. Figures 1a and b plot the 

number of IPOs (IPO volume) per month in the Neuer Markt and Nouveau Marché from 

the start of these two markets until December 2000. A low level of IPO activity during 

the early months was followed by a rapid increase in IPO volume between the end of 

1998 and 2000. This hot issue market was less pronounced in France than in Germany. 

Juxtaposing the average monthly level of the respective market index (dotted lines), the 

NEMAX Overall Performance Index of the Neuer Markt and the Nouveau Marché 

Indice, generates a graph suggesting that IPO volume is positively correlated with high 

market valuations, albeit with a lag of several months. By contrast, low and flat levels of 

the indices are associated with low IPO volumes. Prima facie, exogenous market 

conditions reflected in the general market price index seem to be driving the number of 

IPOs. 

Table 1 presents the number of IPOs and the percentage shares of IPOs by area of 

technology. I classify the issuing firms into six categories based on the field of 

technology that defines the firm’s dominant business activity. The first five areas – 

                                           

10  See Stolpe (2003) for a detailed description of the various data sources. 
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Software, IT Services, Hardware & Telecomms, Internet & Media, and Biotechnology – 

are subsectors within high technology whereas Industrial & Financial Services can be 

considered a low-tech sector. Internet & Media accounted for 30 percent of the overall 

share of IPOs in the Neuer Markt with most of them occurring in 1999 and 2000. In the 

Nouveau Marché, Software and Internet & Media accounted for the highest overall 

shares: Table 1 reveals that in the Neuer Markt, Internet & Media and Biotechnology 

had the highest increase in the number of IPOs in 1999 and 2000 from 39 to 49 IPOs and 

10 to 18 IPOs, respectively. In the same period Industrial & Financial Services had a 

drop in the number of IPO from 36 to 25. In the Nouveau Marché, Software and Internet 

& Media experienced the biggest increases in IPO volume in the years 1999 and 2000, 

from 6 to 12 IPOs for Software and 5 to 12 IPOs for Internet & Media, taking their 

shares of all IPOs to 41.4 percent (Software) and 57.1 percent (Internet & Media) in the 

year 2000. 

The last two years in both markets were characterized by the internet boom in which 

high-tech IPOs had the largest increases in number and reached their peak both in 

absolute terms and relative to total IPO volume. But no clear pattern can be detected for 

individual years when sectors are ranked according to their percentage shares of all IPOs 

in the year. In each year, a different area of technology claims the highest percentage 

share of all IPOs. In the Neuer Markt, Hardware & Telecomms was top at 6.1 percent in 

1997, Industrial & Financial Services at 22.4 percent in 1998, Software at 45 percent in 

1999, and Biotechnology at 60 percent in 2000. Similarly, in the Nouveau Marché, 

Biotechnology was top at 25 percent in 1997, Industrial & Financial Services at 40.9 

percent in 1998, IT Services at 36 percent in 1999, and Internet & Media at 57.1 percent 

in 2000. The same lack of persistence in the rankings is found when one looks for the 

area of technology with the lowest shares of all IPOs. 
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These observations of fluctuating percentage shares for any given area of technology 

suggests that industry-specific characteristics may help to explain why hot issue markets 

take place in certain areas at different points in time. Moreover, in both markets the 

IPOs during the first two years of the sample period mainly came from Industry & 

Financial Services, a low-tech area, but in the last two years mainly from high-tech 

areas, above all Internet & Media. That the years of low IPO activity coincide with IPOs 

mostly coming from low-tech areas and the bubble years coincide with IPOs mostly 

coming from high-tech areas lends further support to the idea that a pent-up supply of 

high-tech IPOs has required a critical IPO volume to burst out. Indeed, this appears to 

distinguish high-tech from low-tech IPOs – fully in line with the endogenous bubble 

hypothesis. 

Time patterns in going public. More descriptive evidence in favour of the endogenous 

bubble hypothesis can be obtained by looking at the rather distinct time patterns of the 

IPO series from different areas of technology. Table 2 presents a comparison of the 

observed average length of time between two consecutive IPOs that would be expected 

in the absence of a bubble. Without a bubble, IPOs can be assumed to be evenly spread 

throughout the entire sample and the expected number of days between two IPOs is 

simply the number of days in the whole period divided by the total number of IPOs. 

Looking at the whole sample of IPOs in the Nouveau Marché, the observed average and 

expected length of time between two consecutive IPOs is almost equal, as if no-bubble 

had occured. However, the observed average time between two consecutive IPOs was 

much smaller than the length of time expected in the absence of a bubble. Moreover, the 

average time was considerably lower than the expected length of time between IPOs for 

all areas of technology except for Hardware & Telecomms in the Neuer Markt and IT 

Services in the Nouveau Marché, both of which had similar average and expected 

values. The degree of clustering, measured by the ratio of average to expected length of 
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time between consecutive IPOs also varies considerably across areas of technology, 

which is again consistent with the idea that hot issue markets are driven by technology-

specific factors.  

Furthermore, the Nelson-Aalen cumulative hazard estimates, by area of technology as 

shown in Figure 2a, and the smoothed hazard estimates, shown in Figure 2b, both 

indicate that the hazard rate for firms from the Industrial and Financial Services sector 

increased earlier in the analysis time than for the other sectors. The real latecomers were 

the firms from the Biomedical industry. The most pronounced clustering, as shown in 

the smoothed hazard estimates, is evident for the Internet & Media sector. The lowest 

peak in the smoothed hazard estimates is recorded for the Hardware & Telecoms sector. 

Figures 3a to 3c show Kaplan-Meyer survival estimates for the three areas of technology 

Biomedical, Internet & Media and Software. The survival estimates for Biomedical and 

Internet & Media differ significantly from those of other firms. But in the case of 

Software, the Kaplan-Meyer survival estimates are almost indistinguishable from those 

of other firms.  

For a more detailed look at time patterns, Figure 4 plots histograms of the observed 

length of time between two consecutive IPOs by area of technology, counting the 

number of IPO pairs which fall into different intervals of approximately equal time 

distances. These histograms thus display the frequency distribution of time distances 

between any two consecutive IPOs. In both markets, the interval with the shortest time 

distances, has the highest count of consecutive IPO pairs, except for the case of 

Biotechnology in the Nouveau Marché. As the upper and lower time distances defining 

the intervals are increased, moving to the right end of the histograms, fewer and fewer 

consecutive IPO pairs are observed, sometimes none at all.  
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In panel A, for example, 25 pairs of consecutive Software IPOs are separated by an 

intervening period of time that falls within the interval of 0 to 25 days. Only 6 pairs of 

IPOs fall into the next interval of 26 to 50 days. For Internet & Media, an even higher 

number of IPO pairs fall under the first interval: 33 IPO pairs are separated by only two 

days; but there is a sharp drop in the frequency counted in the second interval. For 

Industrial & Financial Services, 25 IPO pairs fall into the 0 to 5 days interval followed 

by 20 pairs in the 6 to 10 days interval, suggesting that the extent of clustering is less 

pronounced in this area of technology. In panel B, most areas of technology exhibit 

similar patterns of clustering with the exception of Biotechnology where time distances 

between consecutive IPO pairs appear to be evenly distributed. Industrial & Financial 

Services also show relatively little clustering. IT Services shows a striking pattern with 

23 IPO pairs falling into the 0 to 100 days interval, followed by a sudden drop to 3 pairs 

in the next interval.  

Although the graphs in Figure 4 are suggestive of clustering, a more careful comparison 

across different areas of technology requires the calculation of relative frequencies for 

the time distances between consecutive IPO pairs falling in standardized intervals. These 

relative frequencies, expressed as percentage shares of all consecutive IPO pairs within a 

given area of technology are shown in Tables 3 and 4 for the Neuer Markt and Nouveau 

Marché, respectively. The first column shows the upper bounds of the equal-length 

intervals in days, while the succeeding columns show the percentage shares of 

consecutive IPO pairs falling in the corresponding interval for different areas of 

technology and for the sample as a whole (last column). Among Software IPOs in the 

Neuer Markt, for example, 64.1 percent of the consecutive IPO pairs are separated by an 

intervening period between 0 to 25 days, 15.4 percent between 26 to 50 days 10.3 

percent between 51 to 75 days, 7.7 percent between 76 to 100 days, and 2.6 percent of 

consecutive IPO pairs are more than 150 days apart.  
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Again, most of the observations fall into the first interval, but the extent of this 

clustering varies across areas of technology. On the Neuer Markt, Internet & Media has 

the highest degree of clustering with 90.5 percent in the first interval followed by 

Industrial & Financial Services with 85.7 percent. Hardware & Telecomms has the 

lowest clustering at 50 percent. Combining all areas, fully 97.2 percent of the 

observations fall into the first interval – clearly a reflection of the larger number of IPOs 

in the total sample. On the Nouveau Marché, IT Services has the highest first interval 

percentage at 70.8 percent followed by Internet & Media at 65 percent and Software at 

60.7 percent. The lowest first interval percentage is recorded for Biotechnology, which 

has relatively large entries in intervals up to 250 days. However, when all areas are 

combined, the concentration in the first interval is almost as high as on the Neuer Markt.  

The bottom panels of Tables 3 and 4 show the differences between the percentage shares 

for the combination of all areas and the percentage shares for each of the specific areas 

to highlight the sector-specific clustering against overall clustering. For both markets the 

overall clustering is more pronounced than the clustering in specific areas of technology. 

However, this impression may simply be caused by the fact that each area has a different 

number of observations. Since I am looking at intervals of equal length in time, areas 

with fewer observations will naturally be spread farther apart, and areas with many 

observations may show spurious clustering. To correct for this distortion, the intervals 

must be adjusted so as to control for the differences in the number of IPOs from 

different areas of technology. In effect, the adjustment must widen the base intervals by 

an area-specific factor determined by the share of the area in the total number of IPOs on 

the Neuer Markt or Nouveau Marché, respectively. This factor is calculated by dividing 

the number of days defining the base interval by the relative share of the corresponding 

area of technology in the total number of IPOs. The results are presented in Tables 5 and 

6 for the Neuer Markt and the Nouveau Marché, respectively, where the left column 
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refers to the base intervals, and not to the adjusted intervals since these are different for 

each area of technology. The remaining columns show the relative frequencies of time 

distances between consecutive IPO pairs in the adjusted intervals. 

Prima facie, the clustering patterns revealed in Tables 5 and 6 look more pronounced 

than those in Tables 3 and 4 for most areas of technology, with a larger percentage of 

IPOs falling in the first interval. But comparing patterns across areas of technology, the 

clustering looks more similar, with smaller differences from the overall distribution 

(shown in the lower half of the Tables). The lion’s share of the observations still belongs 

to the first interval, with rapidly declining shares in the subsequent intervals and almost 

none after the third. In the Neuer Markt, the highest first interval share still comes from 

Internet & Media at 83.2 percent, while the lowest still comes from Hardware & 

Telecomms at 71.9 percent. In the Nouveau Marché, the highest first interval share 

comes from IT Services with 52.2 percent while the lowest is from Biotechnology at 9.1 

percent. Despite the adjustment of the length of intervals, clustering patterns are still 

different across areas of technology. These different patterns are highlighted in the lower 

halves of the Tables, which present the differences in percentage points between the 

relative frequency distribution across the adjusted intervals for each area of technology 

and the relative frequency distribution across the unadjusted intervals for the overall 

sample. 

Finally, different clustering patterns for different areas of technology can also be 

detected when the duration from the market opening date to the date of each firm’s IPO 

is examined. Figure 6 plots the histograms of these durations by area of technology. For 

the Neuer Markt, there appear to have been two peaks in IPO activity, which were 

particularly pronounced in the high-tech areas. The pattern is less clear-cut in Industrial 

& Financial Services. For the Nouveau Marché, IPOs in the IT Services and Internet & 

Media areas show a unimodal pattern with a steep ascent, suggesting that firms in these 
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sectors waited longer so that IPOs clustered at the end of the observation period. These 

findings lend further support to the idea that IPOs from different areas of technology 

cluster around different peaks in time – in line with the endogenous bubble hypothesis.  

Tables 7 and 8 and the corresponding figures 7a and 7b confirm these findings. They 

show the distribution of IPOs in terms of percentage shares of all IPOs from a given area 

of technology falling within fixed intervals of duration from the start of the Neuer Markt 

and Nouveau Marché, respectively. As before, the left column shows the upper 

boundary of each time interval of equal length. The middle panels show the cumulative 

percentage shares of IPOs at the upper boundaries of each interval. In the Neuer Markt, 

IPOs from different areas of technology concentrate in three intervals: 401 to 600 days, 

701 to 900 days, and 1101 to 1300 days. But within these intervals, patterns of IPO 

timing vary considerably across sectors, suggesting that both the overall market peak, 

but also technology-specific factors determine clustering.  

For example, in the interval of 1200 days not only the all-area share of IPOs was at its 

peak, but also Internet & Media and Software recorded their peak in IPO activity, with 

22.9 percent and 22.5 percent of all IPOs from these technology areas falling into the 

interval. By contrast, the lowest area-specific percentage share in that interval was 

recorded for IT Services with only 5.4 percent of all IPOs from that area. IT Services 

instead had its peak in the 900 days interval. In the Nouveau Marché, overall IPO 

activity has peaked in three intervals with a longer lag from the market’s (earlier) 

opening date: 801 to 1000 days, 1001 to 1200 days, and 1401 to 1600 days. As on the 

Neuer Markt, the peaks for different areas of technology vary in time, but still fall within 

one of the three intervals. The area-specific differences in the relative frequency 

distribution of IPOs vis-à-vis the total sample distribution are shown in the bottom 

panels of Tables 7 and 8. While these differences are often large, no clear pattern can be 
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detected, so that technology-specific factors – in line with the endogenous bubble 

hypothesis – are the most plausible explanation. 

V. Results from Statistical Inference 

Linear Regression Analysis. For a first test of the empirical determinants of clustering 

and the role of financial intermediaries in the timing of IPOs, simple regression analysis 

can be used. Tables 9 and 10 present the results of a least squares regression using the 

length of time between the dates of arbitrarily paired IPOs as the dependent variable. 

These time distances are now calculated not only for two consecutive IPOs, but for all 

possible pairs of IPOs in the sample from the Neuer Markt or Nouveau Marché, 

respectively. This regression model addresses the question which of the characteristics 

observed in earlier IPOs has a significant influence on the timing of subsequent IPOs. 

More specifically, is the timing of going public sped up by previous IPOs from the same 

area of technology, as implied by the endogenous bubble hypothesis? Inclusion of a 

technology dummy as a regressor – with the value 1 if both IPOs in a pair belong to the 

same area of technology and 0 otherwise – allows us to test whether a subsequent IPO 

from the same area of technology is indeed more likely than would be expected if each 

IPO’s area of technology were drawn from an independent random variable: The time 

distance between any two IPOs should be negatively correlated with the technology 

dummy. 

However, a proper test of this hypothesis must control for other potential determinants 

of the time distance between arbitrary pairs of IPOs. I control for exogenous firm 

characteristics by including the time interval between firms’ founding dates as an 

explanatory variable: Firms that started out around the same time are more likely, ceteris 

paribus, to go public at about the same time. The influence of financial intermediaries on 

the timing of IPOs is taken into account by including dummies for the equality of lead 
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underwriters and for the equality of any of the venture capitalists involved in the two 

IPOs whose distance in time is the explanandum. These two types of intermediaries may 

have a role to play in determining the lengths of time between two IPOs because they 

would both benefit – although perhaps in different ways – from the internalization of 

information spillovers emanated by earlier IPOs. In particular, underwriters with some 

market power may sequence the IPOs of their client firms so that they achieve a greater 

private appropriation of the inherent information externalities in order to maximize their 

private returns from a series of IPOs.  

My regression analysis reveals that the empirical influence of venture capitalists and 

underwriting is mostly in line with expectations on the Nouveau Marché, but it is 

strikingly at odds on the Neuer Markt. In Table 9, columns 1 and 2 report estimation 

results for the Neuer Markt and column 3 for the Nouveau Marché. The regression of 

column 1 includes only the set of IPO pairs obtained by matching each IPO from 1998 

and 1999 with all of the preceding IPOs since the start of the Neuer Markt. Likewise, the 

regression of column 2 includes only those pairs in which an IPO from the first 300 days 

in 1999 is matched with one of the preceding IPOs on the Neuer Markt. Limited 

computer processing capacity prevented me from including all possible matches of IPOs 

from the Neuer Markt. For the Nouveau Marché, by contrast, the entire sample of IPOs 

could be utilized to assemble the set of matched IPO pairs.  

In the Nouveau Marché sample, all explanatory variables are significant and have the 

expected sign. The time interval between firms’ founding dates has a positive sign, 

while the three other explanatories have negative signs. This is consistent with the 

implication of an endogenous bubble that underwriters and venture capital firms will 

seek to maximize their returns by scheduling IPOs so that information spillovers are at 

least partially internalized. Moreover, the negative coefficient on the technology dummy 
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suggests that IPO candidates themselves have an incentive to accelerate a planned IPO 

after other IPOs from the same area of technology have taken place. 

But in both regressions for the Neuer Markt, the time interval between firms’ founding 

dates, underwriter equality and the technology dummy turn out to be positive influences 

on the time distance between IPOs, while the dummy for VC equality is insignificant. It 

is of course surprising that the length of time between two IPOs from the same area of 

technology is larger than between two IPOs coming from different areas and that also 

the equality of lead underwriters is associated with a larger time distance between the 

paired IPOs. The Neuer Markt evidence thus contradicts the hypothesis of technology-

specific information spillovers, causing IPOs from the same area to cluster in time and 

providing underwriters with an incentive to schedule their client firms’ IPOs so as to 

internalize these spillovers. Acceptance of the spillover hypothesis would require that at 

least one of the coefficients on the equality of technology areas, equality of lead 

underwriters and equality of venture capital firms is significantly negative. 

Since the evidence from the Neuer Markt is puzzling, I will now report the results from 

a more detailed analysis, using additional dummy variables that distinguish between 

different areas of technology and interaction effects between these areas of technology 

and the dummy for underwriter equality. I drop the technology dummy for Financial 

Services  IPOs because else there would be perfect multicollinearity. The original 

dummy for the equality of technology focus now captures the impact of the equality of 

technology focus only in the case of Financial Services. All other areas of technology 

have their own dummy variable. Tables 10a to c examine the differential impact that the 

equality of the lead underwriter may have on the area effects in the timing of IPOs. 

Because there might still be considerable multicollinearity, I test the robustness by re-

estimating the full model with only one set of dummies, first without the interaction 

terms and then with the interaction terms only. 
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The results reported in Table 10a for the 1998 to 1999 sample from the Neuer Markt 

show the influence of the Financial Service dummy as highly significant, but negative –

with an estimated coefficient of minus 95.32. The time distance between any two IPOs 

from the Financial Services industries seems to be much smaller than the average time 

distance between arbitrary paired IPOs. None of the other coefficients for the technology 

area dummies indicate such a small time distance. Coefficients that exceed 95.32 

indicate that the time distance between any two IPOs is larger than the average time 

distance between arbitrary paired IPOs. A larger than average time distance is evident 

for Hardware, Telecom, and Industry & Services. A much smaller time distance is 

significant in the case of Software and Media.  

In addition, the regression reported in Table 10a controls for the influence of the 

equality of the lead underwriter in the IPO pairs. Here again, I distinguish between the 

different areas of technology. Only two coefficients are noteworthy: in the case of 

Telecom, there is a highly significant negative influence of the equality of lead under-

writers on the time distance between any two IPOs. In the case of Hardware, there is a 

highly significant positive influence. The regressions reported in the second and third 

column of Table 10a show that the estimated coefficients are largely robust when 

dummy variables for underwriter equality in specific areas of technology are dropped 

and when the area specific technology dummies are dropped. But in the latter case, I do 

find a significant negative influence of underwriter equality on time distance between 

Software IPOs. 

Table 10b shows the results for the 1999 sample from the Neuer Markt. Overall the 

estimated coefficients are similar to those obtained for the larger sample. However, a 

highly significant negative influence of underwriter equality is now revealed in the case 

of Biomedical IPOs. The second and third columns of Table 10b again confirm that the 

coefficients are robust when the set of dummy variables is reduced. Telecom and 
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Biomedical seem to be the areas of technology in which underwriters coordinate the 

timing of IPOs so as to bring them closer together in time and exploit the implied 

information externalities. Table 10c reports the results from the Nouveau Marché. Here, 

the technology dummy for Internet IPOs, Hardware IPOs and Media IPOs have highly 

significant negative influences on the time distances within IPO pairs. However, only in 

the case of Telecom, Biomedical, and Industrial Services is there a significant negative 

impact of underwriter equality on the time distance between arbitrary paired IPOs. In the 

case of Internet IPOs, the estimated coefficient suggests that underwriter equality results 

in a larger time distance within the IPO pairs. The second and third column of Table 10c 

confirm the robustness of these findings. The influence of the venture capital dummy is 

highly significant and negative in all three regressions. Once again, the relevant financial 

intermediaries in primary equity markets, underwriters and venture capital firms, seem 

to be more successful in internalizing information externalities on the Nouveau Marché 

than on the Neuer Markt. 

These contradictory results from the Neuer Markt and the Nouveau Marché call for a 

cautious interpretation of the evidence. Three basic methodological problems must be 

considered: Firstly, the classification of IPO firms into the six areas of technology may 

be misleading. Many firms are involved in more than one line of business so that the 

categories are less homogeneous than they ideally should be in order to delineate 

senders and recipients of the same information spillovers. Moreover, the information 

spillovers may not always be limited to firms focused on the same area of technology. 

Secondly, I have already provided descriptive evidence of several subsequent hot issue 

markets in some areas of technology on the Neuer Markt, but not on the Nouveau 

Marché.11 If a sufficient number of the IPO pairs from one of these areas of technology 

                                           

11 See Figures 1 and 2 and especially Tables 8 and 9. 
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combine IPOs from different hot issue markets in the Neuer Markt, the average time 

distance may indeed be larger than in the control pairs that match IPOs from different 

areas of technology. This could result in a significant positive coefficient on the dummy 

for equality of technology, but there would be a distortion since the regressions do not 

control for the number of hot issue markets within an area of technology. Lastly, the 

contradictory results may be due to international differences in market characteristics 

and investment practices. For example, the puzzling result for the Neuer Markt may 

mean that the German primary equity market is less efficient – an interpretation which 

will require further examination. In spite of these caveats, the message of this 

exploratory regression analysis is that the technological focus of IPO firms does have an 

impact on the timing of IPOs in France and Germany. To what extent that impact 

determines the temporal sequence of IPOs from different areas of technology will be 

analysed next. 

Transition probabilities in the Markov chain model. First for the stochastic IPO process 

on the Neuer Markt and then for that on the Nouveau Marché, a matrix with non-

parametric estimates of the transition probabilities between technology areas is 

presented in Table 11a. Each element in the matrix is the estimated conditional 

probability that the next IPO will come from the area of technology in the column 

headings given that the most recent IPO has come from the area of technology in the 

row headings. Iteration of the transition matrix yields the stationary distribution and 

predicts the long term distribution of IPOs across technology areas to which the 

transitional dynamics will converge in the absence of any exogenous shocks to the 

system. The stationary distribution is given in the last row of each panel in Table 11a. In 

both cases the stationary distribution equals the sample distribution, given in the 

penultimate row of each panel. Since there are no absorbing states, the estimated 

Markov chain is found to be an ergodic stochastic process: The memory of the process 



 

 

53 

fades in the sense that the covariance between observations converges to zero with 

increasing distance in time. 

This aggregate property, however, does not rule out persistence in individual areas of 

technology in the sense that the conditional probability of the next IPO coming from the 

same technology area is significantly higher than would be expected from the sample 

distribution. Persistence in an ergodic Markov chain simply requires that the diagonal 

elements of the transition matrix are higher than the elements in the sample distribution. 

However, only two areas – Software in the Neuer Markt and Internet & Media in the 

Nouveau Marché sample – appear to have this kind of persistence. Visual inspection 

thus suggests that there is clustering in some areas, but not in all.  

However, the visual evidence does not stand a formal statistical test. Persistence as 

implied by the endogenous bubble hypothesis would require that the entries in rows and 

columns of the transition matrix are independent random variables. The independence of 

the transition probabilities can be tested using the test statistic proposed by Basawa and 

Rao (1980), p. 62, which is 2χ -distributed with (m–1)2 = 25 degrees of freedom since 

we have six areas of technology defining the possible states of the system. For the Neuer 

Markt as a whole, we get V = 16.09 (p = 0.91), so that the hypothesis of independence is 

clearly rejected.12 On the other hand, equality tests of the kind proposed by Anderson 

and Goodman (1957), testing the equality of the transition matrix rows one by one 

against the sample distribution, yields test statistics in excess of 23.4 and therefore much 

larger than the critical value of 07.112
95;5 =χ  so that the hypothesis of equality is clearly 

rejected for all rows. For the Nouveau Marché, by contrast, the test of independence 
                                           

12  Looking only at Software against all other IPOs yields: V = 4.2 (p = 0.04), so that persistence 
appears to be confirmed in the case of Software IPOs on the Neuer Markt. But looking only at one 
individual sector selected after a visual inspection of the estimated transition matrix amounts to data 
mining. 
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yields V = 33.22 (p = 0.13), which can be interpreted as weak evidence in favour of 

persistence, although the equality between individual rows of the transition matrix and 

the sample distribution is only rejected for the Biomedical sector. 

As a further check on the robustness of my estimates, I provide a time-interval interpre-

tation of the Markov chain shown in Table 11b. One problem with the event-based 

Markov chain estimates of Table 11a is that the time distance between two consecutive 

IPOs varies widely and the timing of the next IPO may already have been decided 

before or long after the preceding IPO took place. In either case, it is doubtful that an 

IPO’s area of technology is influenced by the immediately preceding IPO. Although we 

do not directly observe when the decision to go public is taken, it will usually be fixed 

one month before the IPO date. Table 11b is therefore based on the assumption that the 

percentage distribution of IPO across areas of technology in the course of one month 

will determine the percentage distribution of IPOs in the next months. The estimates are 

coefficients from a systems regression of current percentage shares of IPOs in the six 

technology areas on the lagged percentage shares. I tested for serial correlation, which 

would bias the lagged endogenous regressor, using the Brensch-Godfrey LM test 

statistics, but I did not find it to be a big problem in most of the individual equations.13 

Exogenous determinants of transition probabilities. As I pointed out above, the 

stationary Markov model may fail to detect persistence because endogenous bubbles, in 

which hot issue markets are confined to one or a few separate subsectors of high 

technology, do not imply that transition probabilities are stationary. Instead, persistence 

is expected to be larger before the peak of a hot issue market and lower thereafter. The 

likelihood ratio test proposed by Anderson and Goodman (1957) yields 22.63 for the 

Neuer Markt count data model of Table 11a and 9.84 for the Nouveau Marché, so that 

                                           

13  Detailed results are available from the author. 
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the stationarity assumption cannot be rejected in either sample. However, this aggregate 

property of the transition matrix may mask non-stationarity in the transition probabilities 

from individual areas of technology. The endogenous bubble hypothesis would be 

consistent with transition probabilities that change in response to the prior level of 

underpricing that IPOs within a given area of technology have incurred. I therefore use 

Toikka’s estimator to identify technology-specific hot issue markets in the Neuer Markt 

on the basis of two exogenous variables14: first, the average level of underpricing, or 

initial return, observed in the two preceding IPOs from the current IPO’s technology 

area as a measure of the market’s sentiment towards that area; and second, the stock 

market price index as a control for general market conditions. Table 11c presents the 

results for a three state model in which the area Computer comprises Hardware, IT 

Services and Software IPOs, whereas Mediacom comprises Internet, Media and 

Telecoms. The category Other comprises all other IPOs, namely those from the 

Industrial & Financial Services and from the Biomedical areas. 

The first panel of Table 11c presents the estimated transition probability matrix for the 

three-state model whose entries were used as endogenous variables in regressions on the 

two explanatories Index and Underpricing. The regressor Index is defined as the four-

week average of the NEMAX performance index lagged one month. The regressor 

Underpricing is defined as the average underpricing observed in the two preceding IPOs 

from the same area of technology as the one in the current transition’s initial state. The 

estimated regression equations are reported in the bottom panel of Table 11c. Only two 

regressions are reported for each row since the third would just be a linear combination 

of the first two. The seemingly unrelated regression model has been employed. The 

results show that Index has a highly significant, but quantitatively similar influence on 
                                           

14  I have not applied Toikka’s estimator to the Nouveau Marché sample because the number of IPOs is 
relatively small. 
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all of the transition probabilities. Underpricing, by contrast, is not only significant, but 

also quantitatively distinct. In line with expectations, the impact of area-specific prior 

underpricing on the transition probabilities is larger on the main diagonal than in the off-

diagonal entries of the transition matrix. Underpricing thus explains part of the observed 

persistence in the three-state model for the Neuer Markt. 

The estimated coefficients from the regressions explaining the observed transition 

probabilities have then been used to calculate ex post predictions, first on the basis of the 

observed initial states (panel 2 in Table 11c), and second on the basis of the predicted 

initial states (panel 3). The second approach has a better theoretical foundation since it 

attempts to make a long-term prediction of the implications contained in the estimated 

econometric model. The disadvantage of a multi-step recursive prediction is that errors 

in the estimation of Toikka’s coefficients will accumulate over time. It is therefore 

useful to report also the transition probability matrix implied by one-step predictions 

starting at the observed initial values for each transition. The true transition matrix 

taking the empirical changes in the exogenous determinants of transition rates into 

account should lie between the two predicted matrices of panel 2 and 3. Panel 2 implies 

lower persistence in the Computer and Mediacom areas, but higher persistence in the 

Other area. The implied stationary distribution assigns a higher probability to being in 

the Other area and in the Computer area than the sample distribution does. By contrast, 

the recursive ex post prediction, reported in panel 3 implies higher persistence in the 

Computer and Mediacom areas, but lower persistence in the Other area. In the implied 

stationary distribution, only the higher probability of being in the Other area represents a 

striking difference from the sample distribution. 

For further evidence on the determinants of transition probabilities, Table 11d provides a 

brief look at the role of individual underwriters in the Neuer Markt. To this end, I have 

applied the estimator after ordering all IPOs with the same lead underwriter in temporal 
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sequence according to their IPO dates. The results indicate lower persistence than in the 

unconditional Markov chain estimates of the three state model (first panel in Table 11c), 

especially in the case of Mediacom. This casts some doubt on the hypothesis that hot 

issue markets are the work of underwriters specializing on one or a few selected areas of 

technology in order to exploit area-specific information spillovers. However, I must note 

that I have ignored the potentially important influence of co-underwriters since the 

multidimensionality of the estimation problem would then require a more general 

statistical model, like a random field estimator, beyond the scope of the present paper. 

Table 11e presents three mobility indices for the various transition matrices I have 

estimated. These mobility indices attempt to express the mobility with a Markov chain 

in terms of a standardized  number that evaluates the trace of the transition matrix, tr ( )Π , 

the eigenvalues, jλ , and the determinant, det ( )Π , respectively. They consistently 

indicate a very high degree of mobility in all of the estimated transition matrices and 

thus rule out persistence of the kind implied by the endogenous bubble hypothesis. 

Duration analysis. To analyse the empirical determinants of IPO timing in continuous 

time, I use the Cox (1972) proportional hazard model. There is neither right-censuring 

since the data set excludes firms that might have gone public after the end of the sample 

period, nor is there left truncation since the observation period has no gap after the onset 

of risk. In the basic Cox model, ( ) ( ) { }icc1i10ii x....xexptxth β++βη= , the hazard of going 

public is the product of two factors: a baseline non-negative hazard function ( )t0η  at 

time t, which is common for all IPOs, and the exponential of a linear function with c 

covariates, which are specific to each IPO and are summarized in the vector xi. The 

semi-parametric Cox model does not specify ( )t0η  and estimates only the β  coefficients, 

using the partial maximum likelihood method (PMLE). This estimator is generally 

consistent and asymptotically normal. 
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In our context, the choice of a semi-parametric model is preferred to either fully 

parametric or non-parametric models. Non-parametric methods can be used to compare 

survival experiences observed for different values of qualitative covariates that are time-

invariant. Table 12 reports three non-parametric tests for the equality of the survivor 

functions for firms from different technology areas and for firms with and without 

venture capital-backing: the log-rank test, the Wilcoxon and a stratified Wilcoxon, in 

which the equality of the survival functions for venture backed and non-backed firms is 

tested separately for different technology areas and then combined into one overall 

statistic. These tests provide consistent evidence that the survivor functions for 

Biomedical firms and for Industry & Financial Services firms in both the Neuer Markt 

and the Nouveau Marché are clearly distinguished from the other firms in the respective 

sample. But the survivor functions for the other areas of technology, including a broad 

category comprising all information and communications technologies, do not seem to 

differ from the survivor function of firms not falling into the respective area of 

technology. Looking next at venture capital-backed and non-backed firms, the survivor 

functions differ only in the Neuer Markt sample. This is not necessarily inconsistent 

with Bottazi and DaRin (2002) who fail to find a statistically significant effect of 

venture capital-backing on the hazard rate in the much larger sample of 488 IPOs from 

the entire Euro.nm group of markets. My stratified Wilcoxon reveals that Industry & 

Financial Services is the only category in the Neuer Markt where venture capital-

backing makes a significant difference. 

I have not estimated a fully parametric model, although such a model could in principle 

provide direct estimates of the influence of time-varying variables on the hazard rate. 

Besides qualitative and time-invariant characteristics of individual firms, the hypothesis 

of endogenous bubbles assigns an important role to time-varying variables, such as the 

general price level in the stock market and various measures of expectations. However, 
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unless the distribution of the baseline-hazard over time is known with a high degree of 

accuracy, any choice of a specific distribution from the standard menu, such as the 

exponential, will be ad hoc and may introduce an unnecessary source of error. While in 

theory, parametric estimation can be efficient if the correct distribution of the baseline-

hazard of going public is assumed, that distribution cannot a priori be known under the 

hypothesis of endogenous bubbles. It is the essence of non-market interaction that the 

shape of the density of IPOs from different technology areas will evolve as the bubble 

forms. Any test based on parametric estimates would therefore be misleading. 

The Cox proportional hazard model obtains estimates by pooling over the risk groups 

based on ordered survival times and therefore does not require inclusion of the stock 

market price index as a time-varying covariate. The baseline hazard, ( )th0 , is left 

unestimated; it could be any function of time and will therefore automatically reflect the 

influence of market conditions that affect all firms equally. The price to be paid for 

ignoring the baseline hazard is a loss in the efficiency of estimating the coefficients of 

the time-invariant covariates. In our context, the main advantage of choosing the Cox 

proportional hazard model is that it allows us to test hypotheses on covariates that are 

either time-invariant or depend only on the temporal ordering of the IPO events, not on 

the time distances between them. The validity of these tests will be unaffected by the 

underlying temporal distribution of IPOs. The ordering of the IPOs, our failure events, 

determines the analysis time in the Cox model.15  

To account for non-market interaction in the Cox (1972) proportional hazard model, 

( ) ( ) ( )i0i zexptz,t θ′λ=λ , the vector iz  will include up to three different within-

neighbourhood expectations as the neighbourhood behavioural measure for each area of 

                                           

15 The values of time-varying covariates have to be introduced as a function of analysis time. The 
neighbourhood expectations derived from the endogenous bubble hypothesis are a case in point. 
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technology at the relevant failure times. Under rational expectations, the neighbourhood 

behavioural measures are based on separate Nelson-Aalen estimates of the forward-

looking cumulative baseline hazard from the current observation to the end of the 

sample. I thus assume that rational expectations are formed with full knowledge of the 

probability distribution of the relevant time-invariant characteristics of all the firms 

within their respective neighbourhood. 

The calculation of the neighbourhood behavioural measures generates step functions 

because the nonparametric Nelson-Aalen estimator of the baseline hazard does not 

produce a continuous function, but a function with steps occurring at each observed 

failure time within the neighbourhood. Recall that our behavioural measure has three 

components under rational expectations: the expected number of IPOs by some duration 

τ , the average duration of all future IPOs within a neighbourhood and their median 

duration. I set τ  = 4 months. Implicitly, all three components take the total number of 

IPOs in each neighbourhood into account. 

The most comprehensive test of the neighbourhood behavioural measure’s relevance 

would ideally call for the inclusion of all non-neighbourhood expectations as control 

variables. However, a model with so many variables suffers from severe 

multicollinearity. I therefore proceed stepwise and test only against the alternative 

hypothesis for one technology area at a time. At the observed IPOs of one specific 

technology area, I include the expections within each of the other five technology-based 

neighbourhoods at that point in analysis time. This is a stepwise test because it shows 

whether the going public decision is based on expectations within the neighbourhood or 

on more general expectations that a shared by two or more neighbourhoods at the same 

time. My empirical findings, as shown in Tables 13 for the Neuer Markt and Tables 14 

for the Nouveau Marché, are unequivocal in their support for the within-neighbourhood 

hypothesis. 
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Table 13a reports the results from the Cox proportional hazards model with social 

interaction under rational expectations in the Neuer Markt. Model 1 includes the most 

comprehensive set of variables, comprising exogenous characteristics of issuing firms, 

such as their age at the time of the IPO, the number of employees, a dummy variable for 

venture capital-backing, the debt-equity ratio at the time of the IPO, the rate of sales 

growth over the rate of employment growth and a dummy for each of the following five 

technology areas: Software, ITservices, Biomedical, Hardware & Telecoms (Hardwtel) 

and Internet/Media (Intmedia). The technology dummies are to capture the relevant 

time-invariant neighbourhood characteristics.  

In addition, there are four sets of time-varying variables, one of which is used to 

estimate interaction effects between the technology areas and the general stock market 

price index. The other three sets of time-varying variables serve as neighbourhood 

behavioural measures. They include the expected number of IPOs pertaining to the 

technological neighbourhood within the next four months, the expected mean time 

distance of future IPOs and the expected median time distance of future IPOs in the 

technology neighbourhood.  

None of the time-invariant firm and neighbourhood characteristics are significant except 

for the Hardwtel dummy. Nor are the interaction terms between the technology 

dummies and the market price index significant. However, because there is likely to be 

multicollinearity in these estimates, it would be futile to interpret the size of the estimate 

obtained for individual dummy variables. Looking at the neighbourhood behavioural 

measures, I do not find a significant impact of the expected number of IPOs within the 

next four months or of the expected mean time distance of future IPOs in the technology 

neighbourhood. But I do find a significant negative influence of the expected median 

time distance of future IPOs within the technology neighbourhood on the hazard rate of 

current IPOs.  
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To examine this further, I adopt the general–to–specific methodology and successively 

eliminate variables that are the least significant in my regressions. Model 2 eliminates 

the debt-equity ratio and the interaction terms between technology dummies and market 

price index as well as the interaction with the expected mean time distance of future 

IPOs in the technology neighbourhood. Again, it turns out that the interaction with the 

expected median time distance of future IPOs in the technology neighbourhood is the 

only significant influence on the hazard rate of current IPOs. Model 3 confirms this once 

more after eliminating the interaction of technology dummies with the expected number 

of IPOs within four months. Model 4 shows that the age of a firm at its IPO is 

significant and increases the hazard rate and that venture capital-backing and the size of 

the venture capital stake before the IPO are jointly significant, and so are the technology 

dummies.  

The observation that the interaction of technological dummies with the expected median 

time distance of future IPOs in the technology neighbourhood is highly significant and 

negative in all four regressions should not be attributed to the general surge in IPO 

activity during the bubble. Of course, there will be a natural decline in the mean time 

and median time distance of future IPOs during the bubble. But because the Cox 

proportional hazard model does not estimate the base-line hazard, which is allowed to 

vary over time, it will automatically capture all time-variant influences on the hazard 

rate that affect firms in the various areas of technology equally. Only the 

neighbourhood-specific impact of the changing median duration is estimated. All fixed 

effects, including different starting levels for the neighbourhood behavioural measures, 

are captured by the technology area dummies. 

Table 13b provides further tests for the area-specificity of the expectations impact in the 

Neuer Markt. The regressions reported in this table are designed to test separately for 

each area of technology the hypothesis that the expected median time distance of future 
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IPOs in the technology neighbourhood explains the hazard rate against the hypothesis 

that the same kind of expectations for other technology areas have equal explanatory 

power. The column headings give the name of the technology neighbourhood for which 

the test is performed. Model 1 includes time-invariant firm and neighbourhood 

characteristics, the full set of interaction terms between technology dummies and the 

expected median time distance of future IPOs in the technology neighbourhood, and five 

additional interaction terms between the Biomedical dummy and the expected median 

time distance of future IPOs in each of the other five areas of technology. Model 2 

reports the same sort of test for hardware and telecom IPOs, using interaction terms 

between the Hardwtel dummy and the expected median time distances of future IPOs in 

each of the other five areas of technology. Model 3, 4, 5 and 6 report the test for IT 

Services, Intmedia, Ind.&Financial Services and Software. To calculate interaction 

terms between the dummy for the technology area stated in the column heading and the 

median duration expectations for all the dates of IPOs in the other areas of technology, I 

have had to augment the information contained in the step functions based on my 

nonparametric estimates of the area-specific cumulative hazard rate in order to obtain 

the appropriate values at the IPO dates in those other areas of technology. I have filled in 

these values so as to take into account that the median duration of future IPOs expected 

at the current date will decline with time even if no new IPO takes place within a 

technology neighbourhood. The decline will be proportional to the total number of IPOs 

within the technology neighbourhood. The same logic has been applied to obtain values 

for dates before the first IPO in a technology neighbourhood took place.16 

Each of the regression models reported in Table 13b confirms the highly significant 

negative impact of the expected median time distance of future IPOs in the technology 

                                           

16  Details are available from the author upon request. 
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neighbourhood. Moreover, it turns out that none of the expectations for the other areas 

of technology have a significant influence on the hazard rate of current IPOs within a 

given technology neighbourhood, which provides compelling evidence of the 

significance of the neighbourhood behavioural measure. I conclude that it is not the 

general median time distance of future IPOs that is influencing the hazard rate within 

any of the chosen areas of technology, but only the expected median time distance of 

future IPOs within the technology neighbourhood. 

Next, I examine the possibility that neighbourhood behaviour is driven by adaptive 

expectations. Table 13c estimates an adaptive expectations model for the Neuer Markt 

and tests it against the rational expectations model. Besides the time-invariant firm and 

neighbourhood characteristics, the regressions include interaction terms between 

technology dummies and the median time distance of past IPOs in the technology 

neighbourhood as well as interaction terms between the technology dummies and the 

average area-specific underpricing over two months lagged one month. As in the case of 

rational expectations, I have filled in the values of the adaptive expectations measures at 

dates not directly supported by the cumulative hazard estimates for a given technology 

neighbourhood. The average area-specific underpricing is held constant until the 

information is updated by a new IPO in the technology neighbourhood. However, my 

measures of adaptive expectations for the median duration of future IPOs – the median 

time distance of past IPOs – changes also when new IPOs are not forthcoming during a 

given lapse of time since the last observed IPO in the technology neighbourhood. The 

expected median duration until future IPOs will increase during those time lapses in 

proportion to the number of days that have passed since the last observed IPO. At dates 

before the first IPO within a technology neighbourhood the actual duration of the first 

IPO since the start of the Neuer Markt is used as a neasure of expectations. Inevitably, 

these starting values are somewhat arbitrary, but that should not invalidate the 



 

 

65 

coefficients estimated for the time-varying variables in a regression that includes 

additional neighbourhood dummies to control for fixed area-effects. 

If past underpricing influences decisions of privately held firms to go public, it seems 

reasonable to assume that these decisions are made one month before the IPO and will 

therefore be influenced by underpricing observed before that point in time. One could 

argue that a longer history of underpricing within a neighbourhood is relevant and test 

this hypothesis using Bayesian model averaging techniques17. But the overall number of 

observations in our sample period is too small to make this estimation strategy practical. 

In Table 13c, Model 1, 2 and 3 show that neither the median time distance of past IPOs 

within a technology neighbourhood, nor the average area-specific underpricing is a 

significant determinant of the current hazard rate. Moreover, Models 4 and 5 show that 

the neighbourhood behavioural measure from the rational expectations specification, the 

expected median time distance of future IPOs within a technology neighbourhood, 

retains its significant influence on the current hazard rate even if a measure of adaptive 

expectations is included. This lends further report to the hypothesis of non-market 

interaction driven by rational expectations. 

Table 14a reports the results from the Cox proportional hazards model with social 

interaction under rational expectation for the Nouveau Marché. The estimation strategy 

is essentially the same as in the case of the Neuer Markt. Each regression model includes 

a set of time-invariant firm and neighbourhood characteristics as well as neighbourhood 

behavioural measures, defined as interaction terms between technology dummies and (i) 

the expected number of IPOs within the next four months, (ii) the expected mean time 

distance of future IPOs within the technology neighbourhood and (iii) the expected 

                                           

17  See Volinsky et al. (1997) for an introduction. 
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median time distance of future IPOs in the technology neighbourhood. The only 

difference between Model 1 and 2 is that the two insignificant time-invariant firm 

characteristics employment and the debt-equity ratio have been eliminated in the latter 

model. As in the case of the Neuer Markt, only the expected median time distance of 

future IPOs in the technology neighbourhood provides a significant neighbourhood 

behavioural measure.  

This finding is further confirmed by Model 3 and 4 which eliminate successively the set 

of expected mean time distances of future IPOs in the technology neighbourhood and 

the set of expected IPO numbers from the technology neighbourhood within the next 

four months. Model 5 shows that venture capital-backing and the size of the venture 

capital stake before the IPO can count as jointly significant time-invariant firm 

characteristics that help to explain the hazard rate of IPOs in the Nouveau Marché 

although it is possible that this impression is only created by the elimination of the 

technology area dummies. In contrast to the Neuer Markt, venture capital-backing tends 

to increase the hazard rate of going public in the Nouveau Marché, so that venture 

capital-backed firms will tend to go public earlier than those without venture capital-

backing. 

Table 14b provides further tests for the area specificity of the expectations impact in the 

Nouveau Marché. The results are largely similar to those found in the Neuer Markt. 

Interaction terms between the technology dummy and the expectations for non-

neighbourhood technology areas do not have explanatory power in addition to the 

interaction between technology dummies and the expected median time distance of 

future IPOs in the technology neighbourhood.  

Table 14c presents estimates of the adaptive expectations model for the Nouveau 

Marché. As in the Neuer Markt sample, the results show that neither the median time 
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distance of past IPOs in the technology neighbourhood, nor the average area-specific 

underpricing over two months, lagged one month, are significant influences on current 

hazard rates. Moreover, the negative influence of the rationally expected median time 

distance of future IPOs in the technology neighbourhood on the hazard rate is shown to 

be unaffected by the inclusion of interaction terms between technology dummies and the 

median time distance of past IPOs. As in the Neuer Markt sample, the evidence is thus 

strongly in favour of the rational expectations model to explain the influence of time-

varying neighbourhood behavioural measures.  

VI. Related Literature 

Most work on bubbles in primary equity markets has been theoretical. It is part of a 

burgeoning literature on more general herd behaviour in financial markets that is 

reviewed in Hirshleifer and Hong Leoh (2003). Herd behaviour may arise from a variety 

of causes, including payoff externalities and reputational interactions, social learning, 

and informational cascades. Hirshleifer and Hong Leoh (2003) propose a simple 

taxonomy of effects to evaluate how alternative theories explain the evidence on the 

behaviour of investors, firms and analysts. They discuss both the private incentives to 

engage in herding or cascading and the incentives to protect against or take advantage of 

herding or cascading by others. 

To understand what is actually driving an endogenous bubble matters because the 

welfare implications can be very different. The literature has made only partial progress 

in understanding how a bubble can be recognized before it bursts, how bubbles in 

financial markets are related to technological innovation and whether bubbles may be 

efficient from a social point of view. However, it has already become clear that rational 

behaviour, such as rational learning, does not guarantee an optimal allocation. 

Informational cascades, in which agents ignore their own private information and imitate 
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others with certainty, have been shown to aggregate information inefficiently and to 

create the idiosyncrasies, fragility and simultaneity of endogenous moves that are 

characteristic elements of any stock market bubble. Moreover, it is clear that long 

periods with individual herding upon bad decisions are not an exclusive implication of 

informational cascades, but may also occur in rational learning theories with incomplete 

information blockage. 

Primary equity markets offer a particularly suitable setting for informational cascades 

because the IPO decision is always discrete. By contrast, in a continuous and unbounded 

action space, private information never ceases to have at least a small impact on 

individual decisions. Overshooting is a natural implication of informational cascades 

(Grenadier 1999), but can also occur without full information blockage, as in Caplin and 

Leahy (1993). In a formal model of the IPO decision, Nelson (2002) develops the 

hypothesis that informational cascades can by asymmetric and that going public is more 

likely to be driven by informational cascades than the decision to stay private. On 

balance, informational cascades may thus be a good feature of primary equity markets, 

because they may enable firms to go public and finance projects that have a social rate 

of return in excess of the social cost of capital, but cannot attract investors in the absence 

of the informational cascade. By implication, some systematic failure in the capital 

market must be present, and as Hirshleifer and Teoh (2003) point out, some such failure 

is also required for herding to affect prices and to cause the excess volatility and 

temporary predictability of private rates of return that is often observed during hot issue 

markets.  

The potential endogeneity of private rates of return during and after a bubble renders an 

ex ante definition of a bubble virtually impossible. Siegel (2003) argues that any 

definition must be based on an assumption of irrational expectations with regard to cash 

flows or with regard to the rate used to discount the discount expectations. The problem 
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then is to determine what can reasonably be expected of the future. The current price of 

an asset may be justified not only by cash flows in the next few years, but by cash flows 

several decades later. Siegel (2003) argues that stock prices in 1929 may not have been 

justified by the returns in the early 1930s, but – with hindsight – by the cash flows some 

thirty years later. To make the definition of a bubble operational, a time limit must be 

placed on the period over which future cash flows are considered. Siegel proposes that 

the future realized return of the asset justifies the original price over a time period long 

enough so that the present value of cash flows received by investors during this period 

constitutes at least one half of that price. A measure of this length of time is the duration 

of the asset, the time-weighted average of all future expected cash flows. Siegel (2003), 

p. 14, argues that a bubble is present if the realized return is more than two standard 

deviations from the expected return, given the risk and return conditions present up to 

the time when the price is being examined. While it is hence impossible to know 

immediately after a market price index falls whether there was a bubble or not, the 

definition can be used to argue that the great crashes of 1929 and 1987 have not really 

been bubbles. Moreover, as Siegel (2003) argues, the low point in stock prices in 1932 

may well have been a ‘negative bubble’.  

Some recent explanations of hot issue markets. Attempts to analyze the empirical 

implications of theoretical models more carefully have been at the core of the most 

recent literature. Some findings can be interpreted as support for exogenous bubbles, 

others as support for endogenous bubbles. In a pioneering empirical study of US 

biotechnology IPOs, Lerner (1994) has found that venture capitalists often take their 

portfolio firms public at times of high industry valuations. In a more comprehensive 

study, Lowry and Schwert (2002) find a significant positive relation between initial 

returns to IPO investors and future IPO volume in the US, which can account for the 

cyclical nature of the IPO market. Based on evidence that includes the entire IPO 
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process of each firm, positive information during the registration period appears to 

explain the observed propensity of IPOs to cluster during periods of high initial returns. 

However, another study by Lowry (2003) investigating the large volatility of IPO 

volume in the US casts some doubt on the hypothesis that information spillovers drive 

the observed clustering. Instead, Lowry (2003) argues that a much larger part of this 

volatility can be explained as a consequence of the changing demand for capital during 

the business cycle, and as a consequence of changes in investor optimism, than would be 

consistent with explanations emphasizing asymmetric information and adverse selection 

in the IPO market.  

Exogenous bubbles may imply pseudo market timing of the kind studied by Schultz 

(2003). Using simulations that are based on the distribution of market and IPO returns 

and the relationship between IPO clusters and overall price levels actually observed in 

the US stock market from 1973 to 1997, Schultz (2003) finds long-term 

underperformance of more than 25 percent to be neither surprising nor unusual in an 

efficient market. This finding raises the methodological question how best to measure 

the long-term underperformance of IPOs. It is an established empirical regularity that 

underperformance of IPOs is much greater when calculated in event time, weighting all 

offerings equally (as if equal amounts were invested in each offering), than for calendar 

time, weighting each month equally (as if equal amounts were invested each month 

regardless of the number of IPOs). As a caveat, however, the theory of pseudo market 

timing cannot account for the stylized fact that initial returns (the underpricing) increase 

with the aggregate IPO volume, as they do during a bubble.  

Another class of recent papers has provided empirical support for an explanation which 

is consistent with increasing initial returns during a bubble and which I would call a 

theory of semi-endogenous bubbles. Increasing initial returns may be due to the 

divergent incentives for the production of private information used in the valuation of an 
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IPO candidate by the underwriter – in line with a principal agent theory of underwriting. 

Ploog and Stolpe (2003), pp. 135, provide a detailed summary of the principal-agent 

theory of underwriting. The basic idea is that the issuer will allow underpricing of his 

shares in order to set optimal incentives for the underwriter to acquire information from 

dispersed investors that is relevant for the valuation of the firm. Hot issue markets thus 

need not always be caused by a bubble in the secondary market; they may also arise due 

to other exogenous changes that alter the agency conflict between issuers (the principals) 

and underwriters (the agents). According to Ljungqvist et al. (2003), the ownership 

structure of IPO firms became more fragmented shortly before and during the dot-com 

bubble of the late 1990s. Moreover, since there was less insider selling at the typical dot-

com-IPO, pre-IPO owners became more complacent about underpricing. The larger 

initial return in turn attracted more demand for shares in the primary equity market and 

thus inflated the bubble, as suggested by Lowry and Schwert (2002). In effect, outside 

investors suddenly viewed IPOs as less risky. Offer prices could thus increase as 

underpricing increased, and the incentive of pre-IPO owners to bargain with 

underwriters about the best offer price could decline further. 

Finally, there is the recent study of Benveniste et al. (2003) which I interpret as an 

exploration of endogenous bubbles based on information spillovers. They confirm 

Schwert and Lowry’s (2002) finding that the decision to carry through with a planned 

IPO is influenced by the performance of other IPOs that have taken place at almost the 

same time. However, they show that initial returns and IPO volume is negatively 

correlated among those contemporaneous IPOs that are subject to a common valuation 

factor although the correlation in the aggregate of all IPOs is positive. The authors argue 

that these findings can be reconciled if underwriters with some market power, such as 

investment banks, seek to bundle offerings that are subject to a common valuation factor 

in order to internalize the information spillovers from the earlier IPOs during a hot issue 
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market. This private response to the coordination problem in the underwriting process, 

first analyzed in Benveniste et al. (2002), could be an important source of welfare 

benefits from endogenous bubbles in primary equity markets. 

VII. Concluding Remarks  

In this paper, I have sought to provide a fresh perspective on the genesis of bubbles in 

primary equity markets, also known as hot issue markets in the literature. I have 

suggested an analytical distinction between hot issue markets driven by exogenous 

changes in the economy, such as an unexpected expansion in monetary policy, and those 

driven by endogenous forces, such as information spillovers from individual IPOs that 

can alter the choice of timing for subsequent IPOs through non-market interaction. 

Positive information spillovers can greatly improve the opportunities of privately held 

firms that plan to go public. The distinction I propose helps to define conditions for hot 

issue markets to generate welfare gains by boosting the incentives for technological 

innovation. The main contribution of the paper has been to develop an econometric 

framework to test the empirical implications of the endogenous and exogenous bubble 

hypotheses. Using firm-level data from Germany’s Neuer Markt and France’s Nouveau 

Marché, I have provided descriptive evidence that firms belonging to the same area of 

technology tend to cluster their IPOs around peaks whose timing varies across different 

technology areas. 

Hot issue markets may generate important welfare benefits primarily because they 

provide a window for new technology-based firms to be rewarded for their innovation 

and to embark on a large-scale expansion. Similar rewards would not be available during 

normal times when the market’s valuation of IPOs, in particular from high-tech start-

ups, is often too low, relative to their potential long-term performance, to be an 

attractive source of expansion finance. IPOs from certain subsets of high-technology are 
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therefore absent during cold issue markets. The notion of an endogenous bubble 

summarizes the key arguments why hot issue markets may be welfare-enhancing. 

Endogeneity is a natural implication of information spillovers and non-market 

interaction in firms’ timing of going public during the build-up of a bubble. Endogenous 

bubbles are relatively more likely to benefit firms generating social returns in excess of 

the returns that can be privately appropriated, while exogenous bubbles are relatively 

more likely to waste capital on firms that will turn out to be failures. 

The evidence from Germany’s Neuer Markt and France’s Nouveau Marché is 

predominantly in favour of the hypothesis that the hot issue market of the late 1990s has 

been an endogenous bubble, driven by forward-looking rational expectations, not by 

adaptive expectations derived from the performance of past IPOs. I draw this conclusion 

primarily on the basis of a Cox proportional hazards model with non-market interaction 

that explains the empirical determinants of the waiting time, or duration, of specific 

privately held firms before their IPO. The expected median duration of future IPOs 

within the technological neighbourhood is the most important explanatory of a firm’s 

hazard rate of going public. Neither the general stock market price index, nor most of 

the exogenous firm characteristics that I considered were significant determinants of the 

hazard rate in my empirical model. However there is some evidence from the Neuer 

Markt that venture capital-backed firms go public later. 

Because the empirical behaviour of the relevant financial intermediaries can help to 

distinguish between exogenous and endogenous bubbles in primary equity markets, I 

have sought to estimate the influence of lead underwriters and venture capitalists on the 

time distance between arbitrarily paired IPOs, using a simple linear regression 

framework. My evidence from the Nouveau Marché is consistent with the implication of 

an endogenous bubble that underwriters and venture capital firms will seek to maximize 

their private returns by scheduling IPOs so that information spillovers are at least 
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partially internalized. Moreover, the evidence suggests that IPO firms themselves have 

an incentive to accelerate a planned IPO after other IPOs from the same area of 

technology have taken place. But the Neuer Markt evidence contradicts the hypothesis 

of technology-specific information spillovers, causing IPOs from the same area to 

cluster in time and providing underwriters with an incentive to schedule their client 

firms’ IPOs so as to internalize these spillovers. Both underwriters and venture capital 

firms thus appear to be more successful in internalizing information externalities in the 

Nouveau Marché than in the Neuer Markt. 

Future empirical research should study the role of financial intermediaries in primary 

equity markets in much greater detail. For example, my duration analysis with non-

market interaction could be extended to consider the influence of financial 

intermediaries on the timing of IPOs. This might be done either by including interaction 

terms – multiplying the neighbourhood behavioral measure with a dummy variable that 

identifies the financial intermediaries backing a given IPO – or by simply redefining the 

notion of a firm’s neighbourhood in terms of the associated financial intermediaries. 

Further research on these issues could have important practical implications for the 

regulation of financial intermediaries in primary equity markets. Underwriters with 

market power may benefit from greater profits during a hot issue market, and they may 

thus have a special interest in helping to create a pattern of hot and cold issue markets. 

Cold issue markets might even serve as a barrier to entry because a relatively small 

number of the largest underwriters may have a much better chance of surviving the long 

cold issue markets between bubbles.  
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Figure 1a:  Monthly IPO volume and market price index in the Neuer Markt 
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Figure 1b:  Monthly IPO volume and market price index in the Nouveau Marché 
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Figure 2a:  Nelson-Aalen cumulative hazard estimates for Neuer Markt IPOs, by  
technology area 
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Figure 2b: Smoothed hazard estimates for Neuer Markt IPOs, by technology area 
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Figure 3a: Kaplan-Meier survival estimates for Neuer Markt IPOs 
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Figure 3b: Kaplan-Meier survival estimates for Neuer Markt IPOs 
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Figure 3c: Kaplan-Meier survival estimates for Neuer Markt IPOs 
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Figure 3d: Kaplan-Meier survival estimates for Neuer Markt IPOs 
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Figure 4:  Histograms of the length of time between two consecutive IPOs, by technology area 
Neuer Markt 
 a. Software b. IT Services c. Hardware & Telecomms 
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Figure 5a:  Frequencies of different time intervals between two consecutive IPOs, Neuer Markt 
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Figure 5b:  Frequencies of different time intervals between two consecutive IPOs, Nouveau 

Marché 
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Figure 6: Histograms of the duration from market opening day to date of IPO 
A. Neuer Markt 
 a. Software b. IT Services c. Hardware & Telecomms 
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Figure 7a: Duration frequencies from Neuer Markt opening day to date of IPO 
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Figure 7b: Duration frequencies from Nouveau Marché opening day to date of IPO  
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Table 1: Number and percentage shares of IPOs by technology area 
 
Neuer Markt (opened March 10, 1997)       

 1996 1997 1998 1999 2000 Total 
       
Software  2 4 18 16 40 
IT Services  0 6 16 15 37 
Hardware & Telecomms  2 6 12 13 33 
Internet & Media  0 8 39 49 96 
Biotechnology  1 1 10 18 30 
Industrial & Financial Services  5 19 36 25 85 
Total  10 44 131 136 321 
       
Nouveau Marché (opened March 20, 1996)      

 1996 1997 1998 1999 2000 Total 
       
Software 2 3 6 6 12 29 
IT Services 2 0 3 9 11 25 
Hardware & Telecomms 1 1 7 5 6 20 
Internet & Media 0 1 3 5 12 21 
Biotechnology 2 3 3 3 1 12 
Industrial & Financial Services 2 4 9 1 6 22 
Total 9 12 31 29 48 129 
       
Percent Shares*        
        
Neuer Markt (opened March 10, 1997)      

  1996 1997 1998 1999 2000 Total 
        
Software (12.5)   5.0 10.0 45.0 40.0 100.0 
IT Services (11.5)  0.0 16.2 43.2 40.5 100.0 
Hardware & Telecomms (10.3)   6.1 18.2 36.4 39.4 100.0 
Internet & Media (29.9)   0.0 8.3 40.6 51.0 100.0 
Biotechnology (9.3)   3.3 3.3 33.3 60.0 100.0 
Industrial & Financial Services 
(26.5)   5.9 22.4 42.4 29.4 100.0 
        
Nouveau Marché (opened March 20, 1996) 

  1996 1997 1998 1999 2000 Total 
        
Software (22.5)  6.9 10.3 20.7 20.7 41.4 100.0 
IT Services (19.4) 8.0 0.0 12.0 36.0 44.0 100.0 
Hardware & Telecomms (15.5)  5.0 5.0 35.0 25.0 30.0 100.0 
Internet & Media (16.3)  0.0 4.8 14.3 23.8 57.1 100.0 
Biotechnology (9.3)  16.7 25.0 25.0 25.0 8.3 100.0 
Industrial & Financial Services 
(17.1)  9.1 18.2 40.9 4.5 27.3 100.0 
        
*Figures in parentheses are percent of total number of IPOs. 
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Table 2: Average and expected length of time between two IPOs 
 

  Neuer Markt  Nouveau Marché 
  Average* Expected**  Average* Expected** 

       
Software  31.8 34.8  54.04 60.2 
IT Services 26.9 37.6  69.46 69.9 
Hardware& 
Telecomms  42.2 42.2  75.84 87.4 
Internet & Media  10.3 14.5  61.25 83.2 
Biotechnology  41.2 46.4  133.09 145.6 
Industrial& 
Financial Services  14.7 16.4  77.62 79.4 
       
Total  4.26 5.4  13.30 13.5 
              
* Days       

** Total number of days in sample period divided by total number of IPOs 
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Table 3: Relative frequency of the lengths of time between two consecutive IPOs within fixed 
intervals in the Neuer Markt 

Percentage shares within each area of technology 

 SOFTWARE ITSERVICE HRDW&TEL INT&MEDIA BIOMED IND&FIN ALL AREAS 
Obs. [39] [36] [32] [95] [29] [84] [320] 
        
Interval 
in days*  
25 64.1 61.1 50.0 90.5 71.4 85.7 97.2 
50 15.4 19.4 21.9 3.2 10.7 9.5 1.9 
75 10.3 8.3 18.8 6.3 7.1 3.6 0.3 
100 7.7 11.1 0.0 0.0 10.7 0.0 0.0 
125 0.0 0.0 3.1 0.0 0.0 1.2 0.6 
150 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
>150 
days 2.6 0.0 6.3 0.0 0.0 0.0 0.0 
        
Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

Difference from shares in all areas in percentage points 
        
25 -33.1 -36.1 -47.2 -6.7 -25.8 -11.5 0.0 
50 13.5 17.6 20.0 1.3 8.8 7.6 0.0 
75 9.9 8.0 18.4 6.0 6.8 3.3 0.0 
100 7.7 11.1 0.0 0.0 10.7 0.0 0.0 
125 -0.6 -0.6 2.5 -0.6 -0.6 0.6 0.0 
150 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
>150 
days 2.6 0.0 6.3 0.0 0.0 0.0 0.0 
Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
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Table 4: Relative frequency of the lengths of time between two consecutive IPOs within fixed 
intervals in the Nouveau Marché 

Percentage shares within each area of technology 

 SOFTWARE ITSERVICE HRDW&TEL INT&MEDIA BIOMED IND&FIN ALL AREAS 
Obs. [28] [24] [19] [20] [11] [21] [128] 

Interval 
in days*  
50 60.7 70.8 52.6 65.0 9.1 42.9 94.5 
100 21.4 12.5 21.1 20.0 27.3 33.3 4.7 
150 7.1 12.5 15.8 0.0 18.2 9.5 0.8 
200 7.1 0.0 5.3 5.0 27.3 4.8 0.0 
250 3.6 0.0 0.0 5.0 18.2 4.8 0.0 
300 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
>300 
days 7.1 0.0 5.3 5.0 0.0 4.8 0.0 
        
Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
        
        

Difference from shares in all areas in percentage points 
        
50 -33.8 -23.7 -41.9 -29.5 -85.4 -51.7 0.0 
100 16.7 7.8 16.4 15.3 22.6 28.6 0.0 
150 6.4 11.7 15.0 -0.8 17.4 8.7 0.0 
200 7.1 0.0 5.3 5.0 27.3 4.8 0.0 
250 3.6 0.0 0.0 5.0 18.2 4.8 0.0 
300 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
>300 
days 0.0 4.2 5.3 5.0 0.0 4.8 0.0 
Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
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Table 5: Relative frequency of the lengths of time between two consecutive IPOs within fixed 
intervals (adjusted) in the Neuer Markt 

Percentage shares within each area of technology 

 SOFTWARE ITSERVICE HRDW&TEL INT&MEDIA BIOMED IND&FIN ALL AREAS 
Obs. [39] [36] [32] [95] [29] [84] [320] 

        

Interval 
in days*  
        
5 76.9 77.8 71.9 83.2 79.3 72.6 79.7 
10 12.8 13.9 18.8 7.4 17.2 19.0 13.1 
15 7.7 8.3 3.1 3.2 0.0 4.8 3.1 
20 0.0 0.0 0.0 6.3 0.0 2.4 0.6 
25 0.0 0.0 6.3 0.0 0.0 0.0 0.6 
30 0.0 0.0 0.0 0.0 0.0 1.2 0.9 
35 0.0 0.0 0.0 0.0 0.0 0.0 0.3 
40 0.0 0.0 0.0 0.0 0.0 0.0 0.3 
45 2.6 0.0 0.0 0.0 3.4 0.0 0.3 
50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
55 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
60 0.0 0.0 0.0 0.0 0.0 0.0 0.3 
>60 
days 0.0 0.0 0.0 0.0 0.0 0.0 0.6 
        

Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
        

Difference from overall shares in percentage points 
        
5 -2.8 -1.9 -7.8 3.5 -0.4 -7.1 0.0 
10 -0.3 0.8 5.6 -5.8 4.1 5.9 0.0 
15 4.6 5.2 0.0 0.0 -3.1 1.6 0.0 
20 -0.6 -0.6 -0.6 5.7 -0.6 1.8 0.0 
25 -0.6 -0.6 5.6 -0.6 -0.6 -0.6 0.0 
30 -0.9 -0.9 -0.9 -0.9 -0.9 0.3 0.0 
35 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 0.0 
40 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 0.0 
45 2.3 -0.3 -0.3 -0.3 3.1 -0.3 0.0 
50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
55 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
60 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 0.0 
>60 
days -0.6 -0.6 -0.6 -0.6 -0.6 -0.6 0.0 
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Table 6:  Relative frequency of the lengths of time between two consecutive IPOs within fixed 
intervals (adjusted) in the Nouveau Marché 

Percentage shares within each area of technology 

 SOFTWARE ITSERVIC HRDW&TEL INT&MEDIA BIOMED IND&FIN ALL AREAS 
Obs. [28] [24] [19] [20] [11] [21] [128] 
        

Interval 
in days*  
        
5 39.3 52.2 47.4 50.0 9.1 38.1 44.5 
10 17.9 21.7 21.1 20.0 36.4 9.5 22.7 
15 10.7 13.0 5.3 15.0 9.1 19.0 7.8 
20 10.7 0.0 0.0 0.0 27.3 9.5 7.8 
25 3.6 8.7 21.1 0.0 18.2 9.5 2.3 
30 3.6 4.3 0.0 5.0 0.0 0.0 1.6 
35 7.1 0.0 0.0 5.0 0.0 4.8 2.3 
40 0.0 0.0 0.0 0.0 0.0 4.8 3.1 
45 3.6 0.0 0.0 0.0 0.0 0.0 2.3 
50 3.6 0.0 0.0 0.0 0.0 0.0 0.0 
55 0.0 0.0 0.0 0.0 0.0 0.0 1.6 
60 0.0 0.0 5.3 5.0 0.0 0.0 0.0 
>60 
days 0.0 0.0 0.0 0.0 0.0 4.8 3.9 
        
Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
        

Difference from overall shares in percentage points 
        
5 -5.2 7.6 2.8 5.5 -35.4 -6.4 0.0 
10 -4.8 -0.9 -1.6 -2.7 13.7 -13.1 0.0 
15 2.9 5.2 -2.5 7.2 1.3 11.2 0.0 
20 2.9 -7.8 -7.8 -7.8 19.5 1.7 0.0 
25 1.2 6.4 18.7 -2.3 15.8 7.2 0.0 
30 2.0 2.8 -1.6 3.4 -1.6 -1.6 0.0 
35 4.8 -2.3 -2.3 2.7 -2.3 2.4 0.0 
40 -3.1 -3.1 -3.1 -3.1 -3.1 1.6 0.0 
45 1.2 -2.3 -2.3 -2.3 -2.3 -2.3 0.0 
50 3.6 0.0 0.0 0.0 0.0 0.0 0.0 
55 -1.6 -1.6 -1.6 -1.6 -1.6 -1.6 0.0 
60 0.0 0.0 5.3 5.0 0.0 0.0 0.0 
>60 
days -3.9 -3.9 -3.9 -3.9 -3.9 0.9 0.0 
* Shows the upper bound of the interval. 
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Table 7: The distribution of IPOs within intervals of duration from the start of the Neuer 
Markt 

Interval SOFTWARE ITSERVICE HRDW&TEL INT&MEDIA BIOMED IND&FIN ALL AREAS 
in days* [40 Obs.] [37] [33] [96] [30] [85] [321] 
Percentage shares within each area of technology 
100 0.0 0.0 3.0 0.0 0.0 0.0 0.3 
200 5.0 0.0 0.0 0.0 3.3 2.4 1.6 
300 0.0 0.0 3.0 0.0 0.0 3.5 1.2 
400 0.0 2.7 0.0 1.0 0.0 2.4 1.2 
500 2.5 2.7 12.1 3.1 0.0 11.8 5.9 
600 5.0 8.1 3.0 1.0 0.0 4.7 3.4 
700 2.5 5.4 3.0 5.2 3.3 4.7 4.4 
800 15.0 10.8 15.2 6.3 16.7 11.8 11.2 
900 22.5 21.6 6.1 12.5 6.7 12.9 13.7 
1000 7.5 8.1 15.2 19.8 10.0 16.5 14.6 
1100 10.0 8.1 9.1 9.4 6.7 4.7 7.8 
1200 22.5 5.4 12.1 22.9 16.7 8.2 15.3 
1300 5.0 21.6 6.1 13.5 23.3 12.9 13.4 
1400 2.5 5.4 12.1 5.2 13.3 3.5 5.9 

Cumulative Shares 
100 0.0 0.0 3.0 0.0 0.0 0.0 0.3 
200 5.0 0.0 3.0 0.0 3.3 2.4 1.9 
300 5.0 0.0 6.1 0.0 3.3 5.9 3.1 
400 5.0 2.7 6.1 1.0 3.3 8.2 4.4 
500 7.5 5.4 18.2 4.2 3.3 20.0 10.3 
600 12.5 13.5 21.2 5.2 3.3 24.7 13.7 
700 15.0 18.9 24.2 10.4 6.7 29.4 18.1 
800 30.0 29.7 39.4 16.7 23.3 41.2 29.3 
900 52.5 51.4 45.5 29.2 30.0 54.1 43.0 
1000 60.0 59.5 60.6 49.0 40.0 70.6 57.6 
1100 70.0 67.6 69.7 58.3 46.7 75.3 65.4 
1200 92.5 73.0 81.8 81.3 63.3 83.5 80.7 
1300 97.5 94.6 87.9 94.8 86.7 96.5 94.1 
1400 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

Difference from shares in all areas in percentage points 
100 0.3 0.3 -2.7 0.3 0.3 0.3 0.0 
200 -3.4 1.6 1.6 1.6 -1.8 -0.8 0.0 
300 1.2 1.2 -1.8 1.2 1.2 -2.3 0.0 
400 1.2 -1.5 1.2 0.2 1.2 -1.1 0.0 
500 3.4 3.2 -6.2 2.8 5.9 -5.8 0.0 
600 -1.6 -4.7 0.4 2.4 3.4 -1.3 0.0 
700 1.9 -1.0 1.3 -0.8 1.0 -0.3 0.0 
800 -3.8 0.4 -3.9 5.0 -5.5 -0.5 0.0 
900 -8.8 -7.9 7.6 1.2 7.0 0.8 0.0 
1000 7.1 6.5 -0.5 -5.1 4.6 -1.8 0.0 
1100 -2.2 -0.3 -1.3 -1.6 1.1 3.1 0.0 
1200 -7.2 9.9 3.1 -7.7 -1.4 7.0 0.0 
1300 8.4 -8.2 7.3 -0.1 -9.9 0.5 0.0 
1400 3.4 0.5 -6.2 0.7 -7.4 2.4 0.0 
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Table 8: The distribution of IPOs within intervals of duration from the start of the Nouveau 
Marché 

Percentage shares within each area of technology 

 SOFTWARE ITSERVICE HRDW&TEL INT&MEDIA BIOMED IND&FIN ALL AREAS 
Obs. [29] [25] [20] [21] [12] [22] [129] 

        

Interval 
in days*  
        
200 0.0 8.0 0.0 0.0 8.3 9.1 4.7 
400 10.3 0.0 5.0 0.0 8.3 9.1 6.2 
600 3.4 0.0 0.0 4.8 16.7 9.1 5.4 
800 3.4 0.0 10.0 4.8 25.0 22.7 9.3 
1000 20.7 12.0 30.0 9.5 8.3 18.2 17.1 
1200 13.8 16.0 20.0 23.8 16.7 0.0 14.7 
1400 6.9 20.0 5.0 0.0 8.3 4.5 5.4 
1600 24.1 36.0 25.0 47.6 8.3 22.7 27.9 
1800 17.2 8.0 5.0 9.5 0.0 4.5 9.3 
Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
        
Cumulative Shares 
        
200 0.0 8.0 0.0 0.0 8.3 9.1 4.7 
400 10.3 8.0 5.0 0.0 16.7 18.2 10.9 
600 13.8 8.0 5.0 4.8 33.3 27.3 16.3 
800 17.2 8.0 15.0 9.5 58.3 50.0 25.6 
1000 37.9 20.0 45.0 19.0 66.7 68.2 42.6 
1200 51.7 36.0 65.0 42.9 83.3 68.2 57.4 
1400 58.6 56.0 70.0 42.9 91.7 72.7 62.8 
1600 82.8 92.0 95.0 90.5 100.0 95.5 90.7 
1800 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
        
        
Difference from shares in all areas in percentage points 
        
200 4.7 -3.3 4.7 4.7 -3.7 -4.4 0.0 
400 -4.1 6.2 1.2 6.2 -2.1 -2.9 0.0 
600 2.0 5.4 5.4 0.7 -11.2 -3.7 0.0 
800 5.9 9.3 -0.7 4.5 -15.7 -13.4 0.0 
1000 -3.6 5.1 -12.9 7.5 8.7 -1.1 0.0 
1200 0.9 -1.3 -5.3 -9.1 -1.9 14.7 0.0 
1400 -1.5 -14.6 0.4 5.4 -2.9 0.9 0.0 
1600 3.8 -8.1 2.9 -19.7 19.6 5.2 0.0 
1800 -7.9 1.3 4.3 -0.2 9.3 4.8 0.0 
        
* Shows the upper bound of the interval. 
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Table 9:  Determinants of time intervals between arbitrary pairs of IPOs* 

 (1) (2) (3) 
Dependent variable is the number of 
days between IPOs 

Neuer Markt Nouveau Marché 

 1998-99 sample 1999 sample total sample 

Observations 15172 11570 8765 
Constant 182.44 223.75 516 
 (1.32) [0.00] (2.12) [0.00] (4.50) [0.00] 
Time interval between firms’ founding 
dates 0.01 0.01 0.02 

 (0.00) [0.00] (0.00) [0.00] (0.00) [0.00] 

Equality of technology focus 10.58 11.45 -52.37 
 (3.39) [0.00] (5.02) [0.02] (12.16) [0.00] 

Equality of lead underwriter 10.13 23.36 -43.01 
 (5.46) [0.06] (8.65) [0.01] (21.94) [0.05] 

Equality of venture capitalist 2.92 21.24 -110.83 
 (13.43) [0.82] (22.36) [0.34] (23.40) [0.00] 

adj. R-squared 0.045 0.029 0.034 
F-statistic 180.90 89.02 79.25 
Prob. (F-statistic) 0.00 0.00 0.00 
*OLS with White heteroskedasticity–consistent standard errors in parentheses, probabilities in brackets. 
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Table 10a: Detailed determinants of time intervals between arbitrary pairs of IPOs* 

 (1) (2) (3) 
Dependent variable is the number of days 
between IPOs Neuer Markt Neuer Markt Neuer Markt 

 1998-99 sample 1998–99 sample 1998–99 sample  
Observations 15172 15172 15172 
Constant 182.34 182.31 182.38 
 (1.33) [0.00] (1.32) [0.00] (1.33) [0.00] 
Time interval between firms’ founding dates 0.01 0.01 0.01 
 (0.00) [0.00] (0.00) [0.00] (0.00) [0.00] 
Equality of technology focus -95.32 -95.29 10.81 
 (24.24) [0.00] (24.24) [0.00] (3.49) [0.00] 
Internet 90.25 89.71  
 (25.13) [0.00] (25.09) [0.00]  
Software 44.54 46.51  
 (25.47) [0.08] (25.34) [0.07]  
ITServices 90.45 89.56  
 (26.10) [0.00] (25.97) [0.00]  
Hardware 123.03 125.90  
 (35.53) [0.00] (35.11) [0.00]  
Media 71.18 72.42  
 (28.02) [0.01] (27.80) [0.00]  
Telecom 137.92 131.97  
 (35.18) [0.00] (35.15) [0.00]  
Biomedical 15.75 19.31  
 (26.61) [0.55] (26.67) [0.47]  
Industry & Financial Services 132.72 132.80  
 (24.67) [0.00] (24.64) [0.00]  
Equality of lead underwriter 10.83 11.72 10.85 
 (5.95) [0.07] (5.45) [0.04] (5.95) [0.07] 
Interaction with Internet -15.97  -31.91 
 (30.51) [0.60]  (29.92) [0.29] 
Interaction with Software 18.53  -42.95 
 (24.45) [0.45]  (23.36) [0.07] 
Interaction with ITServices -8.38  -23.98 
 (35.53) [0.81]  (34.31) [0.49] 
Interaction with Hardware 103.65  120.50 
 (26.68) [0.00]  (6.77) [0.00] 
Interaction with Media 18.98  -15.98 
 (56.59) [0.74]  (54.89) [0.77] 
Interaction with Telecom -213.29  -181.45 
 (25.21) [0.00]  (6.89) [0.00] 
Interaction with Biomedical 49.55  -40.83 
 (58.78) [0.40]  (57.82) [0.48] 
Interaction with Industry & Financial Services 2.05  28.57 
 (22.92) [0.93]  (22.64) [0.21] 
Equality of venture capitalist 6.01 6.09 3.60 
 (13.55) [0.66] (13.53) [0.65] (13.46) [0.79] 

adj. R-squared 0.05 0.05 0.05 
F-statistic 42.51 70.57 61.01 
Prob. (F-statistic) 0.00 0.00 0.00 

* The table reports OLS coefficient estimates, White heteroskedacity-consistent standard errors (in 
parentheses) and p-values (in brackets). 
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Table 10b: Detailed determinants of time intervals between arbitrary pairs of IPOs  

 (1) (2) (3) 
Dependent variable is the number of days 
between IPOs Neuer Markt Neuer Markt Neuer Markt 

 1999 sample 1999 sample 1999 sample  
Observations 11570 11570 11570 
Constant 223.75 223.72 223.67 
 (2.13) [0.00] (2.12) [0.00] (2.13) [0.00] 
Time interval between firms’ founding dates 0.01 0.01 0.01 
 (0.00) [0.00] (0.00) [0.00] (0.00) [0.00] 
Equality of technology focus -137.01 -136.98 11.76 
 (31.90) [0.00] (31.89) [0.00] (5.16) [0.02] 
Internet 85.14 85.42  
 (32.95) [0.01] (32.90) [0.01]  
Software 116.07 119.49  
 (35.81) [0.00] (35.45) [0.00]  
ITServices 91.40 89.21  
 (33.52) [0.01] (33.44) [0.01]  
Hardware 198.76 199.10  
 (46.59) [0.00] (45.99) [0.00]  
Media 69.80 71.86  
 (35.80) [0.05] (35.56) [0.04]  
Telecom 197.82 182.08  
 (63.72) [0.00] (62.96) [0.00]  
Biomedical 90.93 84.86  
 (47.94) [0.06] (46.96) [0.07]  
Industry & Financial Services 195.21 195.54  
 (32.54) [0.00] (32.49) [0.00]  
Equality of lead underwriter 24.22 24.77 24.23 
 (9.56) [0.01] (8.61) [0.00] (9.56) [0.01] 
Interaction with Internet 9.33  -54.24 
 (47.83) [0.85]  (47.31) [0.25] 
Interaction with Software 32.29  -0.57 
 (52.86) [0.54]  (50.49) [0.99] 
Interaction with ITServices -23.12  -80.46 
 (43.52) [0.60]  (42.47) [0.06] 
Interaction with Hardware 14.86  64.90 
 (35.36) [0.67]  (10.69) [0.00] 
Interaction with Media 26.63  -52.50 
 (63.73) [0.68]  (61.74) [0.40] 
Interaction with Telecom -283.01  -234.24 
 (55.95) [0.00]  (10.76) [0.00] 
Interaction with Biomedical -133.13  -191.13 
 (56.34) [0.02]  (43.67) [0.00] 
Interaction with Industry & Financial Services 7.70  54.17 
 (31.44) [0.81]  (31.07) [0.08] 
Equality of venture capitalist 24.54 24.45 22.26 
 (22.62) [0.28] (22.56) [0.28] (22.37) [0.32] 

adj. R-squared 0.04 0.04 0.03 
F-statistic 24.49 40.51 30.57 
Prob. (F-statistic) 0.00 0.00 0.00 

* The table reports OLS coefficient estimates, White heteroskedacity-consistent standard errors (in 
parentheses) and p-values (in brackets). 
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Table 10c: Detailed determinants of time intervals between arbitrary pairs of IPOs  

 (1) (2) (3) 
Dependent variable is the number of days 
between IPOs Nouveau Marché Nouveau Marché Nouveau Marché 

 total sample total sample total sample 
Observations 8756 8756 8756 
Constant 516.44 516.52 516.27 
 (4.52) [0.00] (4.51) [0.00] (4.52) [0.00] 
Time interval between firms’ founding dates 0.02 0.02 0.02 
 (0.00) [0.00] (0.00) [0.00] (0.00) [0.00] 
Equality of technology focus 264.09 264.04 -51.49 
 (179.16) [0.14] (179.09) [0.14] (12.36) [0.00] 
Internet -584.94 -578.02  
 (179.94) [0.00] (179.94) [0.00]  
Software -274.02 -273.31  
 (180.07) [0.13] (179.97) [0.13]  
ITServices -331.80 -329.23  
 (180.91) [0.07] (180.80) [0.07]  
Hardware -394.25 -399.12  
 (191.06) [0.04] (188.85) [0.04]  
Media -453.97 -428.61  
 (183.66) [0.01] (184.18) [0.02]  
Telecom -339.74 -346.88  
 (182.03) [0.06] (181.70) [0.06]  
Biomedical -288.90 -292.70  
 (183.65) [0.12] (183.49) [0.11]  
Industry & Financial Services -239.15 -249.92  
 (182.40) [0.19] (182.20) [0.17]  
Equality of lead underwriter -39.41 -41.09 -39.40 
 (23.12) [0.09] (22.04) [0.06] (23.11) [0.09] 
Interaction with Internet 266.78  -1.48 
 (85.07) [0.00]  (83.96) [0.99] 
Interaction with Software 33.72  74.46 
 (126.45) [0.79]  (125.59) [0.55] 
Interaction with ITServices 44.44  28.56 
 (139.89) [0.75]  (138.00) [0.84] 
Interaction with Hardware -49.56  -127.07 
 (70.48) [0.48]  (26.07) [0.00] 
Interaction with Media 353.98  216.18 
 (176.37) [0.05]  (170.65) [0.21] 
Interaction with Telecom -126.81  -150.94 
 (71.72) [0.08]  (64.64) [0.02] 
Interaction with Biomedical -255.28  -227.91 
 (46.86) [0.00]  (25.87) [0.00] 
Interaction with Industry & Financial Services -331.27  -255.74 
 (87.23) [0.00]  (81.19) [0.00] 
Equality of venture capitalist -110.24 -109.99 -111.19 
 (23.33) [0.00] (23.29) [0.00] (23.42) [0.00] 

adj. R-squared 0.04 0.04 0.03 
F-statistic 19.00 31.04 26.79 
Prob. (F-statistic) 0.00 0.00 0.00 

* The table reports OLS coefficient estimates, White heteroskedacity-consistent standard errors (in 
parentheses) and p-values (in brackets). 
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Table 11a: Transition probability matrix for the sequence of IPO events 

Neuer Markt       
Initial IPO area Transition end state (consecutive IPO) 
(observations) SOFTWARE ITSERVIC HARDWTEL INTMEDIA BIOMED INDFSERV 

SOFTWARE (39) 0.23 0.10 0.05 0.33 0.05 0.25 
ITSERVIC (36) 0.08 0.08 0.08 0.32 0.08 0.35 
HARDWTEL (32) 0.09 0.21 0.06 0.33 0.12 0.18 
INTMEDIA (95) 0.13 0.09 0.10 0.29 0.09 0.29 
BIOMED (23) 0.14 0.07 0.14 0.31 0.10 0.24 
INDFSERV (84) 0.11 0.14 0.13 0.27 0.11 0.25 
       
Sample Distribution 0.13 0.12 0.10 0.30 0.09 0.27 
Stationary 
Distribution 0.13 0.12 0.10 0.30 0.09 0.27 
       
Nouveau Marché       
 SOFTWARE ITSERVIC HARDWTEL INTMEDIA BIOMED INDFSERV 
SOFTWARE (28) 0.21 0.32 0.14 0.04 0.07 0.21 
ITSERVIC (24) 0.12 0.12 0.16 0.36 0.12 0.12 
HARDWTEL (19) 0.35 0.25 0.10 0.10 0.15 0.05 
INTMEDIA (20) 0.29 0.10 0.29 0.24 0.00 0.10 
BIOMED (11) 0.25 0.08 0.17 0.08 0.08 0.33 
INDFSERV (21) 0.18 0.18 0.09 0.14 0.14 0.27 
       
Sample Distribution 0.22 0.20 0.16 0.16 0.09 0.17 
Stationary 
Distribution 0.23 0.19 0.16 0.16 0.09 0.17 
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Table 11b: Transition probability matrix, after aggregation over monthly intervals 
 
Neuer Markt       

Initial IPO area Transition end state (percentage shares in next month’s IPOs) 
 SOFTWARE ITSERVIC HARDWTEL INTMEDIA BIOMED INDFSERV 

       
SOFTWARE 0.29 0.00 0.00 0.12 0.24 0.35 
ITSERVIC 0.12 0.08 0.21 0.23 0.00 0.36 
HARDWTEL 0.13 0.00 0.18 0.18 0.00 0.51 
INTMEDIA 0.18 0.22 0.00 0.51 0.09 0.00 
BIOMED 0.04 0.14 0.00 0.00 0.00 0.82 
INDFSERV 0.03 0.19 0.21 0.11 0.17 0.29 
       
Sample Distribution 0.13 0.13 0.10 0.21 0.09 0.33 
Stationary 
Distribution 0.12 0.13 0.12 0.21 0.10 0.33 
       
Nouveau Marché       
 SOFTWARE ITSERVIC HARDWTEL INTMEDIA BIOMED INDFSERV 
SOFTWARE 0.12 0.14 0.24 0.13 0.00 0.37 
ITSERVIC 0.00 0.16 0.21 0.20 0.43 0.00 
HARDWTEL 0.49 0.31 0.02 0.18 0.00 0.00 
INTMEDIA 0.23 0.27 0.27 0.23 0.00 0.00 
BIOMED 0.21 0.00 0.11 0.00 0.00 0.68 
INDFSERV 0.27 0.00 0.09 0.14 0.30 0.20 
       
Sample Distribution 0.22 0.11 0.17 0.15 0.12 0.21 
Stationary 
Distribution 0.22 0.14 0.16 0.15 0.12 0.21 
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Table 11c: Transition probability matrix for the three-state model 

Neuer Markt – unconditional estimates 
Initial IPO area 
(observations) Transition end state (consecutive IPO) 

 COMPUTER MEDIACOM OTHER 
COMPUTER (103) 0.40 0.27 0.33 
MEDIACOM (120) 0.27 0.35 0.38 
OTHER (105) 0.21 0.44 0.35 
Sample Distribution 0.31 0.37 0.32 
Stationary Distribution 0.29 0.36 0.35 
 
Ex-post prediction, based on the observed initial states 
COMPUTER 0.30 0.29 0.41 
MEDIACOM 0.31 0.28 0.41 
OTHER 0.31 0.29 0.40 
Sample Distribution 0.28 0.36 0.36 
Stationary Distribution 0.31 0.29 0.40 
 
Recursive ex-post prediction, based on the predicted initial states 
COMPUTER 0.42 0.39 0.19 
MEDIACOM 0.42 0.40 0.18 
OTHER 0.37 0.36 0.27 
Sample Distribution 0.43 0.43 0.14 
Stationary Distribution 0.41 0.39 0.20 
 
Determinants of transition probabilities in the three-state model* 

 Transition end state (consecutive IPO) 
COMPUTER MEDIACOM 

Initial state 
Index Underpricing Index Underpricing 

COMPUTER 0.0002 0.3846 0.0002 0.2587 
 (35.8) (10.3) (44.4) (14.6) 
 [0.0] [0.0] [0.0] [0.0] 
 adj. R-squared 0.89 adj. R-squared 0.98 
     
MEDIACOM 0.0002 0.1690 0.0002 0.2807 
 (38.9) (7.1) (49.2) (13.5) 
 [0.0] [0.0] [0.0] [0.0] 
 adj. R-squared 0.86 adj. R-squared 0.92 
     
OTHER 0.0002 0.4699 0.0002 0.3781 
 (37.3) (14.3) (42.7) (14.4) 
 [0.0] [0.0] [0.0] [0.0] 
 adj. R-squared 0.91 adj. R-squared 0.91 
* t-statistics in parantheses, probabilities in brackets. 
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Table 11d: Transition matrix for consecutive IPOs with the same lead underwriter in the Neuer 
Markt 

Initial IPO area Transition end state (consecutive IPO) 
 COMPUTER MEDIACOM OTHER 

COMPUTER 0.34 0.07 0.59 
MEDIACOM 0.79 0.04 0.17 
OTHER 0.16 0.14 0.70 
Sample Distribution 0.30 0.20 0.50 
Stationary Distribution 0.28 0.11 0.61 
 

Table 11e: Mobility indices for the estimated transition matrices  

Transition matrix Mobility indices 

 ( )( ) ( )1−Π− mtrm  ( ) ( )1−− ∑ mm j jλ  
( )Π− det1  

ONE STEP IPO AREA TRANSITIONS (Table 11a) 
Neuer Markt 0.998 0.928 1.000 
Nouveau Marché 0.996 0.842 1.000 
MONTHLY INTERVAL TRANSITIONS (Table 11b) 
Neuer Markt 0.930 0.773 1.000 
Nouveau Marché 1.054 0.760 1.000 
THREE STATE UNCONDITIONAL (Table 11c) 
Neuer Markt 0.950 0.903 0.993 
Nouveau Marché n.a. n.a. n.a. 
SIMPLE EX-POST PREDICTION (Table 11c) 
Neuer Markt 1.010 0.990 1.000 
Nouveau Marché n.a. n.a. n.a. 
RECURSIVE EX-POST PREDICTION (Table 11c) 
Neuer Markt 0.955 0.955 0.999 
Nouveau Marché n.a. n.a. n.a. 
UNDERWRITER-CONDITIONED TRANSITIONS (Table 11d) 
Neuer Markt 0.960 0.838 0.974 
Nouveau Marché n.a. n.a. n.a. 
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Table 12: Testing for the equality of the survivor functions across technology areas and across 
venture capital-backed and non-backed IPOs 

 

 Log-rank  Wilcoxon (Breslow)  Stratified Wilcoxon for 
Venture capital-backing 

Neuer Markt χ 2(1) Pr>χ 2  χ 2(1) Pr>χ 2  χ 2(1) Pr>χ 2 

Information and communications 
technology 

 
0.02 

 
0.88 

  
2.10 

 
0.15 

  
– 

 
– 

Software  1.58 0.21  0.90 0.34  0.31 0.58 
Hardwtel 0.01 0.91  0.73 0.39  1.49 0.22 
Internet/Media 0.53 0.46  5.72 0.02  0.52 0.47 

ITservice  0.09 0.77  0.00 0.95  0.26 0.61 
Biomedical 4.80 0.03  4.46 0.03  0.09 0.77 
Ind. & financial services 3.30 0.07  8.74 0.00  6.35 0.01 
Venture capital-backing 3.04 0.08  6.97 0.01  4.06 0.04 

Nouveau Marché         
Information and communications 
technology 

 
1.61 

 
0.20 

  
4.33 

 
0.04 

  
– 

 
– 

Software  1.40 0.24  1.11 0.29  0.03 0.86 
Hardwtel 0.27 0.60  0.03 0.86  0.42 0.52 
Internet/Media 0.55 0.46  2.81 0.09  0.42 0.52 

ITservice 1.28 0.26  3.66 0.06  0.01 0.90 
Biomedical 3.57 0.06  13.04 0.00  2.35 0.13 
Ind. & financial services 3.64 0.06  5.98 0.01  0.62 0.43 
Venture capital-backing 0.34 0.56  0.10 0.76  0.03 0.87 
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Table 13a: Results from the Cox proportional hazards model with social interaction under 

rational expectations in the Neuer Markt* 

The dependent variable is the 
hazard rate  Model 1 Model 2 Model 3 Model 4 
Age at IPO 1.012 1.011 1.013 1.014 

 (1.48) [0.139] (1.51) [0.132] (1.61) [0.107] (1.79) [0.073] 
Employment 1.000 1.000 1.000  

 (0.89) [0.372] (0.88) [0.380] (0.84) [0.399]  
VC-backing 0.896 0.891 0.907 0.770 

 (–0.91) [0.360] (–0.96) [0.336] (–0.81) [0.416] (–1.56) [0.118] 
VC stake before IPO    1.006 

    (1.36) [0.173] 
Debt-equity ratio 1.005    

 (0.46) [0.642]    
Sales growth over employment 
growth 

0.994 
(–0.55) [0.586] 

0.994 
(–0.49) [0.626] 

0.994 
(–0.49) [0.625]  

Software 0.488 2.800 1.861 1.876 
 (–0.37) [0.708] (1.54) [0.123] (1.56) [0.118] (1.59) [0.112] 

ITservice 13.065 2.574 1.457 1.506 
 (1.29) [0.198] (1.41) [0.159] (1.06) [0.298] (1.16) [0.247] 

Biomed 0.307 2.969 1.408 1.429 
 (–0.60) [0.548] (1.71) [0.086] (0.90) [0.366] (0.94) [0.346] 

Hardwtel 0.000 0.000 0.000 0.000 
 (–3.57) [0.000] (–4.37) [0.000] (–4.59) [0.000] (–4.61) [0.000] 

Intmedia 2.014 4.981 2.774 2.877 
 (0.51) [0.613] (2.66) [0.008] (3.44) [0.001] (3.58) [0.000] 

Interaction with market price index:    
Biomed 1.000    
 (0.43) [0.664]    
Hardwtel 1.000    
 (–0.05) [0.958]    
ITservic 1.000    
 (–0.47) [0.640]    
Intmedia 1.000    
 (1.12) [0.261]    
Software 1.001    
 (1.85) [0.065]    

Interaction with the expected number of IPOs from the technology neighbourhood within 4 months: 
Biomed 1.030 1.019   
 (1.26) [0.206] (0.86) [0.387]   
Hardwtel 1.031 1.025   
 (0.76) [0.445] (0.65) [0.513]   
ITservic 1.028 1.034   
 (0.72) [0.470] (0.95) [0.341]   
Intmedia 1.010 1.015   
 (0.47) [0.642] (0.83) [0.405]   
Ind. & financial 1.056 1.046   
 (2.38) [0.017] (2.37) [0.018]   
Software 0.984 1.041   
 (–0.28) [0.781] (1.20) [0.228]   
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The dependent variable is the 
hazard rate  Model 1 Model 2 Model 3 Model 4 

Interaction with the expected mean time distance of future IPOs in the technology neighbourhood: 
Biomed 1.081    
 (1.76) [0.078]    
Hardwtel 0.005    
 (–1.89) [0.059]    
ITservic 0.988    
 (–0.81) [0.416]    
Intmedia 0.997    
 (–0.27) [0.783]    
Ind. & financial 1.001    
 (0.09) [0.925]    
Software 0.992    
 (–0.41) [0.684]    

Interaction with the expected median time distance of future IPOs in the technology neighbourhood: 
Biomed 0.971 0.990 0.991 0.990 
 (–2.65) [0.008] (–4.97) [0.000] (–5.05) [0.000] (–5.10) [0.000] 
Hardwtel 0.991 0.991 0.992 0.992 
 (–3.58) [0.000] (–4.24) [0.000] (–4.46) [0.000] (–4.50) [0.000] 
ITservic 0.990 0.989 0.990 0.990 
 (–2.59) [0.009] (–4.58) [0.000] (–4.89) [0.000] (–4.90) [0.000] 
Intmedia 0.988 0.987 0.988 0.988 
 (–4.15) [0.000] (–5.54) [0.000] (–5.78) [0.000] (–5.78) [0.000] 
Ind. & financial 0.991 0.992 0.991 0.991 
 (–3.19) [0.001] (–4.29) [0.000] (–4.57) [0.000] (–4.58) [0.000] 
Software 0.991 0.989 0.989 0.989 
 (–1.84) [0.066] (–4.97) [0.000] (–5.00) [0.000] (–5.00) [0.000] 

No. of observations 39132 39132 39132 39269 
No. of subjects 320 320 320 321 
No. of failures 320 320 320 321 
Time at risk 297555 297555 297555 298546 
Log likelihood –1487.9449 –1494.5419 –1498.0958 –1503.6527 
LR χ 2 86.19 72.99 65.89 66.33 
Prob > χ 2 [0.000] [0.000] [0.000] [0.000] 
*The table reports the estimated coefficient, the hazard ratio, the z-value (in parentheses) and the  

p-value (in brackets) 

 



 

 

109

Table 13b: Testing for the area specificity of the expectations impact in the Neuer Markt* 

The dependent 
variable is the hazard 
rate  

Model 1: 
Biomed IPOs 

Model 2: 
Hardwtel IPOs 

Model 3: 
Itservice IPOs 

Model 4: 
Intmedia IPOs 

Model 5: Ind.& 
financial IPOs 

Model 6: 
Software IPOs 

Age at IPO 1.015 1.014 1.014 1.014 1.014 1.014 
 (1.87) [0.061] (1.79) [0.074] (1.78) [0.075] (1.81) [0.070] (1.78) [0.075] (1.82) [0.069] 

VC-backing 0.757 0.768 0.767 0.764 0.768 0.769 
 (–1.67) [0.096] (–1.58) [0.113] (–1.59) [0.112] (–1.61) [0.107] (–1.58) [0.114] (–1.57) [0.116] 

VC stake before IPO 1.007 1.006 1.006 1.006 1.006 1.006 
 (1.51) [0.131] (1.38) [0.168] (1.38) [0.169] (1.41) [0.158] (1.36) [0.175] (1.38) [0.167] 

Software 1.855 1.907 1.858 1.823 0.0226 86977.29 
 (1.59) [0.112] (1.65) [0.099] (1.56) [0.118] (1.51) [0.132] (–0.84) [0.401] (1.52) [0.129] 
ITservice 1.434 1.462 8.479 1.571 0.021 1.538 
 (1.02) [0.308] (1.07) [0.284] (0.37) [0.711] (1.28) [0.200] (–0.89) [0.375] (1.20) [0.229] 
Biomed 6.786 1.424 1.436 1.444 0.020 1.454 
 (0.23) [0.819] (0.93) [0.350] (0.96) [0.338] (0.98) [0.327] (–0.90) [0.370] (0.97) [0.330] 
Hardwtel 0.000 4.94e-11 0.000 2.18e-06 2.60e-08 7.57e-06 
 (–3.62) [0.000] (–3.66) [0.000] (–4.23) [0.000] (–4.99) [0.000] (–3.51) [0.000] (–4.30) [0.000] 
Intmedia 2.734 2.840 2.895 0.511 0.041 2.986 

 (3.42) [0.001] (3.52) [0.000] (3.59) [0.000] (–0.15) [0.885] (–0.73) [0.463] (3.64) [0.000] 

Interaction with the expected median time distance of future IPOs in the technology neighbourhood: 
Biomed 0.956 0.992 0.990 0.989 0.987 0.989 
 (–3.98) [0.000] (–4.21) [0.000] (–4.69) [0.000] (–5.37) [0.000] (–4.91) [0.000] (–4.78) [0.000] 
Hardwtel 0.993 0.982 0.992 0.990 0.990 0.991 
 (–3.54) [0.000] (–3.68) [0.000] (–4.15) [0.000] (–4.89) [0.000] (–4.36) [0.000] (–4.22) [0.000] 
ITservic 0.992 0.991 0.984 0.988 0.988 0.989 
 (–3.90) [0.000] (–3.93) [0.000] (–2.98) [0.003] (–5.13) [0.000] (–4.79) [0.000] (–4.60) [0.000] 
Intmedia 0.990 0.989 0.988 0.992 0.986 0.987 
 (–4.75) [0.000] (–4.77) [0.000] (–5.23) [0.000] (–1.73) [0.084] (–5.45) [0.000] (–5.33) [0.000] 
Ind. & financial 0.993 0.993 0.991 0.989 0.993 0.990 
 (–3.57) [0.000] (–3.58) [0.000] (–4.19) [0.000] (–4.97) [0.000] (–1.67) [0.096] (–4.27) [0.000] 
Software 0.991 0.990 0.987 0.987 0.986 0.986 
 (–4.08) [0.000] (–4.09) [0.000] (–4.64) [0.000] (–5.32) [0.000] (–4.75) [0.000] (–2.76) [0.006] 

Interaction with expectations for other technology areas: 
Biomed median  0.999 1.002 1.001 1.002 1.003 
  (–0.47) [0.635] (0.73) [0.466] (0.36) [0.722] (0.11) [0.913] (0.96) [0.339] 
Hardwtel median 1.001  1.002 0.999 1.003 1.008 
 (0.21) [0.834]  (0.33) [0.743] (–0.35) [0.726] (0.95) [0.341] (1.39) [0.164] 
ITservic median 1.012 1.004  1.003 1.000 0.997 
 (1.38) [0.167] (0.59) [0.554]  (0.81) [0.418] (–0.10) [0.922] (–0.55) [0.581] 
Intmedia median 1.011 0.997 1.009  0.994 0.988 
 (1.29) [0.196] (–0.44) [0.658] (1.30) [0.195]  (–1.26) [0.208] (–1.66) [0.097] 
Ind. & fin. median 1.011 1.013 0.989 0.994  1.003 
 (1.22) [0.223] (1.66) [0.097] (–1.80) [0.072] (–1.16) [0.247]  (0.40) [0.691] 
Software median 1.006 1.000 1.004 0.997 0.999  
 (0.90) [0.365] (0.13) [0.896] (1.38) [0.167] (–1.08) [0.281] (–0.46) [0.646]  

No. of observations 39269 39269 39269 39269 39269 39269 
Subjects (failures) 321 (321) 321 (321) 321 (321) 321 (321) 321 (321) 321 (321) 
Time at risk 298546 298546 298546 298546 298546 298546 
Log likelihood –1495.977 –1500.635 –1500.229 –1500.034 –1501.373 –1499.489 
LR χ 2 [Prob > χ 2] 81.68 [0.00] 72.36 [0.00] 73.18 [0.00] 73.57 [0.00] 70.89 [0.00] 74.65 [0.00] 
* The table reports the estimated coefficient, the hazard ratio, the z-value (in parentheses) and the p-value (in brackets). 
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Table 13c: The adaptive expectations model for the Neuer Markt* 

The dependent variable is 
the hazard rate  Model 1 Model 2 Model 3 Model 4 Model 5 
Age at IPO 1.012 1.012 1.012 1.014 1.014 

 (1.58) [0.115] (1.57) [0.117] (1.52) [0.128] (1.74) [0.081] (1.80) [0.071] 
VC-backing 0.743 0.752 0.712 0.759 0.769 

 (–1.76) [0.079] (–1.69) [0.091] (–2.01) [0.044] (–1.64) [0.102] (–1.57) [0.117] 
VC stake before IPO 1.006 1.006 1.007 1.006 1.006 

 (1.41) [0.159] (1.36) [0.175] (1.48) [0.138] (1.35) [0.177] (1.37) [0.171] 
Sales growth over 

employment growth  
0.990 

(–0.85) [0.394] 
0.991 

(–0.82) [0.415] 
0.988 

(–1.01) [0.311]   

Biomed 0.511 0.537 0.618 1.943 1.584 
 (–1.45) [0.146] (–2.04) [0.042] (–1.21) [0.226] (1.25) [0.211] (0.92) [0.350] 
Hardwtel 0.883 0.618 1.334 0.000 0.000 
 (–0.21) [0.830] (–1.57) [0.116] (0.64) [0.522] (–4.66) [0.000] (–4.57) [0.000] 
ITservice 0.796 0.889 0.831 2.233 1.977 
 (–0.51) [0.611] (–0.43) [0.665] (–0.44) [0.657] (1.74) [0.081] (1.20) [0.230] 
Intmedia 0.867 1.103 0.874 3.849 2.803 
 (–0.35) [0.727] (0.40) [0.691] (–0.37) [0.708] (3.21) [0.001] (2.30) [0.022] 
Software 0.572 0.691 0.966 1.811 2.235 

 (–1.25) [0.212] (–1.27) [0.205] (–0.09) [0.927] (1.17) [0.243] (1.55) [0.122] 

Interaction with the median time distance of past IPOs in the technology neighbourhood: 
Biomed 0.999  0.999  1.001 
 (–0.36) [0.717]  (–0.41) [0.685]  (0.22) [0.828] 
Hardwtel 1.001  1.001  1.001 
 (1.11) [0.268]  (1.55) [0.120]  (0.33) [0.738] 
ITservic 1.000  0.999  0.999 
 (–0.07) [0.940]  (–0.37) [0.714]  (–0.35) [0.728] 
Intmedia 1.002  1.000  1.004 
 (0.69) [0.501]  (–0.15) [0.879]  (1.43) [0.152] 
Ind. & financial 0.999  1.000  1.001 
 (–0.34) [0.734]  (–0.11) [0.914]  (0.50) [0.618] 
Software 1.001  1.001  0.999 
 (0.46) [0.647]  (0.32) [0.751]  (–0.37) [0.712] 

Interaction with the average area-specific underpricing over 2 months lagged 1 month: 
Biomed 0.999 1.000  0.999  
 (–0.15) [0.883] (–0.07) [0.945]  (–0.24) [0.807]  
Hardware 1.002 1.003  0.999  
 (0.57) [0.570] (1.18) [0.237]  (–0.23) [0.822]  
ITservic 0.997 0.997  0.997  
 (–1.30) [0.193] (–1.33) [0.185]  (–1.22) [0.221]  
Intmedia 0.996 0.996  0.999  
 (–1.99) [0.046] (–2.03) [0.043]  (–0.67) [0.501]  
Ind. & financial 1.004 1.004  0.997  
 (1.66) [0.097] (1.44) [0.151]  (–0.90) [0.368]  
Software 1.005 1.005  1.006  
 (1.59) [0.113] (1.58) [0.115]  (1.65) [0.099]  
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The dependent variable is 
the hazard rate  Model 1 Model 2 Model 3 Model 4 Model 5 
Interaction with the expected median time distance of future IPOs: 

Biomed    0.990 0.990 
    (–5.07) [0.000] (–5.16) [0.000] 
Hardware    0.992 0.991 
    (–4.59) [0.000] (–3.17) [0.002] 
ITservic    0.990 0.989 
    (–4.82) [0.000] (–4.89) [0.000] 
Intmedia    0.988 0.987 
    (–5.62) [0.000] (–5.89) [0.000] 
Ind. & financial    0.991 0.991 
    (–4.50) [0.000] (–4.65) [0.000] 
Software    0.988 0.989 
    (–5.06) [0.000] (–5.08) [0.000] 

No. of observations 39132 39132 39132 39269 39269 
No. of subjects 320 320 320 321 321 
No. of failures 320 320 320 321 321 
Time at risk 297555 297555 297555 298546 298546 
Log likelihood –1514.463 –1515.504 –1521.367 –1500.421 –1502.408 
LR χ 2 33.15 31.07 19.35 72.79 68.82 
Prob > χ 2 0.045 0.009 0.199 0.000 0.000 

*The table reports the estimated coefficient, the hazard ratio, the z-value (in parentheses) and the p-value (in brackets). 
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Table 14a: Results from the Cox proportional hazards model with social interaction under 
rational expectations for the Nouveau Marché* 

The dependent variable is the 
hazard rate  Model 1 Model 2 Model 3 Model 4 Model 5 
Age of IPO 1.014 1.013 1.013 1.012  

 (0.98) [0.325] (0.90) [0.366] (0.92) [0.357] (0.87) [0.387]  
Employment 1.000     

 (–0.66) [0.507]     
Debt-equity ratio 0.981     

 (–0.76) [0.445]     
Sales growth over employment 

growth 
1.004 

(0.74) [0.461] 
1.004 

(0.71) [0.480] 
1.004 

(0.70) [0.487] 
1.004 

(0.76) [0.447]  

VC-backing 1.371 1.371 1.351 1.309 1.581 
 (1.15) [0.250] (1.15) [0.252] (1.09) [0.274] (0.99) [0.322] (1.72) [0.085] 

VC stake before IPO 0.988 0.989 0.988 0.991 0.986 
 (–1.19) [0.232] (–1.06) [0.287] (–1.17) [0.242] (–0.93) [0.350] (–1.45) [0.147] 

Software 0.328 0.291 4.262 1.366  
 (–0.31) [0.757] (–0.34) [0.731] (1.34) [0.181] (0.58) [0.559]  
Biomed 29.312 22.247 0.027 0.096  
 (0.71) [0.479] (0.64) [0.521] (–1.12) [0.264] (–2.40) [0.016]  
Hardwtel 65.409 52.826 4.694 1.877  
 (1.31) [0.192] (1.25) [0.212] (1.46) [0.144] (1.09) [0.276]  
Intmedia 119.714 99.309 20.915 2.489  
 (1.31) [0.190] (1.27) [0.204] (2.59) [0.010] (1.69) [0.091]  
ITservice 128.787 108.616 3.660 1.180  

 (1.46) [0.143] (1.42) [0.155] (1.06) [0.287] (0.31) [0.757]  

Interaction with the expected number of IPOs from the technology neighbourhood within the next 4 months: 
Software 1.186 1.185 1.032   
 (2.12) [0.034] (2.10) [0.035] (0.52) [0.606]   
Biomed 1.792 1.573 3.569   
 (0.52) [0.603] (0.41) [0.683] (0.80) [0.424]   
ITservice 0.983 0.983 1.043   
 (–0.16) [0.870] (–0.16) [0.871] (0.43) [0.667]   
Hardwtel 1.100 1.103 1.058   
 (1.19) [0.234] (1.22) [0.224] (0.82) [0.409]   
Intmedia 0.838 0.840 0.909   
 (–1.43) [0.154] (–1.40) [0.161] (–0.94) [0.350]   
      
Ind. & financial 1.553 1.536 1.227   
 (1.98) [0.048] (1.94) [0.052] (1.74) [0.082]   

Interaction with the expected mean time distance of future IPOs in the technology neighbourhood: 
Software 1.215 1.215    
 (3.82) [0.000] (3.81) [0.000]    
Biomed 1.000 1.000    
 (–0.02) [0.981] (0.01) [0.993]    
Hardwtel 1.055 1.054    
 (2.15) [0.032] (2.13) [0.033]    
Intmedia 1.022 1.022    
 (1.13) [0.260] (1.14) [0.254]    
ITservice 1.071 1.071    
 (1.95) [0.051] (1.96) [0.050]    
Ind. & financial 1.040 1.038    
 (1.64) [0.100] (1.59) [0.111]    
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The dependent variable is the 
hazard rate  Model 1 Model 2 Model 3 Model 4 Model 5 

Interaction with the expected median time distance of future IPOs in the technology neighbourhood: 
Software 0.940 0.940 0.984 0.985 0.989 
 (–4.81) [0.000] (–4.81) [0.000] (–6.04) [0.000] (–6.33) [0.000] (–6.88) [0.000] 
Biomed 0.982 0.982 0.983 0.981 0.983 
 (–3.37) [0.001] (–3.44) [0.001] (–4.15) [0.000] (–5.77) [0.000] (–5.97) [0.000] 
Hardwtel 0.970 0.970 0.982 0.982 0.987 
 (–4.22) [0.000] (–4.22) [0.000] (–6.39) [0.000] (–6.42) [0.000] (–6.70) [0.000] 
Intmedia 0.980 0.979 0.983 0.983 0.988 
 (–3.83) [0.000] (–3.88) [0.000] (–5.83) [0.000] (–6.28) [0.000] (–6.78) [0.000] 
ITservice 0.961 0.960 0.978 0.980 0.986 
 (–3.85) [0.000] (–3.88) [0.000] (–6.51) [0.000] (–6.56) [0.000] (–6.88) [0.000] 
Ind. & financial 0.978 0.978 0.985 0.985 0.987 
 (–3.91) [0.000] (–3.89) [0.000] (–5.63) [0.000] (–6.10) [0.000] (–6.36) [0.000] 

No. of observations 8522 8522 8522 8522 8548 
No. of subjects 133 133 133 133 134 
No. of failures 133 133 133 133 134 
Time at risk 146109 146109 146109 146109 146809 
Log likelihood –453.824 –454.404 –468.021 –471.221 –482.214 
LR χ 2 143.90 133.74 106.51 100.11 87.92 
Prob > χ 2 0.00 0.00 0.00 0.00 0.00 

*The table reports the estimated coefficient, the hazard ratio, the z-value (in parentheses) and the p-value (in brackets). 
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Table 14b: Testing for the area-specificity of the expectations impact in the Nouveau Marché* 
The dependent variable 
is the hazard rate  

Model 1: 
Biomed IPOs 

Model 2: 
Hardwtel IPOs 

Model 3: 
Itservice IPOs 

Model 4: 
Intmedia IPOs 

Model 5: Ind.& 
fin. IPOs 

Model 6: 
Software IPOs 

Age of IPO 1.013 1.012 1.012 1.013 1.015 1.013 
 (0.93) [0.351] (0.88) [0.378] (0.88) [0.381] (0.96) [0.335] (1.05) [0.295] (0.91) [0.363] 

VC-backing 1.289 1.288 1.296 1.289 1.349 1.304 
 (0.93) [0.350] (0.93) [0.354] (0.95) [0.342] (0.93) [0.353] (1.10) [0.272] (0.98) [0.329] 

VC stake before IPO 0.991 0.991 0.991 0.991 0.988 0.991 
 (–0.89) [0.376] (–0.88) [0.376] (–0.90) [0.370] (–0.93) [0.351] (–1.19) [0.236] (–0.91) [0.365] 

Sales growth over 
employment growth 

1.004 
(0.79) [0.428] 

1.004 
(0.74) [0.462] 

1.004 
(0.77) [0.442] 

1.004 
(0.68) [0.498] 

1.004 
(0.76) [0.447] 

1.004 
(0.81) [0.421] 

Biomed 0.244 0.102 0.103 0.099 1.477 0.117 
 (–0.98) [0.326] (–2.30) [0.022] (–2.30) [0.021] (–2.33) [0.020] (0.26) [0.796] (–2.19) [0.028] 
Hardwtel 1.914 1.951 1.897 1.672 21.392 1.862 
 (1.09) [0.276] (0.94) [0.346] (1.10) [0.271] (0.91) [0.363] (2.53) [0.011] (1.09) [0.275] 
ITservic 1.171 1.183 0.859 1.023 14.427 1.172 
 (0.29) [0.774] (0.31) [0.775] (–0.20) [0.843] (0.04) [0.965] (2.24) [0.025] (0.30) [0.766] 
Intmedia 2.727 2.439 2.432 1.735 28.070 2.463 
 (1.82) [0.069] (1.64) [0.100] (1.64) [0.100] (0.79) [0.427] (2.80) [0.005] (1.68) [0.092] 
Software 1.515 1.306 1.412 1.172 15.668 1.171 

 (0.76) [0.450] (0.49) [0.622] (0.64) [0.522] (0.30) [0.764] (2.34) [0.019] (0.25) [0.804] 

Interaction with the expected median time distance of future IPOs in the technology neighbourhood: 
Intmedia 0.976 0.981 0.980 0.967 0.982 0.981 
 (–6.27) [0.000] (–5.82) [0.000] (–6.21) [0.000] (–3.84) [0.000] (–5.61) [0.000] (–5.86) [0.000] 
Ind. & financial 0.981 0.985 0.985 0.985 0.964 0.985 
 (–5.82) [0.000] (–5.42) [0.000] (–5.77) [0.000] (–5.57) [0.000] (–3.73) [0.000] (–5.51) [0.000] 
Hardwtel 0.979 0.975 0.983 0.983 0.984 0.983 
 (–6.21) [0.000] (–3.26) [0.001] (–6.06) [0.000] (–5.83) [0.000] (–5.37) [0.000] (–5.77) [0.000] 
Biomed 0.985 0.982 0.982 0.981 0.984 0.982 
 (–3.12) [0.002] (–5.17) [0.000] (–5.49) [0.000] (–5.29) [0.000] (–4.80) [0.000] (–5.27) [0.000] 
ITservic 0.980 0.984 0.978 0.984 0.985 0.984 
 (–6.05) [0.000] (–5.56) [0.000] (–2.50) [0.012] (–5.75) [0.000] (–5.35) [0.000] (–5.72) [0.000] 
Software 0.981 0.985 0.985 0.985 0.987 0.982 
 (–6.11) [0.000] (–5.57) [0.000] (–5.99) [0.000] (–5.68) [0.000] (–5.31) [0.000] (–3.46) [0.001] 

Interaction with expectations for other technology areas: 
Biomed median  1.001 1.004 0.989 1.026 0.998 
  (0.38) [0.700] (0.75) [0.452] (–2.74) [0.006] (2.88) [0.004] (–0.67) [0.501] 
Hardwtel median 0.996  0.999 1.014 1.003 1.005 
 (–0.93) [0.350]  (–0.17) [0.863] (1.77) [0.076] (0.75) [0.456] (1.21) [0.226] 
ITservic median 1.000 1.003  1.002 0.995 0.998 
 (0.14) [0.890] (1.20) [0.232]  (0.58) [0.559] (–1.73) [0.083] (–0.48) [0.632] 
Intmedia median 0.995 1.001 1.006  1.014 1.002 
 (–0.89) [0.375] (0.14) [0.890] (0.75) [0.454]  (2.40) [0.016] (0.32) [0.747] 
Ind. & fin. median 01.000 

(–0.10) [0.917] 
1.003 

(0.60) [0.549] 
1.003 

(0.58) [0.562] 
0.995 

(–1.25) [0.211]  
1.001 

(0.23) [0.816] 
Software median 1.002 1.000 0.998 01.009 0.999  
 (0.24) [0.810] (–0.02) [0.988] (–0.44) [0.657] (1.52) [0.129] (–0.25) [0.805]  

No. of observations 8522 8522 8522 8522 8522 8522 
Subjects (failures) 133 (133) 133 (133) 133 (133) 133 (133)  133 (133) 133 (133) 
Time at risk 146109 146109 146109 146109 146109 146109 
Log likelihood –467.649 –469.905 –470.497 –465.122 –463.760 –469.721 
LR χ 2 [Prob > χ 2] 107.25 [0.00] 102.74 [0.00] 101.56 [0.00] 112.31 [0.00] 115.03 [0.00] 103.11 [0.00] 
*The table reports the estimated coefficient, the hazard ratio, the z-value (in parentheses) and the p-value (in brackets). 
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Table 14c: The adaptive expectations model for the Nouveau Marché* 
The dependent variable is the 
hazard rate  Model 1 Model 2 Model 3 Model 4 
Age of IPO 1.015 1.013 1.011 1.012 

 (0.97) [0.332] (0.92) [0.357] (0.78) [0.435] (0.84) [0.399] 
Employment 1.000 1.000   

 (–0.79) [0.432] (–0.85) [0.395]   
Debt-equity ratio 0.968 0.965 0.961 0.985 

 (–1.21) [0.226] (–1.31) [0.189] (–1.50) [0.133] (–0.60) [0.551] 
VC-backing 1.297 1.310 1.353 1.320 

 (0.97) [0.331] (1.00) [0.316] (1.13) [0.258] (1.02) [0.309] 
VC stake before IPO 0.991 0.990 0.991 0.989 

 (–0.92) [0.356] (–1.00) [0.316] (–0.91) [0.362] (–1.08) [0.278] 
Sales growth over employment 

growth 
1.003 

(0.57) [0.570] 
1.003 

(0.61) [0.545]  
1.004 

(0.76) [0.447] 
Biomed 1.747 1.784 1.841 0.544 
 (0.82) [0.410] (0.89) [0.372] (0.95) [0.340] (–0.28) [0.779] 
Hardwtel 0.558 0.728 0.701 2.141 
 (–0.51) [0.612] (–0.74) [0.456] (–0.84) [0.402] (0.72) [0.470] 
ITservice 0.350 0.407 0.416 0.652 
 (–2.24) [0.025] (–2.07) [0.038] (–2.04) [0.042] (–0.43) [0.670] 
Intmedia 0.480 0.660 0.639 5.556 
 (–1.47) [0.140] (–0.94) [0.345] (–1.02) [0.305] (1.68) [0.092] 
Software 0.629 0.715 0.722 1.790 

 (–0.90) [0.371] (–0.76) [0.448] (–0.74) [0.462] (0.65) [0.514] 

Interaction with the median time distance of past IPOs in the technology neighbourhood: 
Biomed 1.001 0.999 0.999 0.996 
 (0.19) [0.846] (–0.35) [0.723] (–0.30) [0.766] (–0.72) [0.469] 
Hardwtel 0.998 0.998 0.997 1.000 
 (–0.98) [0.326] (–1.86) [0.063] (–1.90) [0.058] (–0.20) [0.839] 
ITservice 0.998 0.998 0.998 0.998 
 (–2.19) [0.028] (–2.36) [0.018] (–2.38) [0.017] (–1.56) [0.118] 
Intmedia 0.997 0.997 0.997 1.003 
 (–2.27) [0.023] (–2.59) [0.010] (–2.61) [0.009] (0.83) [0.407] 
Ind. & financial 1.001 1.000 1.000 0.999 
 (0.99) [0.323] (0.10) [0.917] (0.12) [0.903] (–0.42) [0.672] 
Software 0.998 0.997 0.997 1.000 
 (–1.66) [0.096] (–1.91) [0.056] (–1.92) [0.055] (0.07) [0.942] 

Interaction with the average area-specific underpricing over 2 months, lagged 1 month: 
Biomed 0.928    
 (–1.12) [0.265]    
Hardwtel 1.013    
 (0.11) [0.914]    
ITservice 1.005    
 (0.60) [0.548]    
Intmedia 1.010    
 (1.52) [0.129]    
Ind. & financial 1.076    
 (2.17) [0.030]    
Software 0.996    

 (–0.23) [0.817]    
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The dependent variable is the 
hazard rate  Model 1 Model 2 Model 3 Model 4 

Interaction with the expected median time distance of future IPOs in the technology neighbourhood: 
Biomed    0.984 
    (–6.26) [0.000] 
Hardwtel    0.980 
    (–5.39) [0.000] 
ITservice    0.982 
    (–5.74) [0.000] 
Intmedia    0.985 
    (–5.82) [0.000] 
Ind. & financial    0.978 
    (–6.06) [0.000] 
Software    0.985 
    (–5.88) [0.000] 

No. of observations 8522 8522 8522 8522 
No. of subjects 133 133 133 133 
No. of failures 133 133 133 133 
Time at risk 146109 146109 146109 146109 
Log likelihood –499.097 –504.033 –508.731 –469.045 
LR χ 2 44.36 34.49 34.89 104.46 
Prob > χ 2 0.001 0.007 0.003 0.000 
*The table reports the estimated coefficient, the hazard ratio, the z-value (in parentheses) and the p-value (in 

brackets). 
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Table 15: Definitions of Symbols 

 Definition 
Pt Observed stock price in the period t 

f
tP  Fundamental value 

Bt Bubble 
EtDt+I Divided payment in the period between t and t+i expected on the basis of 

information at time t 
δ  Discount factor 
κ  Initial real capital endowment 
C A basket of conventional goods 
X High-tech goods 
( )xKΠ  Rate of return in the high-tech sector 

γ  The world market rate of interest 
γXK&  Set-up cost for each entrepreneur 

γ  Inverse index of the adjustment cost that determines the speed of 
adjustment 

g The present value of a start-up located in the high-tech industry 
g&  The rate of capital gains on g 
β  The strength of the external economics in high-tech technology 

( ) 1tyi
j =  The ith firm listed in the stock market at time t 

( ) 0tyi
j =  Unlisted 

( )tPi
jk  Probability that the ith firm is in state j at time t given that it was in state k 

at time t–1 (transition probability) 
( )0yi

j  Initial condition 

( )tPi  Matrix of the non-negative transition probabilities (Markov matrix) 

{ }m,...,2,1k =  Areas of technology 
0
x 0

P  The vector of initial probabilities 

jkP  The probabilities of transition from the jth to the kth area of technology 
between any two consecutive IPOs 

jkn  The frequency of the one-step transitions from state j to k in the sample xn+1 

s
kP  The stationary distribution to which the Markov chain will converge after a 

sufficient number of iterations 
m The number of technology areas to which an IPO firm may belong 
Yt NxM matrix with rows ( )′tyi  

tY  Nx(M–1) matrix made up of the first (M–1) columns of Yt 

Π~  Toikka’s estimator 
F(t) Cumulative distribution function ( ) ( )( )tTPrtF ≤=  
S(t) Survival function 
h(t) Hazard function, where h(t) is the hazard rate and t∆  is the next short time 

interval 
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hi(t) Firm i’s hazard function of going public 
xi Time-invariant characteristics of firm i 
f(t) Time-varying variables 

iλ  The hazard function for firm i 
Xi The exogenous characteristics of the firm 

( )iny  Neighbourhood characteristics of the firm 

( )
e

inm  The firm’s subjective expectation of a neighbourhood behavioural measure 
(a vector)  

n (i) The neighbourhood of the firm (a firm’s area of technology) 

( ) ( )( )e
inini m,Y,XtE  The expected duration for firm i, conditional on specific realizations of the 

covariants 
Fx The probability distribution of characteristics within neighbourhood ( )in  

and ( )
e

inm  

( )
e

inW  The average duration among IPOs 

( )inψ  The set of firms going public by duration τ  in neighbourhood ( )in  
V The statistical test for the independence of the transition probabilities 
( )xithi  The hazard function of going public 

( )toη  A baseline non-negative hazard function at time t 

( )tho  The baseline hazard in the Cox proportional hazard model 

 


