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1 Introduction

There is a general agreement that (a) climate change is one of the most serious
environmental problems, that (b) the analysis of climate change is confronted with
a large degree of uncertainty and (c) that these uncertainties need to be taken
into account to arrive at meaningful policy recommendations. Yet, many eco-
nomic, environmental and integrated assessment (IA) models are deterministic
and there is no clear concept of the implications of the uncertainties for practical

policy making.

Climate change and uncertainty is clearly an issue for interdisciplinary research.
The main contribution of economics is to provide formal frameworks and tech-
niques for analyzing climate policy in the context of uncertainty (Samstad &
Greening 1998). The aim of this article is to give a comprehensive overview of
these frameworks and techniques. This is not a trivial task, not only since there is
a long tradition of economics in analyzing decision making under uncertainty, but
also because there are quite different strands of literature dealing with climate
change and uncertainty. This paper thus tries to extract and structure the most
important approaches and their findings. As most models are constructed to ana-
lyze very specific situations, the aim is to give a broad picture of what economics
has contributed and can contribute to the debate' and to discuss the policy rele-
vance of the findings, rather than to describe any theoretical approaches and

models in detail.

The next section starts with a taxonomy of the uncertainties associated with the
analysis of climate change in order to derive the potential role of economics. Sec-
tion 3 than discusses different issues and approaches that are associated with
optimal policymaking under uncertainty and that are discussed in the economic
literature. Section 4 tries to summarize the findings relevant for policy purposes.

Section 5 concludes.

' The article by Heal & Kristrdm (2002) has a comparable goal. While Heal & Kristrém though discuss the
scientific background and different economic modelling approaches in detail, this article wants to focus
more on the general issues and approaches, adding also some applied modelling approaches and deci-
sion theory that go beyond the review of Heal & Kristrom.



2 Taxonomy of uncertainties

There are two broad dimensions of the uncertainty problem: Parametric uncer-
tainty, which arises due to imperfect knowledge and stochasticity, which is due to
natural variability in certain processes. A third, additional category of uncertainty,
is the uncertainty about values such as e.g. the discount rate (Kelly & Kolstad
1999; Kann & Weyant 2000).

Parametric uncertainty includes uncertainty about relevant model parameters but
also about the general model structure. Thus, it includes uncertainty about what
are relevant parameters and relevant linkages and what are appropriate func-
tional forms (e.g. of a damage function of climate related damages). Parametric
uncertainty is not constant over time and can be expected to diminish with further

research.

Stochasticity results from phenomena that affect the economic or physical proc-
ess and that are not or cannot be modeled. Zapert et al. (1998) talk in a broader
sense about uncertainty caused by random effects that combine stochastic phe-
nomena external to the system and internal unpredictable climate processes.
Stochastic phenomena that are not captured by climate models are e.g. volcanic
eruptions and sunspots. Future values of many economic and technology proc-
esses are also stochastic because if the future were known, the consumers would
act on that knowledge in ways, which change the future. Internal climate variabil-
ity factors include the El Nino effect and variable cloud cover. Stochastic effects
can have a cumulative effect on the overall model uncertainty and may contribute

to larger part of outcome uncertainty (Zapert et al. 1998).

A different taxonomy of uncertainties stems from the 3-stage process that is at
the heart of an economic analysis of climate change and associated with the

following questions (Heal & Kristrom 2002):
(1) What will the climate be?

(2) What does any given climate change mean in economic terms?



(3) What is the optimal policy to choose to control emissions over the coming

decades?

The first question is concerned with the future emissions path and its impact on
the climate parameters such as temperature, precipitation or the sea level. The
second question implies a translation of climate changes into climate damages.
The third question is about the costs of CO, reductions and the effectiveness of
instruments. This 3-stage process leads to four categories of uncertainties, which

can be broadly defined as:
(1) Uncertainties about the emissions path.
(2) Uncertainties about what the climate will be.
(3) Uncertainties about the impacts of climate change.
(4) Uncertainties about optimal policies.

Different authors denote these categories differently or further disaggregate some
of them. As regards the uncertainties about what the climate will be (sometimes
also denoted as ecological or scientific uncertainties) the IPCC, for example, dis-
tinguishes between responses of the carbon cycle, the sensitivity of the climate to
changes in the carbon cycle and regional implications of a global climate sce-
nario. The German National Committee on Global Change Research distin-
guishes between calculating the concentration of GHG in the atmosphere, deter-
mining the climate sensitivity and simulating future climate. Gjerde et al. (1999)
disaggregate the uncertainties about optimal policies into uncertainties about the
costs of emissions reductions and uncertainties about the effectiveness of differ-
ent policy instruments. Many authors talk about costs and benefits of emission
reductions. The costs are part of optimal policy strategies, while the benefits are
determined by the avoided damage resp. impacts of climate change. Table 1
summarizes some of the different classifications. In general, uncertainties rise

when moving through these stages.



Table 1: Cascade of Uncertainties
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Turning to the question of the potential contribution of economics, economics
cannot contribute to solving the problem of ecological uncertainties. In the cas-
cade of uncertainties economics can contribute to the quantification, assessment

and resolution of uncertainties concerning



¢ emission scenarios as they depend to a large degree on economic develop-

ment
¢ the economic impacts of climate change
¢ the costs of slowing climate change

Besides quantifying and resolving the existing uncertainties the main contribution
of economics is to analyze the distributional and allocative impacts of given cli-
mate polices and to determine optimal reduction strategies in the presence of un-
certainty. In this context, there are also a number of other relevant issues that are

discussed in the next section.

3 Optimal climate policies in the presence of uncertainties — ques-

tions and approaches

The ultimate goal of an analysis of climate change and uncertainty is how to
formulate optimal climate policies under uncertainty. Following Kann & Weyant

(2000) an ideal uncertainty analysis includes:
(A1) Probability weighted values of the output variables
(A2) Optimal decisions in the light of imperfect knowledge
(A3) A measure of risk or dispersion about the outcome, and
(A4) The value of information for key variables.

A2, the question of optimal policy decisions, can then be broken down further, as

e.g. done by Baranzini et al. (2003) or Carraro & Hourcade (1998):
(A2-1) How much to reduce? (abatement level)
(A2-2) When to reduce? (timing)
(A2-3) How to reduce? (measures/ policies)

(A2-4) Who should reduce resp. where to reduce? (distribution among coun-

tries/sectors)



Economic analysis and theory has contributed to different aspects of all ques-
tions. The largest contribution of economics to the issue of climate change and
uncertainty has come through the use of theoretical as well as applied, numeri-
cal economic or economic-environmental models of climate change and cli-
mate policy. In addition, there are other areas of economics such as decision the-
ory and analysis, game theory or portfolio analysis that have been applied to ana-

lyze climate policy under uncertainty.

3.1 Uncertainty in economic models of climate change

There are two broad categories of models: policy evaluation models that evalu-
ate given policy scenarios and tend to be rich in physical detail and optimizing
models that optimize over key decision variables to achieve a certain objective,
such as cost minimization of welfare maximization (IPCC 1996). To incorporate
uncertainties into these models or to use these models for uncertainty analysis

there are three broad approaches (Kann and Weyant 2000).

The most simple approach, which is not a real uncertainty analysis but can be
used as a tool to identify which model parameters should be treated stochasti-
cally, is a sensitivity analysis. It answers the question of how sensitive model
outputs are to changes in model inputs and involves varying input parameters
that are not known with certainty. In a simple single-value deterministic sensitivity
analysis only one parameter is varied keeping the other parameters at their base
values. When there are dependencies between variables, varying several pa-

rameters jointly can produce more accurate measures of output sensitivity.

More demanding, but still relatively simple, is what is termed uncertainty propa-
gation. In this case, there are uncertain parameters in the model, but the agents
in the model do not account for them. This implies that there is no learning. The
simplest implementation of uncertainty propagation involves specifying a joint
distribution on selected input parameters and then propagating this uncertainty
through to the model output. Finally, one can for instance take expectations of
the output. A more complex implementation involves modeling certain variables

as stochastic processes. Uncertainty propagation can generally not be used to



determine optimal decisions under uncertainty. This is only the case if certainty
equivalence holds, which means that the optimal action under uncertainty (for
example maximizing expected utility) is equivalent to the expected value of the
actions under each realization of the uncertain parameters with certainty (Kelly &
Kolstad 1999). However, as Kelly and Kolstad note, certainty equivalence does
not hold under risk aversion. Furthermore, uncertainty propagation offers no
model of learning. Nevertheless, this approach provides the decision maker with
a sense of the risk associated with the outcome and with a distribution of output
variables. It is thus associated with probability-weighted values of the output
variables (question A1) and measures of risk or dispersion about the outcome
(question A3). In addition, it can be used to obtain measures for the relative im-
portance of different input variables on the outcome (question A4). For computa-
tional purposes propagation of uncertainty usually involves sampling from a joint
distribution using mostly the Monte Carlo method or, if this is still computationally
to expensive, reduced Monte Carlo simulations for example on Latin Hypercube

sampling (see e.g. Nordhaus 1994).

The most demanding approach accounts for learning and can be termed se-
quential decision-making under uncertainty. This implies that models deter-
mine optimal policies at more than one point in time, taking into account the
available information in each period. Models in this category range from simple
two-period decision analysis to an infinite-horizon stochastic optimization. There
are three main types of learning: active learning whereby the effect of policy
choices on certain key variables (e.g. the effects of emissions on the economy
and the climate system) is observed for the purpose of obtaining information
about uncertain parameters, purchased learning e.g. from R&D and autono-
mous learning where the passage of time reduces uncertainty (Kelly and Kol-
stad 2000). The first two types of learning imply endogenous technological
change, which is also an important issue in the context of climate change (see
e.g. Carraro & Hourcade 1998). Most existing models though, use autonomous

learning and not more than two decision periods. Models of sequential decision-



making under uncertainty are used to determine optimal policies under different

aspects of uncertainty and learning. This is discussed below in section 3.2.

Altogether, uncertainty analysis is very complex and computationally intensive.
Most existing models are deterministic and, if at all, most modelers have only per-
formed very basic types of uncertainty analysis. Table 2 summarizes the three
approaches. Some of the outcomes are discussed in the next subsection. For de-
tailed information on different implementation techniques and problems in policy

evaluation models and optimizing models see Kann & Weyant (2000).

3.2 Irreversibilities, catastrophes and the value of information

Large parts of the literature focus on four features of the natural and economic
environments that influence optimal policy decisions under uncertainty. These are
(see e.g. Fisher & Narain 2003 or Heal & Kristrom 2002)

(1) A non-degradable or irreversible stock of greenhouse gases
(2) Sunk, irreversible abatement capital

(3) Potentially catastrophic damages and

(4) Future learning about the nature of damages

The first two features are two different types of irreversibilities that are relevant
in the context of optimal climate policies. These are on one hand irreversible
changes in the climate system and in the natural environment driven by climate
change that generally depends on the stock of greenhouse gases in the atmos-
phere. Following Kolstad (1996) such irreversibilities are also denoted stock ef-
fects and are modeled as non-degradability of the stock of greenhouse gases
(Fisher & Narain 2003). The rational behind this is that climatologists claim that
some part of the stock of GHG cannot be reduced through abatement and does
not decay naturally so that the atmospheric concentration of carbon is not ex-
pected to return to its pre-industrial level but to reach a new equilibrium. On the
other hand, there is also irreversible abatement capital that is sunk in the sense
that it cannot be converted to other forms of capital or to be used for consump-

tion.



Table 2: Uncertainty in economic models
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The next question is then how uncertain damages, and the (low) endogenous or
exogenous probability of an extreme, catastrophic event influences optimal policy
choices. Finally, there is the question of how uncertainty is resolved over time.
The potential of future learning together with the irreversibilities has lead to the
concept of an (quasi) option value. Independently of each other, Arrow & Fisher
(1974) and Henry (1974) demonstrated that there is a premium on policies that
maintain flexibility. Originally, the work focused on irreversible environmental ef-
fects that imply a precautionary principle, as there is a real value associated with
preserving the present climate regime. Sunk abatement capital on the other hand
has the opposite effect and suggests that it is optimal to avoid costly abatement
measures requiring irreversible investments until we are sure that they are
needed. Different authors have emphasized one or the other or both of these ef-

fects (see e.g. Fisher & Narain 2003 for a summary).

Altogether, this strand of literature thus focuses on the question of how to reduce
(A2-3) and the optimal timing of policies, which implies a consistency between
short run and long run policy strategies. Such a strategy that balances the risk of
waiting with those of premature action is also called optimal hedging strategy.
The models used for these kinds of analysis are simple growth models or models
of optimal investment that differ with respect to the included irreversibilities, the

distribution of damages and the endogeneity of risk.

Another approach related to the issue of learning is to evaluate the value of
“early knowledge” i.e. the economic value of resolving uncertainties about cli-
mate change sooner rather than later. As Nordhaus & Popp (1997) formulate it: “If
natural and social scientists succeed in improving their understanding, what will
be the payoff in terms of improved economic performance?” What is generally
done to determine the value of information is to compare an “act then learn” strat-
egy with a “learn than act” strategy that differs in the time at which the information

about uncertain variables (such as damages) becomes known.

To illustrate the basic idea assume here a simple two period model where deci-
sions about emission abatement are taken in two points of time t=1,2. The objec-

tive is to minimize total climate costs TC(s,xq,X,) that comprise abatement costs
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and damages and that depend on the uncertain state of the world s and the cho-
sen emission level x; and x, in both time periods. There are now three possibili-
ties for resolving uncertainties about the state of the world. In the first case, the
uncertainties are not resolved at all (no learning NL). In the second case, the un-
certainties are resolved before the second period so that the decision on the
emission level in t=2 can be made under certainty. This framework is denoted act
then learn (ATL). Finally, the uncertainties can be resolved upfront. We then have
a “learn then act” (LTA) framework. The decision sequence and the resulting ob-

jective function are illustrated in Figure 1.

Decision in t=1 Decision in t=2 Objective function

a) No learning (NL)

S;
- = <TC(SI’X1’X2) Min iy E[TC(s,x1,%2)]
TC(S2,X1,X2) (= expected costs)

2

b) Act then learn (ATL)

X5(S
2(S1) Miny,

X S TC(S1,x1,x2(S1)) .
( ) < E[Min{xz} TC(S ,Xl,X2)]

S, TCELx1x:(52)) (= expected costs)

X2(S2)

¢) Learn then Act (LTA)

x1(S1) X2(S1) . x
Mll’l{xl’xz} TC(S ,X],Xz)

S TC(S1,x1(S1),x2(S1))
expected costs =

TC(S2,%1(S2),x2(S5)) E[Min g .y TC(s',x1,X2)]

S,

x1(S2) X2(S5)

Figure 1: Policy choice as two-period decision with and without learning

This framework can now be used to derive the value of information comparing the
expected costs of policy choices in different situations. Manne & Richels (1992)

for example compare the expected costs under ATL and LTA in a two period
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model and denote the difference as expected value of perfect information
(EVPI). Peck & Teisenberg (1993) and Peck & Wan (1996) define the EVPI in a
single period decision-making model as the difference between NL and LTA. Ha-
Duong (1998) defines for given first period policies the expected value of future
information EVFI as the difference between NL and ATL. Nordhaus & Popp
(1997) compare the expected costs for LTA and ATL where the uncertainty is re-

solved in different years.

In addition, the example can be used to demonstrate the concept of option val-
ues. Assume that there are two different policy strategies in period 1: H (high
abatement) and L (low abatement). The following table is an extended version of
the table in Ha-Duong (1998) and shows the expected costs when choosing over

all policy strategies as in figure 3 and also for given policy choices in period 1.

The last row compares the expected costs of policies H and L. If the opportunity
cost of H is positive it is optimal to chose L and vice versa. Comparing the oppor-
tunity costs (OC) in the scenario without learning (one-shot decision) and the
scenario with learning in the second period (sequential decision) reveals the ef-
fects of irreversibilities. Assume without loss of generality that OC_ (NL) > 0 so
that under a decision that does not account for potential learning it is optimal to
chose policy H. If OC_ (ATL) > OC_(NL) the effects of irreversibility support the
one-shot decision. In other words, conventional cost-benefit analysis even under-
estimates the opportunity costs of L. If H is “high early abatement®, this would
suggest that the environmental irreversibilities dominate. If OC, (ATL) = OC_ (NL)
there is no irreversibility effect and the results of a one-shot analysis and a se-
quential decision are the same. If finally OC_ (ATL) < OC_(NL) the irreversibility ef-
fects decrease the advantages of H in the one-shot analysis. If OC (ATL) > 0
these effects do not change the optimal decision. If OC_(ATL) < 0 the irreversibil-
ity effect now leads to an optimal decision of L. In this case the sunk costs domi-
nate. Against this background the option value of L is defined as OV(L) =
OC_(ATL) - OC.(NL). If OV(L) is positive, this implies that the irreversibility effects
that are relevant in the case of learning are in favor of H. If the irreversibility ef-

fects support the one-shot decision or revise it completely, a positive option value
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of a policy strategy indicates that this is the optimal strategy. In the case where
the irreversibility effects work in a different direction than the one shot decision
but do not revise it (e.g. if 0 > OC_(ATL) < OC.(NL) > 0) the option value of a
strategy may be positive even though even under sequential decision making this

strategy is not optimal. The increased costs of the strategy only decrease under

sequential decision-making relative to one-shot decision-making.

Table 3: Option value and expected value of information

I
EXp. NL ATL LTA | Value of information
Costs
| Exp. value of perfect
Cr(NL)= Cr(ATL)= Ct(LTA)=  info.
Total Min{xmg} Min{XJ}E[Min{xg} E[Mil;]{”,xz}
E[TC(S.X1,X2)] | TC(S ,X1,X2)] TC(s x1,x2)] | EVP! = C(ATL) resp.
ICT(NL) - C1(LTA)
. ] ] 1 Exp. value of future info.
Pgllcy H: CH(NL)= Mln{xz} CH(A*TL)*= E[Mln{xz}
X1 E[TC(s,x1 X2)] | TC(S X1 ,X2)] IEVFI(H) = Cu(NL) -
1CH(ATL)
Policy L: | CLNL)= Mi CLATL)= EMi IExp. value of future info.
olicy L: L = Minya | CL(ATL)= IN¢x2) I _
X1 E[TC(sx1%2)] | TC(S"x1.%2)] (EVEIL) = CuUNL) -
CL(ATL)
- e mm e b e e o o e o o - o - o o + ———————
Option value OV(L
Opportu- |OC (NL)= | OCL(ATL) = =P (*)
nity cost 1= EVFI(L) — EVFI(H)
ocC CL(NL)-CH(NL) [CL(ATL)-CH(ATL)
I= OC.(NL) — OCH(ATL)

Note: In this context certainty equivalence means that the expected costs under
NL and ATL are the same thus that Miny xo E[TC(S,x1,x2)] = E[Ming x2
TC(s ,x1,X3)].

Another question that is linked to the value of information are the payoffs in differ-
ent areas or in other words the relative importance of different uncertainties.
In the simple model described above it is assumed that when uncertainty is re-

solved that the state of the world is completely known. As there are many uncer-
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tainties associated with climate change, it is also possible that only some uncer-
tainties in some parameters are resolved at some point in time. Comparing the
expected costs (or welfare) under no learning and partial learning at some point in
time gives the expected value of information for a specific variable. Comparing
these values for different uncertain variables provides information on the relative

importance of different uncertainties.

From a conceptional point of view, most authors use relatively simple two period
decision models in which the objective is to maximize utility or to minimize the
sum of damages and abatement costs (= total climate costs) by choosing optimal
emission levels. Costs and damages are usually uncertain and can often be only
in two different states. In some models, the probability of high damages (or catas-
trophes) is endogenous and depends on the stock of greenhouse gases. In oth-
ers, it is exogenous. An important determinant of the outcome is also the choice

of the utility function and whether agents are risk averse.

Most of the analysis ignore that there is more then one decision maker in the con-
text of climate policy. In particular, there are different nations with different emis-
sion paths and damages. Game theoretic approaches take into account the
strategic interaction between different actors. Most models including such game
theoretic approaches are deterministic, but there are some models that account
for different aspects of uncertainties. Ulph & Ulph (1996) and Barker (2003) look
at the impact of learning, irreversibilities and uncertain damages in a two period
model with two players choosing emissions to maximize their utility taken the

emissions of the other player as given.

Finally, the analysis of option values is closely related to Portfolio analysis
which is concerned with creating an optimal composition of assets characterized
by different returns and different levels of risk under a given budget constraint
(Toth 2001). The design of GHG abatement policy has similarities to a portfolio
selection problem. In both cases, the decision maker faces a number of invest-
ment projects with an incomplete known payoff, in a generalized sense (Molander
1994). So far, the applications to climate change have been limited. One example
is Molander (1994).

14



3.3 Further issues & approaches

An approach that is different from calculating optimal decisions in a more or less
sophisticated model is to support decision makers in making good abatement and
investment decisions under uncertainty with the help of decision analytic tools.
Decision analysis in general can be defined as a formal quantitative technique
for identifying “best” choices from a range of alternatives (Toth 2001). In particu-
lar, this strand of literature tries to extract optimal decisions starting from a set of
given (or to be constructed) alternatives that are characterized by one or more
properties called attributes that can have different (uncertain) values. As some of
the general assumptions that underlie an decision analysis (for example single
decision makers, complete and consistent utility valuation of decision outcomes)
are hardly met for climate change the IPCC report from 1995 concludes that deci-
sion analysis can not serve as the primary basis for international climate change
decision making. Nevertheless, elements of the technique are seen to have con-
siderable value in framing the decision problem and identifying its critical features
(IPCC 1995).

One study in this area is the study by Willows & Connell (2003) that wants to help
decision makers including governments, regulatory bodies, executives in national
and international corporations and individual citizens to identify good adaptation
options. This means to account for the risk and uncertainty associated with cli-
mate variability and future climate change and to identify and appraise measures
to mitigate the impact or exploit the opportunities presented by future climate. At
the core of the study is a general 8-stage decision process as it has been devel-
oped in the field of decision analysis. These steps are then one by one discussed
in the context of climate adaptation discussing key issues, questions and tools

and techniques.

Another example is the study of Greening & Bernow (2004) that gives an over-
view of multi-criteria decision-making (MCDM) - a sub-area of decision theory
and analysis - in energy and environmental polices. It also includes examples of
greenhouse gas control and a discussion on MCDM tools and Integrated As-

sessment models. Greening & Bernow conclude that “.. the current evolution of IA
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tools to include elements of physical science and economics provides a mean of
utilizing MCDM methods for the development of integrated environmental and
energy policies. [...] In many cases, more than one analytical method from this
family may be used to analyze a problem, and ranges of uncertainty may be ex-

haustively identified”.

Decision analytic elements can also be combined with other types of analysis.
Lange (2003) for example combines expected utility and the maximin criterion for
decision under uncertainty (maximize the minimal worst case outcome) in a two
period model of optimal emissions. In the ICAM model of Dowlatabadi et al.
(Dowlatabadi & Morgan 1993, Dowlatabadi et al. 1998) it is possible to choose
between different decision rules that also include expected costs and the maximin
criterion. Cohen et al. (1994) couple their deterministic model with a decision tree
system that organizes relevant information about the decisions and uncertainties
stemming from different assumptions in the deterministic model. In addition, the
framework of learn then act versus act then learn and the decision trees de-

scribed in the last section stem from formal decision analysis.

There are also a few further issues and approaches in the context of climate pol-
icy and uncertainty. One question concerns the advantages and disadvantages of
different policy instruments in the presence of uncertainties. The starting point
of the few existing analysis is the article by Weitzman (1974). Weitzman showed
that that if the damage function of environmental damages is relatively more un-
certain than the abatement cost function, taxes are preferable to quotas to reach
a certain environmental goal and vice versa. Pizer (1997) and Nordhaus (1994)
using IAMs have come to the result, that in the case of climate change, damages
are indeed more uncertain and that thus taxes are more efficient under uncer-
tainty than rate controls. Taxes also dominate quotas in a model where damage

and cost uncertainties are multiplicative (Hoel & Kart 2001).

Lecocq & Crassous, (2003) ask a different the question and look at whether quota
allocation rules are robust to uncertainty. They use a partial equilibrium model of
the international GHG market to determine the consequences of existing Post-

Kyoto allocation rules and whether these consequences are sensitive to uncer-
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tainties in population, emission and economic growth. While allowance prices and
abatement costs are sensitive to uncertainties, the least-cost rules turn out to be

relatively robust.

Another question is behavior on the international carbon market. Haurie &Viguier
(2003) use a two-player stochastic equilibrium model to look at the possible com-
petition of China and Russia on the global emission market if the entry of the de-

veloping countries represented by China is uncertain.

An approach taken by Hawallek (2003) is called Meta analysis. The idea here is
to take the results from different models to obtain information about the uncer-

tainty of the outcome.

3.4 Quantifying uncertainties

All reviewed approaches work with uncertain parameters or events. Quantifying
the uncertainties surrounding the issue of climate change and climate policies is
one of the most demanding tasks. To enhance the development of a consistent
but unrestrictive style of describing the source and character of uncertainties is
one of the goals for the fourth assessment report of the IPCC. Wherever possible,
uncertainties should be quantified but it is also recognized that there is the need
to obtain semi-quantitative, verbal assessments of uncertainties. One approach is
for example to use terms like very high (95% or greater), high (67-95%), medium
(33-67%), low (5-33%) and very low (5% or less). For more information on this

extensive discussion, see Manning & Petit (2003).

To conduct numerical studies a verbal assessment of uncertainty is not sufficient
and it is necessary to assign probability distributions to the uncertain parameters
and events. In most studies these distributions are constructed by a mixture of
guessing, literature review and estimation — thus they can be termed “guesti-
mates”. In many cases, there are only low, medium and high values that are as-
signed probabilities (3 point distributions). In other cases, 5-point distributions are
used. Sometimes the probabilities and values are derived from literature, some-
times they are rather chosen for illustrative purposes. Other authors chose spe-

cific probability distributions or stochastic processes and specify the necessary
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parameters by guestimates. The most sophisticated studies are probably those
by Nordhaus & Yohe (1983), Edmonds et al. (1983), Nordhaus (1994), and Pizer
(1997). Pizer uses US Post war data to estimate a joint distribution of six parame-
ters. Normally the different uncertain parameters are assumed independent of
each other. Only few studies look at correlations and joint distributions. Examples
are Edmonds et al (1983) and Pizer (1997). Altogether, it is hard to evaluate the
methods used in the different papers. Some studies seem to apply sophisticated
estimation procedures based on real data, but when describing how the probabili-
ties are derived most papers refer to earlier, more detailed publications, which are

hard to obtain.

4 Main findings

Some findings were already included in the last section. In addition, the tables in
the appendix summarize the main findings of economic models. Though only
covering a (subjective) choice of all existing models, they should give a good
overview of the covered topics and main findings. As most models are build for
very specific situations and assumptions, it is not easy to derive the main results.
This section turns back to the four parts of an uncertainty analysis and tries to

summarize the main results of the approaches outlined in the last section.
4.1 Optimal decisions in the light of uncertainty

From the four questions that were mentioned in the last section (How much to re-
duce? When to reduce? How to reduce? and Who should reduce resp. where to
reduce?) research accounting for uncertainty so far has mainly focused on the

first two questions.
How much to reduce?

Even though there are exceptions where uncertainties do not markedly affect op-
timal abatement levels (Manne & Richels 1995) or even lead to lower abatement
(Pindyck 2000), most modeling results show that there is optimally more emis-

sion abatement if uncertainties in parameters or the possibility of catastrophic
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events are considered (Bosello & Moretto 1998, Castelnuovo et al. 2003, Nord-
haus 1994, Nordhaus & Popp 1997, Pizer 1999, Tol 1999). Pizer (1997) for ex-
ample finds that while the optimal rate of CO, reduction accounting for uncertainty
is only slightly higher then the rate obtained when ignoring uncertainty and taking
best guess values in the beginning, it grows over time. By the end of the next
century, the rate is almost doubled. According to Nordhaus (1994) roughly speak-
ing, the optimal carbon tax doubles when uncertainty is taken into account, and

the optimal control rate increases by slightly less than half.
When to reduce?

Concerning the timing of the abatement, the results are less clear. There is some
agreement that (under certain, not unrealistic conditions) the possibility of learn-
ing about uncertain values in the future has some effect on the timing of emission
abatements A relative large number of studies shows that the probability of irre-
versible environmental damages leads to higher early abatement (Bosello & Mor-
etti 1998, Gjerde et al. 1999, Ha-Duong 1998, Heal 1984). Nevertheless, there is
also the sunk cost effect and studies that consider both kinds of irreversibilities
find that it is optimal to emit more in the short run if learning about uncertainties is
possible (Baranzini et al. 2003, Fisher & Narain 2003, Kolstad 1996, Ulph & Ulph
1997). One policy recommendation that can be drawn is that in any case it makes
sense to invest in flexible abatement measures that do not imply a large amount

of sunk and irreversible investment.
How to reduce?

Concerning the third question there has been some research on the advantages
and disadvantages of policy instruments, comparing in particular carbon taxes
and permit trading. Most authors conclude that in the light of climate damages
that are much more uncertain than abatement costs, taxes are preferable to quo-
tas resp. emissions trading (Nordhaus 1994, Pizer 1999). In the study of Pizer,
the welfare gain of using a tax compared to a rate instrument is 13$ per person.
One study looking at investment incentives for firms though finds that those are

larger under emission trading than under emission taxes (Zhao 1998).

19



Where to reduce?

Even fewer studies have looked at regional distribution of abatement and emis-
sion under uncertainty. There are some results on the optimal policy from the
view of a single nation assuming non-cooperative behavior (Barker 2003, Ulph &
Ulph 1996). In such a setting, the results of an analysis with a single decision
maker maybe revised if countries differ, especially in climate damages. If e.g.
damages are negatively correlated the more we expect to learn, the lower emis-
sion should be. In addition, while a single decision maker is always better of un-

der learning, countries can be worse of.

4.2 Uncertainty of model outcomes and relative importance of uncertain

input parameters

The first and the third issue of an uncertainty analysis as outlined in section 3 (the
probability weighted values of the output variables and a measure of risk or dis-
persion about the outcome) can be subsumed under the uncertainty of the model
outcomes. This issue has been mainly analyzed using numerical climate-
economy models with uncertainty propagation. An early work on uncertainty and
climate change is the study by Nordhaus & Yohe (1983) who systematically ex-
amined the influence of key economic, demographic, and technological parame-
ters on CO, emissions. This was followed by an extended analysis of Reilly et al.
(1987) including nearly 80 uncertain parameters. Newer studies include Hope et
al. (1993), Plambeck & Hope (1996), Nordhaus (1994), Nordhaus & Popp (1997),
Scott et al. (1999).

All studies evaluate the variability of certain target model outcomes (or combina-
tions of target outcomes) as a result of uncertain input parameters. Typical target
variables are emissions, costs of emission reductions and damages. Other stud-
ies also look at the uncertainty range of other variables such as atmospheric car-
bon concentrations, temperature, output or optimal carbon reductions (see Table
4). The studies then try to assess which of the uncertain input parameters con-
tributes most to the output uncertainty or which uncertain input parameters have

the highest value of information.
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Table 4: Relative importance of different input uncertainties in selected

studies

Study Uncertain inputs | Target variable(s) :\Q‘?;’?;:Ievant input uncer-
Price induced substitution be-

Nordhaus & tween fossil and non-fossil fuels

Yohe (1983)

Carbon emissions

Labor productivity
Labor-energy trade offs

79 uncertain pa- Labor productivity
Reilly et al rameters; mainly Exogenous energy efficienc
y ' resource, cost & | Carbon emissions 9 o 9y y.
(1987) population pa- Income elasticity of demand in
rameters developing countries
The significance of the uncer-
tain parameters varies by policy
Dowlatabadi Cost of climate and region;
Over 120 uncer- . . o
& Morgan tain parameters policies as loss in | Uncertainties in abatement cost
(1993) GDP play minor role, uncertainties in
market damages play major
role for outcome uncertainties.
84 uncertain pa- For damages:
rameters including Global temperature sensitivity
Hope etal. | scientific, cost of .
(1993) control, cost of e to doubling o.f CO;
Plambeck & | adaptation and Mitigation cost Global warming response to
Hope (1996) |damage parame- Climate damage | change in forcing
PAGE model |ters. Weight of impacts in agricul-
3-point probability ture, service & manufacturing
distributions sector.
Per capita
consumption Index of overall output uncer-
tainty:
Sensitivity analysis | QutPut ,
of 24 parameters | Optimal emission Populatl.o.n growth
Nordh to chose the most | reduction Productivity growth
( 109r9 4)aus important 8 pa- Atmospheric car- | Pure rate of time preference
DICE model rameters (see last |bon concentration |Decline inoutput-CO- ratio

column)

5-point probability
distributions

Temperature
Optimal carbon tax

Index of overall
uncertainty as
weighted average

Climate Damages
Climate-GHG sensitivity
Mitigation cost

Atmospheric retention of CO,
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Table 4 continued

Study Uncertain inputs | Target variable(s) mao:t relevant input uncertain-
Population
Yohe & Technological change in ener
Wallace 9 parameters suppl 9 9 9y
(1996) 3-point distribu- Carbon emissions y. . .
. : Depletion factor in fossil fuel
Connecticut |tions fice
Model P N o
Interfuel elasticity of substitution
Highest value of information:
Nordhaus & 3 tors f Temperature Climate damages
Popp (1997) Ng%rﬁgles ((e;sggr;))m o ti:lal carbon tay | Mitigation cost
DICE Model P (Climate feedback)
(Population growth)
74 uncertain pa- . Source of overall uncertainty:
rameters including | Carbon emissions .
Scott et al. ) , Future demand for energy in the
climate and eco- | Atmospheric car- .
(1999) : . . developing world
MiniCAM nomic variables bon concentration Lab ductivit
p g" (Subjective prob- | Temperature abor pro .uc Ity .
' ability distribu- Damages Technological change in energy
tion?) production

The different studies are difficult to compare, as the input parameters that are

treated as uncertain depend on the modeling approach and vary across model.

Parameters that are included in one model do not exist in another and the same

parameter may be an input in one model and a target in another. Table 4 tries to

summarize the main findings of the most known studies. Among the most impor-

tant uncertainties are uncertainties in climate damages, in labor productivity and

in some kind of change in energy efficiency.

In addition, Nordhaus & Popp (1997) find that the value of anticipating knowledge
by 50 years, range from $45 to $108 billion. Manne & Richels (1992) find that the

payoff to reducing climate related uncertainties could be more than $100 billion

for the US alone.

22




5 Conclusions

As this paper has shown, there have been quite some contributions of economics
to the question of climate change and uncertainty. Large parts of the literature
though are conceptual rather than policy orientated using stylized models and fo-
cusing on theoretical issues rather than on realistic numerical simulations. As a
result, there is now some agreement on the role of learning, irreversibilities and
the impacts of extreme low probability events. Simulations with a few numerical
climate-economy models provide a first feeling about the relevance of different
uncertain input parameters and the resulting variation in emissions, mitigation
costs and damages. There are also a growing number of attempts to include un-
certainty in all kinds of analyses on climate policy, such as game theoretic ap-
proaches for coalition forming or the advantages and disadvantages of different
policy instruments under an uncertain setting. Yet, the research so far only pro-
vide small pieces of a broad picture and it is not always clear how these different
pieces fit together. Especially, there is a lack of practical policy implications of the
research on uncertainty. Only few large economy-climate models include uncer-
tainty analysis and if this is the case, the distributions are chosen rather ad hoc
ignoring correlations between different parameters. In future, it is necessary, to
become more policy orientated and to improve the existing models to include
more sophisticated treatment of uncertainties. This includes the specification of
realistic joint distribution functions as well as a broader inclusion of uncertainty in
the numerous existing economy-climate models, which will enable a comparison

of different models.
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