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Abstract

DSGE models with generalized shock processes have been a major area of research

in recent years. In this paper, I show that the structural parameters governing DSGE

models are not identi�ed when the driving process behind the model follows an unre-

stricted VAR. This �nding implies that parameter estimates derived from recent at-

tempts to estimate DSGE models with generalized driving processes should be treated

with caution, and that there exists a tradeo¤ between identi�cation and the risk of

model misspeci�cation.
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1 Introduction

In this paper, I show that attempts to estimate DSGEmodels whose shock (or wedge) process

follows an unrestricted VAR will result in the nonidenti�cation of deep model parameters.

In particular, there always exists an unrestricted VAR process for model wedges which

can mimic an unrestricted VAR for observables, and vice versa, for any valid set of deep

parameters. This implies that the DSGE model has a �at concentrated likelihood and that

the deep parameters of the model are hence unidenti�ed. In practical terms, the estimates

for model parameters derived from recent attempts to estimate such DSGE models should

be treated with a great degree of caution, and there will always remain a tradeo¤ between

identi�cation and the risk of model misspeci�cation.

The estimation of dynamic models which feature general shock processes through likelihood-

based methods has become a major area of research in recent years. Cúrdia and Reis (2011),

for instance, use Bayesian methods to estimate a large-scale dynamic model whose shock

process follows a VAR(1). Their analysis is motivated by the intuitive idea that the orthog-

onality restrictions typically placed on shocks in DSGE models are arbitrary and restrictive,

and that these restrictions carry with them a risk for misspeci�cation. Ireland (2004) looks

at a model with observation errors which follow a VAR process, which is isomorphic to the

approach of Cúrdia and Reis. Ireland argues that a model with VAR errors can produce

more realistic estimates of structural parameters than a model with simple, mutually un-

correlated AR(1) shocks. Most estimation exercises, such as that of Smets and Wouters

(2007), have typically relied upon stronger restrictions upon the underlying shock processes.

Cúrdia and Reis (2011) present results which suggest substantial di¤erences between their

estimates and those of Smets and Wouters, which they attribute to the more general nature

of their estimated shock process.

While the motivation behind generalizing the shock process in DSGEmodels is appealing,

I show in this paper that generalizing the shock process can result in a lack of identi�cation

if the generalization is taken too far. It turns out that a dynamic model with a driving

process governed by an unrestricted VAR is unidenti�ed using likelihood-based methods for

the simple reason that a model with such a driving process can approximate an unrestricted

VAR in the observables arbitrarily well for any valid set of structural parameter values. In

order to achieve identi�cation, it is therefore necessary to make meaningful restrictions on the

driving process governing the model; otherwise, model parameters cannot put any meaningful

restrictions on the law of motion for the observables. First I present some analytical results

which show that this is a general problem. Then, I set up a concrete example. I show that

in the classic three-equation New Keynesian model with errors governed by an unrestricted

1



VAR(1) driving process, that VAR process can trivially �t an unrestricted VAR(1) to the

data regardless of the values of the structural parameters. It turns out that there remains

some need to make restrictive identifying assumptions in order to achieve identi�cation.

The nonidenti�cation result �ts into a rapidly growing literature on the identi�cation

of structural parameters in DSGE models.1 The traditional way to assess identi�cation

has been to check that the information matrix is of full rank, following Rothenberg (1971).

Canova and Sala (2009) provide a set of diagnostics intended to detect possible nonidenti�-

cation when matching impulse responses. Consolo, Favero, and Paccagnini (2009) discuss

the identi�cation of DSGE models within the context of DSGE-VAR and DSGE-FAVAR ap-

proaches. Iskrev (2010) and Komunjer and Ng (2011) discuss further conditions under which

economic models may or may not be locally identi�ed in a classical setting. Cochrane (2011)

discusses the ways in which the parameters which govern unstable eigenvalues in DSGE mod-

els may not show up in the data and hence are not identi�ed. Koop, Pesaran, and Smith

(2011) discuss the identi�cation of Bayesian models and propose examining the rate of decay

of posterior variances as subsamples get larger, in order to get a sense of whether the model

seems to be converging toward some mode. These methods to assess identi�cation are highly

useful, but they generally require the actual estimation of a model, which can be di¢ cult

when the model is large or poorly-behaved. For instance, even the basic three-equation, New

Keynesian model with a Taylor rule, aggregate supply equation, intertemporal asset pricing

equation, and AR(1) errors has eleven parameters, and it has a poorly-behaved likelihood

function. That model but with VAR(1) errors has twenty parameters in total, while a simple

unrestricted VAR(1) in the observables has only �fteen parameters. Instead of presenting

numerical results, I show analytically that a DSGE model is not identi�ed when its errors

follow an unrestricted VAR process. This is useful to know a priori to the extent that

the full Bayesian estimation of such a DSGE model may still produce parameter estimates,

and these parameter estimates may even conceivably pass certain tests of identi�cation even

though the model is identi�ed by its priors and not by its likelihood.

The rest of this paper follows a simple structure. First I show that if the shock process

behind a DSGE model follows a VAR process, then the linearized observables follow a VAR

process, and vice versa. Then I show that these two propositions imply that the concentrated

likelihood of the deep parameters governing the DSGE model is perfectly �at. I then give

the example of what this looks like in case of the three-equation New Keynesian model. I

conclude with a word of caution and some words about alternative approaches to dealing

with potential model misspeci�cation.

1Cúrdia and Reis (2011) present an excellent review of the previous literature on the speci�cation of
shocks in DSGE models. I only give a brief summary here.
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2 The issue of identi�cation

In this section I show that meaningful restrictions on the law of motion for the driving

processes (or wedges, in the language of Chari, Kehoe, and McGrattan (2007) and �ustek

(2011)) behind a model are necessary for the identi�cation of deep model parameters. First,

I show that a VAR process for the model wedges implies a VAR process in the observables,

and vice versa. Then I show that these two results imply nonidenti�cation for the deep

parameters of a DSGE model.

2.1 Mapping from wedges to the data

In this section I show that an unrestricted VAR process for the shocks to an economic model

results in a VAR process for the observables. A dynamic economic model is governed by a

parameter set �. Elements of � may include parameters which govern production technology,

labor supply, frictions in price and wage formation, adjustment costs, and so on. A set of

mean-zero exogenous structural wedges wt of rank k follows a VAR process with the law of

motion:

wt =
1X
i=1

Fiwt�i + �t, where E�t�
0
t = �w. (1)

The matrices fFig are unrestricted k by k matrices of VAR coe¢ cients. Following the

majority of the literature, I focus here on de-meaned, linearized approximations to DSGE

models. While levels (e.g. of labor�s share or of the real interest rate) can contain substantial

information about model parameters, I focus on the information contained in the dynamic

laws of motion for the observables.

A complete linearized DSGE model including wedges and observables can be represented

using the notation of Sims (2002), treating the law of motion (1) of the wedges as given:

�0;0xt+1 = �1;0xt +�0�0;t+1 +	0�t+1. (2)

The matrices �0;0, �1;0, �0, and 	0, as described by Sims (2002), are functions of the deep

model parameters � and the VAR coe¢ cients fFig. The complete state matrix xt contains
the observables zt, the wedges wt, and any other auxiliary variables included in the model.

Endogenous expectational errors, which are functions of the shocks to the wedges, are given

by �0;t+1. I assume that �t, wt, and zt have the same rank k, and that the model is

stationary (to ensure invertibility) and locally determinate (which is not strictly necessary).
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The results here are robust to a larger system for the wedges or to local indeterminacy (for

which some mapping from wedges into observables still exists but may be indeterminate);

smaller systems will almost surely result in stochastic singularity.

The observables zt are linked to the system through the observation equation zt = Hxt.

The law of motion for the wedges (1) and the model equations form the rows of (2). The

model has a solution of the form:

xt = A0xt�1 +B0�t, (3)

which usually has to be solved for numerically. Iterating the reduced-form law of motion

(3) forward yields the following expression for the observables as a function of the history of

the structural shocks:

zt = Hxt = H
1X
i=0

Ai0L
iB0�t. (4)

The expectational error for zt, denoted by "t, equals HB0�t. I assume that the matrix H�B0
is of rank k for any full-rank matrix �, so that the model can explain the data. Substituting

the relationship between innovations to the data and innovations to the wedges into (4) gives

the in�nite-order MA process which governs the evolution of the data:

zt = H
1X
i=0

Ai0L
iB0(HB0)

�1"t, (5)

which, since the system implied by A0 is strictly stationary, can be written as zt = H(I �
A0L)

�1B0(HB0)
�1"t. Because the matrix premultiplying "t is of full rank ensuring invert-

ibility, the system can alternatively be written in a VAR form with some coe¢ cients � and

a covariance matrix for its errors given by �z:

zt =
1X
i=1

�izt�i + "t, where E"t"0t = �z = HB0�wB
0
0H

0. (6)

The matrices f�ig are the k by k matrices of VAR coe¢ cients which govern the evolution
of the data, given the driving process coe¢ cients fFig and the model coe¢ cients �. A

VAR process for the wedges therefore implies a VAR process for the observables, which may,

especially in the presence of endogenous state variables, possibly be of in�nite order as shown

by Ravenna (2007). This is not a new result� del Negro and Schorfheide (2009) also discuss

this property of DSGE models, which forms the backbone of the DSGE-VAR literature�but

it is important for what follows. It turns out that the converse of this statement is true�if
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the data follow an unrestricted VAR process, then it is possible to recover the VAR process

governing the wedges as well. By estimating an unrestricted VAR on the observables, one

could always �t a wedge-generating process similar to (1).

2.2 Mapping from the data to the wedges

To show that (6) implies (1), I again represent the model using the notation of Sims (2002)

in equation (2), but this time I treat the law of motion (6) as given instead of (1). The

variables xt again contain the observables zt, the wedges wt, and any other auxiliary variables

included in the model. Endogenous expectational errors, which are functions of the shocks

to the wedges or equivalently the shocks to the data, are given by �1;t+1. I again assume that

"t, wt, and zt have the same rank k and that the model is stationary and locally determinate.

Formally, the system contains the law of motion for the data (6) plus any model equations.

The system in the notation of Sims (2002) now takes the form:

�0;1xt+1 = �1;1xt +�1�1;t+1 +	1"t+1. (7)

The matrices �0;1, �1;1, �1, and 	1, as described by Sims (2002), are functions of the deep

model parameters � and the VAR coe¢ cients f�ig. The wedges wt are linked to the system
through the observation equation wt = Dxt. The augmented model has a solution of the

form:

xt = A1xt�1 +B1"t, (8)

which usually has to be derived numerically. Iterating (8) forward yields the wedges as a

function of the history of the innovations to the data:

wt = Dxt = D
1X
i=0

Ai1L
iB1"t. (9)

The expectational error for wt, denoted by �t, equals DB1"t. I assume that the matrix

D�B1 is of rank k for any full-rank matrix �, which is equivalent to saying that the model

is relevant to the data. Substituting this relationship into (9) gives the in�nite-order MA

process which governs the evolution of the wedges:

wt = D

1X
i=0

Ai1L
iB1(DB1)

�1�t, (10)
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which, since the system implied by A1 is strictly stationary, can be written as wt = D(I �
A1L)

�1B1(DB1)
�1�t. Because the matrix premultiplying �t is of full rank ensuring invert-

ibility, this system can be written in the VAR form given in (1), which again may be in�nite

in order.

It is therefore econometrically equivalent to treat the wedges as linear functions of the

data as in this section or the data as a linear function of the wedges as in the previous

section. Knowing the law of motion of one, conditional on �, gives the law of motion of the

other.

2.3 Main result: Nonidenti�cation under an unrestricted F

It is possible to prove based on the results from the previous two sections that estimating

(1) by maximum likelihood results in a �at concentrated likelihood of fztg for any parameter
set �, so that � is not identi�ed through likelihood-based methods. Proof proceeds through

construction. Equations (6) through (10) suggest that there is a simple way to estimate

(1) by maximum likelihood (or by some other criterion such as GMM) when F and �w are

unrestricted. First, estimating (6) by OLS delivers the unrestricted maximum likelihood

estimates of � and �z, given by �̂ and �̂z; respectively. Then numerically solving for the

values of F and �w implied by �̂ and �̂z, by going through steps (7) through (10), gives a

set of estimates for the law of motion for the wedges F̂ and �̂w, for a given parameter set �.

Since F̂ and �̂w imply a VAR system of the same form as (6), it is not possible to increase the

likelihood of fztg any further, or else �̂ and �̂z would not be maximum likelihood estimates
of � and �z in the �rst place. Therefore F̂ and �̂w are maximum-likelihood estimates of F

and �w as well. Furthermore, since the density of zt evaluated at �̂ and �̂z does not depend

at all on �, � is unidenti�ed in the sense that the concentrated likelihood of � is perfectly

�at. The estimated parameters F̂ and �̂w are functions of �, but the parameters �̂ and �̂z
are not. As � varies, F̂ and �̂w have enough degrees of freedom to simply adjust in order

to bring the estimated driving process (1) completely into line with the estimated law of

motion (6).

This result should not be entirely surprising, since it mirrors a century of work on the

identi�cation of systems of equations. A simple static system of supply and demand is

illustrative. To estimate a supply and demand system with two equations and data on

quantity and prices, it is necessary to make additional identifying restrictions or to bring in

outside information. One way to do this is through instrumental variables, where some set

of shocks is assumed to be uncorrelated with another set of shocks� the classic example given

by Wright (1928) involves taking shocks to the productivity of land as orthogonal to shocks

6



to the demand for butter and �axseed. Wright uses this orthogonality assumption in order

to estimate the elasticities of demand for these two commodities. The same situation holds

in DSGE models with respect to orthogonality assumptions, in which case it is necessary to

make meaningful restrictions on F and �w in order to identify �. Identi�cation requires

�nding a way to break the tight link between (6) and (1), and this is done through placing

restrictions on (1). Typical restrictions placed in the macroeconomic literature are to assume

that the o¤-diagonal elements of F and �w are zero or that �rst moments contain useful

information (e.g. using information from labor�s average share of income to identify labor�s

share in a Cobb-Douglas production function). It is simply not possible to dispense with

restrictions of this sort in the absence of other meaningful prior information. In a sense, the

original critique made by Sims (1980) of the simultaneous equations literature cannot be fully

reconciled with the DSGE approach. There will always be some degree to which DSGEs

must place unbelievable restrictions on the data in order for the data to place believable

restrictions on DSGE parameters.

3 A practical example of nonidenti�cation

Here, I illustrate the problem of identi�cation with a simple example based on the textbook

3-equation New Keynesian model mentioned in the introduction. The output gap yt is

related to the in�ation gap �t through an aggregate supply equation; the parameter � re�ects

the e¤ect of in�ation on output, and � is the rate of time preference. Output is also

related to future output, in�ation, and current interest rates through an aggregate demand

equation, where the parameter � governs the willingness of consumers to substitute across

time. Interest rates are governed by a Taylor Rule which relates interest rates to in�ation

and output through the Taylor rule coe¢ cients �� and �y respectively. In the current

example there is no interest rate smoothing, for the sake of simplicity.

The system, with wedges wt, is expressed by the following three equations:

yt = ��t � ��Et�t+1 + wst ; (11)

yt = �
1

�
(it � Et�t+1) + Etyt+1 + wdt ; (12)

and

it = ���t + �yyt + w
i
t. (13)

The wedges wst , w
d
t , and w

i
t represent reduced-form disturbances to aggregate supply, aggre-
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gate demand, and monetary policy, respectively.

The system (11) through (13) written in the canonical form (7) takes the following form,

assuming that the observables follow a VAR(1) with a coe¢ cient matrix �:226666666664

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 �� 0 0 0 0

�1 �1=� 0 0 0 0

0 0 0 0 0 0

37777777775

26666666664

yt+1

�t+1

it+1

wst+1

wdt+1

wit+1

37777777775
=

26666666664

�11 �12 �13 0 0 0

�21 �22 �23 0 0 0

�31 �32 �33 0 0 0

�1 � 0 1 0 0

�1 0 �1=� 0 1 0

�y �� �1 0 0 1

37777777775

26666666664

yt

�t

it

wst

wdt

wit

37777777775
(14)

+

26666666664

1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0

37777777775

264"
y
t+1

"�t+1

"it+1

375+

26666666664

0 0 0

0 0 0

0 0 0

0 0 0

�1 �1=� 0

0 0 0

37777777775

264�
ws
t+1

�wdt+1

�wit+1

375 .

It turns out in this case that the wedges wt are a simple linear function of the observables

zt, and this fact greatly facilitates �nding the law of motion for the wedges (which in a more

general case may have to be solved for numerically). To see this, the bottom three lines of

the system can be rewritten as obeying:264 0 �� 0

�1 �1=� 0

0 0 0

375
264Etyt+1Et�t+1

Etit+1

375 =
264�1 � 0

�1 0 �1=�
�y �� �1

375
264yt�t
it

375+
264w

s
t

wdt

wit

375 ,
so after substituting in the law of motion for the observables and rearranging,264w

s
t

wdt

wit

375 =
0B@
264 0 �� 0

�1 �1=� 0

0 0 0

375��
264�1 � 0

�1 0 �1=�
�y �� �1

375
1CA
264yt�t
it

375 ,
2In typical implementations of the Sims (2002) algorithm, the bottom row of coe¢ cients governing the

Taylor rule is placed on the t+ 1 side and not on the t side.
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or equivalently,

264yt�t
it

375 =
0B@
264 0 �� 0

�1 �1=� 0

0 0 0

375��
264�1 � 0

�1 0 �1=�
�y �� �1

375
1CA
�1 264w

s
t

wdt

wit

375 ,
which can be represented by writing wt = Jzt or zt = J�1wt, respectively.

Substituting the latter representation of the mapping between the data and wedges into

the law of motion for the data (6) gives the law of motion for the wedges:

J�1wt = �J
�1wt�1 + "t,

so that the wedges follow a VAR(1) of their own:

wt = J�J
�1wt�1 + J"t. (15)

The important thing to note is that any VAR process for zt implied by � and �z maps

one-to-one into a valid VAR process for wt implied by J�J�1 and J�zJ 0, unless one puts

some meaningful restriction on the latter objects. This is true no matter what the contents

of J turn out to be, so long as J is not singular. The parameters f�; �; �; ��; �yg do not place
any meaningful restrictions on the wedge process needed to perfectly match an unrestricted

VAR(1) on the data. In this particular case, a DSGE model with twenty parameters, only

�ve of which are structural, can exactly replicate an unrestricted VAR model which has

�fteen parameters. The �fteen parameters of the VAR driving process for the wedges can

match the �fteen parameters of an estimated VAR which governs the observables.

4 Conclusion

In this paper, I have shown that DSGE models with a VAR shock process su¤er from serious

problems with identi�cation. If the observables follow a VAR process as they do under

such models, then there is always a set of parameters governing the shock process which

can replicate an unrestricted VAR arbitrarily well, for any values for the model parameters

�. In the case of the textbook three-equation New Keynesian model, the mapping between

wedges and observables is perfectly linear. Using likelihood-based methods or the method

of moments does not make it possible to identify � in this circumstance, since there is always

some shock process governing the wedges which can generate the patterns seen in the data.

The problems identi�ed by Cúrdia and Reis (2011) and others with existing identi�cation
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schemes therefore does not appear to have a satisfactory solution. It does not seem to

be possible to dispense with a priori statements regarding the nature of the wedge process

without losing the ability to identify model parameters. With identifying assumptions comes

a risk of model speci�cation.

In order to deal with potentially misspeci�ed models, it remains necessary to exercise

considerable caution and judgment. An and Schorfheide (2007), for instance, discuss the

role that posterior predictive checks and posterior odds comparisons can play in diagnosing

potential misspeci�cation and in building better models, while del Negro and Schorfheide

(2009) discuss how to deal with potential misspeci�cation in di¤erent ways when performing

policy analysis. They argue that it is particularly hazardous to treat the behavior of a

generalized shock process as exogenous to policy. Interestingly, they allude to the identi-

�cation issues associated with allowing exogenous dynamics to drive the dynamics of the

observables. They also discuss the approach taken by del Negro and Schorfheide (2004) in

using DSGE models as priors for structural VAR systems (the DSGE-VAR approach), and

how this approach can be used to formally discuss model misspeci�cation. The idea behind

DSGE-VARs is that a restricted DSGE model can produce a higher posterior data density

than an unrestricted VAR. Analyzing the hyperparameter governing the strength of the

DSGE prior for the VAR provides a formal way to discuss model misspeci�cation. More

work remains to be done in �nding parsimonious ways to balance misspeci�cation with iden-

ti�cation in the context of estimating model parameters in a computationally e¢ cient way,

but such an approach seems more likely to yield fruitful results than allowing for additional

parameters to govern the driving process for model wedges.
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