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1 Introduction

How should central bank’s manage a disinflation process? The received view in

the literature—as expressed by King (1996) at the Kansas City Fed symposium

on Achieving Price Stability—seems to be for a gradual timetable, with inflation

targets consistently set below the public’s inflation expectations. As King puts it,

“the aim was not to bring inflation down to below 2 percent by the next month,

or even the next year. It was to approach price stability gradually ... some four to

five years ahead”. However, King also raises the possibility that a central bank may

try to convince the private sector of its commitment to price stability by choosing

to reduce inflation towards the inflation target quickly. He calls this ‘teaching by

doing’. Then the choice of a particular inflation rate influences the speed at which

expectations adjust to price stability.

King shows how the optimal speed of disinflation depends crucially on whether the

private sector immediately believes in the new low inflation regime or not. If they

do, the best strategy is to disinflate quickly, since the output costs are zero. Of

course, if expectations are slower to adapt, disinflation should be more gradual as

well. Teaching by doing effects have also been analyzed by Hoeberichts and Schaling

(2000) and Schaling (2003). They find that allowing for ‘teaching by doing’ effects

always speeds up the disinflation vis-à-vis the case where this effect is absent. Thus,

their result is that ‘speed’ in the disinflation process does not necessarily ‘kill’ in the

sense of creating large output losses.

In this paper we analyze optimal disinflation policy when the central bank faces

uncertainty regarding the prevailing level of inflation expectations and uses data

from the economy to learn about them. The process of learning involves updating

in real time using standard Kalman filtering methods. We find that when the central

bank internalizes the effect of its current disinflation policy on future uncertainty

about inflation expectations, it disinflates more than implied by a policy of certainty

equivalence but less than implied by a cautionary policy. Under learning, the optimal

policy is a nonlinear function of the state of the economy and the central bank’s belief

about inflation expectations. It turns out that, given its belief, the optimal policy

stays close to a certainty equivalence policy when the inherited level of inflation is
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high. When the inherited level of inflation is low, the optimal policy stays close a

policy that implies caution (as first shown by Brainard (1967), but now extended to

a dynamic context). In our case, a cautionary policy disinflates more than implied

by the certainty equivalence policy.

Regarding the focus on learning and control, our paper is related to other studies

that have analyzed the role of parameter uncertainty in optimal monetary policy

(see e.g., Bertocchi and Spagat (1993), Balvers and Cosimano (1994), Wieland

(2000a), Ellison and Valla (2001), Yetman (2003), Ellison (2006), and Svensson

and Williams (2007)).1 However, these studies typically assume the presence of

uncertainty about the effects of current policy actions on the economy.2 Also, a

common feature of most of these studies is that the linear economic process subject

to central bank control is static. By contrast, in our model, imperfect information

about inflation expectations is reflected as uncertainty about the effects of past

policy actions. Thus, in our case the lag of the policy instrument is crucial for the

dynamics of the economy.

The remainder of the paper is organized as follows. Section 2 presents a simple

model and discusses private sector behavior regarding the credibility of the central

bank’s inflation target. It also discusses belief updating on the part of the central

bank. In section 3 we derive the optimal degree of disinflation under alternative

scenarios—certainty equivalence, cautionary and dynamically optimal policies and

present sensitivity analysis to changes in the key parameters. In section 4 we discuss

convergence of limit beliefs and policies. Finally, section 5 gives concluding remarks.

1Formally, the numerical methods for solving optimal control under parameter uncertainty
originate in the dual control literature (see e.g., Prescott (1972)). The dual control literature has
shown that the so-called separation principle may not hold, and a trade-off between estimation
and control arises because current actions influence estimation (learning) and provide information
that may improve future performance. See e.g., Wieland (2000b) for a detailed discussion.

2As our focus is on parameter uncertainty, we abstract from other forms of uncertainty, such
as model uncertainty (see e.g., Cogley and Colacito and Sargent (2005)), which are also important
for monetary policymakers.
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2 The Model

King (1996) discusses disinflation policy using a simple macroeconomic model, which

combines nominal wage and price stickiness and slow adjustment of expectations to a

new monetary policy regime. The model has three key equations—aggregate supply,

monetary policy preferences and inflation expectations. Aggregate supply exceeds

the natural rate of output when inflation is higher than was expected by agents

when nominal contracts were set. This is captured by a simple short-run Phillips

curve.3

zt = πt − πe
t + ut (1)

Where πt is the rate of inflation, zt is the output gap and πe
t indicates that the

expectation of inflation is the subjective expectation (belief) of private agents. As

in King (1996), this belief does not necessarily coincide with rational expectations.

The model is not restrictive as long as inflation expectations are in part influenced

by past monetary policy (see e.g., Bomfim and Rudebusch (2000) and Yetman

(2003)).

The regime change is represented by a new inflation target π∗ = 0, which is an-

nounced to the public at the end of t − 1. The new target is lower than the initial

steady state inflation, denoted by π0.

The central bank’s objective as of period t is to choose a sequence of current and

future inflation rates {πτ}∞τ=t so as to minimize its intertemporal loss

Ec
t−1

∞∑

τ=t

δτ−tL(πτ , zτ ) (2)

where

L(πt, zt) =
1

2
(zt − z∗)2 +

α

2
(πt − π∗)2 (3)

3In their analysis of U.S. monetary policy experimentation in the 1960s, Cogley and Colacito
and Sargent (2005) use a model similar to ours but with unemployment instead of output.
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and Ec
t−1 denotes expectations conditional on the central bank’s information at the

end of period t − 1. The parameter α ≥ 0 is the relative weight on inflation stabi-

lization while δ is the discount factor (0 < δ < 1).

Inflation expectations

King (1996) analyzes two extreme cases of inflation formation: (1) a completely

credible policy regime where private sector expectations adjust immediately to the

inflation target (since the announcement is fully credible)—this is the case of rational

or model consistent expectations; (2) ‘endogenous forecasting’, where the private

sector expectations depend on monetary policy choices (that is on actions, not just

on words) made in the new regime.

In general, expectations are affected both by the inflation target and by actual

inflation performance. After experiencing high inflation for a long period of time,

there may be good reasons for the private sector not to believe the disinflation policy

fully (See also Bomfim and Rudebusch (2000) and Schaling (2003)). In light of this,

we assume that private sector inflation expectations follow a simple rule, that is a

linear function of the inflation target and the lagged inflation rate

πe
t = γπt−1 + (1− γ)π∗ = γπt−1 (4)

where 0 ≤ γ ≤ 1 captures the degree of credibility of the new regime. The closer is

γ to 0, the higher is the credibility of the regime change.

We introduce uncertainty by supposing that the central bank can not observe pri-

vate sector expectations directly. Moreover, we assume the central bank does not

know the credibility parameter γ and can not observe (even ex post) the shock ut,

so that it can not infer private sector inflation expectations from (4). In period t,

the central bank observes zt only after it has chosen πt and the shock ut has realized.

Under this scenario, the unobservability of inflation expectations is manifested as

parameter uncertainty—the central bank does not know the degree of credibility, as

measured by γ. It follows that optimal monetary policy affects (and is affected by)

the dynamics of belief updating about γ. In other words control and estimation of
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the economy are interrelated.4

Belief Updating

Let yt−1 = −πt−1. Substituting (4) into (1), the actual dynamics of the Phillips

curve is given by

zt = πt − γyt−1 + ut (5)

yt = −πt (6)

The information set at the end of period t is Ωt = {zt, zt−1, ...}. Under parameter

uncertainty, the central bank’s belief about γ, before setting πt, can be characterized

by a prior mean ct−1 = E(γ|Ωt−1) and prior variance pt−1 = E(γ − ct−1)
2. After πt

is chosen and zt realizes, the central bank updates its belief to ct and pt. Updating

takes a standard recursive structure,

ct = ct−1 + yt−1pt−1F
−1
t−1(zt − πt − ct−1yt−1) (7)

pt = pt−1 − p2
t−1y

2
t−1F

−1
t−1 (8)

where Ft−1 = pt−1y
2
t−1 + σ2

u. These two equations represent the learning channel

through which the current policy action, πt, affects future beliefs about γ, i.e.,

ct+j, pt+j+1 for j = 0, 1, 2, ... The filtering process maps the sequence of prediction

errors into a sequence of revisions; and the term yt−1pt−1F
−1
t−1 on the right hand side

of (7) and (8) is usually referred to as the Kalman gain, which is a nonlinear function

of period t-1 policy πt−1.
5

4This bounded rationality assumption follows, among others, Marcet and Sargent (1988) and
Evans and Honkapohja (2001) in that in forecasting private sector inflation expectations, the
central bank acts like an econometrician. Evans and Honkapohja (2001) and others have studied
determinacy and learnability of rational expectations equilibria when the private sector has to
learn about key parameters and the central bank follows a simple monetary policy rule. Here we
are interested in how uncertainty and learning affect the central bank’s optimal control problem
(see for e.g. Beck and Wieland (2002) and Tesfaselassie et al. (2006)).

5See Tesfaselassie (2005) for a detailed derivation.
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3 Optimal Disinflation Policy

We distinguish three policy scenarios—certainty equivalence policy, cautionary pol-

icy and dynamically optimal policy. The three policies differ in their approaches to

parameter uncertainty and learning. The certainty equivalence policy and the cau-

tionary policy ignore the non-linear updating equations, and so policy is conducted

under passive learning and the policy rules are linear in the state variable yt−1. The

certainty equivalence policy is an extreme case, where the prior variance is set to

zero (pt−1 = 0). The dynamically optimal policy takes account of the updating

equations and thus represents an active learning policy. In that case, the policy rule

is a non-linear function of yt−1 and can be solved for only numerically.

In the next two sections we consider the cases of certainty equivalence and caution-

ary policy. In both cases the central bank disregards the effect of current policy

actions on future estimation and control. In other words, by ignoring the non-linear

updating equations for ct and pt, the central bank treats control and estimation

separately. Learning is in effect passive in the sense that, the central bank optimizes

assuming its actions will not affect future beliefs but updates its beliefs once new

data arrives (Sargent (1999)).

The Certainty Equivalence Policy

Under certainty equivalence the central bank ignores parameter uncertainty, being

fully confident about its prior ct−1 = c. Its belief about γ is thus given by the pair

(ct−1, pt−1) = (c, 0). The sequence of events is as follows.

Certainty Equivalence: Timing of events in period t

Stage 1 Stage 2 Stage 3 Stage 4

private sector sets central bank sets central bank chooses ut realizes,

πe
t Ec

t−1π
e
t πt = π(yt−1, c; .) determining zt

The minimization problem is

min
{πτ}∞τ=t

Ec
[ ∞∑

τ=t

δτ−tL(zτ , πτ )|yt−1

]
(9)
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subject to the linear constraint (5). Since under CE the control problem is linear-

quadratic, the solution for the optimal level of πt is similar to that under perfect

knowledge. The certainty-equivalence rule simply replace γ with its conditional

mean c. As is shown in Appendix, the solution for πt is given by (‘CE’ denotes

certainty equivalence)

πCE
t =

z∗ − 1
2
δµCE

1

1 + α + δµCE
2

+
cyt−1

1 + α + δµCE
2

(10)

where

µCE
2 =

−1− α + δc2 +
√

4αδc2 + (1 + α− δc2)2

2δ

µCE
1 =

2cz∗(α + δµCE
2 )

1 + α− cδ + δµCE
2

Note that in general, µCE
2 > 0. When α = 0, the case of strict output targeting,

µCE
1 = µCE

2 = 0. Then, from the optimal rule (10), πt = z∗ + cyt−1. For α > 0, πt

moves less than one-to-one with cyt−1.

The Cautionary Policy

A cautionary policy recognizes parameter uncertainty p > 0. In a seminal paper,

Brainard (1967) raised the issue of parameter uncertainty and optimal policy. Using

a simple static model where there is no opportunity for learning, Brainard showed

that optimal policy that allows for parameter uncertainty induces caution, in the

sense that the policy instrument changes by a smaller amount compared to the that

implied by the CEP.6 Within our dynamic model, the role of p > 0 can be seen by

decomposing Ec
t−1(zt − z∗)2 into the square of the conditional mean Ec

t−1(zt − z∗)

and the conditional variance Ft−1.

Ec
t−1(zt − z∗)2 = (Ec

t−1zt − z∗)2 + Ft−1 (11)

= (πt + cyt−1 − z∗)2 + py2
t−1 + σ2

u

6See also Tesfaselassie et al. (2006) and the references therein.
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The expected loss due to output variability has an additional term, py2
t−1. Since

yt = −πt, a lower value of |πt| reduces the conditional variance of zt+1. Thus,

parameter uncertainty matters for optimal monetary policy.

Cautionary Policy: Timing of events in period t

Stage 1 Stage 2 Stage 3 Stage 4

private sector sets central bank sets central bank chooses ut realizes,

πe
t yt = Ec

t−1π
e
t πt = π(yt−1, c, p; .) determining zt

As before, the central bank continues to ignore the fact that current policy can affect

future beliefs and by construction treats c and p as fixed parameters, implying that

the only state variable from the central bank’s point of view is yt. The first order

condition with respect to πt will thus take the same form as (10). The difference is

that now µ2 is a function of p as well as c (see Appendix).

πCP
t =

z∗ − 1
2
δµCP

1

1 + α + δµCP
2

+
cyt−1

1 + α + δµCP
2

(12)

where ‘CP’ denotes cautionary policy and

µCP
2 =

−1− α + δ(c2 + p) +
√

4δ(p + (c2 + p)α) + (1 + α− δ(c2 + p))2

2δ

µCP
1 =

2cz∗(α + δµCP
2 )

1 + α− cδ + δµCP
2

As µCP
2 > µCP

2 , we have πCP
t < πCE

t implying that given its initial belief, the central

bank disinflates by more under the cautionary policy. Moreover, the larger is p, the

larger is the disinflation move.

The intuition behind a less accommodating policy under the cautionary policy lies

in the additional loss from pπ2
t . Given p > 0, the central bank must choose πt lower

than πCE
t so that the effect of p on future output variability is less magnified. In the

limiting case where p = 0 the cautionary policy collapses to the certainty equivalence

policy.
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Unlike the case of certainty equivalence, limα→0 µCP
2 6= 0

lim
α→0

µCP
2 =

−1 + δ(c2 + p) +
√

4δp + (1− δ(c2 + p))2

2δ
(13)

which is different from zero unless p = 0. This is an important result for the following

reason. Suppose α = 0. Under perfect knowledge, the optimal policy is to accom-

modate inflation expectations πe
t , whatever the level may be. That is πt = z∗ + πe

t .

This rule also applies under certainty equivalence since πt = z∗ + cπt−1, where the

central bank accommodates its forecast of inflation expectations. By contrast, the

cautionary policy does not fully accommodate the central bank’s forecast of inflation

expectations (πt = z∗ + 1
1+φδ

cπt−1 < z∗ + cπt−1), where φ ≡ limα→0 µCP
2 .

Dynamically Optimal Policy

We now examine how disinflation policy is affected by learning considerations. The

dynamic control problem is

min
{πτ}∞τ=t

Ec
[ ∞∑

τ=t

δτ−tL(zτ , πτ )|(yt−1, ct−1, pt−1)
]

(14)

subject to three constraints—the linear Phillips curve (5) and the two non-linear

updating equations (7) and (8). Under fully optimal policy, there are three state

variables: yt−1, ct−1 and pt−1.

Dynamically Optimal Policy: Timing of events in period t

Stage 1 Stage 2 Stage 3 Stage 4

private sector sets central bank sets central bank chooses ut realizes,

πe
t Ec

t−1π
e
t πt = π(yt−1, ct−1, pt−1) determining zt

The Bellman equation associated with the dynamic programming problem (14) is

V (ct−1, pt−1, yt−1) = min
πt

{
L(zt, πt) + δEc

t−1V (ct, pt, yt)
}

= min
πt

{
1

2
Ec

t−1(zt − z∗)2 +
α

2
π2

t

+ δ
∫

V (ct, pt, yt)f(zt|ct−1, pt−1, yt−1, πt)dzt

}
(15)

10



where Ec
t−1(zt − z∗)2 is now decomposed as follows

Ec
t−1(zt − z∗)2 = (πt − ct−1yt−1 − z∗)2 + pt−1y

2
t−1 + σ2

u (16)

The terms on the right hand side of (15) represent the tradeoff between control

and estimation. The first two terms are current expected reward while implicit in

the last term are two opposing components—one is the effect of πt on L(zt+1, πt+1)

(note that ct and pt depend on πt−1 but not on πt) and the other is the expected

improvement in payoffs from t + 2 onwards due to better information about the

unknown parameter (via the effect of πt on pt+1). The first component implies that,

given pt > 0, as with the CP, the DOP reduces the conditional variance of zt+1

by decreasing the level of πt. But πt−1 > 0 means that pt < pt−1, which reduces

expected losses and πt does not have to decrease by as much as it does in the CP.

Therefore, this channel leads to gradual disinflation compared to the CP and the

gradualist policy is enhanced the larger the initial level of inflation, which helps

reduce parameter uncertainty considerably.

Unlike the CEP and CP, the DOP is a non-linear function of the state variables

and can be solved for only numerically. As shown by Easley and Kiefer (1988) and

Kiefer and Nyarko (1989) an optimal feedback rule exists and the value function is

continuous and satisfies the Bellman equation. Policy and value functions can be

obtained using an iterative algorithm based on the Bellman equation and starting

with an initial guess.

We solve for the optimal policy under learning using numerical dynamic program-

ming (see e.g. Wieland (2000a)). Then we compare disinflation policy under the

DOP with those of CEP and CP. First we show results for a baseline parameters

where α = 0.5, σ2
u = 1, δ = 0.95 and z∗ = 0.25.

Figure 1 HERE

Figure 1 shows that for various combinations of initial beliefs about the mean and

variance of the unknown parameter, the DOP is in general more accommodative

to inflation expectations than the CP but less accommodative than the CEP. The

initial position of inflation determines whether DOP stays closer to the CP or to
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the CEP. For large deviations of initial inflation from zero the DOP is similar to

the CEP. An intuitive explanation for this result is that, from the updating equa-

tions, the central bank recognizes that the larger the deviation of πt−1 from zero, the

smaller pt, which in turn reduces the conditional variance of zt+1. In anticipation of

this, the central bank does not have to disinflate as much as the CP would imply.

Therefore, the optimal policy remains closer to the CEP. On the other hand, when

πt−1 is small, pt remains close to pt−1. Expecting only a marginal reduction in the

degree of uncertainty in period t+1, the central bank gives more weight to reducing

expected future losses from the immediate future relative to reducing estimation

errors in the more distant future. Thus, it disinflates more aggressively, moving

towards the CP. However, this effect is weaker the larger is the initial parameter

uncertainty (i.e., the larger pt−1).

Sensitivity Analysis

Below we show results when the variance of the exogenous shocks to output and the

discount factor take different values than the baseline values.

Smaller variance of shocks

Note that, the CEP and the CP are independent of the variance of the output shock.

Figure 2 compares the DOP for two levels of the variance of the shock to output

gap (σ2
u = 1 and σ2

u = 0.1). In that case, the DO policy is closer to the CEP when

σ2
u = 0.1 than when σ2

u = 1.

Figure 2 HERE

The intuition for this effect is that the output gap zt is more stable under σ2
u = 0.1

than under σ2
u = 1. Given yt−1, the updating equation for ct implies that the fore-

cast error zt − πt − ct−1yt−1 is more informative about the unknown parameter the

smaller the variance of zt due to exogenous shocks and the larger the variance of zt

due to estimation errors. This effect is also apparent from the updating equation

for pt, which is positively related to σ2
u.

7

7The change in the DOP is more muted when the weight on inflation increases.
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Shorter Policy Horizon

Changes in δ affect all types of policies.8 For instance, the smaller δ, the more heavily

future losses are discounted and the shorter the central bank’s policy horizon. In

that case, the effect of parameter uncertainty on future expected losses is less of a

concern to the central bank. Thus, the DOP and the CP will move towards the

CEP, implying that all policies call for a more gradual disinflation process.

Figure 3 HERE

Figure 3 shows the effect of a decrease in the discount factor on the DOP relative to

the CP (the degree of gradualism of the DOP relative to the CP). The DOP induces

less relative gradualism at the lower value of the discount factor if the initial level

of inflation is large. However, the differences between the DOP and the CP seem

to disappear at low to moderate rates of initial inflation, and at small values of the

parameter estimates.

4 Speed of Learning and Convergence

We know turn to the dynamics of inflation and central bank belief and their conver-

gence in the limit. The question is whether in the limit inflation approaches its new

target under alternative policies. Could the central bank end up having a wrong

limit belief about γ, which would lead to incorrect limit policy, whereby inflation

stabilizes at a level different from its target?

Starting from period 0 the sequence of estimation, control and updating is (c0, p0)→
(π1, z1) → (c1, p1) → (π2, z2) and so on. As the dynamics of (πt, zt) and (ct, pt) are

interrelated, even if we start with the same priors (c0, p0), the dynamics of estimation

and control will depend on the type of policy followed by the central bank.

Note that as in King (1996), the central bank has perfect control over inflation. That

means, absent exogenous shocks to inflation, there is a possibility of incomplete

8When α = 0, the CEP collapse to a static optimal policy, thus independent of δ.
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learning about inflation expectations if inflation is stabilized too quickly. As it

induces low variations in πt the CP is most susceptible to the danger of incomplete

learning. By adopting a slower speed of disinflation, the CEP and the DOP increase

estimation precision and thereby improving future control of the economy.

Of course in reality, inflation is subject to shocks outside the control of the central

bank. When there is an additive control error, actual inflation is the sum of intended

monetary policy πI
t and an exogenous control error νt, that is, πt = πI

t + νt. The

econometric model is still given by (1). Actual inflation is now stochastic even if

πI
t is fixed by the central bank. Thus, in the limit ct converges to γ. Even if these

additive control error has a very small variance, inflation will never settle down

with time, implying that in the limit, beliefs converge to the true parameter. As

the variance of the additive control error increases, the central bank focuses more

on current control of the economy and less on future estimation. It follows that

the central bank has an incentive to speed up the disinflation process by reducing

πI
t more rapidly. Given policy, learning tends to be slow as the variance of the

additive control error diminishes. The implication is that, if the additive control

error is insignificant and the central bank improves its control of inflation, the speed

of learning will depend more on its disinflation policy.

One possible extension of the analysis is to let γ be time-dependent, for example a

random walk γt = γt−1 + ηt as in Beck and Wieland (2002). It is easy to conjecture

that in this case, learning will be perpetual, as the underlying parameter changes all

the time. This may reduce the incentives for learning, and move the DOP towards

the CP, implying larger disinflation than the case of fixed unknown parameter.

5 Concluding Remarks

The paper analyzes disinflation policy when the central bank has imperfect informa-

tion about private sector inflation expectations, thus extending King (1996), which

supposes perfect observability of inflation expectations. The central bank learns

about inflation expectations from past economic outcomes, which are in part the

result of past policy decisions. Due to the dependence of inflation expectations on

14



past policy decisions, the problem facing the central bank is one of parameter un-

certainty, that is, uncertainty about the effect of past policy on the current level

of output. Formally, the dynamic control problem differs from other studies on

learning and control, where the assumed uncertainty is about the effect of current

actions on current economic outcomes, and lagged control variable is absent from

the dynamic process.

We compare three policy scenarios under which disinflation policy may proceed—

certainty equivalence policy (CEP), cautionary policy (CP) and dynamically optimal

policy (DOP). The CEP and CP represent passive learning but while the CEP

ignores parameter uncertainty the CP policy assumes that current uncertainty about

inflation expectations will remain unchanged in the future. Given the state of the

economy, the DOP disinflates by more than the CEP but by less than the CP. A

novel result is that, unlike the case of uncertainty about current policy effect, our

result holds irrespective of the initial state of the economy (characterized by past

level of inflation).

It turns out that, given the central bank’s belief about inflation expectations, the

DOP moves closer to the CEP when past inflation is high. By contrast, when past

inflation is low, the DOP stays close to the CP implying more caution. In general,

the danger with the CP is that if inflation drops sharply and stabilizes too soon,

the central bank might fail to learn about inflation expectations, leading to poor

policy performance in the distant future. By taking into account the effect of policy

on inflation expectations, the DOP and the CEP are less prone to the danger of

incomplete learning.
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Appendix: Derivation of CEP and CP

In this appendix we derive the optimal policy for the case of passive learning. When

choosing current policy in period t, the central bank assumes that the initial belief

(ct−1, pt−1) will remain fixed for all future periods. Consequently, the non-linear

updating equations drop out of the set of constraints of the optimization problem.9

There are two subcases under passive learning—certainty equivalence policy and

CP. Under the cautionary case Ft−1 = py2
t−1 + σ2

u. On the other hand, under the

case of certainty equivalence, p = 0 ⇒ py2
t−1 = 0, and so Ft−1 is perceived to be in-

dependent of yt−1. Thus, the certainty equivalence policy is a limiting case of the CP.

Derivation of the CEP

Under certainty-equivalence the central bank ignores parameter uncertainty, being

fully confident about its prior ct−1 = c. Its current belief is thus characterized

as (ct−1, pt−1) = (c, 0). The central bank minimizes (9) subject to (5) and (6).

The problem is linear-quadratic, so that the optimal level of πt is similar to that

under perfect knowledge. The certainty-equivalence rule simply replaces γ with its

estimate c. We can rewrite the above minimization problem using recursive dynamic

programming and then use the standard ’guess and verify’ method on the value

function.10 We can write the Bellman equation associated with the minimization of

(9) as follows 11

V (yt−1) = min
πt

Ec
t−1[L(zt, πt) + δV (yt)] (A1)

subject to (5). Because of the linear-quadratic form of the minimization problem,

9Of course, when next period arrives, the bank updates its belief but then expect it to remain
fixed from that period on.

10See for e.g., Tesfaselassie (2005), Chapter 5 and the references therein.
11Note that the value function in the Bellman equation does not have time subscript. This is

because in infinite horizon problems, we are interested only in the unique time invariant value
function, V, and associated unique, stationary policy rule, that result from repeated iterations on
the Bellman equation starting from any bounded continuous V0 (e.g. V0 = 0). Convergence of the
value function is guaranteed due to contraction mapping theorem (see e.g. Sargent (1987)).
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the value function will be quadratic in the state yt−1.

V (yt−1) = µ0 +
1

2
µ2y

2
t−1 (A2)

where the two coefficients remain to be determined. If (A2) is correct, it follows

that

Ec
t−1V (yt) = µ0 +

1

2
µ2π

2
t (A3)

Substitute (A3) in to (A1) and derive the first order condition with respect to πt

πt =
1

1 + α + µ2δ
cyt−1 (A4)

To identify the value of µ2, substitute (A4) into the loss function and much the re-

sulting coefficient of y2
t−1 with the conjectured loss function (A2). A unique solution

for µ2, such that 0 < µ2 < 1, is given by equation (10) of the main text.

Derivation of the CP

Under the CP p > 0. As before the only state variable from the central bank’s point

of view is yt−1. The conjecture for the value function is given by (A2). The first order

condition with respect to πt will also take the same form as (A4). Following the

steps analogous to the derivation of the CEP, we match the coefficients and arrive

at the solution given by equation (12) of the main text. The certainty equivalence

case arises if p = 0, that is, if we disregard parameter uncertainty.
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Figure 1: CEP, CP and DOP for baseline parameters (α = 0.5, σ2
u = 1, δ = 0.95 and

z∗ = 0.25).
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Figure 2: DOP under alternative values of σ2
u (σ2

u = 1 vs σ2
u = 0.1).
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Figure 3: Degree of activism (DOP relative to CP) (δ = 0.95 vs δ = 0.65).
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