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1 Introduction

Many empirical studies have shown that expected utility theory (EU), in particular its crucial

independence axiom, does not provide an accurate description of people’s actual choice behav-

ior. This evidence has motivated researchers to develop alternative more flexible models. One

prominent class of these alternatives is rank-dependent utility (RDU), which was introduced

by Quiggin (1981, 1982), and which is the basis of prospect theory (Tversky and Kahneman

1992, Luce and Fishburn 1991).1

Most derivations of RDU require some structural richness on the set of consequences because

the proposed preference conditions focus on the derivation of continuous cardinal utility. In

those derivations the weighting functions are obtained as a bonus. In this paper we follow the

traditional approach put forward by von Neumann and Morgenstern (1944) by focusing on the

structure naturally offered by the probability interval, and we provide preference conditions

that focus on the derivation of the probability weighting function. Typical for this approach is

that cardinal utility is obtained as a bonus.

Axiomatizations of general RDU have been provided by Nakamura (1995) and more recently

by Abdellaoui (2002) and Zank (2004). In these approaches the weighting function is unre-

stricted. Empirical evidence, however, suggests a particular pattern for probability weighting:

small probabilities are overweighted while large ones are underweighted. Specific parametric

forms have been proposed in the literature to accommodate these features. Some involve a

single parameter (Karmarkar 1978, 1979, Röell 1987, Currim and Sarin 1989, Tversky and

Kahneman 1992, Luce, Mellers and Chang 1993, Hey and Orme 1994, Safra and Segal 1998)

while others use two or more parameters (Bell 1985, Goldstein and Einhorn 1987, Currim and

1Because prospect theory comes down to RDU if consequences are of the same sign (that is, either all

consequences are gains or all are losses), the arguments presented in this paper apply to prospect theory as well.
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Sarin 1989, Lattimore Baker and Witte 1992, Prelec 1998). A recent experimental investigation

of various parametric weighting functions by Stott (2006) favors the variant of Prelec (1998).

Despite the large interest in parametric specifications for the weighting function under RDU,

little research has been invested in the axiomatic foundation of testable preference conditions

in the RDU framework with general lotteries. Several recent foundations restrict attention to

binary lotteries where one consequence is the zero payoff (see e.g. Luce 2000, Narens 1996,

Luce 2001, Aczél and Luce 2006, al-Nowaihi and Sanjit Dhami 2006). RDU for binary lotteries

reduces to a simple and tractable multiplicative form which many decision models agree with

(see Ghirardato and Marinacci 2001 for a general axiomatic framework).

The preference foundations for parametric weighting functions presented in this paper apply

to general sets of lotteries. Except for weak ordering and continuity, the properties that we

propose are all implied by the independence axiom. For instance, we retain stochastic domi-

nance and, in line with all rank-dependent theories, we assume comonotonic independence. By

focusing on specific functional forms for the weighting functions, we obtain, in contrast to the

afore mentioned parametric derivations, the separation of utility and the weighting function

free of charge.

Specific behavioral implications of the independence axiom have been analyzed before.

Machina (1989) distinguished two properties, mixture separability and replacement separa-

bility, in an analysis of nonexpected utility models. We explore the implications of these

separability conditions within our rank-dependent framework. It turns out that our restricted

versions can be employed to characterize RDU with a power weighting function and RDU

with a linear/exponential weighting function. Because these weighting functions each involve

a single parameter, they cannot accommodate at the same time probabilistic risk seeking and

probabilistic risk aversion within the probability interval. That is, they are incompatible with
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the inverse-S shaped form that received extensive empirical support (e.g., Camerer and Ho

1994, Wu and Gonzalez 1996, Tversky and Fox 1995, Gonzalez and Wu 1999, Abdellaoui 2000,

Bleichrodt and Pinto 2000, Kilka and Weber 2001, Abdellaoui, Vossmann and Weber 2005).

We relax the previous preference conditions further, namely to hold only on specific subsets

of the probability interval. This way, we provide foundations for inverse-S shaped weighting

functions under RDU, which are entirely based on testable preference conditions. Our analysis

focuses on functional forms that may involve three parameters. One parameter describes the

probabilistic risk attitudes for small probabilities while a second one describes such attitudes for

large probabilities. A third parameter indicates a probability where probabilistic risk attitudes

may change from risk aversion to risk seeking. As it turns out, these parametric forms are in

agreement with the interpretation of modeling sensitivity towards changes from impossibility

and certainty, as proposed by Tversky and Kahneman (1992) and formalized in Tversky and

Wakker (1995). In particular, the first two parameters represent measures of the degrees of

sensitivity (or curvature), and, together with the third parameter, they can be used to quantify

the relative sensitivity between certainty and impossibility (or elevation).

The organization of the paper is as follows. In Section 2 general notation and preliminary

results are presented. We then proceed with a separation of the independence axiom of EU

into specific variants of the separability conditions proposed by Machina (1989). In Section 3

we analyze mixture separability restricted to worst consequences, and we analyze replacement

separability restricted to best and worst consequences. In Section 4 we provide results for

parametric inverse-S shaped probability weighting functions and Section 5 concludes. All proofs

are deferred to the Appendix.
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2 Preliminaries

Let X denote the set of consequences. For simplicity of exposition, we assume a finite set of

consequences, such thatX = {x0, . . . , xn} for n ≥ 3, and further, that consequences are ordered

from worst to best, i.e., x0 ≺ · · · ≺ xn. It can be shown that the results of the paper also apply

to general sets of consequences by using arguments presented in Abdellaoui (2002). A lottery is

a finite probability distribution over the set X. It can be represented by P = (p̃0, x0; . . . ; p̃n, xn)

meaning that probability p̃j is assigned to consequence xj ∈ X, for j = 0, . . . , n. Another way

of representing lotteries is in terms of decumulative probabilities, i.e., P = (p1, . . . , pn) where

pj =
Pn

i=j p̃i denotes the likelihood of getting at least xj, j = 1, . . . , n. Here, we simplified the

notation by suppressing the consequences and by noting that the worst consequence x0 always

has decumulative probability equal to 1. Let L denote the set of all lotteries, which we identify

with the set {(p1, . . . , pn) : 1 ≥ p1 ≥ · · · ≥ pn ≥ 0}. A preference relation < is assumed over

L, and its restriction to subsets of L (e.g., all degenerate lotteries) is also denoted by <. The

symbol Â denotes strict preference while ∼ denotes indifference.

In what follows we provide preference conditions for < in order to represent the preference

relation over L by a function V . That is, V is a mapping from L into the set of real numbers,

IR, such that for all P,Q ∈ L,

P < Q⇔ V (P ) ≥ V (Q).

This necessarily implies that < must be a weak order, i.e. < is complete (P < Q or P 4 Q for

all P,Q ∈ L) and transitive (P < Q and Q < R implies P < R for all P,Q,R ∈ L).

The preference relation < satisfies monotonicity if P Â Q whenever pj ≥ qj for all j =

1, . . . , n and P 6= Q. The preference relation < satisfies Jensen-continuity on the set of lotteries
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L if for all lotteries P Â Q and R there exist ρ, µ ∈ (0, 1) such that

ρP + (1− ρ)R Â Q and P Â µR+ (1− µ)Q.

Amonotonic weak order that satisfies Jensen-continuity on L also satisfies the stronger Euclidean-

continuity on L (see Abdellaoui 2002, Lemma 18). It then follows from Debreu (1954) that there

exists a continuous function V : L → IR, strictly increasing in each decumulative probability,

that represents <. The function V is unique up to strictly increasing continuous transforma-

tions.

An additional condition is needed to show that the representing function V is additively

separable. To define this property we introduce some useful notation. For i ∈ {1, . . . , n},

P ∈ L and α ∈ [0, 1], we denote by αiP the distribution that agrees with P except that pi is

replaced by α. Whenever this notation is used it is implicitly assumed that pi−1 ≥ α ≥ pi+1

(respectively, α ≥ pi+1 if i = 1 and pi−1 ≥ α if i = n) to ensure that αiP ∈ L. Similarly, for

I ⊂ {1, . . . , n} we write αIP for the distribution that agrees with P except that pi is replaced

by α for all i ∈ I, whenever the probabilities in αIP are ranked from highest to lowest.

A preference relation < satisfies comonotonic independence if αiP < αiQ⇔ βiP < βiQ for

all αiP,αiQ,βiP, βiQ ∈ L.

Deriving additive separability on rank-ordered sets is not trivially extended from Debreu’s

classical result, but invokes more complex mathematical tools. From Wakker (1993) and

Chateauneuf and Wakker (1993) it follows that a preference relation < is a Jensen-continuous

monotonic weak order that satisfies comonotonic independence if and only if < can be repre-

sented by an additive function

V (P ) =
nX

j=1

Vj(pj),

with continuous strictly monotonic functions V1, . . . , Vn : [0, 1]→ IR which are bounded except
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maybe V1 and Vn which could be infinite at extreme probabilities (i.e., at 0 or at 1). The

functions V1, . . . , Vn are jointly cardinal, that is, they are unique up to location and common

scale.

In the next sections we provide preference foundations for specific rank-dependent utility

models using as common point of departure the additive representation obtained above. Before

proceeding we recall the general form of rank-dependent utility.

Rank-dependent utility (RDU) holds if the preference relation is represented by the function

V (P ) = u(x0) +
nX

j=1

w(pj)[u(xj)− u(xj−1)], (1)

where the utility function u : X → IR agrees with < on X, and the weighting function w :

[0, 1] → [0, 1] is strictly increasing and continuous with w(0) = 0 and w(1) = 1. Under RDU

utility is cardinal and the weighting function is uniquely determined. If the weighting function

is linear then RDU reduces to expected utility (EU). A concave weighting function resembles

probabilistic risk seeking behavior while a convex one resembles probabilistic risk aversion (see

Wakker 1994, 2001).

For completeness we recall the classical preference condition leading to EU. Recall that

for α ∈ [0, 1] and P,Q ∈ L, the probability mixture αP + (1 − α)Q is defined as the lottery

(αp1 + (1− α)q1, . . . , αpn + (1− α)qn).

Axiom 1: A preference relation< satisfies vNM-independence (short for von Neumann-Morgenstern

independence) if for all P,Q,R ∈ L and all α ∈ (0, 1) it holds that

P < Q⇔ αP + (1− α)R < αQ+ (1− α)R.

Note that vNM-independence implies monotonicity and comonotonic independence for a

weak order.

7



3 Common Ratio and Common Consequence Effects

One of the difficulties of EU is to accommodate preferences that exhibit the common ratio

effect. Allais (1953) compared the choice behavior for the following two decision problems. In

problem 1 there is the choice between the following lotteries:

A1 = (1, 1M) and B1 = (0.2, 0M ; 0.8, 5M),

where M denotes $-millions. In problem 2 the choice is between

A2 = (0.95, 0M ; 0.05, 1M) and B2 = (0.96, 0M ; 0.04, 5M).

The literature has reported (e.g. Allais 1953, MacCrimmon and Larsson 1979, Chew and Waller

1986, Wu 1994) that a significant majority of people exhibit a preference forA1 in the first choice

problem and a preference for B2 in the second choice problem. Substituting EU immediately

reveals that this leads to a conflicting relationship. Such preferences are, however, not in conflict

with monotonicity and neither with comonotonic independence, the two implications of vNM-

independece considered in the previous section. It is a different aspect of vNM-independence

that is violated by such preferences, which will be termed common ratio invariance below.

A further difficulty for EU-preferences concerns the replacement of common consequences.

The common consequence effect originates from observing behavior among the following pairs

of choice problems. In problem 3 the choice is between

A3 = (1, 1M) and B3 = (0.01, 0M ; 0.89, 1M ; 0.1, 5M),

and in problem 4 the choice is between

A4 = (0.89, 0M ; 0.11, 1M) and B4 = (0.9, 0M ; 0.1, 5M).

It has been observed in experiments that a significant majority of people exhibit a preference

for A3 in the former choice problem and a preference for B4 in the latter choice problem (e.g.
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Allais 1953, MacCrimmon and Larsson 1979, Chew and Waller 1986, Wu 1994, but see also

related evidence in Wakker, Erev and Weber 1994, Birnbaum and Navarette 1998, Birnbaum

2004). If one writes the previous lotteries as decumulative distributions over consequences 0,

1M , and 5M , then one can immediately see that A4 = (0.11, 0) and A3 = A4 + (0.89, 0), and

that B4 = (0.1, 0.1) and B3 = B4 + (0.89, 0). Clearly, exhibiting initially A3 Â B3 together

with a second preference A4 ≺ B4 directly violates vNM-independence but does not violate

monotonicity and neither comonotonic independence.

In the next two subsections we identify precisely those two behavioral implications of vNM-

independence which are violated by the corresponding Allais examples.

3.1 Common Ratio Invariance

In this subsection we weaken vNM-independence such that the common consequence effect can

be accommodated. Below we use the notation αP (= (αp1, . . . , αpn)) as the short form for a

mixture of P with the worst consequence x0, i.e., αP + (1 − α)(0, . . . , 0). For simplicity, we

demand our subsequent axioms to hold only on the set L0, which defines the set of distributions

P such that p1 < 1 and pn > 0 (hence, for lotteries where the worst and best consequence have

positive probability).

Axiom 2: A preference relation < satisfies common ratio invariance for decumulative distrib-

utions if

P ∼ Q⇔, αP ∼ αQ

for all 0 < α < 1, and P,Q ∈ L0.

Common ratio invariance for decumulative distributions says that shifting proportionally

probability mass from good consequences to the worst consequence (or doing the opposite)
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leaves preferences unaffected, which precisely rules out the common ratio effect. The property

is a weak form of mixture separability (Machina 1989). The latter axiom, defined formally

in the Appendix, demands that a preference between two lotteries is maintained if each of

the lotteries is mixed with any common consequence. In contrast, common ratio invariance

for decumulative distributions demands that such mixtures are only permitted if the common

consequence is the worst. From a behavioral perspective, the condition means that probabilistic

risk attitudes are invariant to proportional changes in decumulative probabilities.

The condition has also appeared in Safra and Segal (1998), where it was called zero-

independence, and where it has been used in the derivation of a specific version of Yaari (1987)’s

dual theory, namely RDU with linear utility and power weighting function. The next result

shows that the condition is powerful enough to yield RDU-preferences with power weighting

without restricting the generality of the utility function.

Theorem 1 The following two statements are equivalent for a preference relation < on L:

(i) The preference relation < on L is represented by rank-dependent utility with a power

weighting function, i.e.,

V (P ) = u(x0) +
nX

j=1

paj [u(xj)− u(xj−1)],

with a > 0, and monotonic utility function u : X → IR.

(ii) The preference relation < is a Jensen-continuous monotonic weak order that satisfies

comonotonic independence and common ratio invariance for decumulative distributions.

The function u is cardinal. ¤

Proof: See Appendix.

10



It has previously been documented that preferences exhibiting the common ratio effect

exclude RDU preferences with power weighting. Our result above demonstrates that it is

precisely this class of RDU-preferences with power weighting, including EU-preferences, that

cannot accommodate common ratio effect preferences. That the result is very general can also

be inferred from the fact that, except for monotonicity, no further restrictions apply to utility.

3.2 Extreme Replacement Separability

We now consider preferences that can accommodate the common ratio effect.

Axiom 3: A preference relation < satisfies extreme replacement separability if

(p1, . . . , pn) ∼ (q1, . . . , qn)⇔ (p1 + α, . . . , pn + α) ∼ (q1 + α, . . . , qn + α),

whenever (p1, . . . , pn), (q1, . . . , qn), (p1 + α, . . . , pn + α), (q1 + α, . . . , qn + α) ∈ L0.

From a behavioral perspective, extreme replacement separability means that probabilistic

risk attitudes are invariant with respect to common absolute changes in decumulative proba-

bilities. A similar condition has been termed replacement separability in Machina (1989). We

define the property formally in the Appendix.

The following theorem shows that for RDU-preferences the only weighting functions that

are able to accommodate extreme replacement separability are linear or exponential ones.

Theorem 2 The following two statements are equivalent for a preference relation < on L:

(i) The preference relation < on L is either represented by expected utility, or it is represented

by rank-dependent utility with an exponential weighting function, i.e.,

V (P ) = u(x0) +
nX

j=1

ecpj − 1
ec − 1 [u(xj)− u(xj−1)],

with c 6= 0, and monotonic utility function u : X → IR.
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(ii) The preference relation < is a Jensen-continuous monotonic weak order that satisfies

comonotonic independence and extreme replacement separability.

The function u is cardinal. ¤

Proof: See Appendix.

Note that RDU-preferences satisfying both common ratio invariance for decumulative dis-

tributions and extreme replacement separability can only be represented by EU. This follows

immediately by observing that the only possible weighting function that is common in Theorems

1 and 2 is the linear weighting function w(p) = p.

The properties considered in this section can easily be formulated for cumulative distribu-

tions. Jensen-continuity, monotonicity, comonotonic independence, and also extreme replace-

ment separability have mathematically equivalent counterparts which are obtained by simply

replacing the decumulative distributions by the corresponding cumulative ones. However, doing

the same for the afore mentioned common ratio invariance property leads to a different but

analog property which is also implied by vNM-independence. Employing this common ratio

invariance for cumulative instead of decumulative probabilities in Theorem 1 leads to a corre-

sponding RDU-representation with a weighting function that is the dual of a power function,

i.e., w(p) = 1− (1− p)b, b > 0.

4 Inverse-S shaped Weighting Functions

The parametric forms derived in the previous section are too rigid for modeling empirically

observed probabilistic risk attitudes. Such risk attitudes are reflected in the curvature of the

probability weighting function (see Chew, Karni and Safra 1987, Yaari 1987, Chateauneuf and
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Cohen 1994, Wakker 1994, Abdellaoui 2002, Chateauneuf, Cohen and Meilijson 2004). The

afore mentioned RDU-preferences either exhibit exclusively probabilistic risk aversion (i.e., the

weighting function is convex) or exclusively probabilistic risk seeking (i.e., the weighting func-

tion is concave) throughout the probability interval. While there is theoretical interest in overall

convex or overall concave probability weighting, empirical findings suggest that a combination

of probabilistic risk seeking for small probabilities and probabilistic risk aversion for large prob-

abilities is an appropriate way of modeling sensitivity towards probabilities (see Wakker 2001 for

a review of empirical evidence). Because the concave region for small probabilities is followed

smoothly by a convex region for larger probabilities (Tversky and Kahneman 1992, Tversky

and Fox 1995, Wu and Gonzalez 1996, Abdellaoui 2000), such weighting functions are referred

to as inverse-S shaped.

A few parametric forms have been proposed for inverse-S shaped weighting functions (Kar-

markar 1978, 1979, Goldstein and Einhorn 1987, Currim and Sarin 1989, Lattimore, Baker

and Witte 1992, Tversky and Kahneman 1992, Prelec 1998), and their parameters have been

estimated in many empirical studies (Camerer and Ho 1994, Tversky and Fox 1995, Wu and

Gonzalez 1996, Gonzalez and Wu 1999, Abdellaoui 2000, Bleichrodt and Pinto 2000, Kilka and

Weber 2001, Etchart-Vincent 2004, Abdellaoui, Vossmann and Weber 2005). Most of these

parametric forms lack an appropriate axiomatic underpinning. This is problematic because

it is unclear what kind of preference condition must be assumed to generate such weighting

functions, and therefore, it is unclear what kind of behavioral properties are captured when

using such weighting functions.

Axiomatizations have been proposed for the class of weighting functions introduced by Pr-

elec (1998) (see also Luce 2001, Aczél and Luce 2006). The class introduced by Goldstein and

Einhorn (1987) has been discussed in Gonzalez and Wu (1999), where necessary preference con-
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ditions have been proposed. A restrictive aspect of these axiomatizations is that a representing

functional, where the continuous utility is already separated from probability weighting, must

be assumed prior to invoking the additional invariance property that generates the required

parametric form. An open and from an empirical point of view important question is whether,

on their own, those characterizing properties are powerful enough to induce such a separation

once additive separability, as done in this paper, has been derived.

Recall that the results presented in the previous section are free of restrictions on the

richness of the set of consequences, and also free of additional separability conditions that

ensure RDU to hold prior to invoking the invariance properties. But note at the same time

that these preference conditions do not allow inverse-S shaped probability weighting functions

under RDU. We would like to have both preference conditions for general consequences and

also axiomatizations that allow for inverse-S shaped weighting functions under RDU. In what

follows we propose such a preference condition, and show that it leads to a new family of

parametric weighting functions.

To derive RDU with inverse-S shaped weighting functions we restrict the preference condi-

tions presented in Section 3 to hold for a restricted set of probabilities. An analogous approach

for general, non-parametric weighting functions and capacities was pursued by Tversky and

Wakker (1995) and Wakker (2001). This seems to be a reasonable compromise because, as

we show below, these conditions are still powerful enough to separate utility from probability

weighting if additive separability holds.

14



4.1 Switch-power Weighting Functions

The results presented in this subsection focus on the class of weighting functions which are

power functions for probabilities below some p̂ ∈ (0, 1), and dual power functions above p̂, i.e.,

w(p) =

⎧⎪⎪⎨⎪⎪⎩
cpa, if p 6 p̂,

1− d(1− p)b, if p > p̂,

with the parameters involved as discussed below. We call these functions switch-power weighting

functions.

We presented the function above with five parameters a, b, c, d and p̂. However, these reduce

to three, first because of continuity of w at p̂, and second by assuming differentiability at p̂,

which seems plausible in this context. Continuity and monotonicity imply that a, c, b, d > 0.

Continuity and differentiability at p̂ relates c and d to a, b and p̂ through

c = p̂−a
∙

bp̂

bp̂+ a(1− p̂)

¸
,

d = (1− p̂)−b
∙

a(1− p̂)

bp̂+ a(1− p̂)

¸
.

If 0 < a ≤ 1 the probability weighting function is concave on (0, p̂), and if 0 < b ≤ 1 it is

convex on (p̂, 1), hence, has an inverse-S shape. For a, b ≥ 1 we have a S-shaped probability

weighting function.2

When p̂ approaches 1 or 0, the weighting function reduces to a power weighting function or

2Tversky and Wakker (1995, Proposition 4.1) presented behavioral properties, which enforce the inverse-S

shape for switch-power weighting functions. This follows from the fact that, for general weighting functions,

these properties imply bounded subadditivity, that is, there exists constants ε ≥ 0 and ε0 ≥ 0 such that

w(q) ≥ w(p+ q)− w(p) whenever p+ q ≤ 1− ε and 1− w(1− q) ≥ w(p+ q)− w(p) whenever p ≤ ε0.
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a dual power weighting function, respectively. Moreover, substitution of p̂ into w gives

w(p̂) =
bp̂

bp̂+ a(1− p̂)

= 1− a(1− p̂)

bp̂+ a(1− p̂)
,

from which one can easily derive the relationship

w(p̂) 6 p̂⇔ b 6 a.

In particular, this shows that whenever a = b the weighting function intersects the 45◦ line

precisely at p̂ (see Figure 1). It is worthwhile noting that in this case the derivative of w at p̂

equals a, and therefore this parameter controls for the curvature of the weighting function. The

parameter p̂, however, indicates whether the interval for overweighting of probabilities is larger

than the interval for underweighting, and therefore controls for the elevation of the weighting

function (see also Gonzalez and Wu (1999) for a similar interpretation of the parameters in the

“linear in log-odds” weighting function of Goldstein and Einhorn (1987)).

 w(p) 

1 

1 
0 

p p ^

  
p 
^ 

Figure 1: A two parameter switch-power weighting function.

In general, when a 6= b, both parameters control for curvature. In that case p̂ need not

demarcate the regions of over and underweighting because it may not lie on the 45◦ line. Nev-
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ertheless, p̂ will still influence elevation, however, whether there is more overweighting relative

to underweighting now also depends on the relationship between the magnitudes of the para-

meters a and b. The following figure depicts, for the case of an inverse-S shaped weighting

function, the two scenarios of underweighting (0 < b < a < 1), respectively, overweighting

(0 < a < b < 1) at p̂.

 

  

 w(    )  

w(p) 

1 

1 
0 

p p ^ 

  
p 
^ 

  

 w(    )  

w(p) 

1 

1 
0 

p p ^

  
p 
^ 

Figure 2: A 3-parameter function with underweighting respectively overweighting at p̂.

As it turns out, it is more appropriate to interpret these parameters as was initially pro-

posed by Tversky and Kahneman (1992). All parameters may influence elevation, however, the

main role of p̂ is to demarcate the interval of probabilistic risk aversion from the interval of

probabilistic risk seeking. The parameter a indicates diminishing (or increasing) sensitivity to

changes from impossibility to possibility. It can be inferred (by inspecting the derivative of w

for probabilities in the range (0,min{p̂, 1 − p̂})) that sensitivity increases if a > 1, decreases

if a < 1, and for a = 1 sensitivity is constant. Similarly, for changes away from 1, sensitivity

increases if b > 1 and decreases if b < 1, and is constant for b = 1.

Recall that the objective of the one-parameter weighting function employed in Tversky

and Kahneman (1992) was to account for curvature. By contrast the two-parameter forms of
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Goldstein and Einhorn (1987) and of Prelec (1998) allow for a distinction between curvature

and elevation. In the psychological literature the parameters have been interpreted accordingly

(e.g., Gonzalez and Wu 1999), although formal measures for these concepts have not yet been

identified. One can give a similar psychological interpretation to the parameters of the switch-

power weighting function. This holds in particular for the case of a switch-power weighting

function where the powers a and b are equal. The switch-power weighting functions are moti-

vated by probabilistic risk behavior which is a meaningful and well established concept in both

economics and psychology (see Wakker 1994, 2001). Accordingly, the powers a and b, while

proxies for curvature, are interpreted as indexes of relative risk aversion in the probabilistic

sense in much analogy to the Arrow-Pratt index of relative risk aversion developed for utility.

That this index may be different for changes in probabilities close to 0 compared to changes

in probabilities close to 1 is a well established empirical phenomenon, which shows that people

treat probabilities of good consequences markedly different than the similar probabilities for

bad consequences. It is precisely this behavioral aspect of risk attitude which motivates the

preference conditions employed in the next section.

4.2 Preference Foundation

Before formulating the preference condition that is necessary for RDU with (inverse) S-shaped

switch-power weighting function, we note that if a lottery is written as a decumulative dis-

tribution P = (p1, . . . , pn) then writing the same lottery as a cumulative distribution results

in P̃ = (1 − p1, . . . , 1 − pn). The difference in the latter notation lies in the interpretation

of the cumulative probability 1 − pi, which now refers the likelihood of getting at most xi−1,

i = 1, . . . , n, whereas the decumulative probability pi was associated with the consequences

xi, i = 1, . . . , n. We denote by L̃ the set of cumulative distributions. The notation αP̃
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(= (α(1− p1), . . . , α(1− pn))) and the set L̃0 are defined analogously to the notation used in

Subsection 3.1.

Axiom 4: A preference relation satisfies common ratio invariance at tails if for each p ∈ (0, 1)

we have

P ∼ Q⇔ αP ∼ αQ, (2)

whenever all P,Q, αP, αQ ∈ Lp := {R ∈ L0 : r1 6 p} or

P̃ ∼ Q̃⇔ βP̃ ∼ βQ̃, (3)

whenever P̃ , Q̃, βP̃ , βQ̃ ∈ L̃p := {R ∈ L̃0 : 1− rn 6 1− p}.

Clearly common ratio invariance at tails requires preferences to be immune to common

proportional changes in decumulative probabilities whenever these are all below p or immunity

of preferences to common proportional changes in cumulative probabilities if these are all below

1− p for any p ∈ (0, 1).

Recall, that in the common ratio effect, the good lotteries A1 and B1 were mixed with the

worst consequence (i.e., with 0) which induced a reversal of preferences. Our condition respects

this pattern of behavior since mixture separability is demanded only if good lotteries are mixed

with best consequences (i.e., the indifference (2) holds), or it is demanded only if bad lotteries

are mixed with the worst consequence (i.e., the indifference (3) holds). The additional flexibility

here is that risk attitudes are allowed to vary within the probability interval which is in line

with the empirical evidence on inverse-S shaped probability weighting functions.

As the result below shows, replacing common ratio invariance for decumulative distribu-

tions in Theorem 1 with common ratio invariance at tails does give RDU with a switch-power

weighting function.
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Theorem 3 The following two statements are equivalent for a preference relation < on L:

(i) The preference relation < on L is represented by RDU with a switch-power weighting

function

w(p) =

⎧⎪⎪⎨⎪⎪⎩
cpa, if p 6 p̂,

1− d(1− p)b, if p > p̂,

for some p̂ ∈ (0, 1) with a, b, c, d > 0, and c = 1/p̂a − d(1− p̂)b/p̂a.

(ii) The preference relation < is a Jensen-continuous monotonic weak order that satisfies

comonotonic independence and common ratio invariance at tails.

The parameters p̂, a, b, d are uniquely determined. Further, the utility function u is cardinal.¤

Proof: See Appendix.

It should be remarked that in Theorem 3 the parameters a and b are not constrained so

as to imply an inverse-S shaped weighting function. Additional conditions are needed, such as

those proposed in Tversky and Wakker (1995, Proposition 4.1), to identify the latter shape.

5 Summary

Our main objective in this paper has been to provide preference foundations for parametric

weighting functions in a general RDU framework where the set of consequences is arbitrary.

Inevitably, these preference foundations have to employ conditions that exploit the mathemat-

ical structure offered by the probability interval. Initially, we have derived RDU-forms with a

single parameter for probability weighting. In all these derivations cardinal utility is obtained

as a bonus in addition to the specific parametric form (power, exponential, or dual power) of

the weighting functions.
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Building on mixture separability and replacement separability, as introduced by Machina

(1989), we have identified behavioral preference conditions that characterize RDU with power,

linear, and exponential weighting function. The central point of departure is, once more, the

vNM-independence axiom. The power weighting function is directly related to the common

ratio pattern of preferences and the exponential weighting function is directly related to the

common consequence pattern of preferences (Allais 1953), a somewhat surprising connection

that has not been mentioned before in the literature. The dual power weighting function has

no documented EU-paradox to be linked to, but we think that a dual analog of the common

ratio paradox of Allais can easily be constructed.

These nonlinear weighting functions are still inflexible to accommodate empirically observed

risk behavior. In particular it is not possible to separate sensitivity to changes in small proba-

bilities from the sensitivity to changes in large probabilities because there is a single parameter

that has to governs risk behavior at both ends of the probability scale. By separating risk

behavior according to probability mixtures of good lotteries with best consequences and proba-

bility mixtures of bad lotteries with worst consequences, we have proposed a further relaxation

of vNM-independence and obtained parametric inverse-S shaped weighting functions under

RDU.

Following the line of arguments presented in Section 4, one can also extend these ideas

to provide axiomatic characterizations for RDU with an analog to the switch-power weighting

function that is first a dual power weighting function followed by a power weighting function.

The extreme replacement invariance property can also be weakened to permit a switch in be-

havior as done in the case of common ratio invariance at tails. This property can then be used

to derive RDU with “switch-exponential weighting function.” Although these families of weight-

ing functions are motivated by probabilistic risk attitudes in much analogy to the well-known
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concepts of relative and absolute risk aversion for utility functions, the obtained parameters can

also be interpreted as indicators for curvature and elevation, which have been identified as im-

portant components of the psychophysics of probability weighting in the psychology literature.

Our approach has focused on the theoretical aspects of probability weighting, and empirical

studies are now required to put down first estimates for the parameter values.

6 Appendix

Axiom 2’: A preference relation < satisfies mixture separability if for any i ∈ {0, . . . , n} it

holds that

P ∼ Q⇔ αP + (1− α)1{1,...i}(0, . . . , 0) ∼ αQ+ (1− α)1{1,...i}(0, . . . , 0)

for all α ∈ (0, 1) such that P,Q, (αp1 + (1− α), . . . , αpi + (1− α), αpi+1, . . . , αpn), and (αq1 +

(1− α), . . . , αqi + (1− α), αqi+1, . . . , αqn) ∈ L0.
3

Axiom 3’: A preference relation < satisfies replacement separability if for any i ∈ {1, . . . , n}

it holds that

P ∼ Q

⇔

(p1 + α, . . . , pi + α, pi+1, . . . , pn) ∼ (q1 + α, . . . , qi + α, qi+1, . . . , qn),

whenever P,Q, (p1 + α, . . . , pi + α, pi+1, . . . , pn), (q1 + α, . . . , qi + α, qi+1, . . . , qn) ∈ L0.

Proof of Theorem 1: That statement (i) implies statement (ii) follows from the specific

form of the representing functional. Jensen-continuity, weak order, and comonotonic indepen-

3Note that for i = 0 the mixture αP + (1− α)1{1,...i}(0, . . . , 0) equals (αp1, . . . , αpn).
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dence as well as monotonicity follow immediate. Common ratio invariance for decumulative

distributions follows from substitution of the RDU-functional with power weighting function.

Next we prove that statement (ii) implies statement (i). We know that weak ordering,

Jensen-continuity, monotonicity and comonotonic independence imply the existence of an ad-

ditively separable functional representing the preference <, as outlined in Section 2. We restrict

the attention to the case that p1 < 1 and pn > 0 to avoid the problem of dealing with unbounded

V1, Vn. To show that our additive functional in fact is a RDU form with power weighting func-

tion we use results presented in Wakker and Zank (2002). Wakker and Zank did not have

the restrictions that p1 < 1 and pn > 0 but permitted any non-negative rank-ordered real

numbers xi, i = 1, . . . , n because they worked in a setup with monetary outcomes instead of

decumulative probabilities as we do here. But their results apply to our framework with minor

modifications, in particular the restriction p1 6 1 is not posing any difficulty. In their Lemma

A2 they derived a similar additive representation as we have here, and then in their Lemma A3,

using the analog of common ratio invariance for decumulative distributions, they showed that

their additive representation in fact is a RDU form with common positive power function as

“utility” and increasing “weighting function”. To apply their results we just need to interchange

the roles of utility and weighting function. Further, because the functions Vj, j = 1, . . . , n are

proportional they can continuously be extended to 0 and 1 (this follows from Wakker 1993,

Proposition 3.5). Hence, we can conclude that there exist positive numbers sj such that

Vj(pj) = sjw(pj),

with w(p) = a + cpb, for some real a, b, c. Monotonicity and continuity imply that b, c are

positive, and requiring further that w(0) = 0 and w(1) = 1 shows that a = 0 and c = 1. Hence,

w(p) = pb is established. We define utility iteratively as u(x0) = 0 and u(xj) = u(xj−1)+ sj for
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j = 1, . . . , n. Therefore, Vj(pj) = w(pj)sj = pbj[u(xj) − u(xj−1)] for j = 1, . . . , n with strictly

monotonic utility u. Hence, the preference is represented by RDU with a power weighting

function and monotonic utility. Therefore statement (i) has been derived.

Uniqueness results follow from the joint cardinality of the functions Vj, and the fact that

they are proportional. These properties translate into the weighting function being unique

because it assigns 0 to impossibility and 1 to certainty, and the utility being cardinal. This

concludes the proof of Theorem 1. ¤

Proof of Theorem 2: That statement (i) implies statement (ii) follows from the specific

form of the representing functional. Jensen-continuity, weak order, and comonotonic indepen-

dence as well as monotonicity follow immediate. Extreme replacement separability follows from

substitution of the RDU-functional with linear/exponential weighting function.

Next we prove that statement (ii) implies statement (i). As in the proof of Theorem 1,

statement (ii) implies that there exists an additively separable functional, V (P ) =
Pn

j=1 Vj(pj),

representing the preference <. Attention is initially restricted to the case that p1 < 1 and

pn > 0 to exclude unbounded V1 and Vn. To show that this additive functional is RDU with an

exponential weighting function we use results presented in Zank (2001). Zank did allow for non-

negative vectors with rank-ordered monetary outcomes in his Lemma 7 instead of probabilities

as we have here. However, those results apply to the case considered here if we interchange the

roles of utility and decision weights. Hence, we can conclude that in the additive representation

the functions Vj are increasing exponential functions, i.e.,

Vj(p) = sj[a exp(cp) + b],

with ac > 0 and sj > 0, and real b (or they are linearVj(p) = sj[ap + b] with a > 0). As

the functions are proportional, we can extend them continuously to all of [0, 1] by Proposition
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3.5 of Wakker (1993). We fix scale and location of the otherwise jointly cardinal Vj, i.e.,

Vj(0) = 0, Vj(1) = 1. Hence,

Vj(p) = sj[
ecpj − 1
ec − 1 ],

with c 6= 0 (or Vj(p) = sjp). We use the positive sj’s to define utility as u(x0) = 0 and u(xj) =

u(xj−1) + sj for j = 1, . . . , n. Therefore, the Vj’s are exponential or linear for j = 1, . . . , n and

u is strictly monotonic. Hence, statement (i) has been derived.

Uniqueness results follow by similar arguments as in the proof of Theorem 1. This concludes

the proof of Theorem 2. ¤

Proof of Theorem 3: That statement (i) implies statement (ii) follows from the specific

form of the representing functional. Jensen-continuity, weak order, and comonotonic inde-

pendence as well as monotonicity follow immediate. For < restricted to Lp̂ (L̃p̂), common

ratio invariance at tails comes down to common ratio invariance for decumulative (cumulative)

distributions and can easily be derived by substitution of the corresponding RDU functional.

Recall that our conditions in statement (ii) imply the existence of an additively separable

functional representing the preference <, as discussed in Section 2. We restrict the attention

to the case that p1 < 1 and pn > 0 to avoid the problem of dealing with unbounded V1, Vn.

Next we prove that statement (ii) implies statement (i). There are three cases that need

to be considered. First, suppose that there exist no probability q such that the indifference

(3) in the common ratio at tails condition holds. Then, the indifference (2) must hold for all

p ∈ (0, 1), or equivalently common ratio for decumulative probabilities holds. We can then

apply Theorem 1 to obtain the corresponding version of statement (i).

The second case is analogous to the first one. Suppose that there exist no probability p such

that the indifference (2) in the common ratio at tails condition holds. Then, the indifference (3)
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must hold for all q ∈ (0, 1), or equivalently “common ratio for cumulative probabilities” holds.

This condition, replacing common ratio invariance for decumulative probabilities in Theorem

1 gives RDU with a dual of a power weighting function as indicated at the end of Section 3.

Hence, we can obtain the corresponding version of statement (i).

We can now consider the third case. Suppose, that the indifference (2) holds for some

probability r ∈ (0, 1) and that indifference (3) holds for some probability q ∈ (0, 1). Then

common ratio invariance for decumulative probabilities holds on Lp for all 0 < p ≤ r. Similarly,

common ratio invariance for cumulative probabilities holds on L̃q, and it follows that common

ratio invariance for cumulative probabilities holds on L̃p for all probabilities q ≤ p < 1. In

addition, for any 0 < p < 1, one of the invariance properties must hold on either Lp or L̃p.

This then implies that there exist a unique p̂ ∈ (0, 1) separating the probability interval such

that common ratio invariance for decumulative probabilities holds on Lp̂ and common ratio

invariance for cumulative probabilities holds on L̃p̂.

Similarly to the proof of Theorem 1, we can now use the results of Wakker and Zank

(2002). The arguments used in the proof of Theorem 1 remain valid if we restrict the analysis

to probability distributions in Lp̂. We can conclude that the functions Vj in our additive

representation are proportional power functions for decumulative probabilities not exceeding p̂.

Therefore, by Proposition 3.5 of Wakker (1993), we can extend them continuously at 0. Hence,

there exist positive numbers sj such that

Vj(pj) = sjw(pj),

with w(p) = pa + k, for some positive a and real k.

Similarly, if we restrict the analysis to probability distributions in L̃p̂ we can conclude that

the Vj’s are proportional dual power functions for cumulative probabilities not exceeding 1− p̂.
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Therefore, by Proposition 3.5 of Wakker (1993), we can extend them continuously at 1. Hence,

there exist positive numbers ŝj such that

Vj(pj) = ŝjw(pj),

with w(p) = k̂ − (1− p)b, for some positive b and k̂ > 0.

Continuity at p̂ implies that the parameters are related through sj/ŝj = [k̂−(1−p̂)b]/[p̂a+k],

for j = 1, . . . , n. We can choose k = 0 to fix the location for the functions Vj(0) = 0, for

j = 1, . . . , n, and fix the scale for the additive representation such that
Pn

j=1 Vj(1) = 1. Hence,Pn
j=1 ŝj = 1/k̂ =: d follows. Thus, for p ∈ [0, 1] we can write

Vj(p) = (ŝj/d)cp
a, if p ≤ p̂, and

Vj(p) = (ŝj/d)[1− d(1− p)b], if p > p̂,

with c = [1− d(1− p̂)b]/p̂a.

We define utility iteratively as u(x0) = 0 and u(xj) = u(xj−1) + ŝj/d for j = 1, . . . , n.

Hence, statement (i) of the theorem has been obtained.

Uniqueness results follow from the joint cardinality of the functions Vj, and the fact that

they are proportional. This concludes the proof of Theorem 3. ¤
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