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1 Introduction

The New Keynesian literature has emphasized the role of strategic complementarities–also

referred to as “real rigidities”–in reducing the sensitivity of prices with respect to marginal

cost and thereby amplifying the real effects of monetary disturbances.1 Several forms of

strategic complementarity–including firm-specific factors, intermediate inputs, and quasi-

kinked demand–have observationally equivalent implications for the first-order dynamics

of aggregate inflation. However, there has been relatively little analysis of the nonlinear

characteristics of these mechanisms that may be relevant for determining the steady-state

properties of the economy and for assessing the welfare costs of stochastic fluctuations.

In this paper, we show that the specific formulation of strategic complementarity has

crucial implications for the design of monetary policy and for the welfare costs of output and

inflation variability. In conducting this analysis, we formulate a dynamic general equilibrium

model that incorporates both quasi-kinked demand and firm-specific factors. We follow

Kimball (1995) in specifying a generalized aggregator function that allows for a non-constant

elasticity of demand while nesting the Dixit-Stiglitz aggregator as a special case. In addition,

our specification of the production function encompasses a general degree of firm-specificity

of both capital and labor, that is, the proportion of variable vs. fixed inputs of each factor

used by each individual firm. In calibrating the overall degree of real rigidity, we consider

several distinct combinations of the structural parameters that yield the same slope of the

New Keynesian Phillips Curve (NKPC) and then proceed to determine the extent to which

these alternative calibrations influence the nonlinear properties of the model.

Our steady-state analysis shows that quasi-kinked demand and firm-specific inputs

have markedly different implications for the costs of deterministic inflation and for the de-

gree to which the optimal steady-state inflation rate under the Ramsey policy differs from

that of the Friedman rule.2 In doing so we derive a non-linear expression for the evolution

1Following Kimball (1995), many authors have analyzed the implications of strategic complementarities
for equilibrium inflation dynamics, such as Woodford (2003, 2005), Altig, Christiano, Eichenbaum and Linde
(2005), and Dotsey and King (2005a,b). Most of these mechanisms are reminiscent from the literature on
nominal and real rigidities originated with the seminal work of Ball and Romer (1990) and surveyed by
Blanchard (1990) and Blanchard and Fisher (1989).

2We follow Khan, King and Wolman (2003), and more recently Schmitt-Grohe and Uribe (2005 a,b),
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of the relative price distortion and average markup under each source of strategic comple-

mentarities. The different nature of the strategic linkage among firm’s incentive to changes

price is at the core of the asymmetric results that we emphasize in this paper. Thus, if the

source of real rigidity is coming from the presence of quasi-kinked demand, the effects of

negative inflation tends to dramatically shrink the profits of non-adjusting firms by moving

consumers demand away from its products to other. If, on the contrary, there is a fraction

of fixed factors, then the higher the steady state inflation the higher are the output costs

associated with the presence of price dispersion.

To characterize the welfare implications of real rigidities in the stochastic economy,

we follow the linear-quadratic approach of Woodford (2003) in deriving the second-order

approximation of conditional expected household welfare.3 For any given combination of

nominal and real rigidities, we find that the welfare costs of inflation variability are an

order of magnitude smaller when the real rigidity arises from quasi-kinked demand rather

than firm-specific factors. Thus, the characteristics of optimal monetary policy also depend

crucially on the particular form of real rigidity.

The final stage of our analysis gauges the welfare costs of the Great Inflation by using

the observed time series for U.S. inflation to construct the corresponding sequence of relative

price distortions under alternative assumptions about the form of strategic complementarity.

Given a moderate degree of nominal rigidity (namely, an average duration of 2-1/2 quarters

between price changes), we determine the degree of factor specificity or quasi-kinked demand

needed to match the estimated slope of the NKPC. In the case of quasi-kinked demand, the

high and volatile inflation of 1965-79 only generates a modest degree of inefficiency arising

from relative price dispersion. In contrast, the case of firm-specific factors yields dramatically

higher welfare costs: in this case, the Great Inflation generates relative price distortions that

reduce the level of aggregate output by 10 percent or more.

Levin and Lopez-Salido (2004), and Levin et al. (2005) in using Lagrangian methods to obtain the first-
order conditions of the underlying Ramsey problem to compute optimal long-run policy under commitment
in distorted economies.

3Woodford (2003, 2005) uses second-order approximations to characterize the welfare implications of
firm-specific inputs but does not consider the case of quasi-kinked demand.
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Before proceeding further it is useful to briefly examine the NKPC under the assump-

tion of Calvo-style staggered price setting,

πt = β Et{πt+1} + γκpmct, (1)

where πt is the inflation rate and mct is the logarithmic deviation of real marginal cost

from its steady-state value. Notice that the slope of the NKPC is expressed as the product

of two coefficients: κp reflects the degree of nominal rigidity, and γ reflects the degree of

strategic complementarity in price-setting behavior. When the value of κp is calibrated

using microeconomic evidence suggesting relatively frequent price adjustment, then a small

value of γ (corresponding to a high degree of real rigidity) is needed to account for the low

estimated slope of the NKPC. In a nutshell, our analysis indicates that alternative forms

of strategic complementarity may yield the same value of γ but have markedly different

implications for monetary policy and welfare.4

The remainder of this paper is organized as follows. Sections 2 and 3 describe our

specifications for quasi-kinked demand and firm-specific inputs, respectively, elaborating

on the nonlinear characteristics as well as the implications for the degree of real rigidity in

price-setting behavior. In Section 4 describes how do we calibrate the degree of real rigidities.

Section 5 evaluates the costs of steady-state inflation associated with these forms of strategic

complementarity. Section 6 uses linear-quadratic methods to characterize the social welfare

function and the properties of optimal monetary policy in the stochastic economy. Section

7 considers the extent to which these strategic complementarities have markedly different

implications regarding the costs of the Great Inflation. Section 8 concludes. Finally, in the

appendix A we present the details on how to calibrate the curvature of the demand curve

and we relate it with the preceding literature; in Appendix B we present the key derivations

of the paper.

4Some papers have emphasized how to damp fluctuations in marginal costs through ‘elastic supply’
mechanisms. Among those are the possibility that the firms can adjust its capacity utilization, the existence
of an elastic labor supply (Dotsey and King (2005b)). Alternatively, allowing for sticky price and sticky
nominal wages also tend to generate persistent responses in real marginal costs in response to nominal
shocks (see, e.g., Christiano, Eichenbaum and Evans (2005)). We do not consider these mechanisms in this
paper.
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2 Quasi-kinked Demand

In this section, we describe an economy where the production of final goods requires a

continuum of differentiated goods, indexed by a unit interval, and a single monopolistic

competitor produces each type of these differentiated goods. In order to generate strategic

complementarities in price-setting, we begin with a Kimball-type of household preference for

differentiated goods and then move onto a production function emphasizing the role played

by firm-specific fixed-capital.5

2.1 Demand structure

The representative household seeks to maximize E0

∑∞
t=0 βt Ut, where β ∈ (0, 1) is the

discount factor. The household’s utility in period t has the form

Ut =
C1−σ

t − 1

1 − σ
− χ0

N1+χ
t

1 + χ
+ ν0

(Mt

Pt
)1−ν

1 − ν
(2)

where Ct is an aggregator of the quantities of the different goods consumed by households

that it will be defined later, Nt denotes hours worked, and Mt

Pt
denotes its real balances, and

the parameter σ > 0 captures risk aversion attitudes; χ0 > 0, and χ ≥ 0 is the inverse of the

Frisch labor supply elasticity; and finally, ν0 ≥ 0, and ν > 0 is related to the semielasticity of

real balances to (gross) nominal interest rates. Later on will become clear why do we allow

for money balances to directly influence household utility.6

We assume that the economy is populated by a continuum of monopolistically com-

petitive firms producing differentiated intermediate goods. These goods are then used as

inputs by a (perfectly competitive) firm producing a single final (consumption) good. Fol-

lowing Kimball (1995) we assume that each firm faces an endogenous demand elasticity that

dampens its incentive to raise its price in response to an increase in its marginal cost of

production.

Formally, the final good is produced by a representative, perfectly competitive, firm

with the following general technology
∫ 1

0
G(Ỹt(j)) dj = 1, where Ỹt(j) = Yt(j)

Yt
, and Yt(j) is

5In the Appendix we also describe how the model works once we allow for the existence of intermediate
(materials) inputs in the production of differentiated goods.

6The cashless economy corresponds to the limiting case in which ν0 becomes arbitrarily small. In the
Appendix we describe the fairly standard first order conditions associated to this problem.
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the quantity of intermediate good j used as an input. The function G satisfies that G′ > 0,

G′′ < 0, and G(1) = 1. The final good firm chooses input demands Yt(j) to maximize profits,

subject to the previous technological constraint. 7

While these general assumptions are sufficient for obtaining a first order approxima-

tion, our analysis requires a specific choice of functional form for the aggregator, G. Thus,

following Dotsey and King (2004), we consider the following aggregator:

G(Ỹ ) =
φ

1 + ψ

[
(1 + ψ)Ỹ − ψ

] 1
φ −

[
φ

1 + ψ
− 1

]
(3)

where the composite parameter φ = (ε(1 + ψ))/(ε(1 + ψ) − 1), and the elasticity parameter

ε > 1.

The parameter ψ determines the degree of curvature of the firm’s demand curve.

When ψ = 0, the demand curve exhibits constant elasticity, as in the Dixit-Stiglitz formula-

tion. When ψ < 0, each firm faces a quasi-kinked demand curve; in effect, consumers have a

satiation level of demand for each good, so that a drop in its relative price only stimulates a

small increase in demand, while a rise in its relative price generates a large drop in demand.

In this paper, we will focus on non-negative values of this parameter; however, it is interest-

ing to note that when ψ > 0, consumers have a subsistence level of demand for each good,

implying that pricing decisions exhibit strategic substitutability.

Given expression (3) the solution of the firm problem yields the set of demand sched-

ules given by

Ỹt(j) =
1

1 + ψ

[
P̃t(j)

−ε(1+ψ)λ
ε(1+ψ)
t + ψ

]
(4)

where P̃t(j) = Pt(j)
Pt

, Pt is the aggregate price level and Pt(j) corresponds to the interme-

diate goods price; and the Lagrange multiplier λt =
(∫ 1

0
P̃t(j)

1−ε(1+ψ) dj
) 1

1−ε(1+ψ)
. After

imposing a zero profit condition, then the aggregate price index can be written as follows:

1 = 1
1+ψ

(∫ 1

0
P̃t(j)

1−ε(1+ψ) dj
) 1

1−ε(1+ψ)
+ ψ

1+ψ

∫ 1

0
P̃t(j) dj. Finally, the market-clearing condition

implies Yt = Ct.

In Figure 1 we plot the log of relative demand for alternative values of ψ; for this

purpose, we calibrate the demand elasticity parameter ε = 7, which yields a markup of 16

7See for details Woodford (2003), Dotsey and King (2005a), Eichenbaum and Fisher (2004), and Klenow
and Willis (2005).
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Figure 1: Quasi-Kinked Demand
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percent in the steady state with zero inflation.8 Of course, the demand curve is log-linear

when ψ = 0, corresponding to the Dixit-Stiglitz formulation. The value of ψ = 2 falls

in the lower end of the range considered by Eichenbaum and Fisher (2004); in this case,

the demand curve exhibits quite strong curvature. Finally, ψ = −8 implies a very high

degree of curvature approaching that of a truly kinked demand curve. Thus, the presence of

quasi-kinked demand implies that a drop in the firms relative price only stimulates a small

increase in demand, while a rise in its relative price generates a large drop in demand. That

is, consumers will costesly move away from relative expensive goods but do not run into

inexpensive ones.

The production function for a typical intermediate goods firm j is given by:

Yt(j) = At Kt(j)
α Nt(j)

1−α (5)

where At represents an exogenous total factor productivity shifter, Kt(j) and Nt(j) represent

the capital and labor services hired by firm j, and the parameter α represents the short run

elasticity of output to capital. In this section, we implicitly assume that both inputs can be

perfectly reallocated across firms, so the model corresponds to the one considered by Erceg,

8As noted in the Appendix, the calibration of the curvature of demand depends crucially on the assump-
tion about the steady state markup.
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Henderson and Levin (2000) and Christiano, Eichenbaum and Evans (2005). In the next

section we extend further the model in such a way that the capital stock is fixed at the firm

level.

We now turn to the comparison of the demand curve specified in (4) with the standard

Dixit-Stiglitz type of preferences. The prototypical demand curves under the Dixit-Stiglitz

type can be derived by setting ψ = 0, which in turn implies that the multiplier λt = 1 in

equation (4), so that the elasticity of demand is constant across firms, and it is determined

by the elasticity of substitution among differentiated goods. Under the quasi-kinked de-

mand expression (4), the demand elasticities of differentiated goods vary with their relative

demands. Formally, it can be easily shown that the elasticity of demand for good j, denoted

by η(Ỹj), can be written as follows:

η(Ỹj) = ε
(
1 + ψ − ψỸ −1

j

)
. (6)

In the absence of a production subsidy, the desired markup of individual firms is given

as μ(Ỹj) ≡ η(Ỹj)

η(Ỹj)−1
, and depends on the firm’s relative demand, Ỹj. In general, in a non-zero

steady state inflation, and under ψ < 0, the elasticity η(Ỹ ) is decreasing in the relative

demand. Hence, a increase in nominal demand that increases marginal costs will tend to

reduce firm’s desired markup so reducing the incentives to increase prices in response to the

changes in demand.

Notice that for ψ = 0, the previous expression corresponds to the standard Dixit-

Stiglitz demand function, μ(1) = μ = ε
ε−1

, where the desired markup is constant and a

function of the parameter ε. Notwithstanding, once we departure from the constant elasticity

of demand, by calibrating the steady state markup is not enough to pin down the degree of

curvature of the demand function, ψ.9 We will turn to this issue in section 2.4.

2.2 The Firm’s Price-Setting Decision

Because of the presence of market power, intermediate firms are assumed to set nominal

prices in a staggered fashion, according to the stochastic time dependent rule proposed by

9The reason is that the calibration of μ only involves second order derivatives of G, while higher order
derivatives will be necessary to understand the implications of the curvature of demand for price adjustment.
See below for details.
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Table 1: Quasi-Kinked Demand and Price-Setting Behavior

P̃ ∗
t =

(
φ

1+τp

)
Z2t
Z1t

+
(

ψφ
ε(1+ψ)

)
Z3t
Z1t

(
P̃ ∗

t

)1+ε(1+ψ)

Z1t = Et{ βξΠε(1+ψ)−1
t+1 Z1t+1 } + Y 1−σ

t λ
ε(1+ψ)
t

Z2t = Et{ βξΠε(1+ψ)
t+1 Z2t+1 } + Y 1−σ

t λ
ε(1+ψ)
t MCt

Z3t = Et{ βξΠ−1
t+1 Z3t+1 } + Y 1−σ

t

Calvo (1983). Each firm resets its price with probability 1− ξ each period, independently of

the time elapsed since the last adjustment. Thus, each period a measure 1 − ξ of producers

reset their prices, while a fraction ξ keep their prices unchanged.10

Given the assumption of perfect factor mobility across firms, all firms have the same

real marginal cost, which is given by the ratio of the real wage to the marginal product of

labor, i.e. MCt = wtNt/(1−α)Yt. In the next section we analyze the effects of relaxing this

assumption.

Table 1 indicates the first-order conditions for each firm that resets its price contract

in a given period t. The optimal price is denoted by P ∗
t , and the relative price P̃ ∗

t =
P ∗

t

Pt
. The

firm’s optimal price depends on the aggregate gross inflation rate Πt = Pt/Pt−1, aggregate

real marginal cost MCt, and aggregate demand Yt. The stochastic variables Z1t, Z2t, and

Z3t are described by recursive expressions in the table. Note that the term (1+τp) represents

a production tax when τp > 0 or a subsidy when τp < 0.

2.3 Relative Price Distortions

The labor inputs of individual firms are linearly aggregated to obtain a measure of the

aggregate labor, i.e. Nt =
∫ 1

0
Nt(j)dj. Substituting individual gross production function into

the definition of the aggregate labor, we have a production relation between the aggregate

10We do not assume an indexation clause for those firms that can not reoptimize its price. This is in
line with recent with micro evidence for the U.S. (Bils and Klenow, 2004) and various European countries
(Alvarez et al. (2006)).
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output and labor:11

Yt = (
At

Δt

)Kα
t N1−α

t

where the measure of relative price distortion, denoted by Δt, can be written as follows:

Δt =
1

1 + ψ

∫ 1

0

(λ
ε(1+ψ)
t P̃t(j)

−ε(1+ψ) + ψ)dj. (7)

As emphasized by Goodfriend and King (1997), the relative price distortion results

in a missallocation of aggregate output across alternative uses of goods, so that it appears

as a technological shifter that reduces aggregate output.

In Table 2 we describe the main components of the previous definition of price disper-

sion. In particular, as described in the first row of the table, the previous expression for Δt

can be written as a non-linear function of two different weighted average measures of price

dispersions, Δ1,t ≡ ∫ 1

0
P̃t(j)

−ε(1+ψ) dj and Δ2,t ≡ ∫ 1

0
P̃t(j)

1−ε(1+ψ) dj. Notice also that the

Lagrange multiplier λt can be expressed as a function of the Δ2,t measure of dispersion as

follows: λt = Δ
1

1−ε(1+ψ)

2,t . The second row of the table corresponds to the relationship between

two measures of dispersion that comes from the definition of aggregate prices, where we

introduce a new measure of price dispersion, Δ3,t ≡
∫ 1

0
P̃t(j) dj. Finally, the last three rows

show that, following Yun (1996), the Calvo-type of staggered price setting allows us to write

the three measures of relative price distortion in a recursive form.

Notice that the case of Dixit-Stiglitz constant elasticity of demand corresponds to

ψ = 0, Hence, Δ2,t = λt = 1, Δt = Δ1,t, and expression (7) corresponds to the standard

equation linking aggregate inflation and the relative price of the newly set prices (see e.g.,

Schmitt-Grohé and Uribe (2005a, b)).

2.4 Implications for Real Rigidities

As shown in the Appendix a log linear approximation to the price equation of this model

corresponds to (1). In particular, the frequency of price adjustment ξ and the exogenous

discount factor β determine the degree of nominal rigidity:

κp =
(1 − ξ)(1 − ξβ)

ξ

11The aggregate variables are the sum of homogeneous capital and labor, i.e. Kt =
∫ 1

0
Kt(j)dj, Nt =∫ 1

0
Nt(j)dj. Goods market equilibrium requires that Yt(j) = Ct(j), for all j ∈ [0, 1], and Yt =

∫ 1

0
Yt(j)dj.
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Table 2: Quasi-Kinked Demand and Relative Price Distortions

Δt ≡ 1
1+ψΔ

ε(1+ψ)
1−ε(1+ψ)

2,t Δ1,t + ψ
1+ψ

1 = 1
1+ψΔ

1
1−ε(1+ψ)

2,t + ψ
1+ψΔ3,t

Δ1,t = (1 − ξ)(P̃ ∗
t )−ε(1+ψ) + ξΠt

ε(1+ψ)Δ1,t−1

Δ2,t = (1 − ξ)(P̃ ∗
t )1−ε(1+ψ) + ξΠt

ε(1+ψ)−1Δ2,t−1

Δ3,t = (1 − ξ)P̃ ∗
t + ξΠt

−1Δ3,t−1

Furthermore, the degree of real rigidity γ can be expressed as follows:

γ =
1

1 − μψ

where μ is the steady-state markup at zero inflation. Notice that ψ < 0 implies that the

parameter γ < 1, and the magnitude of γ declines with the absolute value of ψ.

3 Firm-Specific Marginal Costs

We now consider the implications of assuming that each firm has a fixed allocation of capital

rather than being able to obtain any desired amount on an aggregate rental market. In this

case, the firm’s real marginal cost (deflated by the aggregate price index) may differ from

the average real marginal cost, and we denote the ratio as M̃Ct(j) = MCt(j)/MCt. For ease

of presentation this section assumes a Dixit-Stiglitz demand structure (ψ = 0), but we will

subsequently consider the general model with both quasi-kinked demand and firm-specific

capital, and the equations for the general case may be found in the Appendix.
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3.1 The Determination of Marginal Costs

We extend the production function considered in the previous section so that, for any firm

j, it can be written as follows12

Yt(j) = At K
αfk

Kt(j)
αvk N

αfl
Nt(j)

αvl (8)

where αfk > 0, αvk > 0, αfl > 0, αvl > 0, and αfk + αvk + αfl + αvl = 1. Notice that

αf = αfl + αfk represents the total fraction of input factors (capital stock and labor) that

remains fixed at the firm level, K and N . In particular, if αfl = αfk = 0, the production

function (8) corresponds to the one considered in the previous section (expression (5)).

Absent the consideration of material inputs, and relative to the assumption of common

factor markets, the presence of a fixed factor of production (capital) at the firm level will

generate short run decreasing return in other factors (i.e. labor). This will imply that

equilibrium wages will vary across firms, and so marginal costs. In the absence of perfect

reallocation of factors across firms; the firm’s marginal is increasing in its own output, where

the elasticity of marginal cost to output (given the real wages) depend upon the existence of

short run returns to scale in the variable factors. Formally, the deviations of firm’s marginal

costs from the (average) norm will become an increasing function of the deviation of the

firm’s output relative to the average, i.e.

M̃Ct(j) = Ỹt(j)
1−αf

αf (9)

with decreasing returns to labor, firms that maintain a high relative output will face a lower

relative marginal cost than the average. Thus, the existence of fixed factors –because of the

existence of local labor and capital markets– implies that price adjusters trying to undercut

others to boots its own demand would also raise own’s marginal costs. This is the nature of

the real rigidity that induces the adjusters to have less incentive to price up.

3.2 The Firm’s Price-Setting Decision

Limiting the possibility of reallocation of capital across firms change the representation of

the optimal price contract of the firms that are allowed to changes its price at time t. In

12The case of intermediate inputs as an additional source of strategic complementarity is analyzed in the
Appendix.
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particular, the profit maximization condition (first row of Table 1) has the following form:

(
P̃ ∗

t

)1+ε
αf

1−αf =

(
ε

(1 + τp)(ε − 1)

)
Z2t

Z1t

(10)

It is interesting to note that this expression differs to the one presented in the first

row of Table 1 in two respects. First, the variables Z1t and Z2t corresponds to the ones of

the previous model under ψ = 0. Second, the existence of firm specific factors matters for

the left hand side of the previous expression. Hence, it is possible to explicitly solve for the

variable P̃ ∗
t but it appears raised to the power 1+

εαf

1−αf
, which absent the restriction of factor

mobility, αf = 0, corresponds to the baseline model usually considered in the literature.

3.3 Relative Price Distortions

For convenience, we normalize firm-specific capital K = 1, firm-specific labor N = 1, and

the aggregate stock of variable capital,
∫

Kt(j)dj = 1. Thus, the relation between aggregate

output and the variable labor input can be expressed as follows:

Yt = (
At

Δt

) Nt
αvl

where Δt is a new measure of time t relative price distortion which follows the following low

of motion

Δ
1

1−αf

t = (1 − ξ)(P̃ ∗
t (j))

− ε
1−αf + ξΠt

ε
1−αf Δ

1
1−αf

t−1 (11)

Notice that the previous expression becomes the prototypical model considered in several

papers under the assumption of αf = 0.

3.4 Implications for Real Rigidities

Under the assumption of fixed factors at the firm level, the first-order aggregate price dy-

namics continue to be described by the NKPC given in equation 1. The nominal rigidity

coefficient κp is the same as defined in Section 2.4, but the real rigidity coefficient γ is now

expressed as follows:

γ =
1

1 + ε
αf

1−αf

.
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It is worth noting that the higher the elasticity of demand, ε, and the higher is the

elasticity of output to the fraction of fixed inputs, i.e. αf , the lower is the pass-through

coefficient from marginal costs to prices. In particular, under the assumption that αf = 1
3
,

and ε = 7, then γ = 0.22, so that the presence of a fixed factor implies that prices will

respond around a 0.22 per cent to an 1 per cent increase in the marginal costs. While,

assuming a higher elasticity, ε = 11, and a lower elasticity to the fixed factor, say αf = 1
2
,

the value of γ is reduced to 0.08.

4 Calibration

Table 3 describes the baseline parameter values that we use to calibrate the model. Much

of these values closely follow those recently estimated (see, for instance, Levin et al. (2005))

and they are also in line with most of business cycle literature. We calibrate the model so

that each period corresponds to a quarter, thus we set the discount factor β = 0.99. We allow

for a moderate amount of nominal stickiness, i.e. the probability of changing prices and ξ

is set equal to 0.6, which implies that prices are fixed slightly longer than two consecutive

quarters (see e.g. Bils and Klenow (2004)).

When we allow for both quasi-kinked demand and firm-specific inputs, the slope

coefficient of the NKPC takes the following form:

γ =
1

1 − μψ + ε
αf

1−αf

where ψ < 0.

In the baseline Calvo model studied in Woodford (2003) and many others, the pa-

rameter γ = 1, so that assuming ξ = 0.6 it implies a value for the slope of the NKPC of 0.27,

which is higher than the estimates in the literature (see, e.g. Gali,Gertler and Lopez-Salido

(2001), Sbordone (2002), and more recently Eichenbaum and Fisher (2004)). In general,

those authors find that the estimates for the slope coefficient range between 0.03 to 0.05 (see

e.g. Woodford (2005) for a recent discussion on these values.) Hence, in order to match the

aggregate estimates with the micro evidence on price stickiness, it is necessary a low value

for the parameter γ. We will now turn to see how the different strategic complementarities

13



Table 3: Calibrated Parameter Values

Parameter Description Value
β Discount Factor 0.99
σ Risk Aversion 1
χ−1 (Frisch) Labor Supply Elasticity 1
α Output elasticity to capital 0.33
ε Price Elasticity of Demand 7
ξ Probability of Changing Prices 0.60
ν Inverse of Money Demand Elasticity 12

can be set as to fit a certain amount of real rigidities.

In this paper we assume that the slope coefficient is equal to 0.025, then the required

amount of pass-through from marginal costs to prices, γ is around 0.09. We also assume

that the steady state markup is around 16% (in particular we set ε = 7 which implies

that μ = 1.16). Under these assumptions, the required curvature parameter, ψ, to obtain

such a value for the pass-through coefficient is ψ = −8.13 If the only source of strategic

complementarity comes from the existence of fixed factors at the firm level, then in order

to match the value of γ we need a value for αf = 0.58. If we combine both frictions, then

reducing αf to 0.5 implies that we only required much smaller amount of curvature for the

demand coefficient, i.e. ψ = −2, to get the required degree of pass-through.

5 The Costs of Steady-State Inflation

In this section, we solve for the non-linear steady state of the models to compare the impli-

cations of the two types of strategic complementarities for the costs of steady state inflation

through its effects on average markup and the relative price distortion. We will use the

Dixit-Stiglitz model as a reference model that helps in clarifying the distinct implications of

alternative strategic complementarities on both the average markup and the relative price

distortions. As noted before, the calibration we use to compare the non-linear implications

13In the Appendix we show how to relate the curvature parameter with the existing literature on quasi-
kinked demand.
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Figure 2: Quasi-Kinked Demand and Steady-State Inflation
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of the models is such that all of them generate the same slope of the NKPC, hence they are

observationally equivalent in terms of the first order approximation of inflation dynamics.

In Figure 2 we plot the average markup and the relative price distortion as a function

of the steady state inflation in the model with quasi-kinked demand functions calibrated

for the two values of ψ, −2 and −8, discussed in the previous section. The first interesting

feature of this deviation from the standard Dixit-Stiglitz preferences is the strong asymmetry

of inflation induced on both markup and relative price distortions. The higher the non-

linearity in the demand function, the higher the asymmetry of negative and positive inflation

on both average markup and relative price distortion. Instead of the Dixit-Stiglitz model,

the existence of non-zero steady state inflation reduces the average markup.

Secondly, the existence of steady state deflation tends to reduce the a stronger de-

crease in the average markup relative to economies with positive inflation rate. As noticed

by King and Wolman (1999), in the Dixit-Stiglitz model the average markup is minimized at

zero steady state inflation markup (which corresponds to the constant desired markup, i.e.

μ = ε
ε−1

, given our calibration is 1.16 in the Figure). Nevertheless, under quasi-kinked de-

mand, the presence of steady state inflation translate in an asymmetric way into the desired

markup of the firms adjusting prices, so that average markup is dramatically reduced under
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deflation more than it is under positive inflation. The reason is also apparent from the right

panel, which shows how the steady-state inflation influences the magnitude of relative price

distortions. In the quasi-kinked demand environment, the presence of steady state deflation

induces a higher cost in terms of relative price distortions than positive inflation. This is

the side effects of the asymmetric demand functions, since the presence of deflation tends

to increase the relative price of firms adjusting prices so consumers move immediately away

from those price setters generation a higher output costs.

To see this, let us consider the standard model with economy-wide factor markets

and constant elasticity of demand. In this case, for empirically –either positive or negative–

inflation rates, the firms adjusting prices have strong incentives to do so to capture the

demand of its competitors. The presence of quasi-kinked demand implies that a drop in the

firms relative price only stimulates a small increase in demand, while a rise in its relative

price generates a large drop in demand. That is, consumers will costesly flee from relative

expensive goods but do not flock into inexpensive ones. Suppose, for instance, that the

economy is facing a steady state positive inflation. On the one hand, the relative price of

the non-adjusting firm’s reduces dramatically without generating much gains in terms of

relative demand (i.e. relative demand becomes relative inelastic if relative price is below the

equilibrium). On the other hand, given the reduction in the relative price of the non-adjusting

firms, there are low incentives for adjusters to change prices, so to gain some relative demand

they have to reduce the desired markup which tends to reduce the economy-wide (average)

markup.

The effects of negative steady state inflation tends to dramatically shrink the profits of

non-adjuster by moving consumers demand away from its products to other; this translates

the relative price dispersion into higher output costs and generates a fall in the desired

markup of firms so making the economy more competitive. The adjusting firms have low

incentive to undercut others since they will face a lower elastic demand without boosting

its own sales, hence they reduce their desired markups to avoid further reductions in their

relative sales, which also tends to reduce the average markup (see the left panel of Figure

2). Overall, steady state deflation induces higher relative price distortions and tend to lower

16



Figure 3: Firm-Specific Inputs and Steady-State Inflation
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the average markup, while positive inflation generates, in equilibrium, less relative price

dispersion.

In the previous set up, factor inputs can be costlessly reallocated across firms so

that they can adjust their marginal cots in responses to steady state inflation. Figure 3

corresponds to the same exercise in the model with fixed factors, where we plot the average

markup and relative price distortions for alternative values of the short run elasticity of

output with respect to fixed factors, i.e. αf . The figure makes it clear that, relative to the

quasi-kinked demand model, this mechanism has sharply different effects on both the average

markup and the relative price distortion factor. It should be noted that we set the curvature

parameter ψ = 0 in order to isolate the pure effects of the presence of fixed factors, so the

demand side of the model is identical to the one with Dixit-Stiglitz CES aggregator. Later

we will discuss the implications of both frictions operating at the same time.

As can be seen from this figure, the most noticeable feature is the asymmetry induced

in both the average markup and the relative price distortions by the presence of positive

inflation rate. The higher is the share of fixed factors in the production function, the higher

are the costs generated by positive inflation rates. As in the baseline model, the relative

price distortion is minimized at zero steady state inflation. In a situation of positive steady
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Figure 4: Combining Quasi-Kinked Demand and Firm-Specific Inputs
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state inflation, if there is a fraction of fixed factors, then price adjusters trying to undercut

prices to boost their demands would also raise their own marginal costs. Hence, a positive

steady state inflation boosts the output costs of relative price distortions, while negative

steady state inflation leads to smaller costs, given the upward slope of the firms’s marginal

curve.

Quantitatively, these relative price distortions associated with positive inflation rates

produce non negligible output cost. In particular, a 3% steady state inflation rate generates

an output loss of nearly one percent, while a 3% annual deflation is only about half as costly.

In Figure 4, we plot the effects of the calibration of the model combining both fixed

factors (assuming that αf = 0.5) and quasi-kinked demand (assuming in such a ψ = −2). In

the figure we plot the model assuming ψ = −2, which corresponds to the one discussed above

with fixed factors alone. It is clear that the joint effects of both friction flips the costs of

inflation on relative price distortions. In particular, now the presence of quasi-kinked demand

and the fact that the firms setting price can not perfectly adjust its factors in response to

inflation makes deflation much more costly than positive inflation. In particular, a negative

steady state inflation of -3% (somehow closest to the one associated with the Friedman’s

rule) will generate important output costs due to the amount of relative price distortion that
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Figure 5: Comparing the Alternative Specifications
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the model imposes on the price setting firms. In addition, the benefits of both positive and

negative inflation on average markup are more balanced, i.e. the average markup curve is

more symmetric around the zero steady state inflation. Finally, Figure 5 compares the four

specifications using calibrations that imply the same magnitude of real rigidity, γ.

6 Optimal Policy in the Stochastic Economy

In this section, we discuss implications of strategic complementarities for the optimal policy

when the economy is subject to exogenous random shocks. In so doing, we derive the

second-order approximation to the utility function of the representative household, following

the linear-quadratic approach of Woodford (2003). Besides, we do not include monetary

distortions to create incentive for holding fiat money in this section (i.e. we set ν0 = 0 in

expression (2)).

6.1 Characterizing the Optimal Policy Problem

Before proceeding, notice that the deterministic steady-state equilibrium achieves the first-

best allocation in the presence of the fiscal policy to eliminate the distortion associated

with the monopolistic competition. Given that the steady state is Pareto optimal, we can
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characterize the first-order approximation of the optimal policy from optimizing the second-

order approximation of the social welfare function subject to the first-order approximation

of equilibrium conditions.14 Moreover, the log deviation of the real marginal cost from its

steady-state level is proportional to the log deviation of output from its first-best level,

while their proportionality is the weight of the output gap in the second-approximation to

the social welfare function, denoted by λx.

As a result, substituting mct = λx xt into the NKPC specified in the introduction

(expression (1)), we have an expression of the Phillips curve equation in terms of output

gap:

πt = βEt[πt+1] + (λxκpγ)xt. (12)

It is noteworthy that the parameter κp (= (1− ξ)(1− ξβ)/ξ) is associated with the average

frequency of price changes under the Calvo pricing, while degree of real rigidity is measured

by γ = (1 − μψ + ε
αf

1−αf
)−1.

Having described the constraint of the optimal policy problem, we turn to the second-

order approximation to the social welfare function. It is shown in the appendix that the

second-order approximation to the social welfare function can be written as follows:

∞∑
t=0

βtE0[λπ
π2

t

2
+ λx

x2
t

2
], (13)

where λx and λπ are weights for output gap and inflation, respectively. The weight on output

gap can be written as λx = σ + (χ + 1 − αvl)/αvl, though the magnitude of αvl is affected

by the presence of fixed labor inputs, given that αvk + αvl = 1 − αfl − αfk. However, λπ

has different expressions depending on sources of strategic complementarities: either λπ =

ε/(κpγ) in the case of fixed factors inputs or λπ = ε/κp in the case of kinked demand curves.

Given the second-order approximation to the social welfare function and the first-

order approximation of equilibrium conditions, the optimal policy from timeless perspective

can be written as επt = −xt + xt−1 in the case of fixed-inputs, and εγπt = −xt + xt−1 in

the case of kinked demand curves. We thus find that the optimal responses of inflation to

14Woodford (2003) includes the second-order approximation to the social welfare when the steady state
is distorted, while Benigno and Woodford (2005) discuss the optimal policy when the steady state achieves
the Ramsey allocation.
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changes in output gap depend on sources of strategic complementarities. However, since

there is no mechanism that generates trade-offs between inflation and output gap, the opti-

mal inflation rate under timeless perspective becomes zero regardless of sources of strategic

complementarities. Hence, in the next section, we incorporate cost-push shocks into the

Phillips curve equation to create short-run trade-offs between inflation and output, following

Clarida, Gali and Gertler (1999, 2001).

6.2 Fixed-Inputs at the Firm Level

We begin with the case of fixed-inputs at the firm level and then move onto the case of

kinked demand curves. When state-contingent commitment is feasible, the social planner

chooses its state-contingent plan on {πt, xt}∞t=0 in order to minimize

∞∑
t=0

βtE0[
λπ

2
π2

t +
λx

2
x2

t + ωct(πt − λxκpγxt − βEt[πt+1] − ut)], (14)

where ut represents an i.i.d. exogenous cost-push shock15, ωct represents the Lagrange mul-

tiplier for the Phillips curve in the optimization problem under commitment and ωc−1 = 0.

Combining the first-order necessary conditions then yields the optimal policy rule that links

targets:
επt = −xt + xt−1 for t ≥ 1,
επ0 = −x0.

(15)

Under discretion, the social planner can not make any binding commitment over its future

policy actions, so that it has to take as given the public’s expectations about the future.

Hence, the optimization problem under discretion turns out to be

min
πt, xt

{λπ

2
π2

t +
λx

2
x2

t + ωdt(πt − λxκpγxt − βEt[πt+1] − ut)}, (16)

where ωdt is the Lagrange multiplier for the Phillips curve in the optimization problem under

discretion. The first-order conditions can be combined to yield

επt = −xt. (17)

15Although we do not make it explicit in the previous section, ut can take place when tax rates are subject
to exogenous variations.
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It follows from (15) and (17) that the introduction of strategic complementarities through

the fixed-capital at the firm level does not affect the optimal ratio of inflation to output gap

under both of discretion and commitment. As a result, we can find that the welfare level

under the optimal policy is not affected by the introduction of strategic complementarities

through the fixed-inputs at the firm level, up to the first-order approximation of the optimal

policy with the second-order approximation of the welfare.

6.3 Kinked Demand Curves

Having described the optimal policies in the case of fixed factors at the firm level, we solve

the optimal policy problems when we allow for only kinked demand curves without having

the fixed-capital at the firm level. Notice that the case of kinked demand curves corresponds

to γ = 1/(1−μψ) and λπ = ε/κp. Given these definitions of parameters, we solve the optimal

policy problems similar with those in the previous section. As a result, the optimal policy

under commitment can be written as

εγπt = −xt + xt−1 for t ≥ 1,
εγπ0 = −x0.

(18)

The optimal policy under discretion is given by

εγπt = −xt. (19)

It then follows that the introduction of kinked demand curves reduces the optimal response

of inflation to output, as opposed to the case of the fixed factors at the firm level. The reason

for this is that the introduction of kinked demand curves (through a change from the Dixit-

Stiglitz preference to Dotsey-King type preference) affects the trade-off between inflation and

output gap in the constraint, while it does not have any influence on the trade-off between

inflation and output gap in the objective function of the social planner.

Furthermore, substituting the efficiency condition (19) into the social period loss

function (13), we can find that the period loss function at the optimum under discretion

turns out to be
1

2

ε(1 + εγ(λxκpγ))

κp

π2
t . (20)
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It thus follows from (20) that in the case of kinked demand curves, the optimal loss becomes

smaller if inflation variability is the same. But it does not mean that the optimal loss under

the same cost-push shock becomes smaller. For the strategic complementarities generated

by the introduction of kinked demand curves increases the optimal response of the aggregate

inflation rate to the same size of cost-push shocks. In order to see this, notice that substi-

tuting (19) into the Phillips curve specified in (12), solving the resulting linear difference

equation, and then putting the resulting solution into the period loss function yields

1

2

ε

κp(1 + εγ(λxκpγ))
u2

t . (21)

As a result, we can see that the optimal loss under the same cost-push shock can be increased

when the degree of real rigidity rises with the introduction of kinked-demand curves.

7 Costs of the Great Inflation

In this section, we use explicit functional forms of relative price distortion under each source

of strategic complementarities to construct time-series of relative price distortions, taking

as given a set of observed time-series of inflation rates and initial values of relative price

distortions. Specifically, we measure relative price distortions that are implied by different

sources of strategic complementarities under the assumption that the government in the

model achieves the same set of inflation rates observed in the U.S. economy.

7.1 Dixit-Stiglitz Preferences

Consider the standard Dixit-Stiglitz aggregator, which leads to the following relationship

between relative price distortion and inflation under the Calvo pricing:

Δt = (1 − ξ)(
1 − ξΠε−1

t

1 − ξ
)

ε
ε−1 + ξΠε

tΔt−1. (22)

This means that if we have an observed set of the aggregate inflation rate, denoted by

{πt}T
t=0,

16 it is possible to construct a set of relative price distortions {Δt}T
t=0 using equation

16In the previous section, πt denotes the logarithmic difference between price levels at period t and t − 1.
In this section, when we construct the time-series of relative price distortion, we define πt as the change rate
of price levels at period t and t − 1, so that πt = Pt−Pt−1

Pt
.
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Figure 6: The Evolution of the Distortion Factor (%)
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(22) given an initial value of relative price distortion, Δ−1. Besides, the initial value of

relative price distortion is set to be Δ−1 = Δ whose value is measured at the long-run

average inflation rate in the periods before the inflation series begin.

In order to give a concrete idea about the construction of the time-series of relative

price distortion, we proceed with the measure of relative price distortion (22). As a bench-

mark choice of parameter values, values of parameters ξ and ε are, respectively, set to be ξ

= 0.6 and ε = 7, though various sets of parameter values will be used. Specifically, ξ = 0.60

means that firms fix prices on average for 2.5 quarters, while ε = 7 implies that the steady

state markup, defined as the ratio of price to marginal cost, equals 17 percent, because the

steady state markup is ε
ε−1

. Furthermore, the sample in this section covers the quarterly

data on non-farm business sector inflation rate over the period 1947:1 - 2005:3. In addition,

a sample average of non-farm business sector inflation rate over the period 1947:1 - 1959:4
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is used to compute a steady state value of relative price distortion:

Δ =
1 − ξ

1 − ξ(1 + π)ε
(
1 − ξ(1 + π)ε−1

1 − ξ
)

ε
ε−1 . (23)

The initial value of the measure of relative price distortion is then set to be Δ−1 = Δ.

Figure 6 reports constructed series of relative price distortion over the period 1960:1

- 2005:3. It demonstrates that the measure of relative price distortion rises in early 1970s,

reaches its peak around 1975 and then declines. The size of relative price distortion at its

peak is around 2 % in terms of quarterly real output under the set of parameter values

specified above. Besides, relative price distortion shows large declines after 1982, while it is

stable around 1990s.

It is worthwhile to mention that the measure of relative price distortion specified in

(22) depends mainly on the inflation rate. In addition, when the long-run average inflation

rate is set equal to zero, the steady-state relative price distortion disappears. The central

bank can therefore adjust the level of relative price distortion by controlling the rate of

inflation. This in turn implies that the sample average of relative price distortion can be

interpreted as representing the cost of inflation.

Furthermore, traditional works on the welfare costs of inflation has focused on the

size of the deadweight loss under a money demand curve that occurs because of inflation, as

can be seen in the works of Bailey (1956) and Lucas (1987, 2000). The costs of relative price

distortion, however, are not associated with the frictions that make households voluntarily

hold real money balances. The findings explained above thus indicate that staggered price-

setting can be an independent and significant source of the welfare costs of inflation.

7.2 Implications of Real Rigidities

Having discussed the output costs of inflation based on the standard Dixit-Stiglitz preference,

we move onto the cases of kinked demand curves and fixed production inputs. In so doing,

we choose values of relevant parameters in order to match the estimated slope coefficient of

the Phillips curve. As noted earlier, this implies that the coefficient to measure the size of

fixed factors inputs is αf = 0.58 in the first case, while the curvature parameter of demand

curves is set to be ψ = -8 in the second case. Given these parameter values, we compute
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time-series of relative price distortion taking as given the observed time-series of aggregate

inflation rate. We do this to show that these two sources of strategic complementarities have

different welfare implications, even though they produce the same first-order dynamics of

the aggregate inflation rate.

The results from these experiments can be summarized as follows. Above all, different

sources of strategic complementarities share similar time patterns of relative price distortion

during the whole sample period. Specifically, measures of relative price distortion rise in

early 1970s and then decline after 1982. Thus, they show their peaks around 1975.

But their magnitudes are dramatically different. In particular, when we derive quasi-

kinked demand curves using the Dotsey and King aggregator, relative price distortion be-

comes small relative to the case of the standard Dixit-Stiglitz preferences. In contrast,

allowing for fixed-inputs at the firm level raises the relative price distortion. As shown in

Figure 6, the peak relative price distortion under quasi kinked demand curves is less than

0.25 % of quarterly real output, whereas it becomes slightly less than 30 % in the case of

fixed-inputs.

8 Conclusions

Many papers have studied the role of real rigidities to match the aggregate response of

inflation to marginal cost. But, in all this literature, the non-linear implications of the

underlying mechanism have not been further explored. This issue is of central importance

to understand the monetary policy implications of micro-founded New Keynesian models.

What are the different implications for the welfare costs of steady-state inflation and inflation

volatility of alternative sources of real rigidities? Our analysis corroborates that alternative

real rigidities lead to very different implications for the welfare costs of steady state inflation

and inflation variability, although they might have identical implications for the first order

dynamics of the inflation rate.

Under the presence of quasi-kinked demand, there is a strategic link between firms’

marginal revenues and the incentive for price adjustment. The presence of local factor

markets –fixed factor inputs–, induces a strategic link between the firm’s marginal costs and
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the incentive for price adjustment. This different nature of the strategic linkage among firm’s

incentive to changes price is at the core of the asymmetric results for monetary policy that

we find in this paper.

More generally, this paper puts forward the need to carefully examine mechanisms

(embedded into New Keynesian dynamic general equilibrium models) observationally equiv-

alent up to first order, which may yield sharply different conclusions for monetary policy

once the non-linearities implied by the models are accounted for.
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Appendix A: The Calibration of Quasi-Kinked Demand

The purpose of this appendix is to overview how the existent literature has proceeded

in calibrating demand functions with non-constant elasticity and to relate it with the spec-

ification presented in the main text (e.g. Dotsey and King (2005)). To do this, we start

by relating the curvature of the demand function, i.e. the parameter ψ, with the degree of

pass-through from marginal costs to prices. In the absence of other sources of strategic com-

plementarities Woodford (2003, 2005) and Eichenbaum and Fisher (2005) have shown that

the degree of pass-through from a rise in the marginal costs to prices, γ, takes the following

equivalent form:

γ =
1

ηεμ + 1
=

1
εp

η−1
+ 1

(24)

where εμ denotes the elasticity of markup, μ, with respect to changes in relative demand, Ỹ ,

evaluated at the steady state: εμ = ∂μ

∂Ỹ

Ỹ
μ
; and εp denotes the percent change in the elasticity of

demand, η, due to a one percent change in the relative price,P̃ : εp = ∂η

∂P̃

P̃
η
. The latter is used

by Eichenbaum and Fisher (2005), while the former is used by Kimball (1995) and Woodford

(2003, 2005), respectively.17 From expression (24) it follows that, ηεμ = εp

η−1
. At zero steady

state inflation, the elasticity η = ε, and hence we pind down the value of the elasticity by

setting a value for the gross markup, i.e. μ ≡ ε
ε−1

. Then, under the Dotsey and King (2004)

specification, it follows that, εp = −εψ, which implies that: ψ = − εp

ε
= −(ε − 1)εμ < 0.

This allows to write the expression for γ as a function of the steady state markup and the

curvature parameter ψ, i.e.

γ =
1

1 − μψ
.

The previous expression can be used to infer the curvature of the demand function

that matches a certain degree of pass-through from a rise in the marginal costs to prices:

ψ = −1−γ
μγ

. Hence, for an given steady state markup, the lower the passthrough the higher

the absolute value of ψ, i.e. the higher the degree of curvature; and, for a given degree of

passthrough, the lower the steady state markup (i.e. the higher the elasticity of demand)

the higher the degree of curvature.

Kimball (1995), Woodford (2003, 2005), and Eichenbaum and Fisher (2005) implicitly

calibrate the curvature of the demand function by setting the value of the parameter γ. All

of them assume a value for the –zero inflation– steady state markup μ = 1.1–i.e. 10%– which

implies a value for η = ε = 11. Under this assumption, Kimball calibration sets a value for

17Coenen and Levin (2005) refer to this coefficient as the relative slope of the demand elasticity around its
steady-state, i.e. εp = 1+η+η G′′′

G′′ , which is related to the curvature of the demand function since it involves
the second and third derivatives of the aggregator G. Klenow and Willis (2005) refer to this expression as
the super-elasticity, or the rate of change of the elasticity.
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εμ = 4.28, which implies a value for γ = 0.021, and corresponds to a extremely high degree

of curvature, ψ = −42.8. Woodford (2005) calibrates the pass-through parameter γ = 0.5,

and Eichenbaum and Fisher (2005) and Coenen and Levin (2005) calibrate γ between 0.23

and 0.5 (this corresponds to values for εp ranging between 10 to 33). These numbers imply

that, for a 10% steady state markup, the degree of curvature ψ will vary between −0.9, and

−3, respectively. Notice that, holding the same degree of passthrough (i.e. εp = 10, 33) but

assuming a higher steady state markup of 20% –ε = 6–, requires a higher curvature of the

demand, i.e. ψ ranges between −1.7 and −5.5.

Related Literature Instead of the previous work, Chari, Kehoe and Mcgrattan

(2000) and Bergin and Feenstra (2000) emphasize a direct measure of the curvature of

demand through its implications for the percent reduction in relative demand -market share-

due to a one percent increase in the relative price, ζ. To do that, these authors compute a

second order Taylor expansion of the quasi-kinked relative demand, Ỹt, around the relative

price, P̃t(j). This yields to

Ỹt(j) ∼= 1 − η(P̃t(j) − 1) +
ηϑ

2
(P̃t(j) − 1)2 (25)

where the parameter ϑ = G′Ỹ ′′

Ỹ ′ , is evaluated at the steady state. It is easy to find a relation-

ship among the two elasticities (εp and εμ) and the parameter ϑ. To see this, we first take

a log-linear approximation approximation to the elasticity of demand, η(Ỹ ). This yields to

η̂(Ỹ ) � −ey
̂̃
Y , wherê represents log-deviation respect to the steady state, and ey = (1+η−ϑ)

η
.

From this follows that the parameter ϑ = 1 + η(1 − ey), where ey = ∂η

∂Ỹ

Ỹ
η
, and can easily

be related to εμ through the following expression ey = (η − 1)εμ. Hence, in a zero inflation

steady state, ey = (ε − 1)εμ, which corresponds to the curvature parameter, −ψ, under the

Dotsey and King (2004) quasi-kinked demand specification.

From expression (25) it is possible to obtain the percent reduction in relative demand

-market share- due to a 1 percent increase in the relative price is given by ζ = −η(.01) +
ηϑ
2

(.01)2. Hence, it is now clear how to translate the calibration of Woodford (2005) and

Eichenbaum and Fisher (2005) into the percent reduction in relative demand -market share-

due to a 1 percent increase in the relative price. Hence, assuming a value for εp = 10 and

η = 11 (i.e. γ = 0.5), then εμ = εp

(η−1)η
= 10

10∗11
= 1

11
= 0.09 and ey = (11 − 1) 1

11
= 0.9,

ϑ = 1 + 11(1 − 0.9) = 2.1; which implies that ζ = −11(.01) + 11∗2.1
2

(.01)2 � −0.108.

That is, this curvature of demand implies that a one percent increase in the relative price

results in a 10.8 percent reduction in relative demand. Under the assumption of εp = 30,

then εμ = 3
11

, ey = 30
11

, and ϑ = 1 + 11 ∗ (1 − 30/11) = −21, and we can obtain that

ζ = −11(.01) − 11∗21
2

(.01)2 � −0.12, i.e. the percent reduction in relative demand -market
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share- due to a 1 percent increase in the relative price results in a 12 percent.

Bergin and Feenstra (2000) uses a different strategy. They assume that the aggrega-

tor, G, is a translog function, so the expression for he relative demand of good i takes the

following particular form:

Ỹi =

⎡
⎣1 + (η − 1) log

(
P−i

Pi

)
Pi

⎤
⎦Pt (26)

where P−i represents the average price set by competitors, and the own-price elasticity of

demand, i.e. η(Ỹi) = 1 − φ

s(Ỹi)
, where s represents the expenditure share of good i, and φ

is a constant. Then, it follows that ep = ∂η

∂Ỹ

Ỹ
η

= (η−1)2

η
. They calibrate the steady state

markup equal to 50%, which implies a value of η = 3. From expression (26) if follows

that this is the only parameter that determines the curvature of the demand. Hence, a 2%

rise in the relative price of good i from steady state leads to a fall in demand of: 1-(1+(3-

1)*log(1/1.02))/1.02=1-0.942=0.058, i.e slightly more than a 5%; and accordingly a rise in

the relative prices of 3% leads to a fall of 8.7%. Notice that Bergin and Feenstra (2000) sets

ey=4/3, εμ=2/3 or εp=4. This is implies a value for γ=0.33, and in terms of the Dotsey and

King (2005) it corresponds to ψ=−1.33.
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Appendix B: Key Derivations

Households Optimality Conditions The flow-budget constraint at period t of

the representative household can be written as

Ct + Et[Qt,t+1
Bt+1

Pt+1

] + Mt+1 =
Bt + Mt

Pt

+
Wt

Pt

Nt + Φt − Tt,

where Bt+1 denotes a portfolio of nominal state contingent claims in the complete contingent

claims market, Qt,t+1 is the stochastic discount factor for computing the real value at period

t of one unit of consumption goods at period t + 1, Wt is the nominal wage rate, Tt is

the real lump-sum tax, and Φt is the real dividend income. The first-order conditions for

consumption and labor supply can be combined to yield

χ0C
σ
t Nχ

t =
Wt

Pt

. (27)

The optimization condition for bond holdings is

Qt,t+1 = β(
Ct

Ct+1

)σ. (28)

Hence, if Rt represents the risk-free (gross) nominal rate of interest at period t, the absence

of arbitrage at an equilibrium gives the following Euler equation:

βEt[Rt(
Ct

Ct+1

)σ Pt

Pt+1

] = 1. (29)

The money-bonds portfolio allocation decision is given by

ν0

(
Mt

Pt

)−ν

= (Rt − 1)C−σ
t (30)

Profit Maximization Conditions

Marginal Costs under Fixed Inputs The production function of an individual

firm is given by

Yt(j) = AtK
αfk

f Kt(j)
αvkN

αfl

f Nt(j)
αvl ,

where Kf and N f are fixed capital and labor, Kt(j) and Lt(j) are variable capital and labor,

αfk and αfl are output elasticities of fixed capital and labor. Notice that letting αf denote

the sum of output elasticities of fixed inputs, we have αf = αfk + αfl. In addition, the

output elasticity of variable labor can be written as: αvl = 1 − (αf + αvk). We assume that

amounts of fixed capital and labor respectively are the same across firms. It is also assumed
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that there are perfectly competitive factors markets for variables inputs in which their prices

are fully flexible.

Given the functional forms of production function specified above, minimizing total

costs of obtaining variable inputs leads to the following optimization condition:

Kt(j)

Nt(j)
=

αvk

αvl

Wt

Rt

,

where Wt is the real wage at period t and Rt is real rental rate at period t. It then follows

that the aggregate variable capital and labor can be written as

Wt

Rt

=
αvl

αvk

Kt

Nt

,

where the aggregate variable capital and labor are defined as

Kt =

∫ 1

0

Kt(j) dj : Nt =

∫ 1

0

Nt(j) dj.

In order to derive cost function of variable inputs in terms of individual output, notice

that substituting the cost-minimization condition specified above into production function

and then rearranging, we have

Yt(j) = AtZtNt(j)
1−αf .

where Zt is defined

Zt = (
αvk

αvl

Wt

Rt

)αvkK
αfk

N
αfl

.

Here, Zt(j) does not depend on price and output decisions at period t of individual firms.

Meanwhile, substituting the cost-minimization condition specified above into the total-cost

of obtaining variable inputs

WtNt(j) + RtKt(j) =
1 − αf

αvl

WtNt(j)

As a result, the cost-function of variable inputs can be written as

TCt(j) = VtYt(j)
1

1−αf ,

where Vt is defined as

Vt =
1 − αf

αvl

Wt(AtZt)
− 1

1−αf .

Given the cost-function defined above, the marginal cost at period t can be written as

MCt(j) =
Vt

1 − αf

Yt(j)
αf

1−αf .
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Intertemporal Profit Maximization When firms are able to change prices in

period t, their expected discounted sum of profits can be written as

max
{P ∗

t }

∞∑
k=0

βkEt[Qt,t+k(TRt+k − TCt+k)],

where TRt+k denotes the total revenue at period t + k, and TCt+k denotes the total cost at

period t + k, and (1 + τp) is a fiscal production subsidy factor. The total revenue at period

t + k is

TRt+k =
1 + τp

1 + ψ
(

P ∗
t

Pt+k

)1−ε(1+ψ)λ
ε(1+ψ)
t+k Yt+k +

ψ(1 + τp)

1 + ψ

P ∗
t

Pt+k

Yt+k

and the total cost at period t + k is given by

TCt+k =

(
1 − αf

αvl

)
A

− 1
1−αf

t+k Wt+k N

1−αf−αvl
1−αf

t+k Yt+k(j)
1

1−αf

The partial differentiations of total revenues and costs can be written as

∂TRt+k(j)

∂P ∗
t

= {(1 + τp)(1 − ε(1 + ψ))

1 + ψ
(

P ∗
t

Pt+k

)−ε(1+ψ)λ
ε(1+ψ)
t+k +

ψ(1 + τp)

1 + ψ
}Yt+k

Pt+k

,

∂TCt+k

∂P ∗
t

= −εMC∗
t+k(

P ∗
t

Pt+k

)−(ε(1+ψ)+1)λ
ε(1+ψ)
t+k

Yt+k

Pt+k

,

where MC∗
t+k is defined as

MC∗
t+k = (

Vt+k

1 − αf

)Y ∗
t+k

αf
1−αf , Y ∗

t+k =
1

1 + ψ
((

P ∗
t

Pt+k

)−ε(1+ψ)λ
ε(1+ψ)
t+k + ψ)Yt+k. (31)

The profit maximization condition can be written as

−ε(1 + τp)

φ
(P̃ ∗

t )−ε(1+ψ)Z1t +
ψ

1 + ψ
(P̃ ∗

t )−(ε(1+ψ)+1)Z2t +
ψ(1 + τp)

1 + ψ
Z3t = 0. (32)

where P̃ ∗
t =

P ∗
t

Pt
and Z1t, Z2t and Z3t, respectively, are written as

Z1t =
∞∑

k=0

(βξ)kEt[Y
1−σ
t+k (

Pt+k

Pt

)ε(1+ψ)−1λ
ε(1+ψ)
t+k ], (33)

Z2t =
∞∑

k=0

(βξ)kEt[Y
1−σ
t+k (

Pt+k

Pt

)ε(1+ψ)λ
ε(1+ψ)
t+k MC∗

t+k], (34)

Z3t =
∞∑

k=0

(βξ)kEt[Y
1−σ
t+k (

Pt

Pt+k

)]. (35)
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Recursive Representations of Profit Maximization Conditions When

MC∗
t+k depends on P̃ ∗

t , we cannot have a closed-form recursive representation of Z2t un-

less αf takes a set of special values. However, if there are no firm specific inputs, we have

the following recursive representation of the first-order conditions.

Z1t = Et{βξΠ
ε(1+ψ)−1
t+1 Z1t+1} + Y 1−σ

t λ
ε(1+ψ)
t , (36)

Z2t = Et{βξΠ
ε(1+ψ)
t+1 Z2t+1} + Y 1−σ

t λ
ε(1+ψ)
t MCt, (37)

Z3t = Et{βξΠ−1
t+1Z3t+1} + Y 1−σ

t . (38)

Relative Price Distortion Having shown that the production function of an in-

dividual firm can be written as Nvt(j)=(Yt(j)/(AtZt))
1/(1−αf ), a linear aggregation of both

sides of this equation leads to

Yt =
AtZt

Δt

N
1−αf

vt , (39)

where Δt is defined as

Δt = (

∫ 1

0

(
Yt(j)

Yt

)
1

1−αf dj)1−αf . (40)

While Δt is a measure of relative price distortion, substituting the demand function of an

individual firm into the definition of relative price distortion leads to

Δt = (

(
1

1 + ψ

) 1
1−αf

∫ 1

0

(λ
ε(1+ψ)
t P̃t(j)

−ε(1+ψ) + ψ)
1

1−αf dj)1−αf . (41)

In order to obtain closed-form solution, we set αf = 1/2. As a result, we have

Δ2
t =

1

(1 + ψ)2 (λ
2ε(1+ψ)
t

∫ 1

0

P̃t(j)
−2ε(1+ψ)dj + 2ψλ

ε(1+ψ)
t

∫ 1

0

P̃t(j)
−ε(1+ψ)dj + ψ2). (42)

Hence, it is possible to write the aggregate dispersion measure Δt as the following non-linear

combination of different definition of price dispersions,

Δ2
t =

1

(1 + ψ)2 Δ
2ε(1+ψ)

1−ε(1+ψ)

2,t Δ̃1,t +
2ψ

(1 + ψ)2 Δ
ε(1+ψ)

1−ε(1+ψ)

2,t Δ1,t +
ψ2

(1 + ψ)2 (43)

where Δ1,t and Δ̃1,t are, respectively, defined as

Δ1,t =

∫ 1

0

P̃t(j)
−ε(1+ψ)dj; Δ̃1,t =

∫ 1

0

P̃t(j)
−2ε(1+ψ)dj.

Under the Calvo pricing, evolution equations of these measures are given by

Δ1,t = (1 − ξ)(P̃ ∗
t )−ε(1+ψ) + ξΠt

ε(1+ψ)Δ1,t−1. (44)

Δ̃1,t = (1 − ξ)(P̃ ∗
t )−2ε(1+ψ) + ξΠt

2ε(1+ψ)Δ̃1,t−1. (45)
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Aggregate Production Function and Marginal Cost of Production Notice

that Yt = (AtZt/Δt)N
1−αf

vt may not reflect the true effect of the aggregate labor input on the

aggregate output because Zt depends on the aggregate labor input. Assuming, for simplicity

that Kf = N f = Kt = 1, it follows from the definition of Zt that

Zt = N−αvk
t . (46)

As a result, the aggregate production function can be written as

Yt =
At

Δt

Nαvl
t . (47)

In addition, the aggregate unit-cost of production is given by

Vt =

(
1 − αf

αvl

)
A

− 1
1−αf

t Wt N

1−αf−αvl
1−αf

t , (48)

Substituting the aggregate production function into the unit cost of production, we have

Vt =

(
1 − αf

αvl

)
Wt (YtΔt)

1−αf−αvl
αvl (1−αf ) . (49)

The aggregate real marginal cost is defined as

MCt =
Wt

αvl

Y
1−αvl
1−αvl

t Δt

1−αf−αvl
αvl (1−αf ) . (50)

Then, MC∗
t+k is given by

MC∗
t+k = MCt+k{ 1

1 + ψ
((

P ∗
t

Pt+k

)−ε(1+ψ)λ
ε(1+ψ)
t+k + ψ)}

αf
1−αf . (51)

Steady-State Equilibrium Conditions

Relative Price Distortion From the definition of the aggregate price level we can

express the relative price of the optimal price contract in terms of the aggregate inflation as

follows:

P̃ ∗ = { 1

1 + ψ
(

1 − ξ

1 − ξΠε(1+ψ)−1
)

1
1−ε(1+ψ) +

ψ

1 + ψ
(

1 − ξ

1 − ξΠ−1
)}−1 (52)

When αf = 1/2, the relative price distortion is given by

Δ = (
1

(1 + ψ)2 Δ
2ε(1+ψ)

1−ε(1+ψ)

2 Δ4 +
2ψ

(1 + ψ)2 Δ
ε(1+ψ)

1−ε(1+ψ)

2 Δ1 +
ψ2

(1 + ψ)2 )1/2 (53)

where Δ1, Δ4, and Δ2 are, respectively, given by

Δ1 =
1 − ξ

1 − ξΠε(1+ψ)
(P̃ ∗)−ε(1+ψ), (54)
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Δ2 =
1 − ξ

1 − ξΠε(1+ψ)−1
(P̃ ∗)1−ε(1+ψ), (55)

Δ4 =
1 − ξ

1 − ξΠ2ε(1+ψ)
(P̃ ∗)−2ε(1+ψ). (56)

The steady-state relationship between inflation and relative price distortion can be obtained

by combining these relations.

Profit Maximization We continue to assume that αf = 1/2. We can use the

profit maximization condition for firms to compute the relationship between marginal cost

and inflation. The profit maximization condition at the steady state equilibrium can be

written as

−ε(1 + τp)

φ
(P̃ ∗)−ε(1+ψ)Z1 +

ψ(1 + τp)

1 + ψ
(P̃ ∗)−(ε(1+ψ)+1)Z2 + εZ3 = 0, (57)

where Z1, Z2 and Z3 are defined as

Z1 =
Y 1−σλε(1+ψ)

1 − (αξ)Πε(1+ψ)−1
,

Z2 =
MCY 1−σλε(1+ψ)

1 + ψ
(

λε(1+ψ)

1 − (αξ)Π2ε(1+ψ)
+

1

1 − (αξ)Πε(1+ψ)
),

Z3 =
Y 1−σλε(1+ψ)

1 − (αξ)Π
.

Second-Order Approximations to Utility Function

Quasi-Kinked Demand Function (Dotes and King’s (2005) Aggregator)

In this section, we do not assume that households are farmers and yeomen. Instead,

households are trading labor services in factors markets. Given market transactions of labor

services, we derive a quadratic loss function from utility functions of households by combin-

ing utility function with aggregate production function. Since we use the assumption that

households are homogenous, it is important to relate relative price distortion to inflation so

as to include inflation term in the derived quadratic loss function.

Relative Price Distortion We describe how relative price distortion evolves over

time under the aggregator of Dotesy and King (2005). First, relative price distortion is

expressed in terms of two price distortions as follows:

Δt =
1

1 + ψ
Δ

ε(1+ψ)
1−ε(1+ψ)

2t Δ1t +
ψ

1 + ψ
. (58)
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In particular, Δ2t is a non-linear function of the Lagrange multiplier for the consumer’s

cost-minimization to produce composite goods, which is defined as

Δ2t =

∫ 1

0

P̃t(i)
1−ε(1+ψ)di, (59)

where pt(i) is the relative price at period t of firm i. In addition, Δ1t is an average of a

non-linear function of individual relative prices, which is defined as

Δ1t =

∫ 1

0

P̃t(i)
−ε(1+ψ)di. (60)

It is clear for their definitions that Δ1t and Δ2t can be interpreted as measures of relative

price dispersions.18

Furthermore, applying the Calvo pricing rule to each measure of relative price dis-

persion leads to the following law of motion for each measure of relative price dispersion:

Δ1t = (1 − ξ)(P̃ ∗
t )−ε(1+ψ) + ξΠ

ε(1+ψ)
t Δ1t−1, (61)

Δ2t = (1 − ξ)(P̃ ∗
t )1−ε(1+ψ) + ξΠ

ε(1+ψ)−1
t Δ2t−1, (62)

where P̃ ∗
t is the relative price of a new contract price at period t. We also have the following

measure of relative price dispersion:

Δ3t = (1 − ξ)P̃ ∗
t + ξΠ−1

t Δ3t−1, (63)

where Δ3t is defined as

Δ3t =

∫ 1

0

P̃t(i)di. (64)

Second-Order Approximation to Measures of Relative Price Distortion

Solving equation (63) for p∗t and then substituting the resulting equation into equations

(61) and (62) respectively, we can relate inflation to measures of relative price dispersion as

follows:

Δ1t = (1 − ξ)(
Δ3t − ξΠ−1

t Δ3t−1

1 − ξ
)−ε(1+ψ) + ξΠ

ε(1+ψ)
t Δ1t−1, (65)

Δ2t = (1 − ξ)(
Δ3t − ξΠ−1

t Δ3t−1

1 − ξ
)1−ε(1+ψ) + ξΠ

ε(1+ψ)−1
t Δ2t−1. (66)

We apply second-order approximation to each measure of relative price dispersion around

the deterministic steady state with zero inflation rate. In doing so, we define a set of new

variables as follows:

δ1t = log Δ1t, δ2t = log Δ2t, πt = log Πt. (67)

18It is noteworthy that the aggregator of Dixit and Stiglitz (1977) leads to Δt = Δ1t and Δ2t = 1, while
ψ = 0 corresponds to the case of Dixit and Stiglitz (1977).
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As results of second-order approximation to Δ1t and Δ2t, we have

δ1t = −ε(1 + ψ)δ3t + ε(1 + ψ)ξδ3t−1 + ξδ1t−1 +
ψ1

2
π2

t . (68)

δ2t = −(ε(1 + ψ) − 1)δ3t + (ε(1 + ψ) − 1)ξδ3t−1 + ξδ2t−1 +
ψ2

2
π2

t . (69)

where ψ1 and ψ2 are defined as

ψ1 = ξε(1+ψ)(
ε(1 + ψ) + 1

1 − ξ
+ε(1+ψ)−3), ψ2 = ξ(ε(1+ψ)−1)(

ε(1 + ψ)

1 − ξ
+ε(1+ψ)−4). (70)

It also follows from (58) that log-deviation of relative price distortion can be expressed in

terms of two measures of relative price dispersion:

δt = − ε

ε(1 + ψ) − 1
δ2t +

1

1 + ψ
δ1t. (71)

Substituting (68) and (69) into (71), we can obtain an approximated law of motion for

relative price distortion of the form:

δt = ξδt−1 +
ξε

2(1 − ξ)
π2

t . (72)

Since ψ = 0 leads to the case of Dixit and Stiglitz (1977), it follows from (72) that the effect

of the aggregator of Dotes and King (2005) on the approximated law of motion for relative

price distortion is summarized in the coefficient of inflation term.

Elasticity of Quasi-Kinked Demand The demand curve facing firm i at period

t can be written as

Ỹt(i) =
1

1 + ψ
((

λt

P̃t(i)
)ε(1+ψ) + ψ), (73)

where Ỹt(j) = Yt(j)
Yt

is the relative demand at period t of firm i and λt is the Lagrange

multiplier of each consumer’s cost-minimization problem to choose differentiated goods. We

can see that the elasticity of demand is affected by the amount of relative demand. The

steady state markup is given by

μ =
ε

ε − 1
. (74)

It is noteworthy that since kinked demand curve requires a negative value of ψ, parameter

ε(1+ψ) can be negative for a certain range of negative values for ψ if we impose a restriction

of ξ > 1. Given the calibration of kinked demand curve discussed above, the second-order

approximation of relative price distortion can be rewritten as19

δt = ξδt−1 +
ξε

2(1 − ξ)
π2

t . (75)

19We now compare our specification of relative price distortion (75) with that of Woodford (2003, p 399
proposition 6.6). Specifically, the dispersion measure of Woodford is defined as cross-section variance of
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Deriving Quadratic Loss Function (Non-Distorted Deterministic Steady

State) The utility function for consumption can be written as

C1−σ
t − 1

1 − σ
=

(C∗
t )1−σX1−σ

t − 1

1 − σ
, (76)

where C∗
t denotes the first-best level of consumption at period t and Xt is the ratio of the

current-period level of output to its first-best level. In the following, I focus on second-

order Taylor expansions around the steady state with constant prices, in which there is no

distortion so that C = C∗. The second-order Taylor expansion to the utility function for

consumption is given by

C1−σ
t

1−σ
= C1−σ

1−σ
+ C1−σ[(Xt − 1) − σ (Xt−1)2

2
] + O(||ζ||3), (77)

where ||ζ|| is a bound on the amplitude of exogenous shocks and O(||ζ||3) denotes the order

of approximation residual.

Following Woodford (2003), it is possible to express the second-order approximation

to Xt in terms of its logarithmic deviation from steady state value as follows:

Xt − 1 = xt +
1

2
x2

t + O(||ζ||3), (78)

where output gap, denoted by xt (= log Xt), is defined as logarithmic deviations of Xt

from their steady state value. Substituting (78) into (77) and then rearranging, a quadratic

approximation can be written as

C1−σ
t

1−σ
= C1−σ

1−σ
+ C1−σ(xt +

(1−σ)x2
t

2
) + t.i.p. + O(||ζ||3), (79)

where t.i.p. collects terms that are independent of monetary policy. Besides, a second-order

Taylor expansion to the utility function of labor can be written as a second-order Taylor

expansion to the utility function of labor can be written as

(ΔtYt

At
)1+χ

1 + χ
=

N1+χ

1 + χ
+ N1+χ[(Xt − 1) + (Δt − 1) +

χ(Xt − 1)2

2
] + O(||ζ||3). (80)

Similarly, substituting (78) into (80) and then rearranging yields

Nχ
t

1 + χ
=

N1+χ

1 + χ
+ N1+χ[xt +

1 + χ

2
x2

t + δt] + t.i.p. + O(||δ 1
2 , ζ||3), (81)

logarithms of relative prices. Because of this difference, ξ does not show up in the law of motion for the
dispersion measure used in Woodford. However, it is possible to obtain the same form of loss function as
in Woodford (2003) if we maintain the same order of approximation especially in terms of relative price
distortion. Hence, it is worthwhile to mention the approximation order of the price-dispersion measure used
in Woodford (2003). Specifically, the order of approximation in Woodford is O(||δ 1

2
t−1, ϕ, ζ̃||3). For this

reason, we maintain the same order of approximation used in Woodford (2003) in terms of relative price
distortion, though our definition differs from that of Woodford.
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where the order of approximation residual is O(||δ 1
2 , ζ||3).

We now discuss the role of distorting labor income tax or employment subsidy in

deriving a quadratic loss function. Note that the marginal rate of substitution between

consumption and labor at the steady state is given by

C1−σ = N1+ϕ. (82)

Subtracting (81) from (79) and then setting the equality of (82) in the resulting equation,

we can obtain a quadratic approximation to the instantaneous utility function of the repre-

sentative household:

ut = uo − v[δt + (σ + χ)
x2

t

2
] + t.i.p. + O(||δ 1

2 , ζ||3), (83)

where v = C1−σ, ut is the instantaneous utility level at period t, and uo is the steady-state

instantaneous welfare level.

Next, I turn to the approximation of the measure of relative price distortion. A

second-order Taylor expansion is

δt = ξδt−1 +
ξε

2(1 − ξ)
π2

t + O(||δ 1
2 , ζ||3). (84)

Integrating forward from an initial value of δ−1 yields

δt = ξt+1δ−1 + (
ξε

2(1 − ξ)
)

t∑
k=0

ξt−kπ2
k + O(||δ, ζ||3). (85)

It follows from (85) that a discounted sum of logarithms of relative price distortions can be

written as ∞∑
t=0

βtδt =
ξε

(1 − ξ)(1 − ξβ)

∞∑
t=0

βt π
2
t

2
+

ξδ−1

1 − ξβ
+ O(||δ 1

2 , ζ||3). (86)

As a result, substituting (86) into (85), we derive a quadratic loss function of the central

bank from the utility function of the representative household:

−v
∞∑

t=0

βtE0[
ξε

(1 − ξ)(1 − ξβ)

π2
t

2
+ (σ + χ)

x2
t

2
]. (87)

Second-Order Approximation under Fixed Factors Inputs In this section,

we proceeds with the Dixit-Stiglitz aggregator. In the presence of fixed factors inputs, the

relative price distortion can be written as

Δt = {(1 − ξ)(
1 − ξΠε−1

t

1 − ξ
)

−ε
(1−ε)(1−αf ) + ξΠ

ε
1−αf

t Δ
1

1−αf

t−1 }1−αf . (88)
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Thus, the second-order Taylor approximation to the relative price distortion leads to

δt = ξδt−1 +
ξε

2(1 − ξ)γ
π2

t + O(||δ 1
2 , ζ||3), (89)

where γ is defined as

γ =
1

1 + ε
αf

1−αf

. (90)

In the similar way as we did for (85), we can show that a discounted sum of logarithms of

relative price distortions is

∞∑
t=0

βtδt =
ξε

(1 − ξ)(1 − ξβ)γ

∞∑
t=0

βt π
2
t

2
+

ξδ−1

1 − ξβ
+ O(||δ 1

2 , ζ||3). (91)

Besides, since the presence of fixed factor inputs leads to

Nχ
t

1 + χ
=

N1+χ

1 + χ
+ N1+χ[xt +

1 + χ − αvl

2αvl

x2
t + δt] + t.i.p. + O(||δ 1

2 , ζ||3), (92)

we have the following second-order approximation of the utility function:

ut = uo − v[δt + (σ +
1 + χ − αvl

2αvl

)
x2

t

2
] + t.i.p. + O(||δ 1

2 , ζ||3). (93)

As a result, we derive a quadratic loss function of the central bank from the utility function

of the representative household as follows:

−v
∞∑

t=0

βtE0[
ξε

(1 − ξ)(1 − ξβ)γ

π2
t

2
+ (σ +

χ + 1 − αvl

αvl

)
x2

t

2
]. (94)
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