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A flow network analysis of direct balance-sheet

contagion in financial networks

Mario Eboli∗

July 2013

Abstract

This paper puts forward a novel approach to the analysis of direct contagion

in financial networks. Financial systems are here represented as flow networks —

i.e., directed and weighted graphs endowed with source nodes and sink nodes —and

the propagation of losses and defaults, originated by an exogenous shock, is here

represented as a flow that crosses such a network. In establishing existence and

uniqueness of such a flow function, we address a know problem of indeterminacy

that arise, in financial networks, from the intercyclicity of payments. Suffi cient and

necessary conditions for uniqueness are pinned down. We embed this result in an

algorithm that, while computing the propagation caused by a shock, controls for the

emergence of possible indeterminacies. We then apply some properties of network

flows to investigate the relation between the structure of a financial network —i.e.,

the size and the pattern of obligations —and its exposure to default contagion. We
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characterise first and final contagion thresholds (i.e., the value of the smallest shock

capable of inducing default contagion and the value of the smallest shock capable

of inducing the default of all agents in the network, respectively) for some classes of

networks, namely the complete, star-shaped, incomplete regular, and cycle-shaped

networks. Finally, we show that the exposition to default contagion of a generic

network —both in terms of contagion thresholds and of number of defaults induced

by a shock —monotonically grows with the ratio between internal and external debts,

where the former are the intra-network obligations and the latter are the debts that

the agents in the network owe to final claimants who do not belong to the network.

JEL classification: C63, G01, G33.

Key words: systemic risk, financial contagion, financial networks, flow networks.

1 Introduction

In this paper we put forward a novel approach, based on the theory offlow networks,1 for the

analysis of direct contagion in networks of agents connected among themselves by financial

obligations. Financial contagion is broadly defined as the transmission of financial distress

across agents, sectors or regions of the economy. The literature has distinguished among

three different forms of financial contagion, also known as systemic risk, corresponding to

different possible channels of propagation:2 1) Informational contagion, that can occur in

banking systems,where depositors’expectations about the possibility of a crisis can lead

to bank runs, and in imperfectly informed financial markets, where ‘bad news’can affect

the sentiments of the traders; 2) Direct contagion transmitted via networks of financial

obligations. In banking and financial systems, such networks arises from three sources: i)

loans and deposits in the interbank money market, ii) ‘over-the-counter’trading in assets

and derivatives, and iii) payment systems; while, in the manufacturing sector, networks of

financial obligations arise from trade credit.3 3) Common exposure to losses in the value

of assets, losses that can be exogenous or endogenous to a financial network, the latter

being the case of fire sales of illiquid assets induced by liquidity shortages. In this paper

we forego informational contagion, as well as any analysis of agents’behaviour, and focus

on the mechanics of direct balance-sheet contagion using a framework that takes common

1See Ahuja et al. (1993) for a reference book on the theory of flows and flow network.
2See the review articles by Dow (2000) and by De Bandt-Hartmann (2000).
3See Kiyotaki-Moore (2001, 2002)
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exposures into account.

We represent a financial system as a flow network —i.e., a directed and weighted graph

endowed with source nodes and sink nodes —and use the properties of network flows to

analyse the dynamics of the flows of losses that propagate, in a financial system, as a conse-

quence of an external shock. Flow network theory is a branch of graph theory that, starting

with the works of nineteen century physicists such as Gustav Kirchoff, has been progres-

sively developed and applied to a vast number of fields, ranging from telecommunication

to electrical and hydraulic engineering, transportation, computer networking, industrial

and military logistics, etc. To the best of our knowledge, the present work is the first

application of network flow analysis to economics or finance.4

The paper is organized as follows. In the next section, we review the literature related

to this work. In section three, we define a financial system in terms of a flow network.

In section four, we model the domino effect of direct balnce-sheet contagion as a flow of

losses that crosses a financial flow network, i.e., as a contagion function that associates,

to the links of a network, the financial losses induced by an exogenous shock. Existence

and uniqueness of such a contagion function are discussed in section five, where we ad-

dress a known problem of indeterminacy that arises from the intercyclicity of payments

in financial networks. We identify necessary and suffi cient conditions for uniqueness and,

in section six, we embed this result in an algorithm that, while computing a contagion

function, controls for possible indeterminacies due to the interciclycity of obligations. In

section seven, we investigate the relation between the structure of a financial networks —

i.e., the size and the pattern of the financial obligations that form the network —and its

exposure to default contagion. For some classes of networks —such as the complete, star-

shaped, incomplete regular and cycle-shaped networks —we characterise the first and final

thresholds of contagion, i.e., the value of the smallest shock capable of inducing default

contagion and the value of the smallest shock capable of inducing the default of all agents

4The only other papers that use a flow network representation of a financial network are Castiglionesi

and Eboli (2012) and Pokutta et al. (2011). Castiglionesi and Eboli apply the framework of the present

paper to analyse the flows of liquidity in interbank deposit networks. They compare the performace of

complete, circular and star-shaped networks in re-allocating liquidity among banks in the aftermath of a

shock. Pokutta et al. model a financial network as a flow network with the aim of measuring the systemic

risk induced by single banks. In so doing these authors do not use flow analysis in a strict sense, they use

the linear program that maximises the flows of payments within a network. Moreover, these authors avoid

the indeterminacy problem depicted below by taking the largest possible clearing payment vector as the

unique ‘default adverse’clearing vector and provide informal arguments in support of this choice.
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in the network, respectively. For generic networks we show that, under a mildly restrictive

condition, the exposure to default contagion of a network —both in terms of contagion

thresholds and of number of defaults induced by a shock —monotonically depends on the

ratio between the values of the external debt and of the intra-network obligations of the

agents in the network. Conclusions are drawn in section eight. Finally, the proofs of the

theorems, lemmae and corollaries presented in the paper are collected in the Appendix.

2 Related literature

This work has been inspired by Eisenberg and Noe (2001), a seminal contribution which has

provided the analytical basis and the computational tool to many authors (see the below

cited papers) who perform numerical simulations to study direct contagion. Their paper

and the present one study the properties of the same object —a directed and wighted graph

that represents a financial system —resorting to two different analytical approaches: we use

flow networks while Eisenberg and Noe resort to matrix algebra and lattice theory. These

authors investigate the domino effect generated by the default of agents that participate

in a single payment system. In so doing, they study the existence and the uniqueness of

a vector of payments that clears a network of interdependent financial claims, where the

capability of an agent to repay in full his debts depends on the solvency of his own debtors

which, in turn, depends on the solvency of their debtors, and so forth. They express such

a vector as a function of the operating cash flows of the members of the financial network.

This function is defined on a lattice, representing such a financial system, and complies

with the requirements of limited liability, debt priority and pro-rata reimbursements.

Eisenberg and Noe, as well as the present paper, do not investigate agents’behaviour

in a financial network and focus on the mechanics of contagion as governed by the rules of

limited liability, debt priority and pro-rata reimbursements. This marks a major difference

with respect to theoretical analyses of direct financial contagion —due to Rochet-Tirole

(1996), Freixas et al. (2000), Allen and Gale (1998, 2000) — that take explicitly into

account the behaviour of banks and depositors. These authors use models of contagion

in interbank liquidity networks based on, or inspired to, the seminal paper by Diamond

and Dybvig (1983), where the uncertainty about the timing or the location of consumers’

expenditure —hence, of depositors’withdrawals —generates the risk of liquidity shortages

for the banks. In order to insure against such a liquidity risk, and in absence of perfectly
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functioning ‘ex-post’liquidity markets, each bank holds deposits in other banks forming, in

so doing, an interbank network of short-term exposures. This network serves the purpose of

sharing liquidity risk and of re-allocating liquidity across banks, de facto moving customers’

deposits from banks in liquidity surplus towards banks in liquidity deficit. In case of default

of a bank, though, the same network becomes a channel of transmission of financial losses

towards the other banks in the network, creating the possibility of systemic crisis. The

initial failure of one or more banks, capable of generating a widespread financial crises, can

be due to exogenous causes, as it is in Allen and Gale (1998), where financial crises arise as

a consequence of downturns in the economic cycle. Recessions can cause losses in the value

of the assets held by banks, losses capable of rendering them insolvent. If depositors foresee

the recession, they will protect themselves from possible bank defaults by withdrawing their

deposits and, in so doing, they create the conditions for the occurrence of a widespread

crisis. Financial contagion can also originate from liquidity crisis. In Allen and Gale

(2000) the failure of a bank is due to an idiosyncratic shortage of liquidity that forces

the bank to liquidate long-term assets, incurring the costs of such ‘fire sales’. They show

that a ‘complete’network —a network where all banks are equal to one another, all have

mutual bilateral obligations and of the same amount —is more robust than an incomplete

network, i.e., a network with fewer links among the banks. Freixas et al. (2000) achieve

similar results: in their examples the ‘complete’network structure bears the smallest risk

of contagion, while a ‘credit chain’structure increases the fragility of the banking system.

Acemoglu et al. (2013) challenge the conclusion that the complete network structure is

the most robust and obtain a result, very close to our theorem 5 below, that shows the

robust-yet-fragile nature of such a network structure. As the autors put it: “One of our

main results is that that as the magnitude or the number of negative shocks cross certain

thresholds, the types of financial networks that are most prone to contagious failures change

dramatically. In particular, more financial interconnections are no longer a guarantee for

stability. Rather, in the presence of large shocks, interbank liabilities facilitate financial

contagion and create a more fragile system. Our results show that, in the presence of

large shocks, “weakly connected”financial networks – for example, one consisting of a

collection of pairwise connected banks with only a minimal amount of shared assets and

liabilities with the rest of the system – are significantly less fragile than the more complete

networks.”[Acemoglu et al. (2013), pages 2 and 3].

The above mentioned theoretical papers investigate the relation between the shape of
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a network and its exposure to systemic risk resorting to stylized examples.5 This has been

perceived as a shortcoming of such a stream of literature. As Upper (2007, page 2 and

3) puts it “Unfortunately, analytical results on the relationship between market structure

and contagion have been obtained only for a limited number of highly stylised structures of

interbank markets, which are of limited use when it comes to assessing the scope for conta-

gion in real world banking systems.[...] Given the scarcity of theoretical results, researchers

have increasingly turned to computer simulations to study contagion.”Upper refers to sev-

eral authors who, in order to assess the robustness of different network structures, have

studied the mechanics of default contagion using numerical simulations, foregoing the mi-

croeconomic behaviour of banks and depositors. Such papers —which includes the works

by Sheldon and Maurer (1998), Furfine (2003), Wells (2002), Elsinger, Lehar and Summer

(2006), Upper and Worms (2004), Degryse and Nguyen (2004), Blavarg and Nimander

(2002), Cifuentes (2003), Mistrulli (2005,2006), Canedo and Martínez Jaramillo (2009) —

have analyzed national banking systems, in most cases estimating the structure of national

interbank networks,6 using simulations to evaluate their exposure to default contagion.

Numerical simulations are also used by Shin et al. (2005) and Nier et al. (2007), who

analyze generic network structures, rather than specific national ones. Shin et al. present a

model where default contagion is exacerbated by the effects of ‘fire sales’. They show that

if the demand for illiquid assets is not perfectly elastic, the forced and untimely sale of such

assets by financially distressed operators induces further reductions in their market value,

feeding further contagion. Nier et al. build their model on a previous and unpublished

version of the present paper.7 Using a computing device, these authors generate random

banking networks, in the fashion of the random graphs a là Erdős-Rényi, and use them to

run numerical simulations aiming at evaluating the exposure to systemic risk of different

network structures.
5As Rochet-Tirole-Parigi (2000) declare "Because of the complexity of the transfers involved in the

matrix [of financial obligations], we will illustrate our findings in two symmetric extreme cases." [page 187]
6Apart from Mistrulli (2005, 2006) who used data about the actual interbank exposures, data in pos-

session of Bank of Italy.
7That preliminary version of this paper was presented at the Bank of England in may 2004.
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3 The financial flow network

The purpose of a financial system is the intermediation of the supply of funds provided

by final claimants —that we will generically label as ‘households’, who hold shares, bonds

and deposits —and the demand expressed by the final users of funds, such as companies,

mortgage holders, governments, etc. Let such a system be composed by a set of financial

intermediaries Ω = {ωi} , i = 1...n, which are directly or indirectly connected to one another

by financial obligations, namely bonds and deposits, and let dij ∈ R+ be the amount of

debt, if any, that agent i owes agent j. Each agent in Ω is characterized by its own balance

sheet. On the asset side, let ai ∈ R+ be the value of the sum of external assets owned by

ωi, which are liabilities of agents —the final users of funds —who do not belong to Ω, let

A = {ak}, k = 1...m, be the set of external assets such that each ak in A appears in the

balance sheet of at least one operator in Ω, and let aki ∈ R+ be the amount of asset k held

by agent i, if any. Besides the external assets, an agent ωi can hold internal assets which

are liabilities of other agents in Ω, and let ci =
∑

j dji be the sum of the such assets held by

agent i. On the liability side of the balance sheet, let di ∈ R+ be the sum of the debts that

ωi owes to agents in Ω, in the possible forms of bonds, loans and deposits: di =
∑

i dij,

and let hi be the external debt of ωi, i.e., the amount of debt claims against ωi held by

households and other external financiers. For simplicity, we assume that all debts have the

same seniority. Finally, the value of the equity of the i-th agent, ei, is set by the budget

identity ei ≡ ai + ci − di − hi. We assume that the value of the external assets is set by

the market and take the other balance sheet headings ci, di, hi, as well as the debts dij, at

their nominal values. For the sake of simplicity, we also assume that all the shares issued

by the members of Ω are held by households, i.e., there is no cross-holding of shares among

the financial intermediaries.

We represent this financial system as a multisource network, i.e., a directed and con-

nected graph, with some sources and two sinks, with links endowed with non-negative

capacities.8 Let N =
{

Ω, A, T,H, LΩ, LA, LT , LH ,Γ
}
be a multisource network where:

1. Ω = {ωi} is the set of n nodes that represent the above defined financial intermedi-
aries.

2. A = {ak}, is the set of m source nodes, i.e., nodes with no incoming links, that

represent the external assets held by the members of Ω.

8See Ahuja et al. (1993), sections 1 and 2, or Diestel (2000), ch. 6.
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3. T is a sink, i.e., a terminal node with no outgoing links. This node represents the

shareholders who own the equity of the agents in Ω.

4. H is a sink node representing the households who hold debt claims, in the form of

deposits and bonds, against the agents in Ω.

5. LΩ ⊆ Ω2 is a set of ordered pairs of nodes in Ω, i.e., a set of directed links {lij}
representing the liabilities dij, where lij starts from node ωi and ends in node ωj, and

lij ∈ LΩ only if dij > 0.

6. LA =
{
lki
}
is a set of directed links, with start nodes in A and end nodes in Ω, that

connect the external assets to their owners, where lki ∈ LA only if aki > 0.

7. LT = {liT} is a set of directed links, with start nodes in Ω and end node T .

8. LH = {liH} is a set of directed links, with start nodes in Ω and end node H.

9. Γ : LΩ, LA, LT , LH → R+ is a map, called capacity function, that associates i) to each

lij the value of the corresponding liability dij, ii) to each lki the value of the corresponding

asset aki , iii) to each l
i
T the equity, ei, of its start node ωi, and iv) to each l

i
H the external

debt, hi, of its start node ωi.

We shall refer to N as a financial flow network or, for brevity, as a network N , while

we shall refer to a generic multisource network simply as a network.

4 Propagation of losses and defaults: the domino ef-

fect

We now use the above defined financial flow network to model the process of direct financial

contagion among the agents in Ω as a flow of financial losses that crosses N . This flow

is initiated by an exogenous negative shock that consists of a loss of value of some of the

external exposures ak. To define a shock, let bk ∈ [0, 1] be a parameter that measures the

fraction of the value of the asset ak which is lost. An exogenous shock is an assignment

of value to the vector [bk], k ∈ A, where at least one of its components assumes a strictly
positive value. If bk > 0, then source node ak is activated and sends to its direct descendants

in Ω − i.e., to the nodes ωi ∈ Ω such that lki ∈ LA− a financial loss equal to bkaki . The
shock, i.e., the flow of losses out of the source nodes, is a vector of scalars [bkak]. It what

follows, we distinguish between common shock, that affects more than an agent in Ω, from

idiosyncratic shocks, i.e., shocks born by a single node only.

As a shock occurs, the involved source nodes release a flow of losses into the network.
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The propagation of these losses across N is governed by the rules of limited liability, debt

priority and pro-rata reimbursement of creditors. When a node ωi suffers a loss, this loss

is first absorbed by the net worth of the node. Only the residual loss, if any, is passed

over to other nodes in Ω. The losses that are offset by the equity of the agents in Ω are

born by households, in their capacity as shareholders, thus they exit from the flow of losses

that circulate across Ω to end up directly into the sink T . To represent this property we

introduce, for each node in Ω,an absorption function

βi(λi) = min

(
λi
ei
, 1

)
(1)

where λi is the total loss born by the i-th node, received from source nodes and/or from

other nodes in Ω. The variable βi ∈ (0, 1) measures the share of net worth lost by a node.

If a node ωi receives a positive flow of losses, it sends to the sink an amount of its own

equity equal to βiei.

The equity of a financial intermediary measures its absorption capacity. If the losses

suffered by ωi are larger than its net worth, then this node is insolvent and sends the

residual loss, λi − ei, to its creditors. For each node in Ω, let

bi(λi) = max

(
0,
λi − ei
hi + di

)
(2)

be its loss-given-default function. The variable bi ∈ [0, 1] assumes a value of zero if the i-th

operator is solvent, while it assumes a strictly positive value if the operator defaults. In the

latter case, the assets of the insolvent node are liquidated and its creditors get a pro rata

refund. We assume that this is done without delays and without incurring in bankruptcy

costs.9 The creditors fall into two categories: the direct descendants of ωi in Ω —i.e., the

nodes ωj ∈ Ω such that lij ∈ LΩ, also said children nodes of ωi —and the households who

own claims, in the form of bonds and/or deposits, against ωi. The variable bi measures

the fraction of the i-th agent’s debt that is not recovered through liquidation, i.e., the loss-

given-default ratio of the failing agent. When the i-th agent becomes insolvent, households

receive a loss equal to bihi (if hi > 0), that ends into the sink H, while a node ωj which

is a creditor of node ωi receives from the latter a loss equal to bidij. The loss born by a

financial intermediary in Ω is the sum of the losses, if any, received from its external and

9Bankruptcy costs can be introduced in the model by adding extra sources of losses that get activated

in case of defaults. These extra losses would (obviously) make the system more prone to widespread crisis

without substantially altering the results presented below.
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internal exposures:

λi =
∑
k

bkaki +
∑
j

bjdji.

As the occurrence of a shock causes an inflow of losses into the system, the absorption and

loss-given-default functions govern the propagation of such losses across the network by

assigning a positive real value to each link in N.

Definition 1 Let f : LA, LΩ, LT , LH → R+ be a map such that: f(lki ) = bkaki , f(lij) =

bidij, f(liH) = bihi, f(liT ) = βiei, and call this function a contagion in a network N .

Such a contagion function is a flow in N . A flow over a generic network is a vector

valued function, defined over the links of the network, such that: i) for all the links in the

network, the scalar associated to a link does not exceed its capacity; and ii) for all the

nodes in the network which are neither a source node nor a terminal node, the divergence

− i.e., the difference between the total flow arriving at a node and the total flow departing
from such a node − is null.

Definition 2 Let G = (Ω, L, s, t) be a network where: Ω is a set of nodes, L ⊆ Ω2 is

a set of directed links, and s and t are the source and the sink node, respectively. Let

L+(ωi) (L−(ωi)) be the set of the outgoing (incoming) links of a node ωi ∈ Ω. A function

ϕ : L→ R+ is a flow in G if it satisfies the following conditions:

a. ϕ(l) ≤ Γ(l), for all l in L; (Capacity constraint)

b.
∑

L+(ωi)
ϕ(L) =

∑
L−(ωi)

ϕ(l), for all ωi ∈ Ω; (Flow conservation)

Theorem 1 The above defined contagion function is a flow in a network N .

A flow out of the sources of a network is feasible, also said legitimate, —i.e. it exists —

if it entirely reaches the sink. In the next section we first show that any contagion in N is

feasible and then we pin down suffi cient and necessary conditions for the uniqueness of a

contagion.
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5 Existence and uniqueness of a contagion function in

a financial flow network

5.1 Network capacity and feasibility of a contagion

Every network has an upper bound to its overall capacity to carry a flow. The carrying

capacity of a network is equal to the value of the largest flow out of the sources that can

cross the network and be entirely absorbed by the sink, i.e., the largest feasible flow. In

general, the carrying capacity of a network is smaller or equal to the absorbing capacity of

its sink. Finding the feasible flow of maximum value, for a given network, is a fundamental

problem in the study of networks —known, in fact, as the maximum flow problem. This

problem has been addressed by the celebrated result of Ford and Fulkerson (1956), known

as the minimum cut-maximum flow theorem. Before presenting this theorem, we need to

introduce the notions of a cut and of its capacity.

A cut in a network N is a partition
{
U,U

}
of {A ∪ Ω ∪ T ∪H}, where U and U are two

non-empty sets such that A ⊆ U and (T,H) ∈ U . Let L(U) be the set of links that cross

such a partition, i.e., the union of the set of forward links going from U into U, L+(U) :={
lki ∈ LA | ak ∈ A, ωi ∈ U

}
∪
{
lij ∈ LΩ | ωi ∈ U, ωj ∈ U

}
∪
{
lit ∈ LT | ωi ∈ U

}
, and of the

set of backward links going in the opposite direction, L−(U) :=
{
lij ∈ LΩ | ωi ∈ U, ωj ∈ U

}
.

The capacity of a cut is the sum of the capacities of its forward links. The maximum carrying

capacity of a network is set by the cut which has the smallest capacity among all possible

cuts of the network:

Theorem 2 (Ford and Fulkerson, 1956) In every network, the largest value of a feasible

flow equals the capacity of a cut of smallest capacity.

This upper bound is always attainable in flow networks which are somehow adminis-

trated to the end of maximising the flow that goes from the sources to the sinks. This is the

case of flow networks such as pipeline systems or electrical networks, where the flows are

centrally controlled and the networks themselves are designed to achieve this end. More

specifically, the achievement of the above defined maximum flow is possible only if there

are no flows crossing the minimum cut backward, i.e., from the sink towards the sources.10

10In that case it is the net flow, i.e. the forward flow less the backward flow, that crosses the minimum

cut and reaches the sink.
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This requisite implies that there are no cycle flows crossing the cut. Such a condition

is not guaranteed at all in a financial system, where the flows of losses follow the rules

of bankruptcy in a predetermined and decentralised fashion. Nonetheless, in a financial

network the upper bound never binds a flow of losses: the largest possible flow out of the

source nodes always reaches the sink. To establish this, we consider the scenario that is

most unfavourable to the to forward transmission of a flow: the case where, for all cuts in

a network, all backward links are filled to capacity. We then look at the net capacity of the

cuts in N , that is the residual forward capacity (if any) of a cut when its backward flow is

maximal.

Definition 3 The net capacity of a cut, Γ
{
U,U

}
, is the sum of the capacities of its

forward links less the sum of the capacities of its backward links: Γ
{
U,U

}
=
∑

L+(U)

Γ(x)−∑
L−(U)

Γ(x).

In a network N, the budget identities of the nodes in Ω imply that the net capacity of

all cuts is the same and equals the total value of the external assets:

Lemma 1 In a financial flow network N, the net capacity of all cuts
{
U,U

}
equals the

capacity of the cut {A, (Ω, H, T )} .

In other words, the net capacity of all cuts in N is equal to the the total exposure, of

the financial system as a whole, towards the final users of funds:
∑

A a
k. Lemma 1, coupled

with the maximum flow-minimum cut theorem, delivers the following proposition:

Theorem 3 The largest value of a feasible contagion defined in a network N is equal to

the largest possible flow out of the source nodes, i.e., the largest possible shock.

This means that, in a financial network N , the budget identities of the agents in Ω

guarantee the existence of all possible propagations, i.e., the propagations induced by all

possible exogenous shocks.

5.2 Cycles and nominal indeterminacy of a contagion

The interdependence of obligations that constitutes the fabric of a financial network, can

create problems of indeterminacy to the contagion function defined above: under some
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conditions the contagion induced by a given shock is not unique. In this section we pin

down the conditions that create such indeterminacy and asses its scope and implications.

The problem of non-uniqueness of payment flows in a financial network was first pointed

out by Eisenberg and Noe (2001). These authors explain the possible indeterminacy of

the vector of payments that clears a network of interdependent financial claims with the

following example: “Suppose the system contains two nodes, 1 and 2, both without any

operating cash flows. Moreover, each node has nominal liabilities of 1.00 to the other

node.[...] In this example, any vector pt = t(1, 1), t ∈ [0, 1], is a clearing vector of the

system” [Eisenberg and Noe, op.cit., page 249]. In this case, the flow of payments that

goes from node 1 towards node 2 depends only on the payments that node 1 receives

from node 2, and vice versa, therefore they can reimburse each other with any payment

comprises between zero and unity.

The origin of this indeterminacy lies in the joint and simultaneous determination of

the losses of the agents that belong to a cycle of defaulting agents or, more precisely,

to a strongly connected component (henceforth SCC) of defaulting agents.11 If a set of

defaulting nodes is strongly connected, the losses that these nodes pass to one another

are cyclically interdependent, and their loss-given-default functions of are simultaneously

determined, like in the above example of a cycle of two defaulting agents. This simultaneity

can generate indeterminacy: Under the conditions that we identify below, the value taken

on by a contagion in a SCC of defaulting agents is not uniquely defined. Such a simultaneity

does not arise at all if the contagion unfolds only along simple paths (as opposed to cycles).

A contagion that does not generate cycle flows —as it is always the case for a contagion

that takes place in an acyclic network N —does not pose problems of non-uniqueness:

Lemma 2 A contagion in N is uniquely defined if it does not embed any cycle flow, i.e.,

if it does not entail any SCC of defaulting agents.

It is the occurrence of SCC’s of defaulting nodes that generates the cyclical interdepen-

dence of payments which, in turn, can render a contagion indeterminate. For our purposes,
11A cycle in a directed graph is a directed path such that its start node and end node coincide. A

directed path is a sequence of nodes, with a start node and an end node, such that for any two consecutive

nodes, i and i+ 1, these is a link going from i to i+ 1. A directed graph is said to be strongly connected

if there exists a directed path going from each node to every other node in the graph. A subgraph that

is strongly connected is called a strongly connected component. In other words, two nodes, i and j, are in

the same strongly connected component if and only if there exists a directed path from i to j and there

exists a directed path from j to i.
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we distinguish between closed and open SCC’s:

Definition 4 Let S = (S, L(S)), where S ⊆ Ω and L(S) ⊆ S2 ⊆ LΩ, be a strongly

connected component of a network N . We say that S is open if there exists at least one

link in L starting from a node in S and ending in H or in a node in Ω\S. Conversely, we
say that S is closed if there is no link in L starting from a node in S and ending in H or

in a node in Ω\S.

In other words, the members of a closed SCC are indebted only among themselves.

Conversely, in an open SCC, at least one member of such a component is indebted to the

households H or to nodes in Ω that do not belong to the SCC. We now proceed to show

that a) a contagion is not uniquely defined if and only if it entails closed SCC’s of insolvent

nodes, b) the indeterminacy is confined to such closed SCC’s, and c) the emergence of

closed SCC’s of defaulting nodes in a contagion can be unambiguously detected.

The cyclical interdependence of obligations, that arises in any SCC of defaulting agents,

renders indeterminate the flow of losses which is passed around among such agents if and

only if they form a closed SCC. Conversely, open SCC’s of defaulting agents do not generate

any indeterminacy of the contagion function:

Lemma 3 Let S = (S, L(S)) be a SCC in N and let f be a contagion in N. The value

of the contagion on the links in L(S) —hence the value taken on by the loss-given-default

function bi(λi) of the nodes ωi ∈ S —is not uniquely defined if and only if (a) S is closed,

and (b) all nodes in S default.

This indeterminacy, if it arises, has a limited scope. Any positive flow of pro-rata

reimbursements, in a closed SCC of failed agents, is simply a clearing transaction among

its members, with no consequences on their own financial conditions. Moreover, and most

important, this possible indeterminacy is confined to closed SCC’s of defaulting nodes, it

never affects the values taken on by the contagion in the rest of the network. This is due

to the fact that a closed SCC is a cul-de-sac: the losses that reach the nodes in such a SCC

do not come out it, these losses are born by their shareholders only, ending up entirely into

the sink T .

Definition 5 Let Θ =
{
S
}
be the (possibly empty) set of closed SCC’s of nodes in N ,

and let LΘ ⊆ LΩ be the set of links connecting pairs on nodes that belong to members of Θ.
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Theorem 4 Let f be a contagion in a network N. Then: 1) f is uniquely defined on the

links in L\LΘ, and 2) f is indeterminate on the links of a closed SCC S = (S, L(S)) ∈ Θ

if and only if all nodes in S default.

This theorem refines the analogous result put forward by Eisenberg and Noe (2001).

These authors demonstrate that, for a clearing payment vector to be uniquely defined, it

is suffi cient that all risk orbits in the network are surplus sets; where the risk orbit of a

node is its set of descendants, and a surplus set is a set of nodes such that "no node in the

set has any obligation to any node outside the set and the set has positive operating cash

flows" [Eisenberg and Noe, op. cit., page 241]. The authors also show that, for any clearing

vector of payments, it is impossible for all nodes in a surplus set to have zero equity value,

i.e., at least one node in the set does not default. In the light of the above theorem, we

can replace this condition with a less restrictive one and state that, for a contagion in a

network N to be uniquely defined, it is necessary and suffi cient that all closed SCC’s in N,

if any, are surplus sets.

A useful consequence of the above theorem is that the occurrence of closed SCC’s of

defaulting agents in N is unequivocally revealed by the value taken on by a contagion

function on the links in L\LΘ. The above theorem implies that the flow of losses received

by a closed SCC is uniquely defined. Moreover, to cause the failure of all the agents that

form a closed SCC, the flow of losses that reach such a SCC must be maximal —i.e., it must

be equal to the total exposure, of the SCC as a whole, towards the rest of the network.

Corollary 1 Let S = (S, L(S)) ∈ Θ be a closed SCC in N. All nodes in S default if and

only if the flow of losses that reaches S from the rest of the network —i.e., the flow across

the partition
{

(A,Ω\S), S
}
—is maximal, i.e.:

−→
f
{

(A,Ω\S), S
}

=
∑
k∈A

∑
i∈S

bkaki +
∑
j /∈S

∑
i∈S

bjdji.

This implies that, in computing a contagion, the occurrence of the conditions that cause

the above described indeterminacy can be detected unambiguously by monitoring the flow

that reaches the closed SCC’s in N , as it is done in the algorithm presented below.
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6 Contagion in different network structures

Understanding the relation existing between the structure of the net of financial obligations

among banks and the resiliency of the banking system to withstand possible liquidity

and insolvency shocks, is an important issue for central banks and policy makers. Since

2008, the possible implications of the externalities generated by a financial contagion have

prompted a number of bail outs by some governments, with the known consequences for

the public debts of the nations involved. In most advanced nations, monetary authorities

have imposed rules, known as “large exposure rules”, to limit the credit exposures of banks

towards single borrowers and increase the diversification of their portfolio. Both the Basel

I and the Basel II committees have recommended this sort of controls on credit risk.12 In

setting an upper limit to single loans —usually linking the size of a loan to some measure

of the capital of the lending bank —these measures also imply a growth in the number of

debt/credit relations existing in a financial system, i.e., a growth in the connectivity of the

financial network. At the same time, in several countries, the authorities have encouraged

mergers and acquisitions in the banking sector, leading to more concentrated systems with

fewer and larger operators. In most cases this policy has reinforced, if not generated, two-

tiers banking systems where few large operators act as money centers, i.e., each of them

is connected to many small banks which, in turn, are not connected among themselves.

Whether this policies have rendered financial systems more or less resilient to withstand

systemic shocks, given the structural changes that they brought along, is a question that

does not have an obvious answer.

In what follows, we investigate the fact that different networks propagate losses in

different fashions. The effects of a shock on a network N depend on the two elements that

form its structure: a) the shape of the network, i.e. the pattern formed by the links in

LΩ, and b) the values of the assets and liabilities of the agents in the network, i.e., the

capacities of the links in LΩ. We study the effects of these two determinants of a contagion

separately, beginning with the former.

In this section we focus our attention on the effects of external shocks that cause the

default of some nodes in Ω while leaving the value of the external assets of the other nodes

unaffected. The purpose of this restriction is to isolate the contagion caused by the domino

12See, on the web page of the Bank for International Settlements, the documents “Principles for the

Management of Credit Risk”and the paragraphs 729 and 736 of “The New Basel Capital Accord”.
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effect from the contagion caused by common exposures to exogenous shocks. Let σ = [̂bk]

be a shock vector and let D be the set of agents in Ω who default as a consequence of this

shock, D =
{
ωi ∈ Ω |

∑
k b̂

kaki +
∑

j bjdji ≥ ei

}
. Let D′ be the set of primary defaults,

i.e. the set of agents that suffer a loss of value of their external assets (the initial shock)

large enough to cause their default , i.e. D′ =
{
ωi ∈ Ω |

∑
k b̂

kaki ≥ ei

}
. We assume that∑

k b̂
kaki = 0 for all nodes ωi ∈ Ω \D′. Let D′′ = D \D′ be the set of secondary defaults,

i.e. the set of agents who would be solvent if they had not received losses from their debtors

in Ω. There is no default contagion if the set D′′ is empty.

6.1 Thresholds of default contagion

We take into consideration three types of network structures: the complete, the unilateral

circle (also know as the wheel), and the star network. We focus on these three stylised

structures because they are, respectively, neat examples of networks which are dense, sparse

and scarcely centralised, and sparse and highly centralised.13

To evaluate and compare the contagiousness of differently shaped networks, we look at

two characteristics of a network: the first and the final thresholds of contagion.

Definition 6 The first threshold of contagion of a network N, τ 1(N), is the magnitude

of the smallest shock that is large enough to cause secondary defaults. Correspondingly, the

final threshold of contagion of a network, τ 2(N), is the value of the smallest shock that

is capable of inducing the failure of all nodes in the network.

Moreover, and unless otherwise specified, we assume that: i) all agents in the networks

are equal to one another; ii) all links in LΩ have the same weight, i.e., the debt of each

node towards any other node in a network is equal to dij for all lij ∈ LΩ.

13The complete, the star and the circular networks frequently emerge, as equilibrium structures, in

models of endogenous formation of networks. For instance, Jackson and Wolinsky (1996) show that the

complete structure is both effi cient and pairwise stable for low values of the cost of forming connections,

while the star structure is both effi cient and pairwise stable for intermediate values of such a cost. In

Bala and Goyal (2000) and Hojman and Szeidl (2008), the star emerges as the unique equilibrium network

structure if the cost of linking is not too high. In Gale and Kariv (2003) the analysis focuses on the circle,

the star and the complete network because, as the authors argue, they span all possible networks in three

agents games.
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6.1.1 Complete networks

A network where each agent lends to every other agent in the network (and, therefore,

everybody borrows from everybody else) is said to be complete. Let a complete financial

network N c =
{

Ω, A, T,H, Lc, LA, LT , LH ,Γ
}
be such that its set of links Lc is maximal,

i.e., Lc = {lij|i 6= j; i, j = 1, 2, ..., n} . In such a complete network, the flow of losses that
comes out of the initially defaulting agents is evenly spread among all other agents in the

network. As a conseguence, all nodes in Ω\D′ suffer the same loss from their defaulting

debtors and eventually, if the shock is suffi ciently large, they all default together.

Theorem 5 In a complete network N c the first threshold and the final threshold of conta-

gion coincide and are equal to

τ c = nei + ei
hi
dij
. (3)

This result shows that the complete network, on one hand, is entirely resilient to rela-

tively small shocks, i.e. faces no defaults for shocks smaller than τ c. On the other hand,

for large enough shocks — larger than or equal to τ c —this network induces a complete

system melt down. The same applies to the star-shaped network, if the central node is in

the set of primary defaults, as shown below.

6.1.2 Incomplete networks

A generic incomplete network is a network such that the cardinality of the set of links LΩ

is not maximal, i.e. there is at least a pair of nodes wich are not directly connected to one

another. The first and final thresholds of an incomplete network can not be characterised,

unless some restrictions are imposed on their structure —as it is done below with the cycle

and star-shaped networks which are, obviously, incomplete networks themselves. Thus, for

the sake of tractability, we focus the attention on incomplete networks which are regular,

i.e. where the indegree and outdegree of each node are equal.14 We failed to identify the

first and the final threshold of an generic shock in a incomplete regular network. The

rationale of this impasse lies in the fact that the unfolding of a contagion in an incomplete

network, beyond the first line of defaults induced by a generic shock, remains ambiguous

unless strong restrictions are imposed (as we do below by setting r = 1). Indeed, shocks

of equal magnitude have different effects on a network N r, depending on i) the position of

14The indegree (outdegree) of a node is the number of its incoming (outgoing) links.
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the nodes in D′, and ii) the distribution of external losses across such nodes.15 Thus we

content ourselves with characterising simply the first threshold of contagion caused by an

idiosyncratic shock, i.e. a shock that causes one primary default only.

Let N r =
{

Ω, A, T,H, Lr, LA, LT , LH ,Γ
}
be an incomplete regular financial flow net-

work. Let r be the indegree (and the outdegree) of all nodes in Ω, then

Theorem 6 The first contagion threshold of an idiosyncratic shock in a network N r is

τ r1 = (r + 1)ei + rei
hi
di
.

6.1.3 Star-shaped networks

A star-shaped network is composed by a central node, ωc, that borrows from and lends

to each of the peripheral nodes ωp, p = 1, 2, ..., n−1,which, in turn, have no financial obliga-

tions among themselves. Let a star-shaped financial networkN s =
{

Ω, A, T,H, LΩ, LA, LT , LH ,Γ
}

be such that LΩ = {lpc, lcp|p = 1, 2, ..., n− 1} .We assume that all links in LΩ have the same

weight, i.e., dcp = dpc = dp, for all links in LΩ.

In a star-shaped network, the contagion thresholds depend on the distribution of the

initial shock between the center and the periphery of the network. We obtain results for

the three possible cases: 1) the shock is idiosyncratic and borne by the central node alone:

D′ = ωc; 2) the shock is borne by ωc and by some peripheral nodes, and 3) the shock is

borne by peripheral nodes only:

Theorem 7 The first threshold of contagion, τ s1, and the last threshold of contagion, τ
s
2,

of a star-shaped network N s are the following:

1. (a) if D′ = ωc and (b) if D′ = {ωc, ωp|for some p ∈ (1, ..., n− 1)}, then the first and
the last threshold coincide and are equal to

τ s = (n− 1)ep + ec + ep
hc
dp

;

15For instance, it can be shown that, for any incomplete regular network, it is possible to find a set of

initially defaulting agents, D′, and a distribution of losses among them, such that the first and the final

thresholds are the same as the ones of a complete network N c. This is the case for a cycle-shaped network,

as defined below, hit by a shock such that: i) D′ is composed by half of the nodes in the network; ii) all

nodes in D′ suffer an external loss of equal amount; iii) each node in D′ is adjacent to two nodes in Ω\D′.
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2. if D′ = {ωp|for some p ∈ (1, ..., n− 1)} and ωc /∈ D′, then the first threshold is equal
to

τ s1 = mep + ec

(
1 +

hp
dp

)
where m is the minimum number of peripheral defaults which is suffi cient to induce

the default of the central node, i.e. m is such that
∑m

p=1 dp = ec, while the final

threshold is equal to

τ s2 =

[
(n− 1)ep + ec + ep

hc
dp

](
1 +

hp
dp

)
.

6.1.4 Cycle-shaped networks

An incomplete regular network with degree equal to unity forms a cycle. Formally, a

cycle-shaped financial network N o =
{

Ω, A, T,H, LΩ, LA, LT , LH ,Γ
}
is such that LΩ =

{lij|i = 1, 2, ..., n; j = i+ 1 for i = 1, ..., n− 1, and j = 1 for i = n} .As above, assume that
all links in LΩ have the same weight, i.e., dij = di, and all nodes have the same balance

sheet, ai + ci = ei + hi + di. In this network, the effects of an external shock that involves

more than one agent, |D′| > 1, crucially depend on the position that such defaulting nodes

have on the cycle network. In order not to resort to implausible restrictions on this issue,

we content ourselves with the analysis of the impact of idiosyncratic shocks.

Theorem 8 The first threshold of contagion, τ o1, and the last threshold of contagion, τ
o
2,

of an idiosyncratic shock in a cycle-shaped network N s are the following:

1.

τ o1 = 2ei + ei
hi
di

;

2.

τ o2 = 2ei + ei
hi
di

+ ei

(
1 +

di
hi

)[(
1 +

hi
di

)n−2

− 1

]
.

6.1.5 Comparing the contagion thresholds of different network structures

For the sake of comparability, we set the four types of networks considered here to be

composed by the same number of agents, n, and to be endowed with the same total stock

of equity, E =
∑

i∈Ω ei, and with the same total external debt, H =
∑

i∈Ω hi. In order

to isolate the effects that the shape of a network has on its contagion thresholds from the
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effects that the balance sheet ratios ei/hi and hi/di have on such thresholds, we set these

ratios to be the same for all agents in all networks.16

Under these conditions we have the following

Corollary 2 1. The contagion thresholds of the star-shaped and of the complete networks

are such that:

τ s1 < τ s < τ c < τ s2.

2. The first contagion thresholds of the cycle-shaped network, τ o1, and of the incomplete

regular network, τ r1, are such that:

τ o1 < τ r1 < τ c.

These results show that:

1. In complete networks, as well as in star-shaped networks (when the center is in the

set of primary defaults), the first and the final thresholds coincide. The rationale

of this result stems from the fact that, in both these classes of networks, the losses

that overflow from the primary defaults are evenly spread among all the nodes which

are not in the set of initial defaults. In these networks no secondary defaults occur

when the system is perturbed by shocks smaller than the unique contagion threshold,

while all agents in these networks default if it is hit by a shock larger than such a

threshold. In other words, these network structures are robust − yet − fragile: they
are resilient to relatively small shocks and, at the same time, they are exposed to

the risk of a collapse of the entire financial network, if hit by a suffi ciently large

shock.17 As pointed out by Acemoglu et al.(2013), this result about the complete

network structures “confirm[s] a conjecture by Haldane (2009) who suggested that

highly interconnected financial networks may be “robust-yet-fragile”and that they

“exhibit a knife-edge or tipping point property”, in the sense that “within a certain

range, connections serve as shock-absorbers [and] connectivity engenders robustness.”

16This restriction implies that i) the banks in the complete, incomplete and cycle-shaped networks all

have the same balance sheet ai + ci = ei + hi + di, and ii) in the star-shaped network, the balance sheet

of the peripheral nodes is equal to ap + cp = ep + hp + dp while the balance sheet of the central nodes is

equal to ac + cp(n− 1) = ec + hc + dp(n− 1), where ec = (n− 1)ep and hc = (n− 1)hp.
17The robust-yet-fragile nature of the complete networks has been pointed out also by Acemoglu et al

(2013).
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However, beyond a certain range, interconnections start to serve as a mechanism for

propagation of shocks”[ Acemoglu et al.(2013), page 3]. Our results also show that

the robust-yet-fragile feature belongs also to the star shaped network, which is sparse

but highly centralised. This indicates that this property —due to the even diffusion

of losses from defaulting nodes to all the other nodes in the network —stems from

the high connectivity as well as from the high centralization of a network.

2. The first thresholds of incomplete regular and cycle-shaped networks are both smaller

than the ones of complete networks. The converse applies to the final thresholds of

such networks: τ c ≤ τ r2 ≤ τ o2. This implies that the class of incomplete regular

networks (which includes the cycle-shaped ones), compared to complete and star-

shaped networks, is more exposed to episodes of contagion due to shocks of small

magnitude, with limited and local default contagion.

6.2 Value of balance sheets headings and contagion thresholds

In the network structures analysed above, the only headings of the balance sheets of the

agents that determine the contagion thresholds of a network are the stock of equity e and

the h/d ratio between internal and external debt. Moreover, all the above characterised

thresholds are increasing in the equity endowments, e, and in the h/d ratio. The protective

role played by the equity stock is not surprising: the larger the equity of the members of a

network, the larger the amount of losses that can be absorbed by those agents, the higher

the contagion thresholds of the network (and, of course, the smaller the set of defaults

induced by any given shock).

The relevance of the h/d ratio, in turn, lies in the fact that this ratio governs the

allocation of the flow of losses, released by defaulting nodes, between external creditors

(households) and internal ones (other nodes in Ω). The smaller this ratio between external

and internal debt, the smaller the portion of losses that, at each default, is sent into the

sink H, and the larger the flow of losses that continues to circulate among the nodes in

Ω, and vice versa. Therefore, the smaller the h/d ratio: i) the larger the portion of an

external shock that overflows from the primary defaults towards the rest of the network;

ii) the smaller the smallest shocks capable of causing secondary defaults (the contagion

thresholds), and iii) the larger the number of defaults induced by a shock. This is true,

under a mildly restrictive condition, for all financial flow networks. In order to establish
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this result, we restrict the attention to networks where each agent holds an amount of

internal exposures, ci, equal to its internal debt, di, and we vary the h/d ratio by varying

proportionally the value of all intra-network obligations —the weights of the links in Ω —

while keeping constant the value of the other balance sheet headings. The scope of these

restrictions is discussed below.

Definition 7 Let N be a financial flow network such that ci = di, for all i ∈ Ω, and let

{N ε} be the set of financial flow networks, indexed by ε ∈ R+, such that: i) all networks

in {N ε} are equal to N in everything but the weights of the links in LΩ;ii) for all dij in N,

the corresponding dεij in N
ε is equal to dεij = (1 + ε)dij.

Within this class of networks, and for any given shock, the flow of losses that a defaulting

agent passes to his creditors inΩ is increasing in ε, i.e. it grows as the h/d ratio diminishes.18

Lemma 4 Let σ be an external shock to the networks in {N ε} and let D′ be the set of
primary defaults induced by σ. Let LD

′
= {lij|i ∈ D′, j ∈ Ω} be the set of the outgoing

links of the nodes in D′. Then the flow of losses that crosses a link lij ∈ LD
′
in a network

N ε, as a consequence of a shock, is increasing in ε.

This result stems from the pro-rata allocation of losses among the debtors of defaulting

agents: the relative growth of the internal debts with respect to the external debts of

defaulting agents, transfers part of the losses from their external to their internal debtors.

As a consequence, the amount of losses that the primary defaults send to the other nodes

in Ω (the ‘contagious’flow), as well as the amount of losses that circulate among the nodes

in D′, grow with ε, while the flow of losses sent to the sink H correspondingly diminishes

with ε. This means that the larger ε, the larger the flow carried by each link across the cut

(D′,Ω\D′). Clearly this implies that the losses received by each creditor of the defaulting
nodes in D′, for any given shock, grow as ε increases. Thus, as ε grows, progressively

smaller shocks are suffi cient to induce contagion. For the same reason, the larger ε, the

larger the number of defaults induced by a given shock. In sum, a proportional growth

of the value of the intra-network obligations dij’s, while the extra-network obligations hi’s

remain fixed, renders a network increasingly exposed to default contagion, both in terms

of thresholds and of scope of contagion:

18As can be checked by inspecting the argument of the proof of the lemma below, the losses that

defaulting nodes pass to other nodes in Ω do not grow if the h/d ratio remains constant.
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Theorem 9 1. Let {τ ′ε} and {τ ′′ε} be, respectively, the sets of first and of final contagion
thresholds of the networks in {N ε} and let such sets be indexed by ε ∈ R+. Then τ ′ε and τ

′′
ε

are decreasing in ε.

2. Let σ be an external shock to the set of networks {N ε} and let {Dε} be the set,
indexed by ε ∈ R+, composed of the sets of defaults induced by σ in the networks in {N ε} .
Then the number of defaults, i.e. the cardinality of Dε, is increasing in ε.

These results are obtained under two restrictions: ci = di, for all i ∈ Ω, and the

proportionality of the above considered changes in the value of intra-network obligations.

The former restriction is merely a convenient way to ensure that the change in the value

of the intra-network obligations is compatible with the balance sheet constraints. This

restriction can be replaced without altering the above results.19 Conversely, the latter

restriction —that keeps the proportions among the intra-network obligations fixed while

varying their values —is a necessary condition for lemma 21 because a non proportional

change of such obligations may shift losses from poorly capitalized agents towards highly

capitalized ones (or, with similar effects, from defaulting nodes with a low h/d ratio to

nodes with a high h/d ratio).20

7 Conclusions

In the last decade financial networks have became a crucial concern for central banks

and policy makers. Even if economists and central bankers have devoted a good deal

of attention to the study of financial networks, our knowledge of their properties is still

limited. Financial networks, unfortunately, are complex mathematical objets and our

understanding of their features is obstacled by the analytical diffi culties. The flow network

19For instance, it could be replaced by assuming that, as ε grows, the nodes s. t. ci > di sell external

assets to the nodes s. t. ci < di preserving, in so doing, the equality between assets and liabilities in the

balance sheets of the agents in Ω.
20This is best explained by an example. Consider a network with just three nodes, ω1, ω2 and ω3, where

ω1 is indebted with both ω2 and ω3, and e2 > e3. Suppose that ω1 defaults. In this case, an increase of

the value of d12, while d13 is kept constant, implies a shift of losses from ω3 towards ω2 and, therefore,

implies an increase of the first (and last) contagion threshold of this simple network as well as, for some

shock values, a decrease of the number of defaults. Thus, a non-proportional increase of intra-network

obligations does not necessarily imply a larger exposition to default contagion.
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framework presented in this paper has the ambition of contributing to the set of analytical

tools that the literature on financial networks has been providing in the last years.

In this paper we represent a financial network as a flow network and model the diffusion

of losses and defaults, originated by an exogenous shock, as a flow that crosses such a

network. Using some properties of network flows, we obtain three sets of results. First, we

address a know problem of non uniqueness of the clearing payments vector that arises from

the possible existence of strongly connected components of defaulting agents. We establish

necessary and suffi cient conditions for the uniqueness of clearing intercyclical payments and

use embed these conditions in an algorithm that computes the contagion process. Second,

we investigate the relation between the shape of a financial networks and its exposure to

default contagion. We characterise first and final contagion thresholds (i.e., the value of

the smallest shock capable of inducing at least one default and the value of the smallest

shock capable of inducing the default of all agents in the network, respectively) for different

network shapes, namely the complete, star-shaped, incomplete regular, and cycle-shaped

networks. We find that first and final thresholds coincide in complete networks, and the

same applies to star-shaped networks (when the center is in the set of primary defaults)

because, in both cases, the losses that overflow from the primary defaults are evenly spread

among all remaining nodes. This means that these network structures have a robust-yet-

fragile nature: they are very resilient to shocks of relatively small magnitude —in the sense

that no default contagion occurs for shocks smaller than the unique contagion threshold —

but, at the same time, they are exposed to the risk of a complete melt-down, which occurs if

they are hit by a suffi ciently large shock. We also find that the first thresholds of incomplete

regular and cycle-shaped networks are both smaller than the ones of complete networks.

This implies that the class of incomplete regular networks (which includes the cycle-shaped

ones), compared to the classes of complete and star-shaped networks, is more exposed to

episodes of contagion due to shocks of small magnitude and scope. Third, we find that the

ratio between the external debt of the agents in a network (i.e. the debt towards claimants

who do not belong to the network, such as households) and their internal debt (i.e. the

debt towards other agents in the network) determines the exposure to contagion of the

network. Ceteris paribus, the larger the ratio between the intra-network exposures and

the external debt of the agents in a network, the more the network is exposed to default

contagion, both in terms of scope and of thresholds of contagion.
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Appendix 1: proofs of theorems, lemmae and corollaries

Proof of theorem 1. 1: The capacity constraint is satisfied because i) f(lki ) = bkΓ(lki )

for all lki in L
A, f(lij) = biΓ(lij) for all lij in LΩ, f(liH) = biΓ(liH) for all liH in L

H , and

f(liT ) = βiΓ(liT ) for all lit in LT ; and ii) bk, bi, βi ∈ [0, 1], for all i ∈ Ω and all k ∈ A. 2: The
budget identity of the balance sheets of the agents in Ω, together with the rules of limited

liability and debt priority − encoded in (1) and (2) − ensure that any flow of losses that
arrives in a node is redirected first towards the sink and, for the residual part, towards

the node’s descendants in Ω. In notation:
∑

X−(ωi)
ϕ(x) = λi = βi(λi)ei + bi(λi)di =∑

X+(ωi)
ϕ(x), for all ωi ∈ Ω.

Proof of lemma 1. Let
{
Ui, U i

}
be a cut in N and let

{
Ui−1, U i−1

}
be another cut in

N such that Ui−1 = Ui\ωi; ωi ∈ Ui. The set of forward links of Ui is L+(Ui) = L+(Ui−1) +{
lij ∈ LΩ | ωj ∈ U i

}
+ lit −

{
lki ∈ LA | ak ∈ A

}
−
{
lji ∈ LΩ | ωj ∈ Ui−1

}
, while the set of

backward links of Ui is L−(Ui) = L−(Ui−1)+
{
lji ∈ LΩ | ωj ∈ U i

}
−
{
lij ∈ LΩ | ωj ∈ Ui−1

}
.

Thus we can express the capacity of
{
Ui, U i

}
as

Γ
{
Ui, U i

}
= Γ

{
Ui−1, U i−1

}
+ Γ

{
lij ∈ LΩ | ωj ∈ U i

}
+ Γ(lit)

−Γ
{
lki ∈ LA | ak ∈ A

}
− Γ

{
lji ∈ LΩ | ωj ∈ Ui−1

}
−Γ
{
lji ∈ LΩ | ωj ∈ U i

}
+ Γ

{
lij ∈ LΩ | ωj ∈ Ui−1

}
Since: i) Γ

{
lij ∈ LΩ | ωj ∈ U i

}
+Γ
{
lij ∈ LΩ | ωj ∈ Ui−1

}
= di; ii) Γ

{
lji ∈ LΩ | ωj ∈ Ui−1

}
+

Γ
{
lji ∈ LΩ | ωj ∈ U i

}
= ci; iii) Γ

{
lki ∈ LA | ak ∈ A

}
= ai and iv) Γ(lit) = ei + hi, by the

budget identity ai + ci ≡ ei + di + hi we obtain that Γ
{
Ui, U i

}
= Γ

{
Ui−1, U i−1

}
. This

procedure can be iterated for all pairs of cuts
{
Ui, U i

} {
Ui−1, U i−1

}
in N , starting from{

Ui−1, U i−1

}
= {A, (Ω, H, T )} .

Proof of lemma 2. Let P 1(ωi) =
{
ωj|lji ∈ LΩ

}
be the set of parent nodes of ωi, let

P 2(ωi) be the set of the parent nodes of the parent nodes of ωi and so forth for P 3(ωi),

P 4(ωi), ..., P
n(ωi).The union of such sets, P (ωi) = ∪nj=1P

j(ωi), forms the set of the ances-

tors of ωi, i.e. the set of nodes ωj in Ω s.t. there exists a directed path from ωj to ωi. For

each i ∈ Ω, βi and bi are both uniquely defined functions of λi which, in turn, is a uniquely

defined function of the loss-given-default functions of the defaulting nodes in P 1(ωi) which,

in turn, are uniquely defined functions of the losses suffered by the nodes in P 1(ωi) which,

in turn, are uniquely defined functions of the values taken on by the loss-given-default
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functions of the defaulting nodes in P 2(ωi), and so forth up to the source nodes of N. In

other words, λi, βi and bi are functions of the values taken on by the loss-given-default

functions of the defaulting nodes in P (ωi). In absence of cycles of defaulting agents, we

have that no node in Ω,belongs to the set of its own ancestors. This implies that λi, βi
and bi are obtained through the non-recursive iteration of uniquely defined functions, thus

they are uniquely defined as well.

Proof of lemma 3. To show that conditions (a) and (b) are individually necessary and

jointly suffi cient to generate the indeterminacy of a contagion in a SCC, we first assume

that all nodes in S default and discuss the implications of S being closed or open. Then we

assume that S is closed and show that all nodes in S must default for the indeterminacy

to arise.

1) Let us assume that all nodes in S default. Each node ωi in S receives losses equal to

λi =
∑

k∈A b
kaki +

∑
j /∈S bjdji+

∑
j∈S bjdji, where

∑
k∈A b

kaki is the flow of losses (if any) that

ωi receives directly from the source nodes;
∑

j /∈S bjdji is the flow of losses that it receives

through its defaulting parent nodes that do not belong to S (if any); and
∑

j∈S bjdji is the

flow of losses that ωi receives from its defaulting parent nodes that belong to S. For the

time being, we resort to a simplifying assumption. We assume that f does not induce any

cycle flow along the directed paths that connect the source nodes in A to the members of

S, i.e., there is no SCC of defaulting nodes laying between the source nodes and S. By

lemma 2, this assumption implies that the flow of losses received by the nodes in S from

nodes in Ω\S is uniquely defined. On this basis we take, for all ωi in S,
∑

j /∈S bjdji as a

datum and express bi(λi) as a linear function of the loss-given-default functions, the bj’s,

of the other members of S :

bi =

∑
k∈A b

kaki +
∑

j /∈S bjdji − ei
di

+

∑
j∈S bjdji

di

rewritten as

bidi −
∑
j∈S

bjdji =
∑
k∈A

bkaki +
∑
j /∈S

bjdji − ei
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For a SCC composed ofm nodes, we have a system composed ofm of such linear equations:

d1 −d21 · · · · · · · · · −dm1

−d12 d2 −d32 · · · · · · ...
... −d23 d3 · · · · · · ...
...

...
...

. . . · · · ...

−d1(m−1)
...

...
...

. . . −dm(m−1)

−d1m · · · · · · · · · −d(m−1)m dm





b1

b2

·
·
·
bm


=



∑
k∈A b

kak1 +
∑

j /∈S bjdj1 − e1∑
k∈A b

kak2 +
∑

j /∈S bjdj2 − e2

·
·
·∑

k∈A b
kakm +

∑
j /∈S bjdjm − em


The solution of this system — i.e., the vector of unknowns [b1, b2, ..., bm], hence the flow

values assigned by f to the links in LS —is indeterminate if and only if the matrix of the

coeffi cients of the system is singular.21 The components of such a matrix have the following

properties:

(1) di ≥
∑

j∈S dij, for every i ∈ {1, 2, ...,m} ;

(2) for every i, j ∈ {1, 2, ...,m} , if i 6= j, then there exists a sequence of indexes

i1, i2, ..., ik, where i = i1 and j = ik, such that di1i2 · di2i3· · · · ·dik−1ik 6= 0.

Property (1) holds with the equality sign for the nodes in S that are indebted only

to other nodes in S. Thus, in a closed SCC we have that di =
∑

j∈S dij, for every i ∈
{1, 2, ...,m} . Conversely, in an open SCC we have that di >

∑
j∈S dij for at least one

i ∈ {1, 2, ...,m} . Property (2) is a formal expression of strong connectivity: for every
ordered pair (ωi, ωj) ∈ S there exists a directed path that starts in ωi and ends in ωj.
Now demonstrating the if part of the lemma is straightforward. If S is a closed SCC,

then di =
∑

j∈S dij, for every i ∈ {1, 2, ...,m} . In this case the sum of the rows of the

coeffi cient matrix is null and so is its determinant.

In order to establish the only if part of the Lemma, we suppose that the determinant

of the matrix is null and show that, in such a case, di =
∑

j∈S dij for every i ∈ {1, 2, ...,m} ,
21I am indebted to Paola Cellini for her generous help in characterizing the singularity conditions of

such a matrix.
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which means that S is closed. We use the fact that the determinant of a matrix is null

if and only if its rows are linearly dependent. Thus we suppose that there exist m real

numbers γ1, γ2, ..., γm not all null and such that, for every i, j ∈ {1, 2, ...,m} ,

γidi =
∑
j 6=i

γjdij.

We can suppose, re-ordering the indexes if necessary, that |γm| ≥ |γi| for all i < m, thus

γm 6= 0, therefore

dm =
∑
j 6=m

γj
γm

dmj

where
γj
γm
≤
∣∣∣ γjγm ∣∣∣ ≤ 1. Then condition (1) implies that γm = γj for every j such that

dmj 6= 0, thus it implies that dm =
∑

j 6=m dmj.

Consider now the set

E =
{
j ∈ {1, 2, ...,m} |γj = γm

}
If E coincides with {1, 2, ...,m} , we obtain that condition (1) holds with the equality sign
for all i ∈ {1, 2, ...,m} , which is our thesis. Seeking a contradiction, let us suppose that
E does not coincide with {1, 2, ...,m} . Then we can suppose, re-ordering the indexes if
necessary, that there exists an index h > 1 such that E = {h, ...,m} , i.e., such that
γi = γm if and only if i ≥ h. The strong connectivity of S, as expressed by condition

(2), implies that, for at least one index i ∈ {h, ...,m} , there exists an index k < h such

that dik > 0. Let then be dik > 0−with i ∈ {h, ...,m} and k < h−and repeat the above
reasoning with the index i in place of m : the relation

di =
∑
j 6=i

γj
γi
dij

together with condition (1) and with the fact that |γi| is maximal, implies that γi = γj for

every j such that dij 6= 0 and, therefore, that γi = γm = γk, contradicting the hypothesis

that k < h. This proves that, if the determinant of the above coeffi cient matrix is null, then

all γi are equal among themselves and, therefore, di =
∑

j 6=i dij, for every i, j ∈ {1, 2, ...,m} .
Finally, we can remove the above made simplifying assumption because i) by definition,

no closed SCC can lie along the paths that go from A to S, and ii) the presence of an

open SCC of defaulting agents along such paths does not cause any indeterminacy, as it is

shown above.
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2) Suppose that S is closed and that only part of the nodes in S default. Let S̃ ⊂ S

be the set of defaulting nodes in S and let L(S̃) be the set of the links that connect such

failing agents among themselves. Then the subgraph (S̃, L(S̃)) ⊂ S may or may not be a

SCC. If it is not, no indeterminacy arises, as implied by lemma 2. If (S̃,L(S̃)) is strongly

connected, such a SCC of defaulting agents is open because (S̃, L(S̃)) ⊂ S and S is strongly

connected. Hence, also in this case the contagion is uniquely defined on the links in L(S̃).

Proof of theorem 4. 1) Recall that L = LA ∪LΩ ∪LH ∪LT . Then: i) the values taken
on by f on the links in LA are exogenously set by the external shock; ii) by definition, the

nodes in a closed SCC S have no debts towards the nodes in Ω\S or the households in H.
Thus, any possible indeterminacy of the values of the loss-given-default functions of the

nodes in a S ∈ Θ has no effects on the flow of losses received by the nodes in Ω\S, which
unfold along the links in LΩ\L(S), and by the households, which are defined on the links

in LH . lemma 2 and 3 establish that a contagion that unfolds along simple paths and open

SCC’s of N is uniquely defined. Therefore the contagion is uniquely defined on all links

in LH and in LΩ\LΘ; iii) The absorption functions βi(λi) of the nodes in a S ∈ Θ, that

set the values taken on by f on the links going from S to T, are i) uniquely defined if at

least one node in S is solvent, and ii) all equal to unity, if all nodes in S default. Thus, a

contagion is uniquely defined on the links in LT .

2) It follows from lemma 3.

Proof of corollary 1. The total loss received by the nodes in S from the rest of

the network is:
∑

k∈A
∑

i∈S b
kaki +

∑
i∈S
∑

j /∈S bjdji. Aggregating the balance sheets of

the members of S we obtain:
∑

k∈A
∑

i∈S a
k
i +

∑
i∈S
∑

j /∈S dji =
∑

i∈S ei, the debts cross-

held by the members of S net out and the exposures are entirely backed by the total

equity in S. Thus, if the sum of the losses born by the agents in S is maximal — i.e., if∑
k∈A

∑
i∈S b

kaki +
∑

i∈S
∑

j /∈S bjdji =
∑

k∈A
∑

i∈S a
k
i +

∑
i∈S
∑

j /∈S dji —then all agents in

S fail. Conversely, if the sum of the losses born by the agents in S is less than maximal —

i.e., if
∑

k∈A
∑

i∈S b
kaki +

∑
i∈S
∑

j /∈S bjdji <
∑

k∈A
∑

i∈S a
k
i +
∑

i∈S
∑

j /∈S dji —then at least

one of such agents has a strictly positive residual equity, i.e., it does not default.

In demonstrating theorem 5, 6 and 8 below, we resort to a known property of network

flows: for a flow defined in a flow network, the value of the net forward flow that crosses a

cut is the same for all the cuts of the network. Applying this property to a financial flow
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network N , we obtain a convenient feature of a contagion f in N : the value of the net

forward flow that crosses all cuts of N equals the value of the exogenous shock, i.e., it is

equal to the flow that crosses the cut {A, (Ω, H, T )}.
As above, let

{
U,U

}
be a cut of a financial flow network N, L+(U) be the set of

forward links going from U into U, and L−(U) be the set of backward links going from U

into U . Let f [L+(U)] =
∑

l∈L+(U) f(l) be the forward flow that crosses
{
U,U

}
going from

nodes in U into nodes in U , and let f [L−(U)] =
∑

l∈L−(U) f(l) be the backward flow that

crosses the cut at hand in the opposite direction. The net flow that crosses
{
U,U

}
is equal

to
−→
f
{
U,U

}
= f [L+(U)]− f [L−(U)] .

Lemma 5 Let f be a contagion in a network N and let
{
U,U

}
be a cut of N. The net

flow across a cut
{
U,U

}
in N is equal to the flow out of the source nodes:

−→
f
{
U,U

}
=

−→
f {A, (Ω, H, T )} =

∑
A b

kak.

Proof. See Diestel (2000), page 126, for a proof that refers to generic flow networks.

Proof of theorem 5. Lemma 5 ensures that the value of an exogenous shock, i.e., the

flow that crosses the cut {A, (Ω, H, T )} , is equal to the forward flow that crosses the cut
{(A,D′), (Ω\D′, T,H)}, which is also the net flow across this cut, since no flow crosses it
in the opposite direction. Let m be the number of primary defaults caused by a shock [̂bk],

m = |D′|. Each of node ωi in D′ sends 1) to the sink T a flow equal to its own equity e,
2) to the sink H a flow equal to bih, and 3) a flow equal to bidij to each of its (n − m)

creditors in Ω\D′. The shock that comes out of the source nodes, −→f (A, (Ω, H, T )), is then

equal to

me+

m∑
i=1

bihi +

m∑
i=1

bidij(n−m) (4)

where 1) me is the value of the flow
−→
f (D′, T ) going from D′ to T, 2)

∑m
i=1 bihi is the flow−→

f (D′, H) that goes from D′ to H, and 3)
∑m

i=1 bidij(n−m) is the flow
−→
f (D′,Ω\D′) going

fromD′ to the n−m nodes inΩ\D′. In a complete networkN c, each node j inΩ\D′ receives,
from its defaulting debtors, a flow of losses equal to

∑m
i=1 bidij. For default contagion to

occur, this flow of losses must be larger than or equal to the absorbing capacity of a node:∑m
i=1 bidij ≥ ej. The value of an exogenous shock that is exactly large enough to cause

such a condition to be fulfilled, i.e., such that
∑m

i=1 bidij = ej, constitutes both the first

and the final threshold of contagion of a network N c : all nodes in Ω\D′ default together
if such a threshold is reached. This condition for contagion requires that

∑m
i=1 bi = ej/dij
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and, substituting this value in (4), we obtain the first and final contagion thresholds of a

network N c.

Proof of theorem 6. The proof is trivial and is omitted.

Proof of theorem 7. As above, lemma 5 ensures that the value of a shock,
−→
f {A, (Ω, H, T )} ,

is equal to the forward flow that crosses the cut {(A,D′), (Ω\D′, T,H} . Then, with respect
to the two cases listed in the theorem, we have that:

1a) If D′ = ωc, the flow that crosses the cut {(A, ωc), (Ω\ωc, H, T )} is equal to

ec + bchc + bcdp(n− 1),

where bc(λc) is the loss-given-default function of ωc. Contagion occurs for any shock such

that bcdp(n−1) ≥ ep(n−1). The smallest of such shocks is the one that causes bcdp(n−1) =

ep(n−1), hence bc = ep/dp.This condition characterises both the first and the final threshold

of contagion: if bc = ep/dp, all agents in N s default. Substituting bc = ep/dp into the above

equation delivers the result.

1b) IfD′ = {ωc, ωp|for some p ∈ (1, ..., n− 1)}, the flow that crosses the cut {(A,D′), (Ω\D′, H, T )}
is equal to

(m− 1)ep + ec +
∑

p∈D′\ωc

bphp + bchc + bcdp(n−m),

where: m = |D′|, (m − 1)ep + ec =
−→
f (D′, T ),

∑
p∈D′\ωc bphp + bchc =

−→
f (D′, H) and

bcdp(n − m) =
−→
f (D′,Ω\D′). As above, both first and complete contagion occur for any

shock s.t. bc ≥ ep/dp. The smallest of such shocks are the ones s.t. bc = ep/dp and bp = 0.

When both these conditions are met, the value of shock is equal to the total stock of

equity (n − 1)ep + ec plus the losses send by the central node into the sink H, equal to

bchc. Conversely, any shock s.t. bp > 0 sends an amount of losses into the sink H equal to

bchc + (m− 1)bphp wich is (obviously) larger than bchc.

In other words, a shock s.t. bc = ep/dp and bp = 0 is suffi ciently large to cause the default

of all nodes in the network, filling up the sink node T, while inflicting on bondholders and

depositors in H the minimum possible amount of losses. Thus, the smallest shock that can

cause the default of all nodes —if some peripheral nodes are in D′ along with the central

node —is equal to

τ s1 = τ s2 = (m− 1)ep + ec +
ep
dp
hc + ep(n−m)

= (n− 1)ep + ec +
ep
dp
hc. (5)
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2) if D′ = {ωp|for some p ∈ (1, ..., n− 1)} and ωc /∈ D′, the flow that crosses the cut
{(A,D′), (Ω\D′, H, T )} is equal to

mep +

m∑
p=1

bphp +

m∑
p=1

bpdp

where mep and
∑m

p=1 bphp are the flows that D
′ sends into T and H, respectively, and∑m

p=1 bpdp is the flow that the central node ωc receives from the defaulting nodes in D′.

The condition for the first threshold of contagion is:
∑m

p=1 bpdp = ec, hence
∑m

p=1 bp = ec/dp

and, substituting this into the above equation, we obtain that τ s1 = mep + ec(1 + hp/dp);

The second and final threshold of contagion, is set by the flow that crosses the cut

{(A,D′, ωc), (Ω\(D′, ωc), H, T )} which is equal to

mep + ec +
m∑
p=1

bphp + bchc + bcdp(n−m− 1)

where: mep+ec =
−→
f ((D′, ωc), T ),

∑m
p=1 bphp+bchc =

−→
f ((D′, ωc), H), and bcdp(n−m−1) =

−→
f (ωc,Ω\(D′, ωc)). All nodes in Ω\(D′, ωc) default if the central node sends to each of them
a flow larger than or equal to ep. The final threshold of contagion is equal to the smallest

of such shocks: bcdp = ep; hence: bc = ep/dp and

τ s2 = (n− 1)ep + ec + ep
hc
dp

+
m∑
p=1

bphp (6)

As above, to obtain
∑m

p=1 bp, we resort to the fact that the flow that enters the central

node is equal to the flow that exits from it:

m∑
p=1

bpdp = ec + bcdp(n− 1) + bchc

= (n− 1)ep + ec + ep
hc
dp
.

thus
m∑
p=1

bp = (n− 1)
ep
dp

+
ec
dp

+ ep
hc

(dp)2
.

Substituting this value in (6), we obtain the above result.

Proof of theorem 8. 1. The proof is trivial and is omitted.

2. Let N o be composed by a cycle of nodes (ω1, ω2, ..., ωn) and suppose that N ois

hit by an idiosyncratic shock borne by node ω1. ((A,Ω\ωn), (ωn, H, T )) is the cut of N o
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corresponding to the final threshold of contagion of such a shock . The flow across this cut

is equal to

(n− 1)ei +

n−2∑
i=1

bihi + bn−1hi + bn−1di.

The smallest shock suffi cient to cause the failure of the n-th node, is such that: bn−1di = ei,

hence: bn−1 = ei/di. The final threshold at hand is then equal to

τ o2 = nei +

n−2∑
i=1

bihi + ei
hi
di
. (7)

To obtain
∑n−2

i=1 bi, we use the flow conservation property: bi−1di = λi = ei + bihi + bidi,

for all i = 2, ..., n, hence:

bi−1 =
ei
di

+ bi(1 +
hi
di

)

and

bi = bn−1

(
1 +

hi
di

)n−1−i

+
ei
di

(1 + hi/di)
n−1−i − 1

(1 + hi/di)− 1

=
ei
di

(
1 +

hi
di

)n−1−i

+
ei
hi

(
1 +

hi
di

)n−1−i

− ei
hi

thus

n−2∑
i=1

bi =
(1 + hi/di)

n−2 − 1

(1 + hi/di)− 1

(
ei
di

+
ei
hi

)
− (n− 2)

ei
hi

=

[(
1 +

hi
di

)n−2

− 1

](
ei
hi

+
eidi
h2
i

)
− (n− 2)

ei
hi

and finally
n−2∑
i=1

bihi =

[(
1 +

hi
di

)n−2

− 1

](
ei +

eidi
hi

)
− (n− 2)ei

that, substituted in (7), yields the above result.

Proof of corollary2. Part (1) can be checked by inspection. In checking that τ c < τ s2,

it is convenient to rewrite these thresholds as follows:

τ c = E + ei
hi
dij

and

τ s2 = E + E
hp
dp

+
ephc
dp

(1 +
hp
dp

).
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Notice that the second addendum of the latter equation, E hp
dp
, is larger than ei hidij .

Part (2) also can be checked by inspection.

Part (3):

Proof of lemma 4. The flow that crosses an outgoing link lij ∈ LD
′
in a network

N ε is equal to (λi − ei) [(1 + ε)dij/ (hi + (1 + ε) di)] and is increasing in ε for the following

reason. As long as hi > 0, the term within square brackets is strictly increasing in ε. In

turn, (λi − ei) is non-decreasing in ε because, for a given shock, the losses received by a
node ωi ∈ D′, λi, grow if there is at least one node ωj in D′ such that: i) hj > 0, and ii)

there exists a directed path from ωj to ωi where all nodes along such a path are insolvent

as well. If either (i) or (ii) does not hold, then λi remains constant as ε changes. Thus,

(λi− ei) [(1 + ε)dij/ (hi + (1 + ε) di)] is increasing in ε and such monotonic relation is strict

for all links lij ∈ LD departing from nodes ωi for which: (1) both (i) and (ii) hold, and\or
(2) hi > 0.

Proof of theorem 9. Both 1 and 2 are direct consequences of lemma 4, which implies

that, for any given shock, the losses received by each creditor of the defaulting nodes are

increasing (at least weakly) in ε. The formal proof is trivial and is omitted.

Appendix 2: Computing a contagion process

An algorithm that computes a contagion f in N must perform two tasks: calculate

f and check for possible indeterminacies, i.e., monitor the occurrence of closed SCC’s of

insolvent agents. This can be done as follows.

In calculating f , we add a superscript t = 1, 2, 3, ... to the variables involved in the

computation —namely λti, b
t
i, β

t
i —to indicate the value taken on by these variables at each

iteration of the algorithm. Recall that λi =
∑

k b
kaki +

∑
j bjdji and let

[λi]1×n =
[
bk
]

1×m

[
aki
]
m×n + [bj]1×n [dji]n×n

be the vector of the losses born by the agents in Ω. Then:

1. For a given value assignment of the vector [bk], compute [λti] =
[
bk
] [
aki
]

+
[
bt−1
j

]
[dji],

starting with t = 1 and setting b0
j = 0;

2. compute [βti] = [βi(λ
t
i)] and [bti] = [bi(λ

t
i)] according to (1) and (2);
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3. if
∑

Ω β
t
iei+

∑
Ω b

t
ihi <

∑
A b

kak , then start again from point 1; if
∑

Ω β
t
iei+

∑
Ω b

t
ihi =∑

A b
kak, then move to step 4;

4. define the set of insolvent agents induced by f , Ω = {ωi ∈ Ω|bi > 0} , and the sub-
graph composed by such nodes, Ω = (Ω, L(Ω));

5. search for SCC’s S = (S, L(S)) in Ω. If there is none, then stop; if there is at least

one S in Ω, then move to step 6;

6. for every S in Ω, define the matrix of the coeffi cient of the system of equations used

in part (1) of the proof of lemma 10:

[d(S)]m×m =



d1 −d21 · · · · · · · · · −dm1

−d12 d2 −d32 · · · · · · ...
... −d23 d3 · · · · · · ...
...

...
...

. . . · · · ...

−d1(m−1)
...

...
...

. . . −dm(m−1)

−d1m · · · · · · · · · −d(m−1)m dm


where m = |S| ;

7. for every S in Ω, compute the sum of the rows of [d(S)]m×m. For every S in Ω such

that this sum is equal to zero, label S as ‘closed’and the bi’s of the nodes in S as

‘indeterminate’.

The first three steps of this algorithm calculate, for a given shock vector
[
bk
]
, the value

of the contagion f through the iterated application —node by node, along the directed paths

of N —of the absorption and loss-given-default functions, βi(λi) and bi(λi), defined above.

The values of the vectors [λti], [β
t
i], [b

t
i] computed in step 1 and 2, are strictly increasing

in t as long as there are nodes in Ω with strictly positive divergence, i.e., as long as

there exists at least one i ∈ Ω s.t. λti > βt−1
i ei + bt−1

i di, which, in turn, implies that∑
Ω β

t
iei +

∑
Ω b

t
ihi <

∑
A b

kak . Conversely, the repeated iteration of the algorithm yields

stationary values of the vectors at hand once the flow out of the sources has been entirely

absorbed by the sinks, i.e., when
∑

Ω β
t
iei +

∑
Ω b

t
ihi =

∑
A b

kak. A feasible flow, in a flow

network, ends up entirely into the sinks, and the feasibility of any contagion in a financial

networkN is guaranteed by theorem 7. Hence, the equality condition in step 3 is eventually
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achieved, then the divergence of all nodes in Ω is null and neither the losses arriving at a

node nor the losses departing from a node can grow anymore: the computation of f stops

and the algorithm delivers the pair of n dimensional vectors {[βi], [bi]} which identify the
contagion caused by the shock vector

[
bk
]
.

Each iteration of steps 1-3 computes the passing of losses from a set of nodes in N to

their children nodes. In absence of SCC’s of defaulting agents, the length of the longest

possible path in N is equal to n and so is the largest possible number of iterations of

this first part of the algorithm. Conversely, in presence of SCC’s of defaulting agents —

that generate cycle flows —the algorithm converges asymptotically and monotonically to

the final values {[βi], [bi]} by computing progressively smaller augmentations of the cycle
flows. Since the values at hand are sums of money, this problem can be easily overcome

by setting an approximation of, say, one cent of a euro. Discretizing, in this fashion,

the variables at hand, the stationary values {[βi], [bi]} are obtained in a finite number of
iterations of steps 1-3.

Steps 4-7 of the above algorithm control for the occurrence of closed SCC’s of insolvent

agents and signal the indeterminacy of the loss-given-default parameters in [bi] of the agents

in such SCC’s. Finding the SCC’s of a directed graph, as step 5 requires, is a known basic

issue in computer science and the literature provides several algorithms for it.22 Steps 6 and

7 identify the closed SCC’s of insolvent agents induced by f, resorting to the singularity

condition of the matrix [d(S)]m×m . This condition, in turn, is necessary and suffi cient to

cause indeterminacy of the loss-given-default functions of a set of insolvent agents, as it

has been argued above in the proof of lemma 11.

It is the case to point out that calculating f —by running steps 1-3 —on closed SCC’s in

N, is a waste of computing time if such closed SCC’s turn out to be composed entirely of

insolvent agents. This possible ineffi ciency is avoided by resorting to the following modified

version of the above algorithm:

1. Search for SCC’s S = (S, L(S)) in N. If there is none, then proceed to compute f

with steps 1-3 of the above algorithm. If there is at least one S in N , then proceed

to step 2;

2. for every S in N , define [d(S)]m×m and compute the sum of its rows. Then label as

22The most known are the ones due to R. Tarjan and to H. Gabow. See Cormen et al. (2001), chapter

22, and the literature cited therein.
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‘closed’SCC’s S the S in N such that the sum of the rows of [d(S)]m×m is null and

define the set Θ =
{
S
}
;

3. let |Θ| = Y . If Y = 0, proceed to compute f with steps 1-3 of the above algorithm

. If Y ≥ 1, then let Θ =
{
Sy|y = 1, ..., Y

}
and construct a new network N\Θ: for

every Sy ∈ Θ, i) replace Sy with a sink node Ty, ii) direct the links across the cut{
(A,Ω), (Sy, H, T )

}
of N into the sink Ty.

4. run steps 1-3 of the above algorithm on the so modified network N\Θ.

5. for every y ∈ Θ, compare the flow
−→
f {(A,Ω), Ty} that ends into the sink Ty, with

the total equity of the nodes in Sy. If
−→
f {(A,Ω), Ty} =

∑
i∈S ei, then, for all nodes

ωi ∈ Sy, set βi = 1, label bi as ‘indeterminate’and stop. If
−→
f {(A,Ω), Ty} <

∑
i∈S ei,

then run steps 1-3 of the above algorithm on Sy.

The search for closed SCC’s is here done at the beginning of the algorithm, by steps

1 and 2. If any closed SCC is found in N , then step 3 modifies the network, by replacing

such components with sink nodes, and step 4 calculates the values taken on by f on the

links in L\LΘ. The legitimacy of this operation is guaranteed by part (1) of theorem 4.

Part (2) of this theorem is applied in step 5, where the closed SCC’s of insolvent agents

are identified by comparing the flow of losses that enters each closed SCC Sy in N , i.e.,

the flow across the partition {(A,Ω), Ty} of N\Θ, with the total absorbing capacity of the
nodes in Sy. Finally, f is computed on the closed SCC’s in N where f is uniquely defined,

the ones with at least one solvent agent.

On the one hand, this second algorithm saves computing time by avoiding the calcu-

lation of f on the SCC’s of N where f is indeterminate, if f induces any closed SCC’s of

insolvent agents. This gain grows with the number and the size of such SCC’s. On the

other hand, this algorithm requires more time than the first one above for a) the identi-

fication of the closed SCC’s in N, because Ω ⊆ Ω, and b) the transformation of N into

N\Θ. The choice between these two algorithms will ultimately depend, case by case, on
the expectations of the analyser with respect to the occurrence of closed SCC’s of default-

ing agents. For instance, in working on networks composed mostly of banks that hold

customer deposits, the analyser can reasonably expect a very limited presence of closed

SCC’s and, therefore, choose the first algorithm. Conversely, the presence of closed SCC’s

is more likely to occur in networks with a large number of financial intermediaries who do
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not have obligations (bonds and deposits) towards the households in H. In this case, the

second algorithm is potentially more effi cient than the first one.
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