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1. Introduction 

As the largest contributor of CO2 emissions in the world, China has made a great 

effort to mitigate its rising trend of GHG emissions. In 2007, the authorities of the 

Central Government launched an energy-conservation and pollution-abatement 

program which aims to shift China towards being a low-carbon society. The 

authorities set a mandatory target for energy intensity (energy consumption per unit of 

GDP), Chemical Oxygen Demand (COD) and sulfur dioxide (SO2)1. To achieve this 

goal, each province is allocated its individual target of allowable emissions. 

This goal is integrated into the national 11th Five-Year Plan (FYP) (2006-2010). 

According to the official figures, by the year 2010, the energy intensity, COD and SO2 

were already 19.1%, 12.45% and 14.29% lower, relative to the base year of 2005. In 

2010, a new target to control the CO2 intensity (CO2 emissions per unit of GDP) was 

added to the 12th FYP. It is expected to be 17% lower in 2015 relative to the 2010 

level. 

Although the global community welcomes this China-led initiative to confront the 

problems associated with emissions, worries have been expressed on China’s 

over-dependence on tough regulation rather than market-based criteria in achieving 

these objectives (Qiu, 2009; Zhang, 2011). 

The World Bank has already evaluated China’s 11th FYP and highlighted the 

usefulness of market-based criteria (World Bank, 2009). Other studies similarly 

suggest that flexible market-based instruments may help China to reach the emissions 

target with a lower abatement cost (Baumol and Oates, 1988; Wei et al., 2012). In a 

recent high-level political meeting, China’s leaders pledged to let markets play a 

decisive role in the economy to make economic development more sustainable 

(Reuters, 2013) 2 . Therefore, future exploration and identification of abatement 

opportunities in China will give higher consideration to solutions based on 

                                                             
1 The mandatory reduction target for energy intensity is 20 percent by 2010 relative to 2005. The other two major 
pollutants, COD and SO2 are both required to be reduced by 10 percent by 2010 relative to 2005 (The State 
Council, 2007). 
2 The third Plenary Session of the 18th Communist Party of China Central Committee 
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cost-effectiveness. 

The Marginal Abatement Cost Curve (MACC) has recently attracted extensive 

attention and been increasingly applied in climate change policy. Its growing 

popularity is mainly due to its simplified representation of the complex relationship 

between emissions abatement effort and the marginal cost of cutting one unit of CO2 

emissions. For policy-makers, scholars and stakeholders in climate negotiation, 

MACC provides an illustrative guide to demonstrate the benefits of the emissions 

trading system. It helps to guide the estimation of permit prices and carbon taxes. It 

helps in the determination of a solution to achieve the most cost-effective emissions 

constraint target. Finally it helps in assessing the cost-effectiveness of various policy 

regimes (Ellerman and Decaux, 1998; Kesicki and Ekins, 2011; Klepper and Peterson, 

2006). 

The MACC has been widely used for global and country-specific scenario analyses. 

Researchers have investigated the MACC in some recent and related studies. 

However, provincial-level studies of this phenomenon are rare. Since China’s 

government is a federal system and provinces are the major units responding to policy 

(Qian and Weingast, 1997), a province level MACC analysis can help to inform 

policy at a national level. In other words, it can assist the policy-makers to better 

identify the Marginal Abatement Cost (MAC) gap among regions and design a 

burden-sharing strategy. This paper attempts to fill this gap. We adopt a new strategy 

to develop a MACC for China’s provinces by identifying the optimal modeling 

specification from among a set of competing specifications. The method which we 

use to estimate the MACC is one which is empirically tractable and easy to solve.  

The main contribution of this paper is threefold. First, individual MACs for each 

province across the different years are estimated for a given production-based 

technology and then a MACC is estimated based on these individual MACs. Second, 

four types of commonly used MACC specifications are compared and the optimal one 

is chosen where the choice criteria are based on the model’s in-sample and 

out-of-sample performance. Third, we apply this newly proposed MACC estimation 
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method to simulate the cost of China’s carbon reductions for the year 2020, which has 

important policy implications for China’s low carbon strategy.  

The remainder of the paper is as follows. Section 2 will discuss previous studies 

and summarize the advantages and weaknesses of each approach. Section 3 presents 

four types of empirical specifications. Section 4 introduces the data and variables. The 

empirical results for all specifications are presented and compared in section 5. 

Section 6 simulates the economic cost for achieving China’s carbon reduction target. 

The last section is the conclusion.  

 

2. Literature Review 

The previous research on MACC falls into three broad categories in terms of 

modeling approach (De Cara and Jayet, 2011; Kesicki and Strachan, 2011).  

2.1 Expert-based MACC 

The first category is the expert-based MACC, which is also called the technology 

cost curve. It is an engineering bottom-up approach that assesses the emissions 

reduction potential and corresponding cost of each single technical option based on 

assumptions developed by experts. Then the technical options are ranked from least to 

most expensive to represent the costs of achieving incremental levels of emissions 

reductions. 

The earlier MACC serves as a supply curve. For instance, Jackson (1991) 

constructs a least-cost supply curve for GHG abatement and uses this methodology to 

evaluate the cost-effectiveness of 17 technical options. His analysis shows that the 

main determinants of cost savings are energy efficiency and whether it is a renewable 

energy source. The most well-known case is the global MACC developed by the 

McKinsey Company. In their latest version, they conduct an in-depth evaluation of the 

reduction potential and corresponding cost for more than 200 GHG abatement 

opportunities across 10 sectors and 21 countries/regions in 2030 (Nauclér and Enkvist, 

2009). Expert-based MACC also can be applied to specific sectors. To investigate the 
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abatement potential in the agricultural sector, Moran et al. (2011) develop a MACC 

for crop and soil pollution in the UK by examining a range of specific abatement 

technologies/options in terms of their cost-effectiveness and mitigation potential. 

Although it is easy to understand, the traditional expert-based MACC has also been 

heavily criticized (Kesicki and Strachan, 2011). Firstly, it treats each measure 

individually and neglects interactions between technical options and the associated 

co-benefit/co-cost. Secondly, it assesses only the technological cost and ignores the 

associated transaction cost. Thirdly, it only evaluates single-way impacts while 

neglecting the institutional and behavioral contexts. Finally, it works in a static way 

and neglects issues of inter-temporal dynamics and inertia. 

In a recent study, Vogt-Schilb and Hallegatte (2011) attempt to improve the 

traditional expert-based MACC by incorporating a “cost in time” dimension. They 

argue that the more expensive options should be implemented before the potential of 

the cheapest ones has been exhausted if their potential is high and their inertia is 

significant. They suggest that policy-makers should consider these dynamic and 

inertia effects in determining the optimal implementation time of various GHG 

abatement measures. 

2.2 Model-derived MACC 

The second category is model-derived MACC. This specification integrates partial 

or general equilibrium models. For this branch of models, the most common way to 

generate a MAC curve is to run the model with different strict emission limits and to 

derive the corresponding CO2 prices or to run the model with different CO2 prices and 

calculate the corresponding CO2 emission levels. Finally, researchers use the 

price-emission pairs to form a MAC curve.  

The model-derived MACC can be further divided into two different types. One is 

engineering-oriented bottom-up models, such as the energy system model. Another is 

economy-oriented top-down models, such as Computable General Equilibrium (CGE) 

models (De Cara and Jayet, 2011; Klepper and Peterson, 2006). Both types of model 
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simulate the equilibrium by either minimizing the system costs or maximizing 

consumer and producer surplus. However, the bottom-up models are usually partial 

equilibrium models which only cover the energy sectors, while the top-down models 

are usually general equilibrium models which cover endogenous economic responses 

in the whole economy.  

Ellerman and Decaux (1998) are the first to derive a global MACC by using MIT’s 

Emissions Prediction and Policy Analysis (EPPA) model to measure the magnitude 

and distribution effects of the benefits from emissions trading. Criqui et al. (1999) 

carry out a similar study. They simulate various MACCs by applying the Prospective 

Outlook on Long-term Energy Systems (POLES) model and comparing two tradable 

emissions market specifications to meet the Kyoto Protocol’s requirement. Springer 

(2003) screen 25 GHG permit trading models, comprising Integrated Assessment 

Models (IAM), CGE models and energy system models. The market volume and 

permit price for different market types are estimated using these models. Böhringer et 

al. (2009) construct a MACC using Policy Analysis based on Computable Equilibrium 

(PACE). Their numerical simulations confirm the existence of compliance costs 

which result from market segmentation and overlapping regulation. Using a 

MARKAL-MACRO model, Chen (2005) derives China’s MACC for carbon emissions 

for 2010, 2020 and 2030. Their scenario simulation shows that, compared with the 

baseline year, China’s marginal abatement cost is expected to reach 12-216 $/t which 

corresponds to a reduction rate range from 5- 45%. 

Klepper and Peterson (2006) exploit the Dynamic Applied Regional Trade (DART) 

model to simulate the mechanism path of how abatement level affects MACC through 

energy price. They found that the MACC is indeed determined by the initial energy 

price, the energy supply structure and the low-carbon potential. Morris et al. (2012) 

argue that the MAC is affected by policies abroad, i.e., the policies adopted in other 

third countries, the historic policy efforts and the coverage of tradable GHG. Fischer 

and Morgenstern (2006) adopt a meta-analysis strategy to explore the factors that 

contribute to the vast discrepancies in the MAC for different studies. They show that 
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several modeling assumptions may alter the estimates of MAC. For example, the 

Armington trade elasticity assumption may underestimate the MAC while the 

perfectly mobile capital assumption may upwardly bias the estimates. 

Although model-derived MACCs have the advantage of taking into account 

interactions between mitigation measures and inter-temporal interactions, they also 

have disadvantages. Firstly, the estimated results of the system models diverge 

significantly. They are quite sensitive to the choice of the model used and the model’s 

underlying assumptions. Secondly, system models are usually large complicated black 

boxes. Most of the time, readers are made aware of a particular result but have no 

understanding of how this results is obtained and whether the parameters used in the 

model are properly set. 

2.3 Supply-side/Production-based MACC 

The third approach bases on production theory to derive the MAC. The production 

possibility set is determined by a set of detailed technical and economic constraints. 

Given that the production process will generate both desirable output and undesirable 

by-products, the production unit has to sacrifice some profit by reallocating its 

productive resources to abatement activities to cut emissions at the margin. This 

constraint induced marginal cost can be interpreted as an opportunity cost (De Cara 

and Jayet, 2011; Klepper and Peterson, 2006). 

There are two strategies to implement the empirical analysis. The first one is to 

specify a certain total cost function and then to obtain the marginal cost model by the 

first-order derivations, or to specify and estimate a marginal cost function directly. 

Related studies include Hartman et al. (1997) on the US, De Cara and Jayet (2011) on 

the EU, Dasgupta et al. (2001), Wei and Rose (2009) and Zhou et al. (2013) on China, 

etc.3 The main problem of this method is how to derive reliable cost information 

when such information is usually confidential. 

Another major strand of the literature employs distance function frameworks to 

                                                             
3 See Zhou et al. (2014b) for a good review of the literature 
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model the environmental production technology. Both the Shephard distance function 

and the directional distance function have been widely used (Chung et al., 1997; 

Shephard et al., 1970). The main advantage of the distance function method is that it 

only requires data on inputs and outputs which are much easier to derive than cost 

information. Chambers et al. (1998), Färe et al. (1993) and Färe et al. (2005) have 

undertaken much pioneering work in this field. 

Some empirical studies apply the non-parametric Data Envelopment Analysis 

(DEA) approach. DEA estimation is based on linear programming, and it aims to 

construct a piecewise linear combination of all observed inputs and outputs. Examples 

include Boyd et al. (2002), Kaneko et al. (2010), Lee et al. (2002), Maradan and 

Vassiliev (2005) and Choi et al. (2012) etc. The major advantage of the DEA approach 

is that it does not need to impose a specific functional form on the underlying 

technology (Zhang and Choi, 2014)4. 

The shadow price also can be estimated parametrically. The main advantage of the 

parametric approach is that the estimated frontier is everywhere differentiable. In 

previous studies, the Shepard distance function is usually specified with a translog 

functional form while the directional distance function is commonly represented by a 

quadratic functional form. Both the Shepard/translog and the directional/quadratic 

setting can be estimated using the Linear Programming (LP) method. Related studies 

include Coggins and Swinton (1996), Marklund and Samakovlis (2007), Matsushita 

and Yamane (2012), Rezek and Campbell (2007), Swinton (2004), and Lee and Zhang 

(2012), etc. Moreover, the directional/quadratic setting can be estimated using the 

Stochastic Frontier Analysis (SFA) approach. Relevant previous studies include Färe 

et al. (2005), Murty et al. (2007) and Wei et al. (2013), etc. The advantage of the SFA 

relative to the LP method is that the former takes statistical noise into account5. 

                                                             
4 More detailed review of the DEA approach in energy and environment analysis can be found in Song et al. 
(2012), Zhang and Choi (2014) and Zhou et al. (2008). 
5 Recently, increased efforts have been put into improving carbon performance modeling and shadow price 
estimation techniques. The first research strand uses non-radial directional distance functions to incorporate slacks 
into the efficiency measure (Barros et al., 2012; Färe and Grosskopf, 2010; Zhang and Choi, 2013b; Zhou et al., 
2012). The second strand uses the meta-frontier technique to incorporate group heteroskedasticity into the analysis 
(Battese et al., 2004; Oh, 2010; Zhang et al., 2013). The third branch uses the bootstrapping method to provide 
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As most of the above studies reveal, discrete estimations of the MAC for different 

geographic spaces and time periods are not combined to form a continuous curve. 

This prevents researchers from being able to conduct a cost-benefit analysis using 

various abatement scenarios. This paper adopts the supply-side/production-based 

MACC strategy and aims to overcome its deficiencies. We first derive the MAC under 

the directional distance function framework by using panel data at the provincial 

level 6. In the second step, various empirical specifications are used to fit our 

estimated MAC and the optimal parameterized MACC model will be identified 

according to different econometric selection criteria. 

Compared to the expert-based MACC and the model-derived MACC, the 

supply-side/production-based MACC is solidly based in production theory and its 

interpretation is straightforward. It is also relatively transparent so that readers can 

easily appreciate the model in its entirety. Another attractive feature of our approach is 

that our estimations are based on provincial panel data, so that we are able to capture 

regional characteristics and a time trend. Moreover, we provide a series of functional 

forms for the MAC curve and choose the optimal one by using both in-sample fitting 

criteria and out-of-sample criteria, while previous studies usually only provide one 

option. Thus, our method has its own advantages. At least in some aspects, it 

represents an improvement to the approach used in previous studies. 

 

3. Empirical Specifications 

Assume the marginal CO2 abatement cost curve is as follows: 

 ( ; )y f x Z=   (1) 

where y  is the marginal CO2 abatement cost; x  is the carbon intensity (CO2/GDP), 

                                                                                                                                                                               
estimation errors and confidence intervals for the non-parametric DEA and the parametric linear programming 
methods respectively (Simar and Wilson, 1999; Zhang and Choi, 2014; Zhou et al., 2010). 
6 An anonymous reviewer has pointed out that it would be interesting for future research to conduct comparative 
studies on the MACC internationally e.g. to conduct a comparison among China, Korea, Japan and other East 
Asian countries. Such a comparison might provide more comprehensive policy implications (Zhang and Choi, 
2013a). 
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Z  is the vector of covariates, ( )f ⋅  is the function relating these variables7.  

It is worth noting that our definition of the marginal abatement cost curve differs 

from the traditional one since we do not use the absolute quantity of CO2 abatement 

but rather we use carbon intensity on the right-hand side of Eq.(1). CO2 emissions in 

China increased persistently during the time window but these increases are relative to 

China’s economic growth for the period. Therefore, simply taking the levels of CO2 

emissions makes it difficult to pinpoint how much abatement is taking place. In order 

to capture the idea of CO2 abatement more accurately, Zhou et al. (2013) calculate the 

amount of CO2 emissions reduction by multiplying GDP for the current year by the 

change in carbon intensity between the current and previous year8. Following the 

latter, we deal with this problem in a more convenient way, i.e. by using carbon 

intensity to proxy for the quantity of emissions reduction and by investigating the 

relationship between marginal abatement cost and carbon intensity. 

  It is reasonable to use carbon intensity as a measure of the quantity of emissions 

reduction. First, the measure of marginal abatement cost which we use in this paper is 

highly related to GDP and CO2 emissions (this will become clear in the next section). 

Second, adopting this carbon intensity proxy will not affect our resulting policy 

conclusions. In fact, using this carbon intensity measure aligns our analysis with those 

of policy-makers in China - the carbon reduction policies in China’s 12th FYP 

(2011-2015) and other documents are mostly based on carbon intensity.  

It is helpful to take a first look at the relationship between marginal abatement cost 

and carbon intensity by using a nonparametric method to begin with since the 

functional form is unknown. Specifically, we use the Locally Weighted Scatterplot 

Smoother (LOWESS) with a bandwidth of 0.8 and a tricube weighting function. 

                                                             
7 We are grateful to an anonymous reviewer for noting that our estimations capture the composite relationship of 
the shadow price and the other variables. Our analysis reports average effects, holding other things constant. We 
should note that access to more disaggregated sectoral information would open up interesting possibilities to 
researchers focusing on potential within-sector interactions among the covariates. Additionally, access to such data 
would allow researchers to relax the conventional assumption that the covariates exercise an equivalent impact 
across the different sectors. 
8 Wei and Rose (2009) use the similar method when investigating the marginal cost curve of energy efficiency 
improvement. 
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[Figure 1 is here] 

Figure 1 plots the LOWESS estimates of the relationship between marginal CO2 

abatement cost and carbon intensity. From Figure 1, we can observe an unambiguous 

nonlinear relationship between these two variables. The downward sloping curve 

means that it is more costly to reduce an additional unit of CO2 emission for provinces 

in China with lower carbon intensities. 

  To estimate the relationship between the marginal CO2 abatement cost and carbon 

intensity parametrically, we will consider four different functional forms for the 

function ( )f ⋅ , which are widely used by the previous studies, i.e. quadratic 

( 2y ax bx c= + + ), logarithmic ( lny a b x= + ), exponential ( ax by e += ) and power 

( by ax= ) functional forms (Chen, 2005; Criqui et al., 1999; Ellerman and Decaux, 

1998; Morris et al., 2012; Nordhaus, 1991; Zhou et al., 2013). We will first estimate 

the MACC for all these four functional forms and then choose among these 

competing functional forms for the optimal specification. 

 

4. Data and Descriptive Statistics  

We use provincial level aggregate data that covers 30 provinces in China9. We 

constrain our analysis to the period of the 10th and 11th FYPs covering the years from 

2001 to 2010 because policy was relatively stable during this period10. 

The most important data needed for this paper is the MAC of CO2 (denoted as 

MAC). Given that the cost data are unavailable, we have to estimate it ourselves. To 

do this, we resort to the method of shadow price estimation pioneered by Färe et al. 

(2005) which is based on the directional output distance function and multi-input 

multi-output production theory11. 

                                                             
9 Tibet is excluded because of the problem of data availability. 
10 Five Year Plans of China are economic and social development initiatives, which outline the directions, targets 
and methods of development. The 10th FYP covers the year 2001-2006 and the 11th FYP covers the year 
2006-2010. 
11 It is worth noting that the estimation of the marginal abatement cost introduces further uncertainty pertaining to 
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The directional output distance function describes the simultaneous maximum 

expansion of good outputs and contraction of bad outputs that is feasible for any given 

production technology12. Typically, the directional output distance function can be 

defined as: 

 ( , , ; , ) max{ : ( , ) ( )}o y b y bD x y b g g y g b g P xb b b− = + − ∈


  (2) 

where N
1( ,..., )Nx x x += ∈R is the vector of input, 1( ,..., ) M

My y y += ∈R  is the vector 

of good output, 1( ,..., ) J
Jb b b += ∈R  is the vector of bad output, and 

( , )y b
M Jg g g + += ∈ ×R R  is the directional vector. The shadow price of the j-th bad 

output given the market price of the m-th good output is as follows: 

 
( , , ;1, 1) /

, 1,...,
( , , ;1, 1) /

o j
j m

o m

D x y b b
q p j J

D x y b y

 ∂ − ∂
= − = 

∂ − ∂  



   (3) 

Empirically, we employ the quadratic functional form to parameterize the 

directional output distance function. Additionally, we set the directional vector

( , ) (1,1)y bg g =  to seek a simultaneous expansion of good output and reduction of bad 

output, a stylized fact arising from our reading of previous studies. The parameters of 

the quadratic function are estimated by the linear programming method (For more 

detailed description of the method, please refer to Appendix 1)13.  

It is worth noting that the choice of different direction vectors will lead to different 

shadow price estimates. Given the direction of good output yg , a larger value of bad 

                                                                                                                                                                               
the accuracy of the estimates. 
12 The shadow price of the pollutant can also be estimated using the Shephard distance function. The difference is 
that the Shephard distance function expands the good and bad outputs proportionally, whereas the directional 
output distance function allows for a particular direction in which each output is to be expanded or contracted. The 
directional distance function is comparatively more flexible than the Shephard distance function. Indeed, the latter 
represents a special case of the directional distance function (Chung, et al., 1997). Moreover, Vardanyan and Noh 
(2006) find that the quadratic-based directional output distance function is more appropriate for application in 
shadow-pricing studies than the translog-based Shephard output distance function due to its mapping flexibility. 
13 The directional output distance function also can be estimated parametrically using the Stochastic Frontier 
Analysis (SFA) method. The advantage of SFA is that it takes statistical noise into account. However, the SFA 
method cannot incorporate constraints into the estimation. Previous studies proceed by initially running the SFA 
estimation and ignoring the constraints. Researchers subsequently examine whether the results meet the constraints 
ex-post, only retaining for further analysis those results meeting the constraints (Färe, et al., 2005; Murty, et al., 
2007). However, the exclusion of some observations may introduce inconsistency into the estimated parameters 
because these parameters have been estimated using the overall sample. As a result, the estimated shadow prices 
may be biased. 
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output direction bg  will lead to a higher estimated shadow price (Vardanyan and 

Noh, 2006; Zhou et al., 2014a). 

In order to estimate the provincial shadow price of CO2 reduction, we consider the 

case of one good output, annual regional Gross Domestic Product, one bad output, 

carbon dioxide emissions, and three inputs, labor, capital and energy. The data for 

GDP is deflated to the 2005 price to net out the effect of inflation. Labor input is 

measured as the number of employed persons at the end of each year. The data for 

GDP and labor inputs are both obtained from the China Statistical Yearbooks. Energy 

consumption is measured in the standard coal equivalent, which is collected from the 

provincial statistical yearbooks. 

The data for capital stock is not directly available from any of the statistical 

yearbooks. Thus, we estimate it by the following perpetual inventory method as 

Zhang et al. (2004) have proposed: 

 , , 1 ,(1 )i t i t i i tK K Iρ−= − +   (4) 

where ,i tI  and ,i tK  are gross investment and capital stock for province i in year t 

respectively; , 1i tK −  is the capital stock of province i in year t-1; and iρ  is the 

depreciation rate of capital stock for province i. The annual investment data is derived 

from the China Statistical Yearbooks. As before, we depreciate it to the 2005 price. 

Similarly, we need to estimate the bad output, provincial CO2 emissions. Following 

IPCC (2006) and Du et al. (2012), we estimate CO2 emissions from the burning of 

fossil fuels by the following formula: 

 ( )
6

2
1

44 /12i i i i
i

CO E CF CC COF
=

= × × × ×∑   (5) 

where i represents an index of different types of fossil fuels. We consider the 

consumption of 7 different primary fuel types, i.e. coal, coke, gasoline, kerosene, 

diesel, fuel oil and natural gas. The term 44/12 is the ratio of the mass of one carbon 
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atom when combined with two oxygen atoms to the mass of an oxygen atom. The 

variables Ei, CFi, CCi and COFi represent the total consumption, the relevant 

transformation factor, the carbon content and the carbon oxidation factor of fuel i, 

respectively. The data for provincial fuel consumption is taken from the regional 

energy balance tables in the China Energy Statistical Yearbooks.  

  It is interesting to briefly examine the estimated shadow prices.14 Figure 2 plots the 

kernel density curves of the shadow prices for four selected years. From the figure, we 

can observe that the kernel density curves shift rightward over time, indicating an 

increasing trend in shadow prices. In 2001, the shadow prices deviate from about 500 

Yuan/ton to 1600 Yuan/ton with the majority of the estimates clustering around the 

1000 Yuan/ton mark. The kernel density curve shifts significantly to the right by 2010, 

exhibiting a wider dispersion range and a lower clustering point. The shadow prices 

deviate from about 900 Yuan/ton to about 5800 Yuan/ton with most of the estimates 

now clustering around the 1700 Yuan/ton mark by 201015. 

[Figure 2 is here] 

Once the estimates for CO2 emissions are derived, then the provincial carbon 

intensities (denoted as Cintens) can be calculated. Furthermore, in the regression 

model, we consider the following covariates to control the provincial characteristics16. 

Composition of Energy Consumption (denoted as ratio_coal). The relative CO2 

emissions of fossil fuels vary considerably. Specific CO2 emissions from coal burning 

are 1.6 times that from natural gas and 1.2 times that from oil (Zhang, 2000). To 

control for potential provincial varying trends in fuel mix, we use the share of coal 

usage in total energy consumption to proxy for the composition of energy 

                                                             
14 If the readers are interested in more detailed shadow price estimates, please contact the authors. 
15 The MAC estimates itself can be applied to emission allowance allocation. Zhou et al. (2014a) show how 
emission allowance can be allocated to different provinces and periods with efficiency as a criterion based on 
several centralized DEA models. Zhou et al. (2015) further argue that grandfathering allocation plan of initial 
emission allowances may benefit the heavy industries while hurt the light industries. They suggest that the MACs 
of the participants should be used as a supplementary criterion in the initial allocation of the allowance in order to 
establish a fair carbon market. 
16 For our regressions, we used economic theory and previous research to inform our choice of control variables.  
Thus, we are reasonably confident that omitted variable bias is not a major issue in our analysis. Adding further 
control variables can certainly reduce the risk of omitting variables and generally reduce the variance as well. 
However, we have to achieve a good balance between the need for accuracy and parsimony. 
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consumption. The data on coal and total energy consumption is derived from the 

China Energy Statistical Yearbooks. 

Industrial Composition (denoted as ratio_heavy). Usually heavy industry is more 

energy intensive than light industry and consequently produces more CO2 emissions. 

Thus, it is helpful to control for the potential variation in the composition of industry 

among provinces over time. We measure industrial composition by the share of heavy 

industry over total industry for each province in terms of the value of gross output. 

The required data is taken from the statistic yearbooks of each province over the 

relevant years. 

  Urban Concentration (denoted as ratio_urban). The relationship between urban 

concentration and its effect on energy consumption and CO2 emissions has been 

investigated in several studies (Karathodorou et al., 2010; Shim et al., 2006). Thus, it 

is appropriate to control for the variations of provincial urbanization level over time. 

We use the proportion of the non-agriculture population to the total population to 

proxy for the level of urbanization. All data is derived from the China Population 

Statistics Yearbooks and the China Population and Employment Statistics Yearbooks. 

  Privately-Owned Vehicles (denoted as private_car). China has experienced a 

tremendous growth in motor vehicles during the past decade. Until the late 1990s, 

automobiles in China were mainly owned by state-owned enterprises and government 

officials, but recently the number of privately-owned cars has grown rapidly 

(Auffhammer and Carson, 2008). The CO2 emissions from motor vehicles have 

already had a detrimental impact in China (Riley, 2002). Thus we include 

privately-owned vehicles in our regressions, as measured by the number of 

privately-owned vehicles per 10 thousand persons. The data for privately-owned 

vehicles is derived from the China’s Auto Market Almanac.  

[Table 1 is here] 

Table 1 lists the descriptive statistics for the variables17. From the table, we can 

                                                             
17 Our estimated CO2 abatement shadow price exceeds the prices reported for six pilot carbon transaction markets 
in China. Though the market price represents an appropriate benchmark for estimations involving shadow prices, 
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observe that there are substantial variations over provinces and across years.18 

 

5. Empirical Results 

In this section, we will present the regression models and report the estimation 

results for the four different types of functional form. To search for the optimal 

specification, we estimate 6 step-wise regressions for each functional form by 

including different covariates. Then, we use both in-sample fitness criteria and 

out-of-sample forecasting criteria to choose the optimal regression model. 

The in-sample criteria used are Akaike Information Criterion (AIC) and Bayesian 

Information Criterion (BIC). The out-of-sample criteria used are the Root Mean 

Squared Forecast Error (RMSFE) and the Mean Absolute Error (MAE). The 

in-sample fitness criteria are more suitable for in-sample predictions since their 

calculations are based on the in-sample fitness of the regressions, while for the 

out-of-sample forecasting, RMSFE and MAE are preferred (the calculation formulas 

of AIC, BIC, RMSFE and MAE are described in Appendix 2). Smaller values for the 

AIC and BIC, as well as RMSFE and MAE, are preferred.   

5.1 Quadratic Functional Form 

For the quadratic MACC estimation, we consider the following two-way panel 

regression model19: 

                                                                                                                                                                               
we should also note that they are not identical. The shadow price reflects the opportunity cost, whereas the market 
price is heavily determined by the supply and demand of permits. Accordingly, the market price does not 
necessarily reflect all the abatement costs (Smith, et al., 1998; Wei, et al., 2013). Indeed, Vardanyan and Noh (2006) 
similarly find that no single estimation technology produces outcomes that are consistently close to the market 
prices of allowances. 
18 Matsushita and Yamane (2012) use almost the same methodology to estimate the shadow price of CO2 
emissions in Japan and obtain a much lower value than ours. Possible reasons for this discrepancy are as follows. 
First, Matsushita and Yamane (2012) confine their analysis to Japan’s power sector while we focus on China’s 
overall economy. China’s power sector is recognized as the main CO2 emissions emitter (especially coal-fuelled 
plants). Thus, it is relatively cheap for the power sector to reduce CO2 emissions compared to other sectors (e.g. 
services sector). We consider all sectors (i.e. agriculture sector, financial sector and education sector, etc), almost 
all of which are less carbon intensive than the power sector implying that it becomes more expensive for these 
sectors to cut CO2 emissions. In this context, our higher estimated average shadow price is plausible. Secondly, 
this results discrepancy may be due to the use of different estimation techniques. Though both papers employ a 
quadratic directional functional form, there are slight differences. In our paper, we add both province and time 
dummies to capture the effects of provincial idiosyncratic effects and technology change while Matsushita and 
Yamane (2012) only consider time effects. 
19 We are grateful to an anonymous reviewer for pointing out that our model is not focused on intertemporal 
aspects, i.e. the influence from previous years or expectations about future years. 



16 

 2
it it it it t i ity x x Zα β γ φ λ µ ε= + + + + + +   (6) 

where ity  is the shadow price of province i  in year t ; itx  is the carbon intensity; 

itZ  is the vector of covariates; iµ  is the provincial specific characteristics; tλ  is 

the time effect; and itε  is the error term. As mentioned before, we estimate 6 

step-wise regressions.   Then, we search for the optimal regression by applying 

in-sample and out-of-sample criteria. 

  We test the group-wise heteroskedasticity for all six regressions by using the 

modified Wald statistic (Greene, 2000). The null hypothesis of this test is that there is 

no group-wise heteroskedasticity. At the same time, we implement the Wooldridge 

test for serial correlation in panel data models for all the six regressions (Wooldridge, 

2002). The null hypothesis of the Wooldridge assumes that there is no serial 

correlation. The test results show that the null hypotheses for both tests for all of the 

six regressions are overwhelmingly rejected. To handle the problems of 

heteroskedasticity and serial correlation, we resort to the method of Feasible 

Generalized Least Squares (FGLS) for panel data models, with the assumption of 

heteroskedasticity error with no cross-sectional correlation and panel specific AR(1) 

autocorrelation within panels. The results of the FGLS estimations for the six 

regressions are reported in Table 2. 

[Table 2 is here] 

  Model 1 includes only carbon intensity and its quadratic term as independent 

variables. The estimation results show that both coefficients are significant at the 1 

percentage level. The coefficient for the quadratic term is positive, indicating that the 

shape of the estimated MACC should be U-shaped (quadratic). 

  Model 2-5 controls for industrial composition, the structure of energy consumption, 

urban concentration, and privately-owned vehicles. Model 6 furthermore includes the 

time trend in its logarithmic form in line with Auffhammer and Carson (2008) to 

control for possible technology change. The estimation results show a relatively stable 
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relationship between the marginal CO2 abatement cost and the carbon intensity. All 

regressions report negative coefficients for the carbon intensity and positive 

coefficients for its quadratic term. They are all significant to the 1 percentage level. 

Additionally, the coefficients of carbon intensity as well as its quadratic term in 

Model 2-6 are very close to those coefficients obtained in Model 1. 

  The last four rows reported in Table 2 are in-sample information and out-of-sample 

information criteria. Both the AIC and BIC criteria show that Model 6 is the optimal 

specification in the sense of its in-sample fitness. However, Model 5 is the optimal 

one when we judge based on out-of-sample forecasting criteria since both the MAE 

and RMSFE for Model 5 outperform the corresponding values in the other regressions. 

Because the coefficient of the time trend in Model 6 is insignificant even at the 10 

percent level, we therefore consider Model 5 to be the optimal specification for the 

quadratic MACC estimation. 

Once the optimal regression model is determined and the coefficients are estimated, 

it is easy to calculate the axis of symmetry of the parabola to be about 6 ton/10000 

Yuan. Accordingly, the overall average for carbon intensity in China during the 

sample period is about 2.88 ton/10000 Yuan and none of the yearly average carbon 

intensity exceeds 3.2 ton/10000 Yuan. This means that the marginal CO2 abatement 

cost curve relates to the downward part (left-side) of the U-shaped curve. 

[Figure 3 is here] 

Figure 3 simulates the estimated quadratic functional form MACC with the 

covariates set at their average values. We can see from the figure that for values of 

carbon intensity lying below 6 tons/10000 Yuan, the marginal CO2 abatement cost 

will rise increasingly rapidly with decreasing carbon intensity. 

5.2 Logarithmic Functional Form 

  Consider the following two-way logarithmic functional form MACC regression 

model: 
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 ln( )it it it t i ity x Zα β φ l µ ε= + + + + +   (7) 

where the variables are defined as in Eq.(6). The difference is that carbon intensity in 

Eq.(7) is expressed in logarithmic form and its quadratic term is excluded from the 

regression. 

  Similarly, we test the group-wise heteroskedasticity and autocorrelation for all the 

six regressions by using the modified Wald statistic and Wooldridge test respectively. 

The results show that all six regressions suffer from problems of heteroskedasticity 

and autocorrelation. As before, we resort to using the method of FGLS for panel data, 

with the assumption of heteroskedasticity error with no cross-sectional correlations 

and panel specific AR(1) autocorrelation within panels. Table 3 reports the estimation 

results. 

[Table 3 is here] 

  As before, Model 1 simply investigates the relationship between marginal CO2 

abatement cost and carbon intensity without controlling for any of the other factors. 

The estimation results show that the coefficient of carbon intensity is significant at the 

1 percent level. The coefficient is negative, indicating that the marginal CO2 

abatement cost curve has a downward slope. 

  Similarly, Model 2-6 furthermore includes industrial composition, the composition 

of energy structure, urban concentration, privately-owned vehicles and a time trend. 

The estimation results show that the coefficients of carbon intensity in all these 

regressions are significantly negative. The results are stable and very similar as well 

as being similar to the results obtained in Model 1.  

  The results for the AIC and BIC show that Model 6 is the optimal specification in 

the sense of in-sample fitness. However, Model 5 is the optimal specification 

according to the out-of-sample forecasting criteria, MAE and RMSFE. Since the time 

trend is seen to be insignificant, we consider Model 5 as the optimal specification for 

the logarithmic functional form MACC estimation.  
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[Figure 4 is here] 

Figure 4 simulates the marginal CO2 abatement cost curve adopting the logarithmic 

functional form. From the figure, we can observe that the curve is downward sloping 

and convex, which means that China has to sacrifice proportionately more to reduce 

an additional unit of CO2 emission as carbon intensity further decreases. 

5.3 Exponential Functional Form 

To estimate this exponential functional form ( ax by e += ), we need to take the 

logarithm on both sides first, and then include the covariates and error term. Thus, we 

have the following two-way exponential functional form MACC regression model: 

 ln( )it it it t i ity x Zα β φ l µ ε= + + + + +   (8) 

Note that the shadow price in the regression is now expressed in its logarithmic form 

while the carbon intensity is expressed as a level. The other variables are similar to 

Eq.(6) and Eq.(7). 

  Again, we test the group-wise heteroskedasticity and autocorrelation for all six 

regressions by implementing the modified Wald test and Wooldridge test respectively. 

Our results indicate that all six regressions experience problems of heteroskedasticity 

and autocorrelation. Thus, we employ the method of FGLS once again, assuming that 

the structure of the error term within groups is heteroskedastic and there is panel 

specific within-group AR(1) autocorrelation. Table 4 reports the estimation results. 

[Table 4 is here] 

The estimation results listed in Table 4 show that, regardless of whether we 

control or not for additional covariates, the coefficients of carbon intensity are 

negative and significant at the 1 percent level, indicating that the MACC is a 

downward sloping curve. Compared with the previous two functional forms, the 

results are similar except for the coefficient of the time trend. The information criteria 

show that regression 5 is the best one in the sense of its in-sample fitness. However, 

regression 6 performs best in terms of its out-of-sample forecasting ability. We 
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therefore choose regression 6 as the optimal model for the exponential functional 

form MACC estimation since our investigation is aimed at providing a basic tool for 

future policy analysis. 

[Figure 5 is here] 

  Figure 5 simulates the exponential functional form MACC with the covariates set at 

their average values. From the figure, we can again observe that the marginal 

abatement cost will increase with the decline in carbon intensity. The curve is convex, 

though this convexity is not as pronounced as the previous two functional forms. 

5.4 Power Functional Form 

For the power functional form ( by ax= ), we need to take the logarithm on both 

sides. Then, we can construct the following two-way panel regression model: 

 ln( ) ln( )it it it t i ity x Zα β φ l µ ε= + + + + +   (9) 

We can see that both the shadow price and carbon intensity in the regression model 

are now expressed in the logarithmic form. The covariates are as used before. 

  Likewise, the modified Wald test and Wooldridge test are implemented, and the 

results show significant evidence of group-wise heteroskedasticity and autocorrelation 

for all six regressions. To avoid these problems, we run the FGLS, assuming that the 

structure of the error term is heteroskedastic without cross-sectional correlations as 

well as auto-correlated with panel specific AR(1) specification. Table 5 reports the 

estimation results. 

[Table 5 is here] 

    From Table 5, we find that the coefficients of carbon intensity are negative and 

significant at 1 percent level, indicating a downward sloping curve. On average, a 1 

percent decrease in carbon intensity will induce a 0.245-0.397 percent increase in the 

shadow price, ceteris paribus. The coefficient of the time trend in regression 6 is not 

significant even at the 10 percent level. The AIC and BIC show that regression 5 is 

the optimal one from the view of its in-sample fitness, while the MAE and RMSFE 
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reveal that regression 6 is the best in terms of its out-of-sample forecasting ability. We 

choose regression 5 as the optimal specification since the time trend coefficient is 

insignificant.  

[Figure 6 is here] 

Figure 6 plots the simulated power functional form MACC. From the figure, we 

find that the MACC clearly represents a downward sloping convex curve. This means 

that the marginal abatement cost increases more rapidly with additional decreases in 

carbon intensity. 

To choose the optimal functional form, we can resort to the in-sample fitness 

criteria and out-of-sample forecasting criteria as well. From our estimation results, we 

can observe that the quadratic and logarithmic functional forms perform much better 

than the exponential and power functional forms since both the in-sample and 

out-of-sample criteria of the former two functional forms are much lower. The choice 

between the quadratic form and the logarithmic form is not so clear cut, but it is still 

possible for us to make an unambiguous choice. Although the BIC of the logarithmic 

form is lower, the other three criteria of this functional form, i.e. AIC, MAE and 

RMSFE, are higher. Thus, we are inclined to take the quadratic functional form as the 

optimal one. Moreover, the quadratic functional form is more flexible than the 

logarithmic functional form. Thus, we suggest to choose the quadratic functional form 

for policy analysis. 

 

6. Simulation the Cost of China’s Carbon Reduction 

Having estimated the MACC20, we are able to conduct some policy analysis. One 

obvious place to start for policy is to estimate the economic cost of achieving the 

Chinese government declared CO2 reduction goal - i.e. to reduce the carbon intensity 

                                                             
20 Strictly speaking, the national MAC for each year should be firstly estimated and then a national MACC can be 
econometrically derived. However, this procedure requires a considerable stretch of time-series data. Given our 
short period (2001-2010), we use the convention of taking the panel dataset of provincial MACs derive a weighted 
national MACC. The national MACC accordingly is comprised of the average of provincial MACCs, assuming 
that all parameters of the provincial MACCs are the same. 
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by 40-45 percent by the year 2020, compared with 2005 levels. We simulate the cost 

of CO2 reduction based on the quadratic MACC since it is the optimal functional 

form. 

To focus on the relationship between the marginal abatement cost and carbon 

intensity, the covariates in 2020 should be predetermined. We consider three scenarios 

according to the setting of covariates, including Business As Usual (BAU) scenario, 

Fast Development (FD) scenario and Slow Development (SD) scenario. Table 6 

reports the details of the scenario setting. 

[Table 6 is here] 

The share of heavy industry. He et al. (2009) and Du et al. (2012) argue that the 

share of heavy industry in China will decline gradually with further economic 

development and rising environmental awareness. However, for 2006-2010, the share 

of heavy industry remained virtually unchanged. Thus, we assume that, for the BAU 

scenario, it will decrease 0.5% for both periods of 2011-2015 and 2016-2020. For the 

FD scenario, we assume that it will decrease 0.5% for the period 2011-2015 and 

decrease 1% per year for the period 2016-2020. For the LD scenario, we assume that 

it will maintain the 2010 level for 2011-2015 and decrease 0.5% per year for the 

period 2016-2020. 

The share of coal consumption. The 12th FYP for Energy Development 

(2011-2015) declares that the government aims to reduce the share of coal 

consumption by about 3 percentage points. Under pressure to undertake further cuts in 

carbon emissions, it is reasonable to assume that the share of coal consumption in 

China will decline further over the period 2016-2020. We assume that, for the BAU 

scenario, it will decrease 3% for 2011-2015 and will decrease a further 5% for the 

period 2016-2020. For the FD scenario, we assume that it will decrease 5% for both 

the 2011-2015 and 2016-2020 periods respectively. For the LD scenario, we assume 

that it will decrease by 3% for both the 2011-2015 and the 2016-2020 periods. 

The level of urbanization. According to the 12th FYP (2011-2015), the 
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urbanization ratio of China will increase by about 4% for the period 2011-2015. 

Considering that the urbanization level increased by 7 percentage during the period 

2001-2010 and the government stresses the importance of urbanization for China’s 

economic development during the next ten years, we have good reasons to expect a 

continuing trend of increased urban concentration for the next decade. We assume that, 

for the BAU scenario, it will increase 4% for both the 2011-2015 and the 2016-2020 

periods. For the FD scenario, we assume that it will increase 5% both the 2011-2015 

and the 2016-2020 periods. For the LD scenario, we assume that it will increase 4% 

for 2011-2015 and increase 3% over the duration of the 2016-2020 periods. 

The private-owned car ownership. Huo and Wang (2012) forecast that the growth 

rate in private vehicle ownership in China amounts to an annual rate of about 14% 

from 2010 to 2020. The possession of vehicles per 10000 persons increased from 74 

in 2001 to 468 in 2010, with an annual growth rate of roughly 20 percent. However, 

some large cities, such as Beijing, Shanghai and Hangzhou, have already begun to 

limit the growth of private vehicles due to traffic congestion problems. Thus, we 

assume that, for the BAU scenario, that private vehicle ownership will grow at an 

annual rate of 15% for the period 2011-2015 and 10% for the period 2016-2020. For 

the FD scenario, we assume that it will increase by 15% per year for the period 

2011-2020. For the LD scenario, we assume that it will increase by 10% for the period 

2011-2020. 

Carbon intensity in 2005 corresponded to about 3.1 tons per 10000 Yuan of GDP 

and the corresponding marginal CO2 abatement cost amounted to about 1099 Yuan. If 

the carbon intensity in 2020 decreases by 40-45 percent, it will amount to a decrease 

of 1.71-1.86 tons per 10000 Yuan of GDP in 2020.  

[Table 7 is here] 

Table 7 reports the simulation results of cost changes for the three scenarios. From 

the table, we can observe that for a 40-45 percent CO2 reduction, China has to face a 

dramatic increase in marginal abatement cost. For the BAU scenario specification, the 

marginal CO2 abatement cost will increase to 1673 Yuan if the reduction target is 40 
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percent and increase to 1702 Yuan if the reduction target is 45 percent, which 

correspond to increases of 52 percent and 55 percent respectively compared to the 

2005 level. Our results from the FD scenario and LD scenario are very close to those 

from the BAU scenario21.  

 

7. Conclusion 

This paper tries to estimate the MACC of CO2 emissions in China. In a first step, 

we estimate the individual marginal abatement cost of CO2 emissions at the provincial 

level. The directional output distance function combined with panel data covering 30 

provinces for the period 2001-2010 are used. In a second step, the provincial 

MAC-CO2 intensity pairs are used to form a MACC. Four types of MACC 

specifications are econometrically estimated and the optimal one is chosen in 

accordance with in-sample and out-of-sample criteria. Moreover, the estimated 

MACC is applied to simulate the scenario of China’s CO2 intensity pledge. 

The regression results show that the share of heavy industry, the level of 

urbanization and private car ownership rates are strongly positively correlated with 

the marginal abatement cost of CO2 emissions, while the share of coal consumption 

imposes a significant negative effect. The magnitude of each coefficient should be 

interpreted in line with the different function form. Taking the exponential form as an 

example, if the share of heavy industry increases by 1 percentage point, the shadow 

price will increase by 0.387 percent. Similarly, a 1 percentage point increase in the 

coal share will lead to a 0.446 percent decrease in the shadow price. 

The estimated MACCs are downward sloping and convex when specified in 

logarithmic, exponential and power functional forms. It means that China has to incur 

increasingly high costs in the process of cutting down its CO2 intensity and achieving 

the ambitious 40-45 percent target as promised. In the U-shaped quadratic case, the 

                                                             
21 To provide more detailed policy implications of the MACC, we need to simulate the cap-and-trade system or 
the carbon tax. In view of the scope of our current paper, we do not include these additional topics. However, they 
would represent interesting and important topics for future research efforts. 
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turning point of carbon intensity is around 6 tons/10000 Yuan. For the provinces 

having CO2 intensities in excess of the turning point22, it means that CO2 abatement 

activities are beneficial since the marginal cost will decrease with the decrease in 

carbon intensity. However, for other provinces with carbon intensity lower than the 

turning point, it will become more expensive to control an additional unit of emissions 

since the MAC will increase more rapidly with successive cuts in CO2 intensity. 

The simulation of cost changes due to carbon intensity reduction shows that, the 

Chinese government has to bear a 51-57 percent increase in marginal abatement cost 

for achieving a 40-45 percent reduction in carbon intensity compared with its 2005 

level. Fortunately, the decline of carbon intensity (or low-carbonization) does not only 

necessitate an economic cost. The improvement of environmental quality and social 

welfare is normally treated as a social benefit although it is hard to measure this 

benefit in money terms. 

Our results have important implications for different stakeholders and MACC users. 

For empirical researchers, this production-based approach provides, in some aspects, 

a better alternative way to estimate the MACC. Our approach offers sufficient 

flexibility that relevant environment variables can be integrated. Additionally, it is 

relatively transparent and easy to apply. At least, the estimation via a 

production-based approach can be used as a benchmark or comparison when different 

approaches are adopted.  

For policy-makers, this MACC offers a strong tool and is sufficiently informative 

to guide policy design and implementation. It can be used to simulate the cost 

consequences of various reduction exercises e.g. the cap-and-trade system and the 

carbon tax policy etc. Then, policy-makers can choose an optimal option from among 

the different affordable options, such as how to set a feasible carbon reduction target, 

how to allocate the initial permits for the cap-and-trade market and how to decide the 

carbon tax rate, etc. Relative to carbon tax, the Chinese government is more interested 

                                                             
22 There are four provinces with carbon intensity higher than 6 ton/10000 Yuan in specific years: Shanxi 
(2001-2005), Inner Mongolia (2004,2006), Guizhou (2001,2003-2007), Ningxia (2003-2010) 
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in carbon emissions trading systems. Actually, China has already launched seven 

regional pilot carbon emissions trading schemes in Shenzhen, Shanghai, Beijing, 

Guangdong, Tianjin, Chongqing and Hubei. For the next step, the Chinese 

government aims to build a nation-wide carbon emission trading market to improve 

the efficiency and fairness of carbon reductions.  

It is worth noting that our method proposed in this paper is heavily relied on the 

estimated MACs, and the choices of direction vector, functional form and estimation 

technology may affect the final results. Thus it is important to refine the estimation 

method of MACs for the future research. Additionally, the assumptions of simulation 

scenarios may affect the results of carbon abatement cost projection. Thus it is 

important to adjust the scenarios from time to time for policy analysis according to the 

actual situation. Moreover, we have only simulated the abatement cost change for the 

year 2020 while the carbon emissions trading market are not involved. For the future 

researches, it is interesting to simulate the cost and welfare results of emissions 

trading market in China since the Chinese government is planning to establish a 

nation-wide carbon emissions trading market. 
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Appendix 1: Estimation of Shadow Price  

  The shadow price of a pollutant can be estimated within the framework of 

multi-input multi-output production technology which considers pollutants as 

byproducts. 

Suppose that a producer employs a vector of inputs N
1( ,..., )Nx x x += ∈R to produce 

a vector of good outputs 1( ,..., ) M
My y y += ∈R  and a vector of bad outputs

1( ,..., ) J
Jb b b += ∈R . The production technology can be defined as the following 

output set:  

 ( ) {( , ) : can produce ( , )}P x y b x y b=   (A.1) 

The directional output distance function describes the simultaneous maximum 

expansion of good outputs and contraction of bad outputs that is feasible for any given 

production technology. Formally, the directional output distance function is defined as 

 ( , , ; , ) max{ : ( , ) ( )}o y b y bD x y b g g y g b g P xb b b− = + − ∈


  (A.2) 

where ( , )y b
M Jg g g + += ∈ ×R R  is a directional vector which specifies the direction of 

the output vector.  

The directional output distance function satisfies the translation property: 

 ( , , ; , ) ( , , ; , )o y b y b o y bD x y g b g g g D x y b g gα α α+ − − = − −
 

   (A.3) 

where α  is a scalar. This property says that if the desirable output is expanded by 

ygα and the undesirable output is contracted by bgα  simultaneously, the resulting 

value of the directional output distance function will be reduced by α . 

By evoking the duality between the directional output distance function and the 

revenue function, Färe et al. (2005) is able to derive the shadow price of the j-th bad 

output given that the market price of the m-th good output is known. 
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D x y b y
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

   (A.4) 

To estimate the shadow price, we employ the quadratic functional form to 

parameterize the directional output distance function and set the directional vector

( , ) (1,1)y bg g = to seek a simultaneous expansion of good output and reduction of bad 

output (Chambers et al., 1998; Färe et al., 2005; Färe et al., 2006; Murty et al., 2007). 

We consider the case of three inputs, one good output and one bad output. Assume 

that there are k=1,…,K provinces producing in t=1,...,T years. Then, the quadratic 

directional output distance function for province k in year t can be represented as 

 

3 3 3

1 1
1 1 1

3 3
2 2

2 2
1 1

1( , , ;1, 1)
2

1 1( ) ( )
2 2
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b γ η δ µ
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∑ ∑



  (A.5) 

To capture the province and time effect, we add a set of province dummy variables 

and time dummy variables in the intercept term as Färe et al. (2006) have done:  

 
1 1

0
1 1

K T

k k t t
k t

a a S Tλ t
− −

= =

= + +∑ ∑   (A.6) 

where kλ  and tt  are the coefficients of the dummy variables. The province dummy 

variable 1kS ′ =  if k k′ = and 0 otherwise. Similarly, the time dummy variable 

1tt ′ =  if t t′ =  and 0 otherwise23. 

To estimate the parameters of the quadratic function, a deterministic linear 

programming algorithm is employed which is proposed by Aigner and Chu (1968). 

This approach minimizes the sum of the deviations of the estimated directional output 

distance functions from that of the frontier, having the advantage of allowing us to 

                                                             
23 An alternative method to model regional heterogeneity is to use meta-frontier analysis. A typical meta-frontier 
analysis can be implemented in two steps. The first step is to classify the provinces into different groups according 
to their characteristics (such as location, wealth or industrial structure etc.) and to estimate the group-specific 
production frontier for each group respectively. The second step is to estimate the meta-frontier as the envelopment 
of the group-specific frontiers. For a more detailed description on the concept and estimation procedure, please 
refer to Battese et al. (2004), Chiu et al. (2012), Oh (2010) and Zhang et al. (2013). 
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impose parametric restrictions on the quadratic functional form. 
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  (A.7) 

The first set of restrictions (i) ensures that all observations are feasible, which 

implies that each observation is located either on or below the boundary. Restrictions 

in (ii) impose the null-jointness property, which means that, for y>0, the output 

bundle (y, 0) is not technically feasible. Restrictions in (iii) and (iv) are monotonicity 

assumptions in bad and good outputs respectively, which ensures the correct sign of 

the calculated shadow prices. Restrictions in (v) impose positive monotonicity 

constraints on the inputs for the mean level of input usage, which means that, at the 

mean level of inputs, an increase in input usage holding good and bad outputs 

constant causes the directional output distance function to increase. The parameter 

restrictions given by (vi) impose translation property. Additionally, the symmetry 

restrictions are imposed in (vii). 

Once the parameters of the directional output distance function have been estimated, 

we are able to calculate the shadow price of the bad output for each province in each 

year. The shadow price of the bad output can be written as 
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Appendix 2: Calculation of AIC, BIC, RMSFE and MAE 

The calculation formulas for AIC, BIC, RMSFE and MAE in this paper are mainly 

based on Auffhammer and Steinhauser (2012). 

The AIC and BIC are calculated as follows respectively: 

 
2 2ln( )it

i t

e kAIC
n n

= +∑∑   (A.9) 

and 

 
2

ln( ) ln( )it

i t

e kBIC n
n n

= +∑∑   (A.10) 

where k is the number of coefficients, n is the number of observations, ite  is the error 

term for province i in year t. 

The main idea of out-of-sample criteria is that, for a sample of N individuals and 

n+m observations for each individual, using the first n observations to estimate the 

parameters and save the last m observations for forecasting. Let ,î n hf +  be the 

one-step-ahead forecast of the true value , 1i n hy + +  for i=1,2,…,N and h=0,1,…,m-1. 

The forecast errors are the difference of true value and forecasted value

, 1 , 1 ,
ˆ

î n h i n h i n he y f+ + + + += − , and each individual has m forecast errors.  

The Root Mean Squared Forecast Error (RMSFE) is the sample standard deviation 

of the forecast errors that defined as follows: 

 
1
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1 0
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= =
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The second common measure is the Mean Absolute Error (MAE), which is the 

average of the absolute forecast errors: 

 
1
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N m
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= ∑∑   (A.12) 

It’s preferred to choose the model with the smallest value of RMFSE and MAE. In 
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this paper, we use the first 5 years’ observations for the estimation of the coefficients 

and save the last 5 years’ observations for the calculation of RMFSE and MAE. 
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Tables 
 

 

Table 1: Descriptive Statistics 

Variables description Units  Mean 
Std. 
Dev. 

Min Max 

MAC 
Marginal 
abatement 
cost 

10000 Yuan 
Overall 0.13  0.07  0.01  0.58  

Between  0.05  0.06  0.24  
Within  0.05  0.00  0.47  

Cintens 
Carbon 
intensity 

Ton/10000 
Yuan 

Overall 2.88  1.63  0.73  8.52  
Between  1.60  1.09  7.42  
Within  0.41  0.17  4.24  

Ratio_heavy 
Share of 
heavy 
industry 

% 
Overall 0.73  0.11  0.40  0.95  

Between  0.10  0.53  0.93  
Within  0.05  0.51  0.86  

Ratio_coal 
Share of coal 
consumption 

% 
Overall 0.77  0.13  0.30  0.94  

Between  0.13  0.36  0.93  
Within  0.03  0.68  0.89  

Ratio_urban 
Urban 
concentration 

% 
Overall 0.35  0.16  0.15  0.89  

Between  0.16  0.16  0.83  
Within  0.03  0.19  0.43  

Private_car 
Privately 
owned 
vehicles 

Vehicles/10000 
persons 

Overall 228.24  250.20  19.15  1894.25  
Between  198.64  77.25  1137.99  
Within   155.98  -458.50  984.50  
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Table 2: Estimates of Quadratic MACC 

Dependent variable: 
MAC 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Cintens* Cintens 
0.002*** 
(0.000) 

0.003*** 
(0.000) 

0.003*** 
(0.000) 

0.002*** 
(0.000) 

0.002*** 
(0.000) 

0.002*** 
(0.000) 

Cintens 
-0.027*** 
(0.003) 

-0.037*** 
(0.004) 

-0.031*** 
(0.004) 

-0.027*** 
(0.004) 

-0.028*** 
(0.004) 

-0.025*** 
(0.004) 

Ratio_heavy  
0.150*** 
(0.014) 

0.132*** 
(0.014) 

0.054*** 
(0.012) 

0.082*** 
(0.016) 

0.068*** 
(0.018) 

Ratio_coal   
-0.065*** 
(0.015) 

-0.012 
(0.014) 

-0.035** 
(0.017) 

-0.046*** 
(0.017) 

Ratio_urban    
0.055*** 
(0.014) 

0.050*** 
(0.016) 

0.052*** 
(0.018) 

Ln(private_car)     
0.011*** 
(0.001) 

0.011*** 
(0.002) 

Ln(time)      
0.002 

(0.002) 

constant 
0.166*** 
(0.006) 

0.082*** 
(0.008) 

0.135*** 
(0.016) 

0.114*** 
(0.013) 

0.077*** 
(0.017) 

0.088*** 
(0.018) 

Estimation Method FGLS FGLS FGLS FGLS FGLS FGLS 
AIC -5.497 -5.645 -5.651 -5.626 -5.898 -5.915 
BIC -5.460 -5.595 -5.589 -5.552 -5.811 -5.816 
MAE 0.078 0.066 0.067 0.067 0.051 0.058 
RMSFE 0.012 0.010 0.010 0.010 0.008 0.008 

Notes: 1) standard errors in parentheses. 

2) ***, ** and * represent significant at 1%, 5% and 10% levels respectively. 
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Table 3: Estimates of Logarithmic MACC 

Dependent variable: 
MAC 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Ln(Cintens) 
-0.037*** 
(0.003) 

-0.042*** 
(0.004) 

-0.038*** 
(0.005) 

-0.030*** 
(0.004) 

-0.038*** 
(0.005) 

-0.032*** 
(0.005) 

Ratio_heavy  
0.098*** 
(0.014) 

0.097*** 
(0.014) 

0.044*** 
(0.011) 

0.086*** 
(0.015) 

0.065*** 
(0.017) 

Ratio_coal   
-0.040*** 
(0.015) 

-0.002 
(0.012) 

-0.035** 
(0.017) 

-0.041** 
(0.017) 

Ratio_urban    
0.073*** 
(0.015) 

0.049*** 
(0.015) 

0.058*** 
(0.018) 

Ln(private_car)     
0.010*** 
(0.001) 

0.011*** 
(0.002) 

Ln(time)      
0.003 

(0.002) 

constant 
0.149*** 
(0.004) 

0.079*** 
(0.008) 

0.109*** 
(0.015) 

0.083*** 
(0.012) 

0.056*** 
(0.017) 

0.067*** 
(0.018) 

Estimation Method FGLS FGLS FGLS FGLS FGLS FGLS 
AIC -5.523 -5.565 -5.589 -5.650 -5.890 -5.924 
BIC -5.499 -5.528 -5.539 -5.588 -5.816 -5.838 
MAE 0.079 0.068 0.069 0.065 0.058 0.056 
RMSFE 0.013 0.010 0.011 0.009 0.008 0.008 

Note: 1) standard errors in parentheses. 

2) ***, ** and * represent significant at 1%, 5% and 10% levels respectively. 
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Table 4: Estimates of Exponential MACC 

Dependent variable: 
ln_MAC 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Carboninten 
-0.062*** 
(0.006) 

-0.094*** 
(0.008) 

-0.076*** 
(0.009) 

-0.049*** 
(0.008) 

-0.050*** 
(0.013) 

-0.056*** 
(0.012) 

Ratio_heavy  
0.766*** 
(0.092) 

0.602*** 
(0.092) 

0.136 
(0.091) 

0.470*** 
(0.128) 

0.387*** 
(0.133) 

Ratio_coal   
-0.253*** 
(0.121) 

-0.403*** 
(0.092) 

-0.516*** 
(0.138) 

-0.446*** 
(0.144) 

Ratio_urban    
1.236*** 
(0.104) 

0.915*** 
(0.108) 

0.796*** 
(0.111) 

Ln(private_car)     
0.086*** 
(0.012) 

0.078*** 
(0.015) 

Ln(time)      
0.035** 
(0.016) 

constant 
-2.128*** 
(0.017) 

-2.533*** 
(0.062) 

-2.296*** 
(0.109) 

-2.362*** 
(0.092) 

-2.693*** 
(0.140) 

-2.564*** 
(0.154) 

Estimation method FGLS FGLS FGLS FGLS FGLS FGLS 
AIC -1.377 -1.506 -1.491 -1.730 -1.942 -1.889 
BIC -1.352 -1.469 -1.442 -1.668 -1.868 -1.802 
MAE 0.528 0.466 0.476 0.472 0.379 0.361 
RMSFE 0.408 0.339 0.368 0.326 0.238 0.224 

Note: 1) standard errors in parentheses. 

2) ***, ** and * represent significant at 1%, 5% and 10% levels respectively. 
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Table 5: Estimates of Power MACC 

Dependent 
variable: ln_MAC 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Ln(Cintens) 
-0.273*** 
(0.024) 

-0.397*** 
(0.029) 

-0.296*** 
(0.033) 

-0.245*** 
(0.026) 

-0.266*** 
(0.042) 

-0.268*** 
(0.042) 

Ratio_heavy  
1.146*** 
(0.102) 

0.838*** 
(0.105) 

0.238*** 
(0.092) 

0.623*** 
(0.131) 

0.560*** 
(0.142) 

Ratio_coal   
-0.163*** 
(0.142) 

-0.218** 
(0.092) 

-0.360** 
(0.143) 

-0.330** 
(0.148) 

Ratio_urban    
1.170*** 
(0.097) 

0.831*** 
(0.108) 

0.669*** 
(0.111) 

Ln(private_car)     
0.084*** 
(0.012) 

0.084*** 
(0.014) 

Ln(time)      
0.024 

(0.016) 

constant 
-2.002*** 
(0.028) 

-2.686*** 
(0.068) 

-2.489*** 
(0.128) 

-2.489*** 
(0.093) 

-2.793*** 
(0.143) 

-2.663*** 
(0.158) 

Estimation method FGLS FGLS FGLS FGLS FGLS FGLS 
AIC -1.485 -1.636 -1.552 -1.713 -1.951 -1.894 
BIC -1.460 -1.599 -1.502 -1.651 -1.876 -1.807 
MAE 0.525 0.442 0.447 0.470 0.375 0.352 
RMSFE 0.398 0.306 0.330 0.320 0.232 0.215 

Note: 1) standard errors in parentheses. 

2) ***, ** and * represent significant at 1%, 5% and 10% levels respectively. 
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Table 6: Scenario Setting 
Scenarios Scenario descriptions 

 
 

Business As Usual 
scenario 

• The share of heavy industry: decreases 0.5% per year for 
2011-2015, and decreases 0.5% per year for 2016-2020. 
• The share of coal consumption: decreases 3% for 2011-2015 and 
decreases further 5% for 2016-2020. 
• The urbanization ratio: increases 4% for 2011-2015 and increases 
4% for 2016-2020. 
• Private-owned car ownership: increases 15% per year for 
2011-2015 and increases 10% per year for 2016-2020. 
 

 
 

Fast Development 
scenario 

 

• The share of heavy industry: decreases 0.5% per year for 2011-2015 
and decreases 1% per year for 2016-2020. 
• The share of coal consumption: decreases 5% for 2011-2015 and 
decreases further 5% for 2016-2020. 
• The urbanization ratio: increases 5% for 2011-2015 and increases 
5% for 2016-2020. 
• Private-owned car ownership: increases 15% per year for 
2011-2015 and increases 15% per year for 2016-2020. 
 

 
 

Slow Development 
scenario 

 

• The share of heavy industry: maintains 2010 level for 2011-2015 
and decreases 0.5% per year for 2016-2020. 
• The share of coal consumption: decreases 3% for 2011-2015 and 
decreases further 3% for 2016-2020. 
• The urbanization ratio: increases 4% for 2011-2015 and increases 
3% for 2016-2020. 
• Private-owned car ownership: increases 10% per year for 
2011-2020. 
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Table 7: Simulated MAC of CO2 Reduction in China 

 Marginal abatement cost (Yuan) Growth rate compared to 2005 level 

 BAU FD LD BAU FD LD 

40% 1673 1693 1658 52% 54% 51% 

45% 1702 1722 1687 55% 57% 54% 

Note: the average provincial marginal abatement cost is 1099 Yuan in 2005. 
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Figure 1: LOWESS Smoother 
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Figure 2. Kernel Density of the Shadow Price Estimates 
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Figure 3: MACC in Quadratic Functional Form 
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Figure 4: MACC in Logarithmic Functional Form 
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Figure 5: MACC in Exponential Functional Form 
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Figure 6: MACC in Power Functional Form 
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