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1 Introduction and Existing Literature

Interbank markets allow banks to exchange central bank money in order
to share liquidity risks.1 At the macro level, however, a high number of bank
connections could give rise to systemic risk.2 Since it is well known that
the structure of a network is important for its resilience,3 policymakers need
information on the actual topology of the interbank network.

The experiences of the last few years have made policymakers aware of
the necessity of gathering information on the structure of the �nancial net-
work in general and the interbank market in particular.4 One reason for the
previous scarcity of research on the connections between �nancial institu-
tions is certainly the limitation of available data,5 the other reason being the
neglect of the internal structure of the �nancial system by the dominating
paradigm in macroeconomics during the last quarter of a century.6

Recent research in the natural sciences has signi�cantly advanced our un-
derstanding of the structure and functioning of complex networks. Network
ideas have been applied to very diverse areas and data sets such as the inter-
net, epidemiology, ecosystems, scienti�c collaboration and �nancial markets,
to name a few.

Most previous studies on the topology of interbank markets have been
conducted by physicists applying measures from the natural sciences to a
network formed by interbank liabilities. Examples include Boss et al. (2004)
for the Austrian interbank market, Inaoka et al. (2004) for the Japanese
BOJ-Net, Soramäki et al. (2006) for the US Fedwire network, Bech and
Atalay (2010) for the US Federal funds market, and De Masi et al. (2006)
and Iori et al. (2008) for the Italian e-MID (electronic market for inter-
bank deposit). Overall, the most important �ndings of this literature are:
(1) interbank networks are sparse, i.e. their density is relatively low,7 (2) de-
gree distributions appear to be scale-free (with coe�cients between 2-3),8 (3)

1See Ho and Saunders (1985), Freixas et al. (2000) and Allen and Gale (2000).
2Systemic risk is closely related to �nancial contagion, see de Bandt and Hartmann

(2000), and implies that an idiosyncratic shock causing the failure of one or few institutions
may destabilize the entire system.

3See also Allen and Gale (2000).
4See Haldane (2009), Haldane and May (2011) and Trichet (2011).
5See Mistrulli (2007).
6See Colander et al. (2009) for a more general critique.
7The density of a network is simply the fraction of existing links, relative to the maxi-

mum possible number of links. Ignoring the diagonal elements, the density can be calcu-
lated as M/(N2 −N), with M being the number of observed links and N the number of
active nodes (banks).

8The in-degree is the number of incoming links, while the out-degree is the number of
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transaction volumes appear to follow scale-free distributions as well, (4) clus-
tering coe�cients are usually quite small, (5) interbank networks are close
to `small world' structures, and (6) the networks show disassortative mixing,
i.e. high-degree nodes tend to trade with low-degree nodes, and vice versa.9

This indicates that small banks tend to trade with large banks, but rarely
among themselves. Thus, we might expect the interbank network to display
some sort of hierarchical community structure.

In passing, many authors have indeed remarked that there seemed to be
some kind of community structure in the interbank network they analyzed.
For example, Boss et al. (2004) note that the Austrian interbank network
shows a hierarchical community structure that mirrors the regional and sec-
toral organization of the Austrian banking system. Soramäki et al. (2006)
show that the network includes a tightly connected core of money-center
banks to which all other banks connect. Thus there is some form of tier-
ing in the interbank market. The empirical �ndings of Cocco et al. (2009)
also show that relationships between banks are important factors to explain
di�erences in interest rates.

Identifying communities in networks is an important aspect and in this
paper we are concerned with the identi�cation of the set of arguably system-
ically important (core) banks. In order to do so, we estimate various versions
of core-periphery models in the spirit of Borgatti and Everett (2000).10 Sim-
ilar to De Masi et al. (2006) and Iori et al. (2008) we use data from the
Italian e-MID trading platform, which is a market for unsecured deposits vir-
tually covering the entire domestic overnight deposit market in Italy. Core-
periphery models have been applied in a number of interesting �elds be-
fore, for example to identify the spreaders of sexually transmitted diseases
(see Christley et al. (2005)), in protein interaction networks (see Luo et al.
(2009)), and to identify opinion leaders in economic survey data (see Stolzen-
burg and Lux (2011)). To our knowledge, Craig and von Peter (2010) is the
�rst and so far only contribution applying a core-periphery structure to an
interbank market. Applying this core-periphery framework to a data set of
credit relationships between German banks,11 their results speak in favor of

outgoing links per bank.
9Quite interestingly, the conventional explanation of the scale-free degree distribution

is that of preferential attachment. Note that this is rather the opposite of disassortative
mixing.

10Another interesting approach in using network-based measures for �nancial regulation
is presented in Markose et al. (2010). The authors construct a so-called super-spreader
tax based on eigenvector centrality.

11The authors use comprehensive statistics from the so-called `Gross- und Millionenkred-
itstatistik' (statistics on large loans and concentrated exposures) from the Deutsche Bun-
desbank. In Germany, �nancial institutions have to report (on a quarterly basis) their
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a very stable set of core banks. Furthermore, they show that core mem-
bership can be predicted using bank-speci�c features such as balance sheet
size.12 In this paper we will apply the (unrestricted) discrete core-periphery
model, the (restricted) tiering model due to Craig and von Peter (2010) as
well as symmetric and asymmetric versions of a continuous core-periphery
model (hitherto not applied to interbank data) to a di�erent set of interbank
market data. Using a detailed dataset containing all overnight interbank
transactions in the Italian interbank market from January 1999 to December
2010, we �nd that a core-periphery structure provides a better �t for these
interbank data than alternative network models. The identi�ed core shows a
high degree of persistence over time, consisting of roughly 28% of all banks
before the global �nancial crisis and 23% afterwards. We can classify the
majority of core banks as intermediaries, i.e. as banks both borrowing and
lending money in the market. Furthermore, allowing for asymmetric `core-
ness' with respect to lending and borrowing activity considerably improves
the �t, and reveals more concentration in borrowing than lending activity
of money center banks. We also shed light on the development during the
�nancial crisis of 2008, �nding that the reduction of interbank lending was
mainly due to core banks' reducing their numbers of active outgoing links.

The remainder of this paper is structured as follows: section 2 gives a
brief introduction into necessary terminology for the formalisation of (in-
terbank) networks, section 3 introduces the Italian e-MID interbank data
and highlights some of its important properties. Section 4 introduces dif-
ferent variants of the core-periphery model. Section 5 presents the results
and di�erent robustness checks. Section 6 discusses the �ndings and section
7 concludes. A set of appendices provides more technical details as well as
further robustness checks.

2 Networks

A network consists of a set of N nodes that are connected by M edges
(links). Taking each bank as a node and the interbank positions between
them as links, the interbank network can be represented as a square matrix
of dimension N × N (data matrix, denoted D).13 An element dij of this

total exposure to each counterparty to whom they have extended credit of at least 1.5
million Euros or 10% of their liable capital to the Bundesbank. These reports include
outstanding claims of any maturity.

12We cannot carry out such an analysis since we do not observe bank IDs, see below.
13In the following, matrices will be written in bold, capital letters. Vectors and scalars

will be written as lower-case letters.
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matrix represents a gross interbank claim, the total value of credit extended
by bank i to bank j within a certain period. The size of dij can thus be seen as
a measure of link intensity. Row (column) i shows bank i's interbank claims
(liabilities) towards all other banks. The diagonal elements dii are zero, since
a bank will not trade with itself.14 O�-diagonal elements are positive in the
presence of a link and zero otherwise.

Interbank data usually give rise to directed, sparse and valued networks.15

However, much of the extant network research ignores the last aspect by
focusing on binary adjacency matrices only. An adjacency matrix A contains
elements aij equal to 1, if there is a directed link from bank i to j and 0
otherwise. Since the network is directed, both A and D are asymmetric in
general. In this paper, we also take into account valued information by using
both the raw data matrix as well as a matrix containing the number of trades
between banks, denoted as T. In some cases it is also useful to work with the
undirected version of the adjacency matrices, Au, where auij = max(aij, aji).

As usual, some data aggregation is necessary to represent the system as a
network. In the following, we use quarterly networks. The next section sum-
marizes the most important properties of our data, more detailed information
can be found in Finger et al. (2012).

3 Dataset

The Italian electronic market for interbank deposits (e-MID) is a screen-
based platform for trading of unsecured money-market deposits in Euros, US-
Dollars, Pound Sterling, and Zloty operating in Milan through e-MID SpA.16

The market is fully centralized and very liquid; in 2006 e-MID accounted for
17% of total turnover in the unsecured money market in the Euro area.
Average daily trading volumes were 24.2 bn Euro in 2006, 22.4 bn Euro in
2007 and only 14 bn Euro in 2008.

Available maturities range from overnight up to one year. Most of the
transactions are overnight. While the fraction was roughly 80% of all trades
in 1999, this �gure has been continuously increasing over time with a value of

14This is of course only true when taking banks as consolidated entities. There are,
however, important examples of self-referential networks: the typical node in a connection
matrix of the brain represents a group of neurons; in citation networks authors cite articles
appearing in the same journal. See Boyd et al. (2010) for a discussion.

15Directed means that di,j 6= dj,i in general. Sparse means that at any point in time the
number of links is only a small fraction of the N(N −1) possible links. Valued means that
interbank claims are reported in monetary values as opposed to 1 or 0 in the presence or
absence of a claim, respectively.

16The vast majority of trades (roughly 95%) is conducted in Euro.
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more than 90% in 2010.17 As of August 2011, e-MID had 192 members from
EU countries and the US. Members were 29 central banks acting as market
observers, 1 ministry of �nance, 101 domestic banks and 61 international
banks. We will see below that the composition of the active market partici-
pants has been changing substantially over time. Trades are bilateral and are
executed within the limits of the credit lines agreed upon directly between
participants. Contracts are automatically settled through the TARGET2
system.

The trading mechanism follows a quote-driven market and is similar to a
limit-order-book in a stock market, but without consolidation. The market
is transparent in the sense that the quoting banks' IDs are visible to all other
banks. Quotes contain the market side (buy or sell money), the volume, the
interest rate and the maturity. Trades are registered when a bank (aggressor)
actively chooses a quoted order. The platform allows for credit line checking
before a transaction will be carried out, so trades have to be con�rmed by
both counterparties. The market also allows direct bilateral trades between
counterparties.

The minimum quote size is 1.5 million Euros, whereas the minimum trade
size is only 50,000 Euros. Thus, aggressors do not have to trade the entire
amount quoted.18 Additional participant requirements, for example a certain
amount of total assets, may pose an upward bias on the size of the partic-
ipating banks. In any case, e-MID covers essentially the entire domestic
overnight deposit market in Italy.19

We have access to all registered trades in Euro in the period from Jan-
uary 1999 to December 2010. For each trade we know the two banks' ID
numbers (not the names), their relative position (aggressor and quoter), the
maturity and the transaction type (buy or sell). As mentioned above, the
majority of trades is conducted overnight and due to the global �nancial cri-
sis (GFC) markets for longer maturities essentially dried up. We will focus
on all overnight trades conducted on the platform, leaving a total number
of 1,317,679 trades. The large sample size of 12 years allows us to analyze
the network evolution over time. Here we focus on the quarterly aggregates,
leaving us with 48 snapshots of the network.

17This development is driven by the fact that the market is unsecured. The recent
�nancial crisis made unsecured loans in general less attractive, with stronger impact for
longer maturities. See below. It should be noted, that there is also a market for secured
loans called e-MIDER.

18The minimum quote size could pose an upward bias for participating banks. It would
be interesting to check who are the quoting banks and who are the aggressors. Furthermore
it would be interesting to look at quote data, as we only have access to actual trades.

19More details can be found on the e-MID website, see http://www.e-mid.it/.

6



The left panel of Figure 1 shows the development of the number of active
banks over time. We see a clear downward trend in the number of active
Italian banks over time (green line), whereas the additional large drop after
the onset of the GFC is mainly due to the exit of foreign banks. The right
panel shows that the decline of the number of active Italian banks went along
with a relatively constant trading volume in this segment until 2008. This
suggests that the decline of active Italian banks was mainly due to mergers
and acquisitions within the Italian banking sector. The overall upward trend
of trading volumes was due to the increase of active foreign banks until 2008,
while their activities in this market virtually faded away after the onset of
the crisis.

The data show a trivial community structure in that foreign banks tend
to trade with each other preferentially, and so do Italian banks. Due to
the limited extent of trading between both components, and the smaller
number of foreign banks, we will focus on Italian banks only in our subsequent
analysis. This leaves a total number of 1,215,759 trades for the analysis.
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Figure 1: Number of active banks (left) and traded volume (right) over
time. We also split the traded volume into money lent by Italian
and foreign banks, respectively.

Other important �ndings are:

• The e-MID network has a relatively high density compared to other
interbank networks investigated in the literature.20 See Figures 1 and

20Note that the density in the German interbank network is smaller for two reasons:
�rst, the number of active banks is much larger, so it is more likely to observe missing
links. Second, in our analysis we focus on overnight trades only, while Craig and von Peter
(2010) use aggregate credit volumes of all maturities (probably only with a small fraction
of overnight trades). It seems plausible that the probability of observing a link between
any two banks should be inversely related to the maturity of the loan.
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Figure 2: Density of the network over time, calculated as Mt/(N
2
t − Nt),

with Mt being the number of observed links and Nt the number
of active banks in the respective quarter. A Chow-test indicates
that there is a structural break after quarter 39 at all sensible
signi�cance levels for the Italian banks. A CUSUM-test also indi-
cates a structural break, however, the time series seems to revert
towards its pre-GFC level.

2. For the density of the network formed by Italian banks, a Chow-test
and a CUSUM-test both indicate that there is a structural break after
quarter 39 (i.e. at the onset of the �nancial crisis). Later on, we will
see that the core-periphery structure was also in�uenced by the GFC.

• The aggregation period is important for economic applications as the
network structure is less volatile with longer aggregation periods. Since
the network is sparse, short periods will only give an incomplete image
of existing linkages, where many links between otherwise frequent trad-
ing partners may be dormant. In order to obtain a more comprehensive
and less random picture of existing links, a larger aggregation period
is required. We will, therefore, use quarterly data in the following (but
results are robust to somewhat shorter or larger aggregation periods).

• There is very small (at times even negative) correlation between the
banks' in- and out-degrees. Hence, the directed version of the network
might contain important additional information.

• The underlying distributions of in- and out-degrees are apparently not
scale-free at any aggregation level (including the daily level), cf. Finger
et al. (2012). The same holds for transaction volumes.
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• The network shows disassortative mixing patterns, so nodes with high
overall degree (number of connections) tend to connect with low-degree
nodes. We �nd similar assortativity coe�cients for the relation between
in- and out-degree, so high in-degree (out-degree) nodes tend to connect
to low out-degree (in-degree) nodes.

In the next section, we will describe the di�erent versions of the core-
periphery model in detail.

4 Models

Core-periphery network models have been proposed �rst by Borgatti and
Everett (2000). The basic idea is that a network can be divided into sub-
groups of core and periphery members. The discrete model partitions banks
such that core (periphery) banks are maximally (minimally) connected to
each other. The concept of discrete group membership can be extended by
considering the core and periphery as opposite ends of a continuum. The
continuous model overcomes the excessive simplicity of the discrete parti-
tioning, by assigning a `coreness' level to each bank. In the following we will
�rst present the discrete model, with the tiering model proposed by Craig and
von Peter (2010) as a special case, and then move on to the asymmetric con-
tinuous model for directed networks due to Boyd et al. (2010). Throughout
the following we assume that a network cannot have more than one core.21

4.1 The Discrete Model

4.1.1 Formalisation

To identify the Nc core members among our sample of N banks, we
aim at sorting the binary adjacency matrix such that we have the core-core
region as a 1-block in the upper left part (of dimension Nc × Nc) and the
periphery-periphery region as a 0-block in the lower right part (of dimension
(N −Nc)× (N −Nc)). The idealized pattern matrix (PI) for a `pure' core-
periphery segmentation, then, looks as follows:22

PI =

(
CC CP
PC PP

)
=

(
1 CP

PC 0

)
, (1)

where 1 and 0 denote submatrices of ones and zeros.

21Everett and Borgatti (2000) include the possibility of multiple cores.
22The diagonal elements will be ignored in all that follows, since the network is not

self-referential.

9



The CC-block contains the top-tier banks, while the PP-block contains
the periphery. Note that the o�-diagonal blocks may be 1-blocks (each core
member connected to all periphery-nodes), 0-blocks (no connection between
core and periphery members) or something in between, depending on the
problem. Borgatti and Everett (2000) claim that only the diagonal blocks
are characteristic of CP structures and are thus the de�ning property. We
will denote this version, without any restrictions on the o�-diagonal blocks,
as the discrete model.

In some cases however, the underlying model explicitly dictates require-
ments on the CP and PC blocks. For instance, Craig and von Peter (2010)
propose a more strictly tiered interbank market than the benchmark discrete
structure. In this model, a key characteristic of core banks (top tier) is that
they intermediate between periphery banks. If at least a minimum level of
intermediation activity is required of a `core' bank, this means that CP and
PC have to be row- and column-regular,23 respectively, i.e. at least one entry
has to be non-zero in each row of CP and in each column of PC.

4.1.2 Optimization Problem

The discrete core-periphery framework amounts to assigning to each bank
the property of membership in the core or the periphery. This classi�cation
can be summarized in a vector c of zeros and ones of length N (the total
number of banks). The usual approach to �nd the optimal coreness vector,
c, referred to as the minimum residual (MINRES) approach, is to �t a pattern
matrix P = cc′, which should be as close as possible to the observed network
matrix A. This requires to identify the core banks, which are unknown a
priori.

We start by de�ning a coreness vector, ordering the core banks �rst and
writing the set of core members as C = {1, · · · , Nc}.24 Then we can measure
the `�t' of the corresponding core-periphery structure as the total number
of inconsistencies between the observed network and the idealized pattern
matrix PI of the same dimension. Depending on the problem, the distance
involves certain restrictions on the o�-diagonal blocks, CP and PC. The
optimal partition C∗ thus minimizes the residuals and gives the optimal set
of core banks.

Residuals are obtained by simply counting the errors in each of the four
blocks of Eq. (1) and aggregating over the blocks. The core-core block should

23See Doreian et al. (2005).
24Note that in order to have a core, Nc has to be ≥ 2. Also note the di�erence between
C and c: C is the set of core banks and thus is a vector of dimension Nc, while c is a vector
of zeros and ones. Of course, both C and c carry the same information.
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be a complete 1-block of dimension Nc, so any missing link represents an in-
consistency (residual) with respect to the model.25 Likewise any link between
two periphery banks constitutes an error relative to the benchmark. Obvi-
ously, we can introduce any constraints on the o�-diagonal blocks, so the tier-
ing model can be easily implemented here as well: errors in the o�-diagonal
blocks penalize zero rows and columns, because these are inconsistent with
row- and column-regularity, respectively. For example, a zero column could
be penalized by as many errors as there are banks in the periphery (N−Nc).

For the general version of the discrete model with arbitrary o�-diagonal
blocks, the aggregate errors in the individual blocks can be written as

E(C) =

(
ECC ECP

EPC EPP

)
=

(
Nc(Nc − 1)−

∑
i,j∈C aij 0

0
∑

i,j 6∈C aij

)
. (2)

The total error score (e) then simply aggregates the errors across the relevant
blocks, normalized by the total number of links in the network.26 Formally
this can be written as

e(C) =
ECC + ECP + EPC + EPP

M
=
ECC + EPP

M
, (3)

with e(·) being a function of C since every possible partition is associated
with a particular value of e.

For the tiering model proposed by Craig and von Peter (2010), the ag-
gregate errors in the o�-diagonal blocks can be calculated as

ECP = (N −Nc)
∑
i∈C

max(0, 1−
∑
j 6∈C

aij) (4)

and
EPC = (N −Nc)

∑
j∈C

max(0, 1−
∑
i 6∈C

aij), (5)

respectively, leading to additional non-zero entries in e(C).
The optimal partition C∗ is the set of core banks producing the smallest

distance to an idealized pattern matrix of the same dimension, i.e.

C∗ = arg min e(C) = {C ∈ Ω|e(C) ≤ e(C)∀C ∈ Ω}, (6)

where Ω denotes all strict and non-empty subsets of the population {1, · · · , N}.
It should be noted, however, that the discrete approach implicitly assumes

25The maximum number of possible inconsistencies in this block would be Nc(Nc − 1)
since the main diagonal is ignored. This upper bound is obviously never reached since
otherwise there would be no core-periphery structure.

26Note thatM is the maximum error possible in a network consisting only of a periphery.

11



symmetry of the underlying structure (or irrelevance of the direction of links).
Therefore, in Section 4.2 we will turn to a continuous core-periphery model,
which explicitly takes the directed nature of the network into account, char-
acterizing coreness by two vectors rather than one.

4.1.3 Implementation

Fitting the discrete and the tiering model to a real-world network is a large
scale problem in combinatorial optimization. Exhaustive search becomes im-
practical for large matrices, since the number of possible labeled bipartitions
increases exponentially with the dimension of the matrix. More precisely,
the number of nontrivial bipartitions (with both the core and the periphery
having at least two members) is 2N−2N−2. The term 2N corresponds to the
number of all possible subsets, while the negative terms exclude partitions
with only core or periphery banks. For example, with N = 10 banks there
are 1002 nontrivial possible bipartitions. For a system with N = 100 banks
there are already roughly 1030 partitions.

A number of algorithms have been applied to tackle such problems. We
will use a Genetic Algorithm (GA) to �t both the discrete and the tiering
model.27 A GA uses operations similar to genetic processes of biological
organisms to develop better solutions of an optimization problem from an
existing population of (randomly initiated) candidate solutions. Typically
the proposed solutions are encoded in strings (chromosomes) mostly using a
binary alphabet, i.e. in our setting the strings have length N and consist of
ones and zeros, depending on whether a bank is in the core or periphery. We
use the rate of correct classi�cations (in terms of the error score) by a string
l, fl = 1 − e(Cl) as a �tness function that drives the evolutionary search.
Details are explained in Appendix A.1.

4.2 The Continuous Model

4.2.1 Basic Structure

One limitation of the partition-based approach presented above is the
excessive simplicity of de�ning just two homogeneous classes of nodes: core
and periphery. Assuming that the network data consist of continuous val-
ues representing strengths or capacities of relationships (for banking data:

27We cross-checked the results using the sequential algorithm applied in Craig and von
Peter (2010). Alternatives would be the Kerninghan-Lin Algorithm (Kernighan and Lin
(1970)), see Boyd et al. (2006) for an application, and Branch-and-Bound Programming,
see Brusco (2011).
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credit volumes or number of transactions), it seems sensible to also consider
a continuous model in which each node is assigned a measure of `coreness'.
Since a continuous measure of coreness allows for more �exibility in captur-
ing the role of an institution, we apply this model to the valued matrix D of
interbank liabilities rather than the binary adjacency matrix A.

The usual approach in the symmetric continuous (SC) model is to �nd
a coreness vector c, where 1 ≥ ci ≥ 0 ∀i, with pattern matrix P = cc′

that approximates the observed data matrix as closely as possible. Simi-
lar to the presentation of the discrete model, the optimal coreness vector in
the symmetric continuous (SC) model can be found using the MINRES ap-
proach.28 Again however, this method imposes a symmetric pattern matrix,
i.e. pij = pji ∀i, j. Thus, it is assumed that the strength of the relation from
i to j is the same as that from j to i. To overcome this restriction, we also es-
timate an asymmetric continuous (AC) core-periphery model, as introduced
by Boyd et al. (2010). This formulation involves two vectors, representing
the degrees of outgoing and incoming centrality for each node. For networks
of international trade, for example, the two vectors would correspond to ex-
ports and imports, respectively. In our setting, the two vectors correspond to
out- and in-coreness. Note that both the SC and AC model can be applied
to valued matrices, with binary adjacency matrices being just a special case.
Thus the continuous models might allow us to extract important additional
information from the directed, valued networks. However, a disadvantage of
the continuous models is that restrictions, such as the tiering model, can-
not be implemented. In the following, we will brie�y introduce both model
versions. More details on the AC model can be found in Appendix A.3.

4.2.2 The Symmetric Continuous (SC) Model

The SC model will again be estimated by minimization of residuals. MIN-
RES seeks a column vector c such that the square matrix D is approximated
by the pattern matrix P = cc′. Ignoring the diagonal elements, this amounts
to minimizing the sum of squared di�erences of the o�-diagonal elements, or

arg min
c

∑
i

∑
j 6=i

(dij − cicj)2. (7)

In the same spirit as with our optimization algorithm in the discrete case,
we use the proportional reduction of error (PRE) as our measure of �t. PRE

28An interesting alternative approach, based on the Kullback-Leiber distance, can be
found in Muñiz and Carvajal (2006) and Muñiz et al. (2011).
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is de�ned as

PRE(cc′|〈D〉) = 1− SS(D− cc′)
SS(D− 〈D〉)

, (8)

with 〈D〉 being the global average (across all elements, excluding the diag-
onal) of D and SS(·) is the sum of squared deviations of the o�-diagonal
elements of the input matrix. Thus, maximizing the PRE is equivalent to
minimizing SS(D − cc′). Boyd et al. (2010) argue that the continuous
core/periphery model makes a reasonable contribution towards explaining
empirical structures if the PRE signi�cantly exceeds 0.5. Note that the re-
ported coreness vectors in both the SC and AC model will be standardized
by the Euclidean norm of the optimal solution vectors.

4.2.3 The Asymmetric Continuous (AC) Model

The idea of the asymmetric continuous (AC) model is to decompose over-
all `coreness' into `out-coreness' and `in-coreness' (denoted by ui and vi in
the following), respectively. Applying this distinction allows us to write the
objective function for the AC model as

arg min
u,v

∑
i

∑
j 6=i

(dij − uivj)2. (9)

The optimal coreness vectors can be determined by �nding the roots of the
�rst-order conditions of Eq. (9).29 The PRE of the AC model can be de�ned
similarly as in Eq. (8) as

PRE(cc′|〈D〉) = 1− SS(D− uv′)
SS(D− 〈D〉)

. (10)

For both the SC and the AC models, we will, in order to adjust for the
skewness of the network matrices, log-transform the data matrix in the form
log(1 + D), where the factor 1 makes sure that zeros in the original matrix
remain zeros in the transformed matrix.30 Note that the split into in- and
out-coreness is germane to a singular value decomposition of our matrix D of
interbank liabilities. This similarity is exploited in the empirical estimation
of the vectors u and v. Our numerical approach for estimating these two
coreness vectors follows Boyd et al. (2010) and is detailed in Appendix A.3.

29This could be implemented by using standard algorithms for numerical optimization.
Here we used a trust-region algorithm.

30We also tried to �t the core-periphery models to the raw network matrices, however,
the high level of skewness in the data results in a very poor �t in general. These results
are hardly comparable to those presented below, see Appendix A.9.
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5 Results

This section presents and discusses the results from the di�erent versions
of the core-periphery framework. In the following, as noted above, we focus
on the quarterly networks formed by Italian banks only. Robustness checks,
using di�erent aggregation periods and sample banks can be found in the
Appendix.31 Recall that the discrete and tiering model use the (binary)
adjacency matrices A, while the continuous model uses the valued matrix of
transaction volumes D, as de�ned in section 2.32

As a �rst step, we compare the coreness vectors between the di�erent
models. It will become clear that the discrete and tiering model are almost
identical throughout. Later on, we show that the AC model contains impor-
tant information from the asymmetric nature of the network, since the in-
and out-coreness vectors are far from being perfectly correlated. Secondly, we
investigate the properties of the core/periphery banks. We �nd that the core
is large compared to the �ndings in Craig and von Peter (2010), but also very
persistent over time. Due to the high network density, we �nd that the error
scores are also much higher compared to the German market. In particular,
the model �t deteriorates over time due to the GFC. Formal tests suggest a
signi�cant worsening of the �t of the core-periphery model after the GFC,
pointing towards the breakdown some part of the core-periphery structure.
As a last step, we investigate the signi�cance of the results by comparing
the identi�ed cores and the corresponding error scores to the cores obtained
from random and scale-free networks, calibrated to share similar properties
as the observed ones along certain dimensions. Here we �nd that the identi-
�ed cores are signi�cant, i.e. the identi�ed core-periphery structure is not a
spurious network property.

5.1 Model Similarity

Table 1 presents selected correlations between the identi�ed coreness vec-
tors of the di�erent model versions. For each combination, we compute the
correlation between the (stacked) coreness vectors for the complete sample
period. Note that the discrete and tiering coreness vectors contain only
binary values, while the in- and out-coreness vectors contain real numbers.
Obviously the correlation between the cores in the discrete and tiering model

31Appendix A.6 discusses the �ndings for other aggregation periods, most importantly
for monthly and yearly networks. Appendix A.7 discusses the results when including
foreign banks to the analysis.

32Appendix A.8 discusses the results for the continuous model using the matrix contain-
ing the number of transactions T. Appendix A.9 discusses further robustness checks.
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is very high with a value of around .95.33 The same is true for the discrete
core and the out-coreness with a value of .73, whereas the correlation be-
tween the discrete core and the in-coreness is much smaller with a value of
.26.34 Core banks from the discrete model are therefore more likely to be
in the out-core of the continuous model as well, but not necessarily in the
in-core. This result seems rather surprising at �rst, since for example the
results from Cocco et al. (2009) suggest that small (periphery) banks are net
lenders, which o�er their excess liquidity to a preferred set of large (core)
banks. Our analysis shows that at least in the present data set, the pattern
of interbank linkages is more complex: again, periphery banks lend money
to a relatively small set of selected core banks, but the core banks in turn
tend to redistribute this liquidity not only among the other core banks, but
also among a larger part of the periphery. Technically, we �nd that the den-
sity in the CP-block is on average three times higher than the density in the
PC-block (see Figure 6 below), so for most core banks the out-degree clearly
exceeds the in-degree.35 Therefore, it is not surprising that the correlation
between the discrete and the out-coreness is higher than the correlation with
the in-coreness. This shows that there is a considerable amount of asymme-
try in the network, also captured by the negative correlation of -.08 between
the in- and out-coreness vectors, cf. Figure 3. We see that these relations are
rather stable. Interestingly, the correlation between in- and out-coreness was
always the smallest of these combinations, turning negative after 12 quarters
and remaining so for the rest of the sample period. This hints towards the
existence of di�erent subgroups in the core.

In the following we present more detailed results for the discrete and
tiering model, then moving on to the continuous model.

33Therefore, the correlations between the tiering core and the in-/out-coreness are not
presented here since they are very similar to those from the general discrete model.

34Interestingly, we see that the correlation between the coreness vectors from the (sym-
metric) discrete and the SC model is only .7578. One might expect that this is partly
driven by the fact that the input matrix is valued, rather than binary in the continuous
case. Estimating the continuous model with binary network matrices, however, yields very
similar results, see Appendix A.9, with a correlation of .7635. Thus, the main reason for
the low correlation between the two vectors lies in the objective function: the continuous
models approximate the complete matrix, while the discrete model focuses on the diagonal
blocks.

35This also explains the small (at times even negative) correlation between individual
banks' in- and out-degree.
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Models Correlation
Discrete Tiering .9526
Discrete Out-coreness .7267
Discrete In-coreness .2567
Discrete Sym. coreness .7578
In-coreness Out-coreness -.0809

Table 1: Correlations between individual coreness vectors of di�erent mod-
els. For each model, we stack the coreness vectors over the entire
sample period in a single vector. Then we compute the correlations
between each combination. Note that the discrete and tiering core-
ness consists of binary values, while the in-, out-, and symmetric
coreness vectors contain real numbers.
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Figure 3: Time-varying correlations between di�erent coreness vectors.
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Figure 4: Absolute size of the core over time. A Chow-test indicates that
there is a structural break for the detrended time series after quar-
ter 10, while there is no evidence for a signi�cant structural break
after quarter 39. An additional CUSUM test indicates that this
break is signi�cant at all sensible con�dence levels. We also note
a signi�cant level of autocorrelation in the detrended time series,
while the �rst di�erence of the original time series is stationary.

5.2 Discrete and Tiering Model

5.2.1 The Size of the Core and Periphery

We saw that the identi�ed cores in the discrete and tiering model are
highly correlated. In fact, Figure 4 shows that the sizes of their cores are
very similar over time. Note that the core in the discrete model is always
at least as large as the core in the tiering model. The reason lies in the
requirement that all core banks in the tiering model act as intermediaries,
which is not necessarily true for the discrete model, even though again the
vast majority of core banks acts as intermediaries in this case. Overall, the
di�erences between the two model versions consist of a few borderline cases.36

Note also the negative trend in the absolute size of the cores over time.
This is not surprising given that the number of active Italian banks has been
decreasing over time. Interestingly, a Chow-test indicates the existence of
a structural break in the (detrended) core sizes after quarter 10, with the
trend going back towards its initial level in the post-GFC period.37 The

36In cases where the row- and column-regularity constraints are binding, it may also
happen that core banks from the discrete model are part of the periphery in the tiering
model.

37Iori et al. (2007) also mention this structural break in the Italian interbank network
in quarter 10, however, without conducting formal tests. They relate this breakpoint to
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economic signi�cance of this result is, however, questionable as we see in
Figure 4 that a linear negative trend might �t the entire sample period quite
well, and we know that the sharp drop after quarter 39 was due to the
GFC. Given the overall trend in the number of active banks, it seems more
interesting to consider the relative size of the core compared to the complete
interbank network. Figure 5 shows that the relative size of the core is rather
stable over time, �uctuating around 28% before the GFC, and around 23%
afterwards. A Chow-test indicates that there is a structural break after
quarter 39. However, under a CUSUM test this break is only marginally
signi�cant at the 5% level for the discrete model, and insigni�cant for the
tiering model. Thus, there is some evidence that the GFC has led to a
structural break in the formerly relatively stable structure of intermediation
in the interbank market. However, we also see a positive trend in the core
sizes for the last 3 quarters of the sample period, so that the relative core size
seemed to revert to its pre-GFC level. Not surprisingly, the size of the core is
highly correlated with the density of the network (cf. Figure 2). We should
note that relative core sizes are very high compared to the value of 3% found
for the German interbank market by Craig and von Peter (2010). This is
driven by the very high overall network density of above 20%, compared to
only 0.61% for the German market.38

The left panel of Figure 6 shows the densities of the complete network and
the core-core and periphery-periphery subnetworks over time. Since results
are virtually the same for both models, we only display those of the baseline
discrete model39 with rather stable values for the pre-GFC period, but again
with a structural break after quarter 39 for all time series in the Figure. The
density in the CC-block is at least 2.5 times that of the entire network and
at least 6 times that of the PP-block. The right panel of Figure 6 shows the
densities in the o�-diagonal blocks. As already mentioned, the density in the
CP-block is three times higher than the corresponding density in the PC-
block. These values are very stable over time, and we do not �nd evidence
for a structural break.

two events: (1) o�cial and market interest rates changed their trend from positive to
negative, (2) the ECB tried to support economic growth by increasing the amount of
liquidity provided.

38Recall that the number of banks in the German market is roughly 1800, so the network
is at least 10 times larger than the Italian network. Thus it is not surprising, that the
density is much higher in the Italian case. Since the e-MID sample presumably contains
mainly large banks, our core might be the core of the overall banking network. See Figure
21 in Appendix A.2 for a network illustration for one particular quarter.

39Results from the tiering model are available upon request. We checked that the results
from the tiering model are statistically not distinguishable from the results of the discrete
model.
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Figure 5: Relative size of the core over time. A Chow-test indicates that
there is a structural break after quarter 39 at all sensible signi�-
cance levels. An additional CUSUM test indicates that this break
is marginally signi�cant at the 5% level.
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Figure 6: Density of the entire network, CC/PP blocks (left), and o�-
diagonal blocks (right). Individual Chow-tests indicate that there
is a structural break in the time-series in the left panel after quar-
ter 39 at all sensible signi�cance levels (see also Figure 2). Addi-
tional CUSUM-tests indicate that the structural breaks are sig-
ni�cant at all sensible signi�cance levels, with the PP-density ap-
parently containing an additional structural break around quarter
10. In contrast, we cannot reject the hypothesis of no structural
break in the time-series of the right panel.
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It Lt Bt Et

It−1 .8845 .0752 .0190 .0214
Lt−1 .2971 .6508 .0009 .0513
Bt−1 .3661 .0164 .4590 .1585
Et−1 .0049 .0038 .0028 .9885

Table 2: Transition matrix: trading strategies. I, L, B, and E denote in-
termediary, lender, borrower, and exit, respectively.

5.2.2 The Structure of the Core and Periphery

To gain more insights into the structure of the network, Figure 7 shows
the fraction of intermediaries, lenders and borrowers in the complete network
over time. Here we de�ne borrowers as banks with an out-degree of zero but
positive in-degree in a given quarter, whereas the reverse holds for lenders.
The remaining banks, with both positive in- and out-degree, are thus inter-
mediaries. We see that these fractions are relatively stable over time: most
of the banks (roughly 75%) act as intermediaries, a smaller fraction acts as
lenders (20%) and the remainder consists of sole borrowers. Interestingly,
the fraction of sole borrowers seems to increase signi�cantly after the GFC,
since we �nd a structural break after quarter 39. This may hint towards the
entry of banks who use the market only to attract funds. In contrast, there is
no signi�cant structural break for the fraction of intermediaries and lenders.
Table 2 shows the transition probabilities for each strategy, with It denoting
that a bank is an intermediary in t. L, B and E stand for lending, borrowing
and exit, respectively. The matrix shows, for example, that with a probabil-
ity of 88.45% an intermediating bank in t− 1 will also be an intermediary in
t. Note that the diagonal elements are largest, even though the borrowing
strategy is less persistent over time compared to the other strategies. This is
in line with the observation of a more intense entry of sole borrowers during
and after the GFC.

Figure 8 shows the fractions of intermediaries, lenders, and borrowers in
the core and periphery of the general discrete model. Again these results
are very similar to those of the tiering model: the fraction of intermediaries
in the core is highest, while the fraction of intermediaries in the periphery
is second highest. As expected, only very small fractions of borrowers and
lenders are found in the core (none in the tiering model), while banks that
appear only as borrowers are a signi�cant fraction (about 30 percent) of the
periphery.

To elucidate the stability of these structural properties, consider Table
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Figure 7: Fraction of intermediaries, lenders and borrowers over time. In-
dividual Chow-tests point towards the existence of a structural
break after quarter 39 in all time-series. Additional CUSUM-
tests, however, indicate that this structural break is only signi�-
cant for the fraction of borrowers.
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Figure 8: Structure of the core and periphery in the discrete model. Frac-
tions of intermediaries, borrowers and lenders, in the core and
periphery, respectively. Note: ICore=intermediaries in the core,
BCore=borrowers in the core, LCore=lenders in the core. Simi-
larly for the periphery.
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Ct Pt Et

Ct−1 .8324 .1565 .0110
Pt−1 .0555 .9055 .0391
Et−1 .0012 .0104 .9885

Table 3: Transition matrix: discrete model. C, P and E stand for core,
periphery and exit, respectively.

3 containing transition probabilities of the state of a bank for the discrete
model. For example, the �rst rows show the probabilities of a core bank
in t− 1 (Ct−1) being a core member in t, switching to the periphery (Pt) or
exiting the market (Et). There is some asymmetry in the Table, for example,
the probability of switching from the core to the periphery is roughly 15.6%,
while the reverse probability is only 5.5%. In particular, the diagonal entries
are very high with values above 80%, such that there is signi�cant persistence
(autocorrelation) in the group memberships.40

The above transition probabilities are aggregate values over the entire
sample period. To investigate the inherent structural stability, the values in
this matrix should be roughly constant over time. Figure 9 shows the time
evolution of these values for the discrete model. We see that the elements
on the main diagonal are quite stable over time and very large in general.
However P (C|C) becomes smaller due to the GFC simply because a num-
ber of core banks become part of the periphery, which can be seen by the
increase in P (P |C) to more than 20%. Again we emphasize that we do not
observe banks' names, so we are unable to track for example bank mergers
and acquisitions.

Besides the overall structural stability, one might also be interested in the
stability of the system at the micro-level of bilateral connections. In order
to assess the stability of the link structure in the di�erent blocks, we use the
so-called Jaccard Index. This is de�ned as

J =
M11

M01 +M10 +M11

, (11)

where Mxy is the number of relations with status x in period t − 1 and
with status y in the next period. It thus measures the similarity between
subsequent graphs, taking only links into account which were present in at
least one period. Social networks are usually considered to be su�ciently
stable for values of J larger than .3, in which case the network is likely to

40Note that the structure is very stable despite the existence of a structural break due
to the GFC after quarter 39, cf. section 5.5.
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Figure 9: Transition probabilities over time, discrete model. P (y|x) is the
probability of going from state x to state y.

display recognizable structure.41 For the complete Italian interbank network
we observe an average Jaccard Index of .5302 (std. dev.: .0368).42 When
calculating the Jaccard Index for the di�erent blocks, we restrict ourselves
to those banks having the same status of being a core/periphery bank in
the two adjacent quarters.43 Figure 10 shows the results: the Jaccard Index
is largest for the CC- and the CP-blocks with average values of .6273 and
.6565 (std. devs: .0366 and .0380), respectively, i.e. two thirds of all links
are maintained over adjacent quarters. These values are roughly 1.5 times
larger than those in the PC- and PP-blocks, with average values of .4261 and
.4241 (std. devs.: .0471 and .0622), respectively. Interestingly, we do not
�nd signi�cant evidence of a structural break due to the GFC in any of the
time series. Even though the values dropped for most of the time-series after
quarter 39 (except for the CP-block), the values tend to stabilize later around
the pre-GFC levels. This might indicate that many interbank relationships
tended to survive through the GFC.44

Overall, our calculations show that the outgoing links of core banks are
highly persistent, both with respect to the core and the periphery. Outgoing
links from the periphery are persistent as well, but to a signi�cantly lower
degree. Given that the Jaccard Index is independent of the density of the

41See Snijders et al. (2009).
42See Finger et al. (2012).
43Given that the coreness vectors are highly autocorrelated, this is not a very restrictive

assumption, but it is likely to reduce some noise in the calculated numbers.
44Cf. A�nito (2011) and Braeuning (2011) for related evidence on the robustness of

lending relationships over the crisis.
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network (non-existing links are ignored), these �ndings indicate that core
banks generally lend towards a large set of core and periphery banks. In
contrast, periphery banks are not only reluctant to create links among them-
selves, but also, given the relatively small density in the PC-block, trade with
a small set of core banks, which is not necessarily the same set in each quar-
ter. This �nding is interesting, since the persistence in the PC-block should
be much larger, if periphery banks would have a preferred partner among
the core banks. These �ndings may, however, be driven to some extent by
the relatively small trading volumes of periphery banks (see below). In any
case, the asymmetry between the CP- and PC-blocks is remarkable and will
be discussed in more detail below.
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Figure 10: Jaccard Index for the CC-, CP-, PC-, and PP-blocks over time.
Coreness is taken from the discrete model. Individual Chow-
and CUSUM-tests show no evidence of a structural break due
to the GFC in any of the time series. However, the CP- and
PP-blocks appear to contain a structural break after quarter 10.

5.2.3 Model Fit and Signi�cance

In this section we turn to a quantitative analysis of the error scores and
their signi�cance. When investigating the signi�cance of our results, we
compare the core sizes and error scores of the empirical networks with those
of network structures sharing similar properties along certain dimensions.
This analysis helps us evaluating whether the core-periphery structure o�ers
a meaningful characterization of our data or whether the data rather generate
a `spurious' core by chance.

The left panel of Figure 11 shows that the error scores (fractions of resid-
uals) are on average roughly 42%, which is rather high compared to the
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Figure 11: Left: Error score in tiering (blue) and discrete (green) model
over time. A Chow-test indicates that there is a structural break
after quarter 39 at all sensible signi�cance levels. The results
from an additional CUSUM-test are also in favor of the existence
of a structural break. Right: Error score for the CC- and the
PP-block in the discrete model. For the CC-block there is a
signi�cant structural break after quarter 10, while the PP-block
contains a signi�cant structural break after quarter 39.

maximum value of 12% for the German interbank market reported by Craig
and von Peter (2010). These values are, however, way below unity, so the
core-periphery model is indeed a better explanation of the data than an un-
structured alternative consisting only of a periphery. We also see that the
GFC made the �t somewhat worse, yielding an error score that is roughly
1.3 times the average score before the GFC, albeit with a declining trend.
A Chow-test and a CUSUM-test again indicate the existence of a structural
break after quarter 39 at all sensible signi�cance levels. The right panel of
Figure 11 shows that this structural break is mainly due to the increase in the
error score in the PP-block. In contrast, we �nd no evidence for a structural
break in the error score of the CC-block after quarter 39, but after quarter
10. Given that the relative core size has been signi�cantly smaller, the overall
picture is thus that some previous core banks have reduced their interbank
activities so strongly that they are assigned to the periphery after quarter
39. We will investigate the e�ect of the GFC in more detail in section 5.5.

In order to shed light on the signi�cance of the observed error scores, we
compute the average core size and error scores by generating 100 random
samples of particular network structures (see below) and compare the results
to our �ndings above. The analyzed networks are:

• Erdös-Renyi (ER) random graphs, where a link is formed with proba-
bility p. The value of p will be set equal to the observed density of the
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network. This network is completely random and we do not expect to
�nd a convincing core-periphery structure in this case. The error scores
should be relatively high, since identi�ed cores would be completely
spurious. Note that this is tantamount to a bootstrap test for the
signi�cance of our identi�ed core-periphery structures, as the random
graphs could also be generated by random resampling of the empirical
links (with replacement). If the error scores of the core-periphery model
are below a certain percentage boundary of those obtained for the sam-
ple of random networks, we could exclude with a signi�cance level equal
to the inverse of that probability, that our results are spuriously ob-
tained from a completely random system of interbank liabilities. As it
turns out, all error scores are always way below the minimum obtained
for the random networks.

• Scale-free random graphs, with scaling parameter 2.3.45 Even though
we found the degree distribution not to be scale-free, see Finger et al.
(2012), most interbank markets appear to have a certain resemblance of
their degree distributions to a scale-free distribution. Reported scaling
parameters vary between 2 and 3, but are roughly similar for in- and
out-degree. We generate these networks using the approach of Goh et
al. (2001). Note that scale-free networks are assortative by de�nition,
since high-degree nodes tend to connect with each other. Therefore we
expect the scale-free network to have a much tighter core and signi�-
cantly lower error scores.46

In the following we only discuss results from the discrete model to save
space.47 Most of the results were expected: all models show a structural
break due to the GFC. The actual error scores lie between those from a
completely random network (ER) and those of a scale-free network as can
be seen from the left panel of Figure 12, where we plot the actual error score
and the average error scores of the ER and scale-free networks (including plus
and minus one standard error for the simulated models). Not surprisingly,
the actual network is closer to a scale-free network even though the distance
seems to increase with the GFC.

The right panel of Figure 12 shows the core sizes for the actual and ran-
dom networks (again including one standard error for the simulated models).

45In actual interbank networks, the observed scaling parameters vary between 2 and 3.
Here we take the value found by De Masi et al. (2006).

46Interestingly, Craig and von Peter (2010) found that the error scores for the German
interbank market are signi�cantly smaller than for SF networks.

47Again we note that the results are almost identical to those from the tiering model.
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Figure 12: Error scores (left) and core sizes (right) in discrete model. Ac-
tual and random graphs. For the SF networks we used a scaling
parameter of α = 2.3.

We see that the observed core is signi�cantly larger than both the core of the
scale-free and ER networks. For the ER network, the core is spurious, while
it would capture the most highly connected nodes in the scale-free network
(although the core-periphery model would be a misspeci�cation of the overall
structure of such a network).

Overall, we �nd that we can reject the hypothesis that our �ndings are
just artifacts of applying the core-periphery algorithms to random data, and
we also �nd that the popular scale-free model could not have generated our
particular sets of identi�ed cores and �t of the model (error scores).

5.3 Continuous Model

We now move to the results from the continuous framework, mostly con-
centrating on the added explanatory power of the asymmetric version. We
have seen in Table 1 and Figure 3 that the in- and out coreness vectors are
mostly negatively correlated. Figure 13 shows a scatter-plot of the two vari-
ables, explicitly linking the �ndings to the results of the discrete model.48

Obviously, core banks have on average a higher in- and out-coreness. Indeed,
we see a relatively sharp distinction between core and periphery banks. Core
banks (red) are typically characterized by a sum of their in- and out-coreness
above .2, while this sum is lower for banks assigned to the periphery. For
both categories, there might be a dominance of lending and borrowing or a
more balanced composition of their transactions. The systemic importance
of a bank, in terms of its in- and out-coreness, is therefore not identical in

48Recall that the coreness values from the continuous model are standardized values.
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Figure 13: In-coreness vs. Out-coreness for all observations, by core and
periphery, as indicated by the discrete model.

general.49

In Figure 14, we show the time-varying autocorrelations of the two core-
ness vectors. The autocorrelations were calculated as the correlation between
two subsequent coreness vectors, using only banks that were active in both
periods. We see that both the in- and out-coreness vectors are highly auto-
correlated (average values: .8474 and .9186, respectively). We also calculated
cross-correlations between the two vectors, where In-Out (Out-In) is the cor-
relation between in-coreness in t− 1 (t) and out-coreness in t (t− 1). These
cross-correlations are signi�cantly lower with slightly negative average values
of -.0698 and -.0764, respectively. Thus, lagged values of one coreness vector
are not very informative for the expected value of the other coreness vector
in the next period.

An important question is by how much the �t of the model improves by
using the AC model rather than the SC model. As a rule of thumb, Boyd et
al. (2010) argue that the PRE of the SC model should be at least .5 in order
to have a superior �t to an unstructured distribution of activity. Here we
�nd values around .2 for the SC model, but higher values of around .58 for
the AC model (cf. Figure 15).50 Similar to the discrete and tiering models
above, the �t of the model deteriorates somewhat with the GFC, with lower
average values afterwards. In line with the previous �ndings for the discrete
and tiering model, the PRE of the AC model displays a structural break after

49An example of a �tted network matrix is shown in Appendix A.4.
50Obviously the �t has to be better in the AC model, since we have twice as many

parameters. Interestingly, the �t is mostly more than twice as good as the �t of the SC
model.
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Figure 14: Persistence of coreness vectors. The plot shows the autocorre-
lations and cross-correlations of the two vectors over time. The
autocorrelation is simply the correlation of the coreness vector
in t with the one in t − 1, using only the banks active in both
periods. The cross-correlations are the correlations between in-
coreness in t− 1 and out-coreness in t (In-Out), and vice versa
(Out-In).

quarter 39 (based on a Chow-test and a CUSUM test), but not in the SC
model.

In order to check the signi�cance of the PREs, we use a similar approach
as in the previous section on the discrete and tiering model, however, here
we use the (valued) network of interbank liabilities.51 Figure 15 compares
the PREs of the actual networks with the mean values from 100 realizations
of random ER and SF networks (again with scaling parameter 2.3) minus
and plus one standard deviation. As expected, the actual PREs of the SC
and AC models signi�cantly exceed those from the ER networks, which are
very low in general. In contrast, for the SF networks, the PREs of the SC
model are close to the actual ones, while this is not true for the AC model.52

This �nding underscores the observed asymmetries in the network, which
are absent from scale-free networks, where in- and out-degrees of individual

51In this approach, we generated random ER and SF networks as explained above.
Then, we randomly assigned observed transaction volumes from the actual networks (log-
transformed) to the random ones. The results are essentially identical with and without
replacement. Here we present the results without replacement.

52Note that the PREs of the AC model are always larger than those from the SC model,
both for the actual and the random networks (even though for the random networks
not always signi�cantly). This is driven by the higher number of parameters (degrees of
freedom) in the AC model.
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Figure 15: PRE for the SC and the AC model, actual and random graphs.
A Chow-test indicates that there is a structural break after quar-
ter 39 at all sensible signi�cance levels for the PRE of the AC
model. The results from an additional CUSUM-test are also in
favor of the existence of a structural break. The PRE of the SC
model appears to display an additional structural break after
quarter 10. For the SF networks we used a scaling parameter of
α = 2.3.

banks are highly correlated by construction.
In comparison with the closeness of the error scores of the empirical data

and their scale-free resamples in Figure 12, the consideration of the asym-
metries of the concentration of incoming and outgoing links shows the lim-
itations of the scale-free networks. While it appears reasonably similar to
a symmetric core-periphery framework, it falls back behind the asymmet-
ric continuous CP model at all levels of signi�cance. Since the �t of the
two-dimensional continuous approach (AC) is way better than that of the
one-dimensional continuous approach (SC), we conclude that the directed
version of the model contains important information about the structure of
the interbank market.

5.4 What De�nes a Core Bank?

In the following we will focus on the results from the discrete model.53

As a �rst step, we calculate the correlations between the coreness vectors
and di�erent observable variables (degree, size, and trading activity).54 It

53Again the results for the tiering model are very similar and available upon request.
54It would be interesting to analyze the interest rates charged in the di�erent blocks in

more detail. This is, however, beyond the scope of this paper. Here we just note that the
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Figure 16: Time-varying correlation between discrete coreness and in-
degree/out-degree/total degree. Total degree is the degree we
would obtain from transforming the directed network into an
undirected network.

would also be very interesting to forecast the coreness vectors based on non-
network-related observable variables, e.g. balance sheet size. Due to the
anonymity of the data, such an analysis is, unfortunately, not possible.

Figure 16 shows the correlation between the discrete coreness vectors and
the in-, out-, and total degree (total degree is the degree from the undi-
rected version of the network), respectively. The correlation is far higher for
out-degree compared to in-degree, and the former has practically the same
correlation with coreness as the total degree. Hence, it is the distribution
of liquidity rather than its absorption, that identi�es the core banks in our
sample.

We constructed similar measures for the individual sizes and the number
of transactions per bank, see Figures 17 and 18, respectively. We proxy the
bank size by the transaction volumes in a particular quarter.55 Here, in-size
contains the total volume of borrowing transactions (per quarter and per
bank), out-size the total volume of lending transactions and total size the

(volume-weighted) average interest rate charged in the CC-block exceeds that of all other
blocks (average value of 2.72% for the complete sample). Thus, it seems that core banks
price in the systemic importance of other core banks, while giving more favorable prices to
periphery banks (average value of 2.70%). Furthermore, the average interest rate charged
between periphery banks tends to be quite small as well (average value of 2.71%). Thus,
two periphery banks may grant each other more favorable prices as soon as they trade
with each other on a regular basis. Note that, due to the non-stationarity of the interest
rates, we checked the signi�cance by comparing the �rst di�erences.

55See De Masi et al. (2006).
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Figure 17: Time-varying correlation between discrete coreness and in-
size/out-size/total size as de�ned in the text.

sum of in-size and out-size. Similarly, the number of in-transactions (out-
transactions) is the number of borrowing (lending) transactions per bank.
The total number of transactions is the sum of the two. We �nd that the
core banks are signi�cantly larger and more active than periphery banks (un-
reported). However, the size measure appears to be a less reliable indicator
than the simple number of transactions, since it is far more volatile. Both
measures, however, con�rm again the dominant aspect of the out-direction
(lending activity) for the core membership of a bank.

We also constructed the same �gures for the continuous model, see Ap-
pendix A.5. As expected, the two coreness vectors can be better explained
based on the directed version of the network. Most importantly, the correla-
tion with the total degree is smaller compared to the correlation of in-coreness
with in-degree and out-coreness with out-degree, respectively. Again, the
correlations with the size measures are highly volatile.

We conclude that all measures point towards the lending activity as the
more relevant aspect of core banks' participation in the market. The much
lower relevance of their borrowing activity, then, explains why in- and out-
coreness vectors in the asymmetric model are virtually uncorrelated.

5.5 What Happened During the GFC?

In this section, we provide a more detailed analysis of the e�ects of a major
shock to the interbank network, namely the collapse of Lehman Brothers in
quarter 39. So far, our analysis shows that the GFC indeed had a substantial
impact on the network along many dimensions, in particular in terms of the
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Figure 18: Time-varying correlation between discrete coreness and number
of in- and out transactions. Total number of transactions is the
sum of the two.

goodness-of-�t of the core-periphery models. To investigate the e�ects of
the structural break in more detail, we split our sample into a short pre-
crisis period (quarters 37 and 38) and a post-crisis period (40 and 41).56

Interestingly, despite the clear negative trend in the number of active banks
during the complete sample period (cf. Figure 1), the actual number during
the analyzed subperiod is relatively stable with an average value of 98 banks.
Thus the network sizes during this particular period are comparable, which
allows to compare di�erent network-related measures. As a �rst step, we
will investigate network-related variables from a macro perspective. Then
we take a closer look at the behavior of one particular exemplary core bank
around the breakpoint.

As we have seen (cf. Figure 6), the GFC a�ected the block-structures of
the discrete and the tiering model: Core banks trade signi�cantly less with
each other (density in the CC-block smaller), and so do periphery banks
(density in the PP-block smaller). In contrast, there is no evidence for a
signi�cant structural break in the densities of the o�-diagonal blocks. Core
banks also tend to lend less money to the periphery (density in the CP-block
smaller), while there is no clear trend in the amount that peripheral banks
lend to the core, thus the periphery tends to maintain their links to the core
during and after the crisis. Given that the GFC, and the resulting tensions in
money markets, can be seen as the result of a crisis of con�dence, it comes as

56Of course one could argue that the pre-GFC period should be further away from the
breakpoint, however, here we are particularly interested in the network changes right at
the phase transition.

34



no surprise that core banks tend to reduce their risk exposure by cutting down
the number of links going both to core and periphery banks.57 Concerning
the market activity, we �nd that the total trading volumes (and also the
total number of trades) in the CC- and the CP-blocks dropped substantially
during the crisis, while it actually increased in the PP-block immediately
after the GFC but then dropped substantially. In contrast, after a sharp
drop of market activity in the PC-block right before the GFC, the total
amount of credit �owing from the periphery to the core actually increased
after the GFC.58 Thus it seems, that the crisis mainly a�ected the behavior of
core banks, which rather hoarded their liquidity than providing it to a large
number of other counterparties.59 In contrast, periphery banks tend to keep
(at times even expand) the number of outgoing links with core banks, while
reducing the exposure to the periphery. The �ndings on the Jaccard Index of
the PC-block (cf. Figure 10), however, indicate that periphery banks do not
necessarily lend money to the same core banks over time. Overall, from the
relatively stable Jaccard indices it appears that no major disruption of the
network pattern occurred (cf. section 5.2.2), but that the aggregate volume of
lending by core banks has declined substantially. Hence, most of the network
structure remained intact, but continued its operations at a much lower level
of activity. This �nding speaks in factor of a positive e�ect of relationship
lending that helped to prevent a complete collapse of the interbank market
after the onset of the �nancial crisis (as suggested by A�nito (2011), and
Braeuning (2011)).

To illustrate the generally observed tendencies, we picked the (core) bank
with the highest aggregate trading volume.60 During this period, the partic-
ular bank had an average in-degree of 30, while its average out-degree was
substantially higher with 64.61 These mean values, however, hide the dy-
namic development, since there was a sharp drop in the banks' out-degree
during the GFC (the maximum level pre-GFC was 80, the minimum level at
the end of the period is merely 32), while the in-degree actually increased
during the crisis (the minimum level pre-GFC was 15, the maximum level at

57Interestingly, the number of reciprocal links, i.e. the fraction of links pointing in both
directions, goes down due to the GFC. This is somewhat surprising, since we would expect
that bilateral relationship become closer in crisis times.

58The increase in the number of trades in the PC-block after the GFC is even more
impressive, ending up above the pre-GFC level.

59Interestingly, core banks lend more money than they borrow from the periphery, thus
the core is a net lender to the periphery.

60In fact, this bank (ID number `IT0278') was in the core during the complete sample
period.

61These numbers just underline the observed asymmetry between the CP- and PC-
blocks.
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Figure 19: In- and out-degrees of bank IT0278, by core and periphery. In-
core gives the number of incoming links from other core banks,
In-periphery the number of incoming links from periphery banks.
Out-core gives the number of outgoing links to other core banks,
Out-periphery the number of outgoing links to periphery banks.

the end of the period is 45). In Figure 19, we split up the bank's links into
outgoing links to core and periphery banks, respectively, and the same for
the incoming links during the period under study. We see that the bank had
reduced the number of outgoing links, both with core and periphery banks,
but it had increased the number of incoming links, in line with the overall
tendencies.62 Interestingly, while the bank was a net-lender during most of
the sample period, we see that the bank actually reversed its strategy during
the GFC, since it became a net-borrower afterwards (see Figure 20). Thus,
the bank tried to attract liquidity, mainly from periphery banks, since core
banks became reluctant to trade with other core banks.

Summing up, we conclude that the GFC both a�ected the behavior of
core and periphery banks: Periphery banks seem to have increased their
lending to the core, both in terms of the number of links and trading volumes.
In contrast, core banks have reduced their lending, not only to other core
banks, but also to the periphery. The decline in goodness-of-�t of the core-
periphery structure is therefore mostly due to a loosening of the core. Core
banks activated a smaller number of their previous outgoing links. Hence
they started to hoard liquidity rather than distributing it in the system.
Therefore, it seems that core banks tend to rely on the liquidity of periphery
banks during times of distress, while in `normal' times they would more freely
redistribute liquidity in the complete system.

62It would be interesting to see the quote data, rather than the transaction data. We
suspect, that many quotes are simply never executed during the GFC.
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Figure 20: Transaction volumes of bank IT0278. In-transactions gives
the total amount of credit borrowed by the bank, while Out-
transactions gives the total amount of credit lend by the bank
to other banks.

6 Discussion

The majority of studies on the structure of interbank networks has hith-
erto concentrated on the distribution of degrees. Many authors mention the
�nding of some form of community structure in the interbank market, sug-
gesting a tightly connected core of money-center banks.63 The �nding of a
core-periphery structure in the Italian interbank market can be seen as a
special case of community structure,64 where the core is a tightly connected
part of the network, and the periphery is the loosely connected component.65

Even though we only know of only one other study in this regard, it may
well be that the �nding of a core-periphery structure could be seen as a new
`stylized fact' of modern banking systems. As far as data are available, it
would be important to test this hypothesis in other interbank networks.

An important question is of course why we �nd a core-periphery structure
in the interbank market. In the literature on social network analysis, two
main explanations for the emergence of a core-periphery structure exist: (1)

63See Iori et al. (2006) and Soramäki et al. (2006).
64Note that communities are usually de�ned as very dense subgraphs, with few connec-

tions between them. The periphery is thus more of an anti-community.
65We also checked several standard community detecting algorithms for the Italian in-

terbank network. The main �nding is that, for the entire market, we �nd two separate
communities consisting of foreign and Italian banks, respectively. Interestingly, it is im-
possible to split these communities further into smaller subcommunities. Thus it seems
even more remarkable that we �nd a core-periphery structure in this market.
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`Superior' core members possess an intrinsic advantage over the `inferior'
periphery members, such that the core exerts power over the periphery.66

In order for a core-periphery structure to emerge, the advantage of the core
members must be re�ected in attributes a�ecting the linking behavior of
all agents.67 Then core agents would be able to translate their advantage
into a positional advantage in the social network.68 Transferring this idea
to banking networks, one encounters several problems. First, it is not clear
a priori which attributes might make core banks `superior' to the periphery.
We would also need to come up with an explanation why core banks share
attributes that periphery banks do not have. Note also that this de�nition
implies that it should be preferable for all banks to be part of the core, which
is not very plausible. For example, a small bank (in terms of its balance sheet)
would �nd it hard to intermediate between other core banks, simply because
it does not command a su�cient amount of funds to do so. Therefore, this
bank will always prefer being in the `inferior' periphery, where it still might
intermediate between other small banks. Furthermore, the general �nding of
disassortative mixing patterns in banking networks69 is not in line with the
power-based explanation, since core banks would then be reluctant to create
links with periphery agents. Nevertheless, if we de�ne power as the ability
of in�uencing the market, it may well be that it is an important driver for
the emergence of a core-periphery structure in the banking network.

(2) Core members have a comparative advantage in gathering (and spread-
ing) information about other members of the network.70 Thus, informa-
tion costs are higher for periphery-periphery relationships compared to core-
periphery relationships (in both directions). For the banking network, this
would mean that periphery banks have an incentive in cutting down the
number of links to other periphery banks, maintaining only a few links to
core banks. Core banks on the other hand connect among themselves and to
periphery banks.71 This explanation would not only be in line with the disas-

66See Persitz (2009).
67For example, in a scienti�c network, the core agents are the highly productive agents

being cited by many others. See Mullins et al. (1977).
68Persitz (2009) provides a formal model for a power-based core-periphery network. The

basic idea is that linking preferences are such that all agents prefer establishing links to
`superior' agents relative to `inferior' agents.

69See Finger et al. (2012).
70For banks, the comparative advantage may stem from economies of scope and scale,

but also from very frequent interactions on the market which small periphery banks usually
do not have.

71Note that, despite the overall disassortative mixing patterns, the core-periphery struc-
ture indicates that we should actually di�erentiate between these patterns in the core and
the periphery: the periphery mostly shows disassortative mixing within itself, while the
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sortative mixing patterns, but also with the evidence in Cocco et al. (2009):
small banks, with limited access to international capital markets and possibly
limited investment/�nancing opportunities due to their more locally oriented
business model, tend to rely on preferential relationships with (large) core
banks. Thus, core banks act as intermediaries between di�erent parts of the
periphery of the domestic banking system, resulting in indirect relationships
between peripheral banks. Note that this explanation is also in line with the
observed asymmetry between the densities in the CP- and the PC-blocks,
since they imply that periphery banks cut down their credit risk by focusing
on a few selected core banks, while they are prepared to borrow money from
a larger set of core banks.

Finally, we would like to focus on the potential implications of our �ndings
for regulators. It is well known that the structure of a network is important
for its resilience, hence policymakers should be interested in the actual topol-
ogy of the interbank network. For stress-testing exercises, it would, there-
fore, be crucial to use a topological description of the connections within the
banking sector that is both realistic and computationally tractable. Most
stress-testing scenarios have actually adapted an entropy-maximization ap-
proach for �lling the unknown matrices of interbank liabilities.72 This means,
that given some overall statistics for the whole system, interbank credit is
spread as evenly as possible across the system73 An idealized core-periphery
structure amounts to pretty much the opposite in terms of concentration of
interbank liabilities. If the data were closer to the latter type of structure,
the entropy-based approach could give misleading results for the expected
aftere�ects to shocks a�ecting single institutions. If, as we believe, the core-
periphery structure turns out to be a stylized fact of the interbank mar-
ket, stress-tests should take this particular topology into account. Unknown
amounts of interbank liabilities could then be calibrated along the structural
features of typical core-periphery models for available data (like those of
the present paper and Craig and von Peter, 2011). As our results show, it
might also be important to take into account asymmetries in the borrowing
and lending attitudes of core banks. Even when comparing the e�ects of
shocks between di�erent network models with some tendency of concentra-
tion of links, important di�erences might exist. For example, networks with
scale-free degree distributions are known to be robust with respect to ran-
dom failures, but fragile with respect to targeted attacks on the most central

core shows more of assortative mixing among its members, since core banks tend to connect
among themselves.

72See Sheldon and Maurer (1998), and Upper and Worms (2004).
73Note that this is equivalent to the benchmark against which the error reduction by

the continuous core-periphery model is measured.
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nodes.74 The usual mechanism to construct scale-free degree distributions
is that of preferential attachment, see Barabasi and Albert (1999), so high-
degree nodes tend to attract more links than low-degree nodes over time. As
described above, we did not �nd evidence for scale-free degree distributions
in the e-MID data and also �nd disassortative rather than assortative mixing
patterns. Comparing assortative to disassortative networks, Newman (2002)
shows that, for the same degree distribution, assortative ones are more robust
to targeted attacks compared to disassortative ones. Since an assortative net-
work possesses a whole set of nodes with large in- and out-degrees, i.e. many
connections across the entire network, the system is characterized by a cer-
tain degree of redundancy that makes it more robust under attacks on single
highly connected nodes. In contrast, the disassortative network is more sus-
ceptible to removal of high-degree nodes, which are not as tightly connected
as in the assortative case. Thus, removing high-degree nodes allows to attack
di�erent parts of the network.

In a somewhat related strand of research, Brede and de Vries (2009) show
that core-periphery structures might emerge from an evolutionary process
as a compromise between resilience (concentration makes the network more
vulnerable) and e�ciency of a network (concentration creates short average
path lengths).75 From an economic point of view, the question would be
whether the self-organization of the interbank network into a core-periphery
structure creates important externalities so that policymakers should attempt
to shift the balance towards higher resilience and somewhat lower e�ciency.

Of course, regulators should also be interested in the dynamics of a net-
work, when the breakdown of one node has knock-on e�ects on other nodes.
This contagion e�ect is for example investigated by Caccioli et al. (2011) for
di�erent network structures. The authors analyze the extent of contagion in
arti�cial banking systems after the random failure of individual institutions.
Their main �nding is that the likelihood of contagion, i.e. the breakdown of
the entire system, is smaller for disassortative networks. Since in the latter,
high-degree nodes tend to connect with low-degree nodes, the failure of a
random node is unlikely to spread through the entire system. Conversely,
the random breakdown of a high-degree node will severely a�ect other high-
degree nodes in assortative networks. Note that this is di�erent from the
aspect of vulnerability under targeted attacks. As a consequence, a disas-
sortative core-periphery framework might be more robust in `normal' times,
but more fragile under exceptional circumstances when key nodes are under

74See Albert et al. (2000).
75Note that the highest e�ciency is realized in star-like con�gurations, while the highest

resilience is related to the avoidance of short loops and degree homogeneity. See also
Netotea and Pongor (2006).
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stress or withdraw from the market. Hence, the `coreness' translates to a
certain extent into `systemic relevance' of certain institutions.76 The GFC
seems to have been a major shock to the interbank network, as tests for
structural breaks indicate. The observation that the �t of the core-periphery
models signi�cantly worsened with the GFC, might provide important infor-
mation per se on the endogenous reaction of the system to stress which could
be incorporated in stress-test scenarios. Furthermore the goodness-of-�t of
the core-periphery framework might be seen as an indicator of tensions in
the interbank market, so that various statistics based upon such a framework
could be used as early warning signals of impending crises.

7 Conclusions

The main �ndings of our paper are the following: we �nd a signi�cant
core-periphery structure in the Italian interbank network for a sample period
from January 1999 to December 2010. The identi�ed core is quite persistent
over time, consisting of roughly 28% of sample banks before the GFC and
23% afterwards (discrete model). Given the substantial di�erences in the
German and Italian interbank market data investigated by Craig and von
Peter (2010) and the present paper, e.g. in the underlying region and the
maturity structure of the credit relationships, the �nding of a core-periphery
structure is unlikely to be a coincidence. We expect that other interbank
markets display a similar hierarchical structure, which might be classi�ed as
a new `stylized fact' of modern interbank networks and actually concretizes
on a system level the role of money center banks. Going beyond the anal-
ysis of Craig and von Peter (2010), we also investigate the continuous and
asymmetric versions of core-periphery models and �nd evidence for strong
asymmetries. In particular, overall coreness is mainly driven by the function
of provision of liquidity to large parts of the banking system by the core mem-
bers. Overall coreness is, therefore, largely identical to out-coreness, while
its connection to in-coreness is very weak. Regulators should be aware of the
fact that a bank which is part of the in-core but not of the out-core, may
play a completely di�erent role in the system than a bank with the reverse
strategy.

Formal tests favor the existence of a structural break in the last quarter
of 2008, the time when Lehman Brothers collapsed. We investigated this
time period in more detail and found that the deteriorating �t of the core-
periphery structure in the post-GFC period is mainly due to the loosening
of connections in the core, particularly on the lending side. Furthermore,

76See also Markose et al. (2010).
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it seems that during times of distress, core banks tend to rely on periphery
banks as an important source of funding, since other core banks are reluctant
to provide as much liquidity to other banks as in normal times.

Our �ndings provide some support for the view that the network struc-
ture is non-random due to the existence of preferential lending relationships.
This is in line with the results of Cocco et al. (2009), A�nito (2011), and
Braeuning (2011). Further evidence in this regard is provided by Finger and
Lux (2011), who analyze the evolution of the banking network using the
actor-oriented approach by Snijders (1996, 2001). The general conclusion is
that preferential lending relationships at the micro-level lead to hierarchal
structure at the macro-level. An open question is why the interbank network
shows such a hierarchy. We argue that the comparative advantage of core
banks in gathering and distributing information about their counterparties
is likely to be a crucial factor.

In the future we plan to apply the model to other interbank data, in order
to evaluate whether the core-periphery structure is indeed a new stylized fact
of banking systems. Furthermore, it would be interesting to relate the results
to bank-speci�c variables, such as individual balance-sheet data. In any case,
this approach can be seen as a contribution to identifying the systemically
important banks in a quantitative way. We also believe that the methods
presented here could be an important tool for regulators since they allow
to reduce the complexity of large-scale network data, and to represent the
salient structural features of the complicated web of dispersed activity in the
interbank market in a compact way.
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A Appendix

A.1 Genetic Algorithm

The GA maintains a population of L solution candidates and evaluates
the quality of each solution candidate according to a problem-speci�c �tness
function, which de�nes the environment for the evolution. New solution
candidates are created by selecting relatively �t strategies which are then
recombined through various genetic operators:

1. Reproduction: From the pool of current solutions, L copies are se-
lected (with replacement) randomly with probabilities depending on a
solution's relative �tness, i.e. prob(reproduce solution j) = fj/

∑
i fi

with f being the �tness function as de�ned below (tournament selec-
tion).

2. Crossover: Copies from the reproduction step are randomly paired in
a mating process with each couple producing two o�spring via exchange
of genetic material. The simplest way is to select two copies randomly
and swap bits between both of them. Here we randomly select an inte-
ger in the range of [1, L− 1] and construct o�springs by combining the
left of this position from parent one with that from the right-hand part
of parent two and vice versa. The cross-over operation is carried out
with probability πcross, while with probability (1− πcross) the o�spring
are unchanged copies of their parents.

3. Mutation: After exchanging genetic material, slightly di�erent solu-
tions are formed by altering each position within a string with proba-
bility πmut to the other value of the binary alphabet.

4. Election: The election operator avoids an overall decrease of �tness
in the population by allowing only o�spring with a higher �tness than
their parents to the new generation.

We also add an operator that we call `genetic engineering' (GE) to accel-
erate the convergence of the algorithm.77 GE selects the binary string with
highest �tness value of the current population so far and tries to improve
its �tness value as follows: we search the core member with the lowest con-
nection to the core in this partition (i) and the periphery member with the
highest connection to the core (j).78 Then we compare the �tness of the

77See also Stolzenburg and Lux (2011).
78This is done by computing the average connections with all core members.
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Figure 21: Example for the core-periphery structure of the Italian inter-
bank network, 1999Q1. Red dots show core, blue dots periph-
ery banks. Dotted lines show directed edges from one bank to
another.

current partition with three alternatives: (1) �ip i's core membership from 1
to 0, and j's core membership from 0 to 1, (2) only �ip i's core membership,
(3) only �ip j's core membership. Using the best of these alternatives, we
put the resulting string back into the evolving population. By using this
additional operation we can manipulate our population target-oriented and
do not have to rely solely on blind exploration of the search space by the
random evolutionary steps of `mutation' and `crossover'.

Summing up, the binary-coded GA has only two parameters πcross and
πmut. Obviously, the �tness function is the crucial element of the GA. In our
setting, the �tness of each solution depends on the corresponding error score
e. Since the optimal solution would have zero errors, we simply take the rate
of `correct' classi�cations as the �tness function, i.e.

fl = 1− e(C), (12)

with the error score de�ned in Eq. (3).

A.2 Discrete Model: Illustration

Figure 21 illustrates the outcome of the estimation of the discrete core-
periphery model for the �rst quarter of 1999. We clearly see that the core
banks (red dots) form the cluster of the most central nodes, with periphery
banks (blue dots) connecting to parts of this cluster.79

79Note the high network density and the existence of only a single network component.
See also footnote 65.
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A.3 Empirical Estimation of the Asymmetric Continu-
ous (AC) Model

This section summarizes Boyd et al.'s (2010) approach for estimation of
the AC model.

A.3.1 Problem Formulation

We �rst note the similarity between the optimization problem of Eq. 9
in the main text, and a Singular Value Decomposition (SVD) of a matrix.
SVD allows to decompose a matrix D{M×N} of rank r into

D = USV′, (13)

where U{M×r}, V{N×r} are real matrices with orthonormal columns, with
the columns corresponding to the singular vectors, and S{r×r} is a diagonal
matrix containing the singular values (ordered) on the main diagonal.80

For any k ≤ r, SVD gives the best (least-squares) rank-k approximation
of D, i.e.

D(k) = U(k)S(k)V
′
(k), (14)

with U(k) and V(k) as the �rst k columns of U and V respectively, and S(k)

as the diagonal matrix formed by the �rst k singular values.
Singular Value Decomposition (SVD) is de�ned for rectangular matrices,

for which symmetry is not an issue, but it can also handle square matrices,
whether symmetric or asymmetric, as a special case.81 However, it does
require the presence of the diagonal elements of a matrix. Thus, by de�nition,
SVD can handle asymmetric data matrices.

Estimation of the AC model is again performed via minimization of resid-
uals (MINRES) taking stock of the proximity of the problem to a SVD. The
basic idea of MINRES/SVD is to use a rank-1 approximation of D, using the
�rst singular value s and the �rst singular vectors u and v: D(1) = usv′.82

Since SVD requires diagonal elements, we use a SVD of rank 1 and, similar to
the MINRES approach, exclude the diagonal elements in the analysis. Thus,
our objective function for the AC model looks as follows

arg min
u,v

∑
i

∑
j 6=i

(dij − uisvj)2. (15)

80U contains the eigenvectors of D D′ while V contains the eigenvectors of D′D. The
diagonal elements of S are the square roots of the non-zero eigenvalues of D D′.

81See Stewart (1993) for an overview.
82In the future it would be interesting to look at higher dimensional approximations.

This would allow splitting up the core and periphery even further.
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The normality constraints on u and v can be eliminated, such that we can
neglect the singular value s by absorbing it into the unconstrained vectors
u and v. Obviously, the solution is not unique, but without s the model is
even simpler, since we approximate D using only uv′, leaving us with the
objective function

arg min
u,v

∑
i

∑
j 6=i

(dij − uivj)2. (16)

The optimal vectors can be determined by �nding the roots of the �rst-
order conditions of Eq. (16). The original u, s and v can be obtained by
de�ning s = ||u||||v||, with ||u|| =

√∑
i u

2
i being the Euclidian norm of u,

and then dividing u and v by their norms. The reported coreness vectors are
normalized.

A.3.2 Optimization Problem for MINRES/SVD

We could solve the problem of �nding the vectors u{N×1} and v{N×1}
numerically by using standard optimization procedures. However, following
Boyd et al. (2010), the problem can be solved easier by setting the �rst
derivative of Eq. (9) with respect to ui and vj equal to zero and solving the
resulting equations numerically.
More formally, this amounts to

∂L

∂ui
=

N∑
j 6=i

(dijvj − uiv2j ) = 0. (17)

Remembering that the diagonal elements in A equal zero, we can write this
as

N∑
j=1

dijvj = −uiv2i +
N∑
j=1

uiv
2
j . (18)

For each row i this equation has to hold, so we can write the set of equations
in matrix notation as

Dv = u.(−v.2 + v′v), (19)

where a dot indicates elementwise multiplication. The other set of equations
can be calculated in a similar fashion

∂L

∂vj
=

N∑
i 6=j

(dijui − u2i vj) = 0, (20)

leading to
N∑
i=1

dijui = −u2jvj +
N∑
j=1

u2i vj. (21)
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Now, this equation has to hold for each column j, which can be written in
compact form as

u′D = v′.(−u.2 + u′u)′. (22)

Consequently, the optimal vectors u and v can be obtained by solving Eqs.
(19) and (22) simultaneously. Using an appropriate set of initial values (see
below), the optimization is much faster than solving Eq. (15) directly.83

We should also note that we checked an alternative approach proposed
by Boyd et al. (2010), where we impute values on the diagonal and apply
the usual one-dimensional SVD to this matrix. The results from this ap-
proach cannot be distinguished from those presented in the following, so this
approach is likely to be more e�cient when working with very large networks.

A.3.3 Initial values for MINRES/SVD

The choice of the initial values is important in many numerical problems,
most importantly with respect to computation time. Here we follow the ap-
proach in Boyd et al. (2010) and impute diagonals to the data matrix �rst,
then using the �rst step in the reciprocal averaging method for computing
the SVD. The algorithm will then work on the original data matrix, without
diagonal elements.
Let ci, rj and t be the column, row and total sums of the matrix D, re-
spectively, excluding the diagonal elements.84 A single missing value at the
position dij could then be imputed by assuming independence. This leads us
to (ri + dij)(cj + dij) = dij(t+ dij) or solving for the missing entry

dij =
ricj

t− ri − cj
. (23)

If all of the diagonal elements were missing, one could use this formula to
estimate each of the diagonal elements. However, this neglects the contribu-
tion of the other N − 1 diagonal elements to the total sum t. So a better
approximation would be to estimate the sum of all the matrix elements by
adding to t an estimate for the other N − 1 diagonal elements, the average
value of the o�-diagonal elements, t/(N2 − N). After canceling the factor
N −1, the independence model for estimating the diagonal elements appears
as (rk +dkk)(ck +dkk) = dkk(t+ t/N +dkk) for each element dkk.

85 This leads

83We have used a very similar approach for the SC model, where we can also speed up
the estimation by taking the �rst derivative of Eq. (7) with respect to c and solving the
resulting system of equations numerically. See Boyd et al. (2010).

84For simplicity, if these were zero the sums would remain una�ected.
85There is a slight error in the version by Boyd et al. (2010), since they missed the d2kk

term on the right-hand side of the Equation.
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to
dkk =

rkck
t+ t/N − rk − ck

. (24)

The reciprocal averaging method is analogous to the power method for com-
puting eigenvectors. It works as follows: choose initial vectors x0 and y0 to
be x0(i) = y0(i) = 1, i = 1, · · · , N. Then the iterative formulas

x̃k = Dyk−1, xk = x̃k/||x̃k||
ỹk = xk−1D, yk = ỹk/||ỹk||.

(25)

give a sequence of vectors such that xk and yk converge to the �rst singular
vectors u and d, respectively. A good approximation for usv′ would be x2Dy

′
2.

However, we do not specify the singular value but absorb it into the vectors
u and d, which are now not normalized. Thus the initial vectors u0 and v0
are
√
sx2 and

√
sy2, where a good approximation for d is

d0 =
r

||r||
D

c′

||c||
. (26)

A.4 Model Fit: AC Model

Figure 22 shows an example of a �tted network matrix, where the matrix
has been sorted according to the individual sums of the in- and out-coreness
values. The Figure illustrates the typical asymmetry of the in- and out-cores,
since most of the core banks lend money to the periphery (out-core), while
there are fewer connections from the periphery to the core.

A.5 What De�nes a Core Bank (in the Continuous Model)?

Figures 23-25 show the results for the continuous model. Obviously, the
two coreness vectors can be better explained based on the directed version
of the network. Most importantly, the correlation with the total degree is
smaller compared to the correlation of in-coreness with in-degree and out-
coreness with out-degree, respectively. Again, the correlations with the size
measures are highly volatile.

These results suggest that, in contrast to the �ndings of Craig and von
Peter (2010), total balance sheet size may not be as informative for explaining
banks' coreness as we might expect. When splitting the banking network into
in-core, out-core and periphery, we should rather focus on asymmetric �gures.
Examples might be loans granted on the asset side of the balance sheet and
the size of the debt on the liability side. It would be interesting to investigate
this in other interbank markets in the future.
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Figure 22: Example: Data matrix and approximation based on the AC
model for 2000 Q3, with warm colors indicating high transaction
values between individual banks. The upper panel shows the log-
transformed data matrix D after applying the MINRES/SVD
approach and sorting the network according to the coreness vec-
tors. The lower panel shows the MINRES/SVD approximation
based on the AC model, with the same ordering of the network
nodes.
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Correlation between in−/out−coreness and different degree measures.
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Figure 23: Time-varying correlation between in-/out-coreness and in-
degree/out-degree/total degree. Total degree is the degree we
would obtain from transforming the directed network into an
undirected network.
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Figure 24: Time-varying correlation between in-/out-coreness and in-
size/out-size/total size as de�ned in the text.
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Figure 25: Time-varying correlation between in-/out-coreness and number
of in- and out transactions. Total number of transactions is the
sum of the two.

A.6 Changing the Aggregation Period

Here we brie�y discuss the results for other than quarterly aggregation
periods, by focusing on the results from monthly and annual networks. To
be precise, the typical element in A is aij = 1 if there was at least one trans-
action from bank i to j during the respective month/year.86 In both cases,
we expect comparable results as for the quarterly networks, however, with
certain di�erences. For example, given the fact that the activity structure of
banks is less stable for monthly compared to quarterly networks, we expect
the coreness vectors to be less stable over time. Furthermore, due to the
aggregation, the total number of active banks in one quarter will be at least
as big as the number of active banks in any of the 3 months in this particular
quarter. Therefore, we expect the relative size of the core to be somewhat
smaller for monthly data. For annual data, it is a priori not clear what might
happen to the coreness vectors. While we expect a larger core as compared
to the quarterly case (due to the reduction of noise and the relatively large
number of active banks per year), the volatility in the coreness vectors (over
time) could in fact be higher, given that annual aggregation makes it more
likely that two banks being active in di�erent quarters are being put to-
gether in a network where they in fact never could have interacted. Again,
the anonymity of the data set makes it impossible for us to disentangle these
e�ects.

86We do not expect signi�cant changes, if we used a higher threshold here, e.g. banks
might have to trade at least twice within a particular period to establish a link.
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Figure 26: Comparison of the time-varying relative core sizes for di�erent
aggregation periods.

Figure 26 shows the time-varying relative core sizes (discrete model) of
di�erent aggregation periods for the entire sample period of 144 months. As
expected, the relative size of the core depends positively on the length of the
aggregation period, so the core is largest for yearly networks, consisting of
roughly 36% of sample banks before the GFC and close to 30% afterwards.
The structural break due to the GFC is clearly visible for yearly and quarterly
data. This is not so much true for monthly data, where pre- and post-
GFC average core sizes are 20% and 17% respectively. The average core
size appears to be relatively stable for monthly data, however with wilder
�uctuations as compared to longer frequencies. Thus, there appears to be
substantial noise in the monthly networks, backing up our use of quarterly
data in the baseline scenario. Similar remarks apply to the error scores
in Figure 27. As expected, the high level of noise at higher frequencies
deteriorates the model �t: the �t is worst for monthly data, with the highest
error scores. Interestingly, at the monthly level, the GFC seems less like
a big shock as compared to quarterly and yearly data, since the error score
increases already before the GFC. In contrast, the �t of the longer aggregation
periods drops with the GFC, which is most clearly visible for the yearly data.
In any case, it seems that the Italian interbank market shows a core-periphery
structure at all frequencies under study, even though for monthly networks
the noise level is rather high so that it is much harder to identify the core at
such high frequencies.

Concerning the correlation between individual coreness vectors from dif-
ferent models, we just note here that the correlation between the discrete
and tiering model is roughly .8750 for monthly and .9918 for yearly net-
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Discrete Model: Error score for different aggregation periods.
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Figure 27: Comparison of the error-scores for di�erent aggregation periods.

works. Thus, the results from the discrete and tiering model are very similar
in general, but for monthly data there may be some di�erences. While the
correlation between out-coreness and the discrete model is comparable for all
frequencies (around .73), the correlation with in-coreness depends positively
on the aggregation period.87 Thus, it seems that network becomes more sym-
metric for longer aggregation periods. This is con�rmed by the fact that the
correlation between in- and out-coreness is -.2126 for monthly data and .1383
for yearly data. Thus, at the yearly level, in- and out-coreness appear to be
positively related. In any case, the correlation between the two vectors is
rather small in absolute terms, so the asymmetric MINRES/SVD approach
captures the inherent asymmetry of the network at all frequencies.

A.7 Including Foreign Banks

Analyzing the network formed by foreign banks only, we see average error
scores around 45% before the GFC and values close to 90% afterwards. Given
that foreign banks' activity is rather unstable, due to the simple fact that
they have access to other sources of funding, it comes as no surprise that
foreign banks form a structurally di�erent separate subnetwork.

We also analyzed the complete network, with Italian and foreign banks.
Interestingly, most of our �ndings from the baseline scenario with Italian
banks only, remain una�ected. However, there is a clear upward trend in the
error score over time which is driven by the rather unstable nature of foreign

87For monthly data the correlation between the discrete and in-coreness vector is roughly
.1578, while the value is .3861 for yearly data.
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banks' activity. Thus it seems justi�ed to exclude foreign banks from the
analysis.

A.8 Continuous Model Using the Number of Transac-
tions

As another robustness check, we ran the continuous model using the quar-
terly matrices containing the number of (directed) transactions between in-
dividual banks T, instead of the total transaction volumes D.88 We �nd
very similar coreness vectors in both settings. For the SC model the corre-
lation between the vectors is .9618. For the AC model, the correlations are
.9594 and .9844 for in- and out-coreness, respectively.89 Quite interestingly,
it seems that the �t (in terms of PRE) of the MINRES model in this case is
even worse compared to the values presented in the main text, while the �t
of the MINRES/SVD model is slightly better than before. It not not quite
clear, why this is the case, but we should stress that all of the results here
indicate that the model is quite robust. Most importantly, it seems that
the conclusions from above also hold for alternative valued matrices, that
measure the intensity of bilateral relations in a meaningful way.

A.9 Further Robustness Checks

We performed additional robustness checks for the discrete and continu-
ous models.

• We estimated the discrete models using the correlation-based approach
of Stolzenburg and Lux (2011); there we used the correlation between
the observed data matrix and the pattern matrix constructed from the
coreness vectors as the objective function. Note that the correlation-
based approach can only be used for the discrete model in the case of
arbitrary o�-diagonal blocks. We found very similar results compared
to the baseline scenario. In this regard, we also ran the discrete model
with valued networks (transaction volumes and number of transactions,
both log-transformed) and found very similar results compared to the
baseline scenario.

• We used the binary networks, rather than the valued ones, as input ma-
trices in the continuous models. The coreness vectors are very similar

88Again we log-transform the data matrix to reduce the level of skewness, cf. section
4.2.

89We also �nd similar values for monthly and annual data.
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to the baseline case (correlation of above .93), however, with constantly
smaller PREs.

• We estimated the continuous models without log-transforming the data.
Due to the high level of skewness in the data (driven by many zeros in
the matrices), it is not possible to identify a sensible core for the trans-
action volumes. The coreness vectors are hardly comparable, with a
correlation of .4928 between the out- and .3829 between the in-coreness
vectors compared to the baseline scenario, respectively. Furthermore
the PREs are highly volatile over time. In contrast, using the num-
ber of transactions the correlations are .8510 and .7668 for the out-
and in-coreness vectors compared to the baseline scenario, respectively.
Also the PREs are comparable to the baseline scenario, however, with
extreme values around quarter 10 and 39, i.e. the two candidates for
structural breaks.

• We also estimated the continuous models using the correlation-based
approach. We �nd identical results in both cases, however, the ap-
proach presented in the paper is preferable, since the computation is
much faster. We should note that the correlation between the pattern
and the observed matrices is always above .70 in the AC model, while
it may be as low as .37 for the SC model after the GFC.
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