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Abstract

According to the harmonic sequence paradox (Blavatskyy 2006), an expected

utility decision maker’s willingness-to-pay for a gamble whose expected payoffs

evolve according to the harmonic series is finite if and only if his marginal utility

of additional income becomes zero for rather low payoff levels. Since the as-

sumption of zero marginal utility is implausible for finite payoff levels, expected

utility theory—as well as its standard generalizations such as cumulative prospect

theory—are apparently unable to explain a finite willingness-to-pay. The present

paper presents first an experimental study of the harmonic sequence paradox. Ad-

ditionally, it demonstrates that the theoretical argument of the harmonic sequence

paradox only applies to time-patient decision makers whereas the paradox is easily

avoided if time-impatience is introduced.
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1 The harmonic sequence paradox

The so-called harmonic sequence paradox, due to Blavatskyy (2006), is based on the

following hypothetical gamble G:

“Consider an urn that initially contains one white and one black ball.

An individual draws one ball from this urn and receives one dollar (nothing)

should the ball be white (black). Whatever the drawn ball happens to be,

it is subsequently put back into the urn. Additionally, one more black ball

is added to the urn. The individual then draws one ball again and the cycle

continues ad infinitum. At each iteration, the drawn white ball pays off one

dollar and the number of black balls is increased by one.” Blavatskyy (2006,

p. 221)

Formally, consider the state space

X = ×∞t=1 {0, 1} (1)

with generic element x = (x1, x2, ...) and define the coordinate (random) variable Yt,

t ∈ N, such that

Yt (x1, x2, ...) = xt.

Observe that the gamble G is given as a sequence of independently distributed random

variables (Yt)t∈N with distribution

Pt (Yt = 1) =
1

t+ 1
(2)

and define by

Pt,...,t+k = Pt · ... · Pt+k for k ≥ 0 (3)

the so-called finite-dimensional distributions of the stochastic process (Yt)t∈N on (X,F)

whereby F denotes the σ-algebra generated by the following partition of X

X = {{x} | x ∈ X} . (4)

By Kolmogorov’s existence theorem (cf. Theorem 36.1 in Billingsley, 1995; Chapter 15.6

in Aliprantis & Border, 2006), there exists a unique additive probability measure P ∗ on

(X,F) such that (Yt)t∈N has (3) as finite dimensional distributions.

Given the measure space (P ∗, X,F) the monetary outcomes that can be earned by

an individual who participates in G for T iterations are described by the F -measurable
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random variable ZT =
∑T

t=1 Yt. Define now the F -measurable (Theorem 13.4 in Billings-

ley, 1995) random variable Z∞ =
∑∞

t=1 Yt with extended range space R+ ∪ {+∞} and

recall that Blavatskyy (Proposition 1, 2006) reports the interesting result that

P ∗ (Z∞ = +∞) = 1. (5)

That is, any individual participating forever in the gamble G will earn with certainty an

infinite amount of money.1

In spite of this extremely attractive feature of G real-life people are only willing to

pay (=WTP) up to some finite amount of money, say M2, for a participation in G. In

order to describe such preferences by an expected utility functional we therefore have to

assume that

E [U (Z∞) , P ∗] =

∫
X

U (Z∞ (x)) dP ∗ (x) (6)

= U (+∞) · 1 (7)

= U (M) (8)

whereby (weak) monotonicity of the von Neumann Morgenstern (=vNM) utility U of

money would imply that the individual is indifferent between all amounts of money

greater or equal than M . This indifference, however, is quite implausible and appar-

ently at odds with the fact that individuals are not willing to pay more than M for a

participation in the gamble G. In a nutshell, the harmonic sequence paradox therefore

states:

Suppose that an individual regards a participation in gamble G as equiv-

alent to the random variable Z∞. If this individual is an expected utility

decision maker–or for that matter a cumulative prospect theory decision

maker (Tversky & Kahneman, 1992)–her willingness to pay for G is finite

if and only if her marginal utility of additional monetary income becomes

eventually zero.

While the famous St. Petersburg paradox (Bernoulli, 1954), respectively the super

St. Petersburg paradox (Menger, 1934), can be resolved within the expected utility

under risk framework by the assumption of a sufficiently concave vNM utility function,

respectively by the assumption of a bounded vNM utility function, the above argument

1Observe that this feature makes G much more attractive to risk-averse individuals than just an

infinite expected value of Z∞.
2While Blavatskyy considers M = $10 as plausible, we observe in our experimental study (cf. Section

2) a median WTP of M = $17.50.
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demonstrates that such a resolution is not at hand for the harmonic sequence paradox.

Two alternative explanations for the harmonic sequence paradox come instead to mind:

Either real-life people have a substantially biased (subjective) notion about the “objec-

tive” probability measure P ∗ generated by G or they do not regard the participation in

G as equivalent to the random variable Z∞. Both possibilities will be considered in the

present paper.

In the next section we present an experimental investigation of the harmonic se-

quence paradox. We ask people for their willingness-to-pay (WTP) for participating in

gamble G and also for their beliefs about its expected monetary value. From responses

to the latter question we can infer whether people have correct notions of the probability

measure P ∗ generated by G. As this paper’s main contribution, we develop in Section

3 an explanation of the harmonic sequence paradox based on a possible difference be-

tween G and the random variable Z∞. More precisely, we consider subjective expected

utility decision makers whose subjective probability measure coincides with P ∗ but who

identify the possible outcomes of the gamble G as infinite streams of monetary payoffs

rather than as payoff-points in the range of Z∞. We further illustrate our formal argu-

ment in Section 4 by a simple example involving expected utility decision makers with

additively separable time-preferences. Whenever these decision makers are sufficiently

time-impatient, their WTP for a participation in G is rather moderate. Since time-

impatience appears as a rather natural assumption for an individual who is confronted

with a gamble that goes on forever, our approach might contribute towards an explana-

tion of why real-life people only offer a finite amount for participating in the gamble G.

Moreover, the fact that an individual’s WTP for participating in G is rather low might

then result from her correct understanding that the expected monetary payoff increases

very slowly over time.

2 Experimental study

(i) Introduction

In order to obtain empirical evidence on real individuals’ WTPs—compared to Blavatskyy’s

hypothetical WTPs—we conducted an experimental study. As one finding we obtain

that real individuals have severe problems in understanding the payoff distribution of the

harmonic sequence gamble. More importantly, however, in line with Blavatskyy’s orig-

inal argument we also find that better informed people still exhibit WTPs that cannot

be explained by standard decision theoretic models for one-shot lotteries. This finding

motivates our approach of introducing time-impatience as a possible explanation of the

harmonic sequence paradox.
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Blavatskyy describes the following hypothetical choice situation:

“However, an individual MAY [highlighted by the authors] be informed

that L is simulated on a computer with high processing speed for a finite

(large) number of iterations (e.g. 10ˆ15) within a short period of time (e.g.

5 minutes). Any observed discrepancy between actual WTP (e.g. ¡$10) and

the theoretical prediction (e.g. $30 as demonstrated by Fig. 2) is then as

damaging to the established decision theories as the infinite version of the

paradox itself.” Blavatskyy (2006, p. 224)

Of course, if real-life individuals were indeed to stick with a WTP of less than $10 af-

ter it was explained to them which lottery is played out on a computer within 5 minutes

time, then this paper’s explanation of the paradox through time-impatience would be no

longer convincing: Only very few (risk-neutral) decision makers would be time-impatient

enough to go for $10 immediately rather than waiting 5 more minutes for an expected

value of $30. While we do not know the WTP of real individuals in the above hypothet-

ical situation described by Blavatskyy (our WTPs would be roughly around $20), there

are two alternative ways (plus their combination) of “resolving” the paradox. Firstly,

real-life people may simply not understand the resulting payoff distributions of the har-

monic sequence gamble since the according computations are too complex for them. In

this case we can hardly speak of a “paradox” since standard decision theoretic models

assume that people have preferences over well-understood objects. Secondly, as we have

formally argued in the previous sections, the time-dimension of the harmonic sequence

gamble may play a role to the effect that small WTPs result from time-discounting.

(ii) Method

In order to go beyond a mere hypothetical choice situation and to get some insights into

people’s actual evaluation of the gambles underlying the harmonic sequence paradox, we

ran an experimental study at the University of Kiel, Germany. Our subject pool consists

of 48 advanced students enrolled in economics, psychology, or business administration

who participated in a elective interdisciplinary course on behavioural economics. All

subjects have passed introductory courses in mathematics and statistics at a rather high

level compared to other German universities. Our design does not directly address the

issue of time-impatience; that is, we do not mention any time-frame for running the

gamble. The main focus is the question how people evaluate the harmonic sequence and

whether their evaluations are biased by insufficient knowledge about their distributions.
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After the gamble has been carefully described to them, subjects had to respond to five

hypothetical questions:3

1. What is the maximal amount you would be willing to pay for participation in the

gamble with an infinite number of rounds?

2. What do you think is the expected value of the payoff in the gamble with an infinite

number of rounds?

3. What is the maximal amount you would be willing to pay for participation in the

gamble with 10ˆ15 rounds?

4. What do you think is the expected value of the payoff in the gamble with 10ˆ15

rounds?

5. Note that the expected value of the gamble with an infinite number of rounds is

infinity and the expected value of the gamble with 10ˆ15 rounds is 34.43. What is

the maximal amount you would be willing to pay for participation in the gamble

with 10ˆ15 rounds?

Questions 1-4 should give us just some insights about the evaluation of gambles and

subjects’ knowledge about their expected values. Responses to question 5 allow us to

judge whether evaluations are biased by insufficient knowledge about the gamble with

10ˆ15 rounds. If subjects understand the property of the gamble perfectly, there should

be no difference between responses to questions 3 and 5.

(iii) Results

Table 1 presents the results of our experiment. The single columns give mean and median

responses, standard deviation (SD), and median absolute deviation from the median

(MAD) for the five questions above, presented in the same order. We do not report

mean and SD in the second and third columns as at least one subject responded with

infinity in both questions. The high mean and SD in the fifth column is caused by three

outliers. Figures 1 and 2 additionally give an overview of the distribution of responses to

questions 1 and 2, respectively to questions 3, 4, and 5 by reporting relative frequencies of

responses in the intervals [0, 1[, [1, 5[, [5, 10[, [10, 20[, [20, 50[, [50, 100[, [100, 200[, [200,∞[,

and responses of ∞. Despite the huge difference of true values (infinity versus 34.43)

the median responses to the questions concerning the expected value of the gamble with

an infinite number of rounds E(∞) and the gamble with 10ˆ15 rounds E(10ˆ15) are

3As reward for participation 8 randomly selected subjects received a payment of 20 Euros.
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identical (i.e., 5). This result shows that subjects have severe problems in understanding

the properties of both gambles. The medians of maximal amounts people would be

willing to pay in order to participate in the gamble with an infinite number of rounds

WTP (∞) and in the gamble with 10ˆ15 rounds WTP (10ˆ15) do not differ substantially

from responses to expected values which gives no indication of paradoxical behavior.

While responses to question 5 still suggest that people have problems to evaluate the

gambles properly, the mean and median of WTP ∗(10ˆ15) incorporate in a very sensible

way the distributional information we have provided. After learning the expected values,

the median WTP for the gamble with 10ˆ15 rounds becomes five times higher (17.50

versus 3.5). According to a Wilcoxon test this difference is significant (N = 48, z =

−3.53, p < 0.01).

Insert Table 1 here

Figures 1 and 2 show that a high fraction of responses to questions 1-4 is within the

interval [1, 5[. This can explain the low values of MAD for these questions compared

to question 5 for which the highest fraction of responses is within the interval [20, 50[,

see the light grey bars in Figure 2. Interestingly, SD of responses to question 5 is lower

than that for questions 3 and 4. One reason for this low SD is the absence of very

high responses: the highest response to question 5 is given by 37 whereas four subjects

stated a WTP of 48 or higher for question 3. Therefore, additional information about

the distributional properties of the gamble increases the average of stated WTP (both

in terms of mean and median) and decreases the variation, at least if measured in terms

of SD.

Insert Figures 1 and 2 here

(iv) Discussion

On the one hand, the median (informed) WTP of 17.50 clearly exceeds the low hypoth-

esized WTP of Blavatskyy (< 10). As a consequence, peoples’ improved understanding

of the distributional properties of the harmonic sequence gamble results in a less “para-

doxical” behaviour than hypothesized by Blavatskyy. On the other hand, however, this

WTP is still less than the WTP implied by expected utility or cumulative prospect

theory (> 30, cf. Figure 2 in Blavatskyy, 2006) whenever 10ˆ15 rounds of the harmonic

sequence gamble are described as a one-shot lottery for which time-preferences do not
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matter. While there is evidence that people still have problems in understanding the

payoff-distribution of the harmonic sequence gamble after learning the correct expected

value, we would conjecture that at least some of the remaining discrepancy between

reported WTPs and theoretical predictions for the evaluation of one-shot lotteries could

be due to time-preferences.

Since we did not mention in the experimental set-up that the 10ˆ15 rounds are to be

played on a fast computer within a few minutes, it seems plausible that the participants

of the experiment did not evaluate the gamble just as an one-shot lottery but rather

as sequence of payoffs whereby theses payoffs may take a long time to occur. Based

on this insight, we develop in the remainder of this paper a formal argument according

to which the harmonic sequence paradox can be explained through the introduction of

time-impatience. It would be a desirable avenue for future research to design and run

an experiment that may directly check for time-preferences within the context of the

harmonic sequence gamble.

3 The general argument

The original statement of the harmonic sequence paradox considers a situation of de-

cision making under risk where the individual has preferences over lotteries with given

objective probability distributions. For our purpose it is convenient to slightly change

the perspective and consider an individual who is a subjective expected utility decision

maker in the sense of Savage (1954). That is, we consider a probability space (P s,Ω,Σ)

where P s is a subjective probability measure derived from the individual’s preferences

over Savage-acts which are mappings from the state space Ω into some set of conse-

quences C.4 Under Savage’s axioms such preferences are representable by an expected

utility functional, i.e., for any two Savage-acts f, g,

f � g if and only if E [U (f) , P s] ≥ E [U (g) , P s]

for a unique P s and a unique (up to positive affine transformations) vNM utility function

U : C → R.

4The Savage framework is convenient for two reasons. Firstly, since Savage acts can map into ar-

bitrary consequence spaces, our definition of consequences as (infinite) payoff-streams makes it very

obvious from the outset that we are not treating the HSP as a problem of preferences over lotteries with

monetary payoffs. Secondly, since our formal results are derived for arbitrary additive probability mea-

sures, they also hold for subjective probabilities that do not coincide with the “objective” probabilities

generated by the gamble G.
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In order to recast the harmonic sequence paradox within this Savage framework, we

assume that the set of consequences is given as the possible payoff-sequences of G, i.e.,

C ≡ X = ×∞t=1 {0, 1} . (9)

Furthermore, we suppose that the Savage state- and event space are sufficiently rich in

the sense that they can reflect the previous section’s definitions of X and F . To this

end we assume that

Ω = X × U , (10)

with generic element ω = ((x1, x2, ...) , u), for some space U whereby the event space

Σ = F ⊗ U (11)

is given as the product σ-algebra of F and some σ-algebra U on U . Observe that within

this Savage framework a participation in the gamble G can be defined as the Savage act

fG : Ω→ C such that

fG ((x1, x2, ...) , u) = (x1, x2, ...) (12)

whereby the consequence (x1, x2, ...) is interpreted as one possible outcome of the stochas-

tic process (Yt)t∈N as introduced in the previous section. The following assumption finally

connects our subjective model to the harmonic sequence paradox by stating that the in-

dividual’s subjective probability measure P s coincides in an appropriate way with the

“objective” probability measure P ∗.

Assumption 1. For all A ∈ F ,

P s (A× U) = P ∗ (A) .

Given this re-interpretation of the harmonic sequence gamble within a Savage frame-

work, the next proposition follows easily.

Proposition 1.

Consider a (weakly) increasing vNM utility function, i.e., U (c) ≥ U (c′) whenever

c ≥ c′ in the standard vector order.

Then the individual’s subjective expected utility of participating in the gamble G

is finite if U is bounded from above, i.e., supC U (c) < +∞, whereby

E
[
U
(
fG
)
, P s
]
≤ U (1, 1, ..) .
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Proof. Observe that

E
[
U
(
fG
)
, P s
]

=

∫
Ω

U
(
fG (ω)

)
dP s (ω)

=

∫
X×U

U
(
fG ((x1, x2, ...) , u)

)
dP s ((x1, x2, ...) , u)

=

∫
X

U (x1, x2, ...) dP
s ((x1, x2, ...)× U) by (12)

=

∫
X

U (x1, x2, ...) dP
∗ (x1, x2, ...) by assumption 1

≤ U (1, 1, ..) · 1 by (weak) monotonicity

< +∞.

The final line thereby follows from

U (1, 1, ..) = sup
C
U (c) ,

which is finite by assumption.�

By Proposition 1, the paradox is trivially avoided as long as an individual evaluates

an infinite stream of one dollar payoffs by some finite vNM utility. It is obvious from the

formal proof that this result holds for any subjective probability measure and therefore

as well for the harmonic sequence probability distribution P ∗ according to which some

consequence c = (x1, x2, ...) such that
∑∞

t=1 xt = +∞ occurs with probability one.

4 An illustrative example

As an illustrative example we consider in this section the special case of a vNM utility

function that results from additively time-separable preferences whereby we are in line

with the standard assumption of a time-impatient individual.5

Assumption 2. The individual’s preferences6 over infinite payoff-sequences x ∈ X

are additively time-separable with discount factor β ∈ (0, 1), i.e., for all c =

(x1, x2, ...),

U (c) =
∞∑
t=1

βt−1u (xt) (13)

for some strictly increasing function u : {0, 1} → R.

5The reader can easily verify that the assumption of time-patient individual, i.e., β = 1, in our model

would bring us immediately back to the original formulation of the harmonic sequence paradox.
6Recall that in a Savage-framework preferences over consequences are interpreted as preferences over

constant Savage-acts, i.e., acts that give in every state of the world the same consequence.

10



Observe that we have, by Assumption 2,

U (1, 1, ..) =
∞∑
t=1

βt−1u (1)

=
u (1)

1− β
,

so that Proposition 1 immediately implies the following result.

Corollary. If an individual is time-impatient with additively time-separable prefer-

ences, her willingness to pay for participating in the harmonic sequence gamble G

will never exceed the amount
u (1)

1− β
.

Recall that a risk-averse (risk-loving) expected utility decision maker is modelled

through a concave (convex) vNM utility function U whereby concavity (convexity) of

U results for the additive separable case from concavity (convexity) of u. Whenever we

speak of a risk-neutral individual, i.e., linear U , we normalize (without loss of generality)

u (0) = 0 and u (1) = 1. For example, in case of a risk-neutral individual the corollary

determines 1
1−β as an upper bound for the individual’s willingness to pay to participate in

G. While the corollary characterizes only an upper-bound for an individual’s evaluation

of the gamble G, the following proposition gives the exact expected utility.

Proposition 2.

If an individual is time-impatient with additively time-separable preferences, she

evaluates a participation in the harmonic sequence gamble G by the following

expected utility

E
[
U
(
fG
)
, P s
]

=

(
∞∑
t=1

βt−1

(
1

t+ 1
u (1) +

t

t+ 1
u (0)

))
.

If, in addition, the individual is risk-neutral, her expected utility coincides with

the expected value of the discounted random payment-stream, i.e.,

E
[
U
(
fG
)
, P s
]

=
∞∑
t=1

βt−1

t+ 1
.
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Proof. Observe that

E
[
U
(
fG
)
, P s
]

=

∫
X

U (x1, x2, ...) dP
∗ (x1, x2, ...)

=

∫
X

(
∞∑
t=1

βt−1u (xt)

)
dP ∗ (x1, x2, ...)

=
∞∑
t=1

βt−1

∫
X

u (xt) dP
∗ (x1, x2, ...)

=
∞∑
t=1

βt−1E [u (Yt) , P
∗]

=
∞∑
t=1

βt−1

(
1

t+ 1
u (1) +

t

t+ 1
u (0)

)
The first line follows from the proof of Proposition 1, the third line results from the

linearity of the expectations operator, and the final line uses the probability distribution

of the harmonic sequence gamble.�

Suppose that an individual’s WTP for participating in the harmonic sequence gamble

G coincides with the rather fast converging series of Proposition 2. In that case we can

easily come up with good approximations for the amount a risk-neutral individual of our

model would be willing to pay in order to participate a reasonable number of rounds,

say 1000, in the harmonic sequence gamble. For example, for β = 0.99 we obtain as

WTP (in dollars)
1000∑
t=1

βt−1

t+ 1
' 3.69

(which is also a good approximation for the infinite case) and for β = 0.999 we have

1000∑
t=1

βt−1

t+ 1
' 5.70.

To sum: For already small degrees of time-impatience a risk-neutral individual of

our model is willing to pay only moderate amounts of dollars in order to participate in

the harmonic sequence gamble (even considerably less than the ten dollars mentioned

by Blavatskyy). Obviously, this effect would be even more pronounced for risk-averse

individuals.

5 Conclusion

Our formal analysis demonstrates that the theoretical argument behind the harmonic

sequence paradox does not apply to time-impatient decision makers who are offered
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a random sequence of payments rather than a one-shot lottery. That is, a simple re-

interpretation of the random object in question that takes into account the time dimen-

sion of payoffs might “explain” the decision makers’ choice behavior in accordance with

the harmonic sequence paradox.

Our proposal of including time-impatience in the description of consequences is a

straightforward approach for “solving” the harmonic sequence paradox through existing

decision theoretic models under the assumption that the decision maker correctly under-

stands the payoff distribution of the harmonic sequence gamble. Of course, if decision

makers do not understand the harmonic sequence gamble we cannot speak of a “para-

dox”. On the one hand, experimental evidence suggests that real people have severe

problems in understanding the distributional properties of the harmonic sequence gam-

ble. On the other hand, however, this evidence also demonstrates that if people receive

further information about distributional parameters, their WTPs are still below the the-

oretical predictions from expected utility and cumulative prospect theory for one-shot

lotteries. In contrast to the assumption of an one-shot lottery, the assumption of time

preferences may here easily account for the observed—otherwise “paradoxical”—WTPs.

In our opinion the harmonic sequence paradox does not reveal the inadequacy of

existing decision theoretic models (including expected utility theory) but it rather cau-

tions us in the way we identify the random objects people supposedly have preferences

about. Just because we can mathematically define a random variable through the sum

of infinitely many (different) random variables, this does not mean that real-life deci-

sion makers actually evaluate this infinite sequence of random payoffs as a lottery over

monetary payoffs within the static von Neumann Morgenstern framework. In contrast,

the Savage framework—with its arbitrary space of deterministic consequences—might

provide us with the flexibility needed for describing choice situations over sequences of

random payoffs in a more realistic way.
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List of Figure Captions

Figure 1. Distribution of responses to WTP and expected value for the gamble with an

infinite number of rounds.

Figure 2. Distribution of responses to WTP and expected value for the gamble with

10ˆ15 rounds.
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Table 1

Median, Mean, SD, and MAD for Responses to the Five Questions of the Experimental

Study

WTP (∞) E (∞) WTP (10ˆ15) E(10ˆ15) WTP ∗(10ˆ15)

Median 5 5 3.50 5 17.50

Mean − − 8.80 366686.17 16.83

SD − − 14.15 1714183.51 10.78

MAD 3 3.25 1.50 3.25 8.50
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Figure 1. Distribution of responses to WTP and expected value for the gamble with

an infinite number of rounds.
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Figure 2. Distribution of responses to WTP and expected value for the gamble with

10ˆ15 rounds.
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