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Hubs and resilience: towards more realistic
models of the interbank markets

Mattia Montagna∗, Thomas Lux†

Abstract

This paper uses a toy financial system to study systemic risk in scale-free interbank
networks. Networks are produced according to a fitness algorithm, combined with
a representation of the balance sheets of the banks. Our generating processes for
interbank networks are designed in a way to reproduce the frequently documented
features of disassortative behavior, power laws in the degree distributions and power
laws in the distribution of bank sizes. The results show the presence of a particular
shell structure affecting the spread of an endogenous shock.

Keywords: Interbank market, contagion, networks, financial stability.

JEL classification: G21, G01, E42

1 Introduction

In the last decades more and more efforts have been directed to the study
of interbank financial data using tools initially developed in the natural sci-
ences, with the aim to shed light on the contagions effects of shocks through
interbank linkages. In particular, a better understanding of the link between
the topology of a financial system, where an intricate network of financial
entities (like banks and hedge funds) are connected together through a com-
plex web of financial instruments, and the stability of the system itself,
namely the ability of networks to absorb shocks and adapt the structure in
order to maintain efficiency, became a major issue (Battiston et al, 2009).
The relevance of the network structure for regulatory reform of the banking
sector has been emphasized by Haldane and May (2011), among others.

The risk of a global systemic failure of the whole system is strongly
connected to the topological features of the financial network, and it gives
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1 Introduction 2

rise to the crucial concept of systemic risk. Since the pioneering work of
Allen and Gale (2000) in which the relevance of the structure of a financial
system for its stability has been highlighted, the study of systemic risk using
network approaches has attracted the attention of economists and scientists
in general. Nier et al. (2007), have studied a simple but versatile random
network structure, where the nodes of the networks represent banks and
the edges represent interbank liabilities, combined with a representation of
the balance sheets of banks. They show how the resilience of the whole
system to idiosyncratic shocks is affected by the topological features of the
system, such as the connectivity of the nodes. May and Arinaminphaty
(2009) provide an analytical explanation of these results using a mean-field
approach, providing more insights into the connections between complexity
and stability.

The main aim of this paper is to expand this line of research into the
determinants of systemic risk in simulated banking systems. By systemic
risk we mean the risk of a whole financial system, in this case a set of banks,
to collapse as an aftereffect to the initial default of a single unit or a small
cluster. After the default of the first bank, the shock is transmitted through
the whole system due to a web of debt relationships. This domino effect
may cause the whole system to fail. As in the case considered by Nier et al.
(2007) and May and Arinaminphaty (2005), our networks are static since
the single nodes, namely the banks, are not allowed to change their behavior
during the spread of the shock, they just passively absorb the propagation
of the losses. We are, therefore, considering a situation in which the spread
of the shock through the system is faster than the potential changes of the
topological features of the interbank network that would be manifested after
the reaction of the banks themselves.

In network theory, if high-degree vertices attach to low-degree ones, the
resulting graph is said to display a disassortative mixing or disassortative
behavior. A simple way to identify such a structure consists in studying the
distribution of the average degree of the neighbours of the vertices belonging
to the network. In the case of disassortative mixing, this distribution should
be a decreasing function in the degree of the nodes, as a consequence of the
attitude of high-degree vertices to link with low-degree ones, and vice versa.
Disassortative mixing is a frequent feature of real networks, examples are
the internet, the World Wide Web, protein interactions and neural networks
(Caldarelli, 2007). Interestingly, also most of the interbank money markets
seem to be characterized by disassortative behavior, as documented by Boss
et al. (2004) for the Austrian interbank market, Soramäki et al. (2006) for
the US Fedwire Network, Iori et al. (2008) for the Italian interbank market,
and Imakubu and Soejima (2006) for the Japanese interbank money mar-
ket. Therefore, it seems important to include the well-established stylized
fact of disassortative mixing also in the study of artificial financial networks,
since this particular structure could affect the ability of a system to absorb
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shocks. Another feature that is often present in real networks is a charac-
teristic power law degree distribution, that produces the so-called scale-free
networks. Scale-free networks are characterized by the presence of hubs,
namely nodes with a degree that is much higher than the mean degree of
the other nodes. Therefore, in a scale-free network, there is a high probabil-
ity that many transactions would take place through one of the high-degree
nodes of the network. The presence of such hubs make systems in general
more prone to a break-down in case of targeted attacks, as the downside of
their high connectivity in terms of the shortest paths between any two nodes
belonging to the system. Again, in real interbank money markets scale-free
degree distributions have been frequently reported. Examples are Inaoka
et al. (2004) and Imakubu and Soejima (2006) for the Japanese interbank
market, and Boss et al. (2004) for the Austrian interbank market, while
there exist divergent results for the Italian interbank market (Iori et al.,
(2008), Lux et al. (2012)).

Empirical evidence on the size distribution of bank’s balance sheets can
be found in, for example, Ennis (2001) and Janicki and Prescott (2006).
For the U.S., the banking system is characterized by a large number of
small banks and a few large banks, and the size distribution seems to be
lognormal with a Pareto-distributed tail. A study on the evolution of the
banking system in a European Country can be found in Benito (2008), where
the presence of few big hubs in the Spanish banking system is highlighted,
and, again, the distribution is highly skewed, and it has become more skewed
during the last decades.

We construct a Monte Carlo framework for an interbank market charac-
terized by the above empirical features via what is called a fitness algorithm
(De Masi et al., 2006). With a particular choice of such a function as a
generating mechanism for our network, we can make sure that our artificial
banking sector also displays a power law degree distribution, disassortative
behavior and heterogeneity in the banks’ sizes. In particular, in interbank
markets characterized by a power law in the size distribution, the default of
a single small or medium-sized bank will not affect the stability of the entire
system: as one might expect, the losses are easily absorbed by the banks
which have deposits on the liability side of the failing bank’s balance sheets,
and no domino effect occurs. The situation changes when the initially de-
faulting bank is one of the hubs of the system. In this case the propagation
of the shock proceeds like the propagation of a circular wavefront in the wa-
ter: starting from an initial node, the shock will hit at the same time nodes
that are directly linked to the source. Moreover, each time a new node is
hit by a wave, it also will become a source itself, expanding the range of
nodes that will potentially be affected by the shock. Those are the kind of
network effects we are interested in. Note that the results reported so far
in the literature using network approaches in order to study domino effects
in interbank markets have mostly used either random network models or
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networks constructed from aggregate data via a maximum entropy principle
(cf. Upper, 2011, for an overview). Both approaches are very likely to un-
derestimate the extent of a contagious spread of disturbance due to the very
homogeneous level of activity and connectivity in such artificial networks.
In contrast, the above stylized facts show strong heterogeneity for the levels
of activity (size of the balance sheets, as well as the extent of connectiv-
ity, namely the degree distribution). In addition, the pronounced negative
assortativity is also not covered by random networks or those constructed
from entropy principles. Moreover, random networks are characterized by a
binomial degree distribution (see, for example, Caldarelli (2007)), and so no
major hubs exist in such a system. Using power law degree distributions,
the process of propagation of endogenous shocks could bring about different
results, and should in principle give a more realistic picture of the underlying
phenomena.

In the following, section 2 introduces the generating mechanism for re-
alistic (along certain important dimensions) interbank markets, section 3
provides a summary of the main properties of the networks produced by our
model, and section 4 introduces the mechanism for the propagation of the
shocks and shows the result from the Monte Carlo simulations. Section 5
finally concludes.

2 Generating mechanism for a scale-free banking system

We consider an interbank market (IbM) composed of n financial entities
linked together by their claims on each other. It seems natural to use net-
work theory in order to represent and study such a system: each bank in the
IbM will be represented as a node in the network, and the information of
the loans among banks will be included in the edges of the network. These
edges are directed and weighted, the weight of the link starting from node i
and pointing to node j being the total amount of money that bank i lends to
bank j. In order to proceed a modest step towards a more realistic represen-
tation on the interbank market, we will construct our toy financial system
in a way to represent the documented empirical features highlighted in the
introduction. Following Nier et al (2007), we use the scheme represented in
Figure 1 in order to represent the balance sheets of the bank. The assets
Ai of each bank (i = 1, 2, . . . ,n) are partitioned into interbank loans li and
external assets ei:

Ai = li + ei (1)

The liabilities Ii of each bank are partitioned into the internal borrowing bi,
customers’ deposits di, and the net worth ηi:

Ii = bi + di + ηi (2)
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Solvency requires that the difference between a bank’s assets and its liabili-
ties be positive, that is:

ηi ≡ (li + ei)− (di + bi) > 0 (3)

Fig. 1: The balance sheets
of each bank i belonging to
the IbM.

If relationship 3 is not fulfilled, bank i becomes insolvent. Note that
we could instead impose a minimal capital requirement and intercept the
bank’s operations if its capital falls below a threshold. For most purposes
that would leave our results qualitatively unchanged as it would just lead to
a linear rescaling of the balance sheet.

Following Nier et al. (2007), we impose the following relations, that hold
for all the banks belonging to the IbM:

ei = θAi (4)

li = (1− θ)Ai (5)

ηi = γAi (6)

This enables us to characterize the evolution of the balance sheet of the
banks using the common pair of parameters θ and γ. Unlike Nier et al. who
investigate a banking sector with banks of equal size of balance sheets and
interbank liabilities, we try to mimic some of the documented dimensions of
heterogeneity in the banking sector.

The empirical properties of real interbank networks that we attempt to
reproduce are the disassortative behavior and power law in the degree and
size distributions. To this end, we arrange the nodes on a scale free network
according to the following algorithm:

1. we start with an assumption on the distribution of the size of the banks.
Using Ai as parameter indicating the size of a bank, we assume that
ρ (Ai) ∝ A−τi (and Ai ∈ [a, b]) so that the sizes distribution will follow
a power law, and in the following we will use τ = 2. We note that
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since this formalism defines the size distribution over a finite range,
the numbers a and b defining the absolute range of bank sizes will also
be of some relevance.

2. once we have drawn the n-element set {Ai} i.e. the distribution of the
total external assets of the banks, we compute the external assets ei,
the interbank loans li and the net worth ηi, according to equations 4
- 6.

3. we use now the size parameter Ai as the peculiarity of the node. This
basically means that we add interbank liabilities to the system in rela-
tion to the sizes of each pair of potential trading partners. In order to
build up networks in this way, we use a probability function P (Ai,Aj):
this function provides the probability that a bank i (characterized by
total external assets Ai) lends money to bank j (characterized by total
external assets Aj). In most real IbMs, a pool of small and medium-
sized banks usually lend money to the biggest banks of the system,
which in turn redistribute liquidity to external financial markets or
within the IbM itself ( Iori et al. (2008), Cocco et al. (2009), Fricke
and Lux (2012)). The choice of an appropriate probability function
allows to reproduce those important empirical observations. In the fol-
lowing, we will use the three following alternative probability functions
for the generation of links:

P1 (Ai,Aj) =
(

Ai
Amax

)α
·
(

Aj
Amax

)β
(7)

P2 (Ai,Aj) = c · (Ai +Aj) (8)

P3 (Ai,Aj) = θ (Ai +Aj − z) (9)

where Amax denotes the size of the balance sheet of the biggest bank
in the system, α, β and z are constants, and θ is the classic Heaviside
step function. Section 3 will present the main topological properties
of networks produced by functions (7), (8) and (9). With any of these
probability functions, we can build the n× n probability matrix P ∈
Mn×n, with entries pij = Ps (Ai,Aj) ∈ [0, 1], and s = 1, 2, 3 1;

4. the next step consists in constructing the adjacency matrix A of the
network, according to the rule:

aij =

{
1, with probability pij
0, with probability (1− pij)

1 We note here that random networks are a particular case of our generating algo-
rithm; in fact, each function with the form P (Ai,Aj) = p will generate random networks
characterized by a density p.
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In contrast to a standard random network with constant connectivity,
the probabilities pij are drawn from one of the probability functions of
eqs. (7) to (9). In this way we reproduce the systematic tendency of
accumulation of links at larger entities and the disassortative nature
of empirical banking networks 2;

5. we also assume that banks loan money to other banks according to
their peculiarity; since loans are supposed to produce returns, it seems
natural to assume that financial entities will have more intense links
with banks with high peculiarity (balance sheet size). Including this
notion in the probability functions we can compute the load lij (the
volume of credit) on the link between bank i and bank j as:

lij =
lipij∑
j∈Ωi

pij
(10)

where Ωi denotes the set of nodes for which aij = 1;

6. in the last step, we compute the internal borrowing bi as:

bi =
∑
j

lji (11)

and the customers’ deposits di as:

di = (ei + li)− (ηi + bi) (12)

Deposits are, thus, the residual in the construction of the balance sheets
of banks that is adjusted in a way to guarantee consistency. While this leads
to a certain degree of heterogeneity of the size of deposits across banks, this
is not necessarily an unrealistic feature of our system.

Let us also emphasize that in the algorithm there are two levels of ran-
domness: the first appears in step 1, in the determination of the sizes of the
nodes, while the second appears in step 4, in the realization of the proba-
bility matrix. Thus, for a fixed sequence of the sizes {Ai}, several different
realizations of the network are possible.

3 Topological properties and the probability function

The representation of the financial system in our model depends on the
choice of the probability function. In the following, we will show in detail

2 It is possible, especially for symmetric probability functions, to have situations where
aij = aji = 1. Since loops are not allowed in our model (they would mean that bank
i and j are both borrower and lender of each others), we have to use a criterion for the
elimination of one of the edges. A possible choice is to randomly eliminate one of the two
links i → j or j → i; however, other choices are possible as well, if the aim is to enforce
the disassortative behavior of the networks (see section 3).
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how the topological structure of the network is determined by functions
(7), (8) and (9). One of the main features of these kind of networks is the
presence of power laws in the degree distributions of both in- and out-degree.
In particular, it is easy to see that the relations between the probability
function and the degree distributions are 3:

P (kin) = ρ

[
F−1
in

(
kin
n

)]
· d

dkin
F−1
in

(
kin
n

)
(13)

P (kout) = ρ

[
F−1
out

(
kout
n

)]
· d

dkout
F−1
out

(
kout
n

)
(14)

where n is the number of nodes in the network,

n · Fin(Ai) = kin(Ai) = n ·
b∫
a

Ps(t,Ai)ρ(t)dt (15)

is the mean in− degree depending on the fitness parameter Ai and

n · Fout(Ai) = kout(Ai) = n ·
b∫
a

Ps(Ai, t)ρ(t)dt (16)

is the mean out− degree. In the above equations, a and b denote re-
spectively the lower and the upper limits for the support of the distribution
of bank sizes: Ai ∈ [a, b]. With probability functions 7, 8 and 9, we obtain
respectively:

P1(kin) ∝ k
− 1+β

β

in , P1(kout) ∝ k
− 1+α

α
out (17)

P2(kin) ∝ (c1kin + c2)
−2 , P2(kout) ∝ (c3kout + c4)

−2 (18)

P3(kin) ∝ k−2
in , P3(kout) ∝ k−2

out (19)

In the same way, it is possible to see that the average degree of a neigh-
bour is determined by:

〈knn〉 (Ai) =
N

k(Ai)
·
b∫
a

p(Ai, t)k(t)ρ(t)dt (20)

where k(Ai) is the mean total degree of node i, as a function of its own
fitness parameter.

As we can see, with all three kinds of probability functions, the results
are scale-free networks (i.e., a power-law distribution of degrees). Since eq.

3 The derivation of the following equations, well known in literature (see for example
Caldarelli, 2007), is also reported in the Appendix.
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(20) involves the mean total-degree of a node, k(Ai), there is no closed-
form solution for this expression for the three probability functions. The
disassortative behavior can, however, be confirmed via numerical integration
of eq. (20), cf Fig. 2. It is apparent from eq. (17) to (19), that it will
be possible to change the exact shape of the degree distributions as well
as the degree of disassortative behavior by modifying the parameters of
the probability functions, and the distribution of the fitness parameters.
Figure 2 shows the degree distributions and the average neighbour degree
for functions (7), (8) and (9), for parameters α = 0.25, β = 1 and z =
0.6 · Amax. With this choice of the parameters we get tail indices in the
in-degree distribution equal to, respectively, −2, −2 and −2, and −5, −2
and −2 for the out-degree distributions. Moreover, a clear disassortative
behavior is observed in all the three cases4.

Fig. 2: The first three panels show the in- and out-degree distributions for the three
probability functions (7), (8) and (9). The last panel shows the mean neighbour
degree as a function of the total degree of the nodes. The curves in the last panel
are decreasing with the degree itself, indicating that big nodes are connected to a
multitude of small and medium-sized nodes, which themselves are connected with
only a (relatively) small number of hubs.

4 In order to reinforce the disassortative behavior, one could use a criterion for the
elimination of the loops different from the one described in footnote 2. In particular, if
both the edges i → j and j → i are present in the network, one could eliminate the one
starting from the biggest node of the two: this mechanism would contribute to mimicking
real interbank network structures, where mostly small banks lend money to big banks, as
described in the introduction.
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4 Simulation results

In this section we present results from our simulation engine. The design of
the simulations will be the same for all the following experiments: the first
step consists in generating a Monte Carlo realization of our banking system
as explained in sec. 2. In the second step we destroy the largest bank: this
shock is assumed to wipe out all the external assets from the balance sheet
of the initially failing bank. For each simulation run, we count the overall
number of defaults, as well as the number of defaults in each single phase
of the shock propagation. We report the average number of defaults across
all banks. In the following the number of banks will be fixed at 250, and
we will use probability functions (7), (8) and (9) with parameters α = 0.25,
β = 1 and z = 0.6 ·Amax; furthermore the two limits a and b will be fixed
at 5 and 100 respectively. We will investigate later how those limits affect
the resilience of the system. Of course, other choices are possible both for
the parameters and for the probability functions.

In the following, we will initially use as our exemplary case probability
function (7): for systems produced by equation (7) we will vary only one
parameter at a time, and we will study how this changes the domino effects.
At the end of the section we will show for all the functions (7), (8) and (9)
the results obtained by varying simultaneously the percentage of net worth
η and the percentage of interbank borrowing θ. Moreover, in section 4.4 we
present a comparison between the result obtained with scale free networks
and the results obtained with random networks and networks generated via
a maximum entropy principle. Section 4.5 shows how the absolute size of
the largest hub affects the contagion process.

4.1 Transmission of shock
Here we study the consequences of an idiosyncratic shock hitting one of
the banks in the system, and elaborate on how the aftereffects (usually the
number of defaults) depend on the structural parameters of the system.
There are several ways in which a shock can propagate through a financial
system. First, propagation will occur through the direct bilateral exposure
between banks (namely, financial entities holding in their balance sheets
liabilities of other entities and incurring, for endogenous reasons, solvency
problems, will transmit their losses to their creditors), correlated exposure
of banks to a common source of risk (banks holding correlated portfolios can
increase the probability of multiple and simultaneous failures), effects arising
from endogenous fire-sales of assets by entities in distress, and informational
contagion. We will focus here on the first of those mechanisms, noting that
idiosyncratic shocks are a clear starting point for studying knock-on defaults
due to interbank exposure.

In our subsequent analysis, the shock starts form one bank, and it con-
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sists in wiping out a certain percentage of its external assets (the source of
the shock). Let pi be that percentage, and let si be the size of the initial
shock:

si = pi · ei (21)

This loss is first absorbed by the bank’s net worth ηi, then its interbank
liabilities bi and last its deposits di, as the ultimate sink. That is, we as-
sume priority of (insured) customer deposits over bank deposits which, in
turn, take priority over equity (net worth). If the bank’s net worth is not
big enough to absorb the initial shock, the bank defaults and the residual
is transmitted to creditor banks through interbank liabilities. And in case
these liabilities are not large enough to absorb the shock, some of the losses
have to be absorbed by depositors. Formally, if si > γi, then bank i de-
faults. If the residual loss (si − γi) is less than the interbank borrowing bi
of the failed bank, then all residual loss is transmitted to creditor banks.
Otherwise, if (si − γi) > bi, then all of the residual cannot be transmitted
to creditor banks and depositors receive a loss of (si − γi − bi). Creditor
banks receive an amount of the residual shock proportional to their expo-
sure to the failed bank. In turn, this loss is first absorbed by their net
worth. If their net worth is not big enough to completely absorb the shock,
it will be transmitted first to their creditors bank, and possibly also to their
depositors. The part that is transmitted through the interbank channels
may cause further rounds of contagious defaults, and in this way the shock
spreads through the network. The transmission continues spreading through
the system until the shock is completely absorbed or, alternatively, the sys-
tem has completely failed. In the following, we will consider always the
worst situation, namely that all the external assets of one bank are wiped
out: pi = 1. For our analysis of the mechanical short-run effects of a shock
this is not an unrealistic assumption. Partial recovery of claims to defaulted
entities requires certain legal proceedings that can be extremely time con-
suming. Over short horizons, the de facto situation is that no payment can
be enforced on a defaulted claim.

4.2 Bank capitalization
In this first experiment we investigate the effects of banks’ net worth on the
resilience of the entire banking system; the parameter θ will be fixed at 0.8,
so that each bank will invest 20% of its total assets in the interbank market,
and the remaining 80% in some external markets. We will let the parameter
η vary from 0 to 0.1 5. Figure 3 shows the result: we report both the total
number of defaults (black bold line), and the number of defaults in the first
four phases of the propagation of the shock. The thin vertical bars represent

5 Remember that by mere rescaling η could also be interpreted as the excess over the
required minimal capital requirement.
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Fig. 3: Number of defaults as a function of the percentage of net worth η, for
probability function (7). The other parameters are fixed at: θ = 0.8, a = 5,
b = 100. The picture shows both the total number of defaults (bold black line)
together with the standard deviation of the mean value (thin gray line), and the
number of defaults occurring during the first four phases of the propagation of the
shock.

the standard deviation of the black line across our 200 replications of the
simulations.

As one could expect, when the percentage of net worth tends to zero, the
total number of defaults increases to 250: in particular, a threshold value
(η = 0.0143 in the picture) exists below which the system fails completely,
and below η = 0.008 it breaks down within only two rounds. This is a
demonstration on the so called small-world effect: the diameter of this kind
of networks is roughly about two when measured from the largest bank
belonging to the system, and so in only two rounds the shock will have
reached almost any bank of the IbM. At the other end, when the percentage
of net worth is beyond an upper threshold value, no defaults are reported
and no domino effects set in.

Interestingly, the shape of the line describing the total number of defaults
is far from linear. Starting from the value η = 0.1, we can observe that
below the value η ∼= 0.05 the first defaults appear, and inspection shows
that these are typically small banks connected to the initially failing bank.
As η decreases further, we observe a sharp increase in the number of defaults,
and this growth stops at the value η ∼= 0.02 where the curve enters a plateau:
at this point, all the banks belonging to the first shell around the initially
failing bank have failed, and the banks which are not directly connected to
the first failing unit have enough net worth to survive the shock. As the net
worth decreases further, also the banks outside the first shell are no more
able to absorb the perturbation, and the total number of defaults sharply
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moves up to 250.
It is interesting to have a look at the number of defaults in the different

rounds. In the first round (dotted line in Figure 3), banks that fail are
directly connected to the initially shocked bank, and when the dotted line
reaches its saturation at η ∼= 0.018 the complete first shell (composed on
average of 153 units) has failed. We note that the saturation point of the
number of defaults in the first round does not coincide exactly with the
plateau of the total number of defaults: the explanation is that the largest
banks in the first shell need more than one hit to fail, and so they populate
the failures of higher rounds. The reason for this is that for larger banks
the overall number of credit relationships to other banks is larger too (by
assumption, following observed empirical regularities), and so for them the
failure of the largest bank will lead to a proportionally smaller loss than for
the smaller client banks of the defaulted entity. When the percentage of net
worth decreases, these defaults occur already in earlier rounds, up to a point
in which all banks of the first shell are affected in the first round of defaults.

It is worthwhile to highlight here the ability of the system to confine
the shock in the first shell if the value of η is higher than some benchmark
(approximately 0.018 in our example). Even if contagion defaults occur after
the first failure these are limited to banks inside the first shell, i.e. to those
banks with direct exposure towards the source of the disruption.

4.3 Interbank exposure
In this section we are going to explore how the number of defaults is affected
by the percentage of interbank exposure as a function of total assets, namely
how the parameter θ affects the resilience of the system. An increase in
interbank assets produces, as an immediate result, an increase in the weight
of each edge, and so an increase of the channels through which the shock
can propagate. This effect can potentially increase the number of defaults
in the system, as the amount of losses transmitted to creditor banks will
increase as well. On the other hand, an increase in interbank exposure
implies a reduced relative exposure to external markets, and since here we
are considering, as initial source of the shock, the external assets, this second
effects could cushion banks against systemic risk.

The design of the simulations will remain the same as in the first ex-
periment: we generate a realization of the system and we shock the biggest
bank, wiping out all its external assets. Subsequently we count the number
of defaults. We will show the mean value of those numbers for each round,
and the standard deviation for the total number of defaults. In this section,
the percentage of net worth η is fixed at 0.025, while the percentage of ex-
ternal assets on total assets, θ, varies from 0.5 to 1 (when θ is equal to one
no interbank assets are present in the bank balance sheets). Fig. 4 shows
the result.
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Fig. 4: Number of defaults as a function of the percentage of external assets θ, i.e.
1− the percentage of interbank exposure θ, for probability function (7). The other
parameters are fixed at: η = 0.025, a = 5, b = 100. The picture shows both the
total number of defaults (bold black line) together with the standard deviation of
the mean value (tiny grey line), and the number of defaults occurring during the
first four phases of the propagation of the shock.

First, we note that when θ tends to 1 the number of defaults tends to
zero: in this case the banks’ balance sheets contain only external assets, and
so the channels for the propagation of the shock become smaller and smaller,
until θ assumes the value 1 and there are no more links in the network, and
no domino effects are possible. In Fig. 4 we can also note a threshold value
at θ ∼= 0.78: at this value, the contagion effects reach their maximum while
both more or less intense interbank linkages reduce the number of knock-on
defaults (due to a higher degree of rik sharing on the left and fewer links
for contagion on the right). At the other extreme, when θ tends to 0, the
banks become completely isolated from any external market, and so in our
model, where the initial source of the shock comes from the external assets
of the largest bank of the system, the number of defaults tends to zero as
well. Note that this exercise does not leave the size of the internal shock
unaffected. Clearly, when external assets decline in their absolute size (from
right to left) there should be a decrease of contagious defaults. Nevertheless,
despite this lack of normalization of the shock, the behavior of the system
is distinctly non-monotonic.

4.4 Results with other network generators
So far we have always used eq. (7) as the probability function generating the
networks. Although eq. (7) correctly reproduces the disassortative behavior
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and power law degree distributions, it is interesting to see in how far other
functional forms generating systems with the same qualitative features re-
produce the above results or not. We are going to present, therefore, also
the results obtained for the other two functions, namely equations (8) and
(9). In this section we display results in the bidimensional space (η, θ), and
for each pair of these two parameters we use colors to indicate the number
of defaults. Figure 5 shows the results for the three probability functions
discussed in section 3.

Fig. 5: In the top left, a a 3D plot shows the total number of defaults as a function
of the two parameters η and θ for probability function P1: in the figure one again
detects the plateau that already appeared in Fig. 3. The other three colored maps
represent the same information for the three probability functions P1, P2 and P3. In
all these maps one observes a non-monotonic behavior of defaults in the percentage
of interbank exposure. The color code indicates the number of banks in default.

As one can see from the Figure, the behavior of the systems in the pres-
ence of a perturbation is qualitatively the same in all the three cases. In
particular, it is again possible to observe a threshold value for the percent-
age of interbank exposure θ, beyond which the trend in the total number of
defaults reverts itself. Different versions of our generating mechanisms for
interbank connections do, however, affect the location of the level of inter-
bank exposure leading to the largest level of fragility of the system as well
as the quantitative importance of defaults in higher rounds.

As we had already highlighted in the introduction of this paper, most em-
pirical and simulation-based approaches of interbank markets use as topol-
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ogy for the underlying bank network a random network or a maximum
entropy principle. Random networks are characterized by a constant prob-
ability p for each edge to exist in the network. The maximum entropy
principle, on the other hand, assumes a maximum of dispersion of inter-
bank loans (see Upper and Worms (2004) for more details on this kind of
networks). We want to compare here the differences in term of contagion
effects when the same set of banks is connected through different underlying
network structures.

In the following, we will compare the number of defaults in scale free
networks, random networks and networks generated via maximum entropy
principles, for varying capitalization of the system. For the scale free network
case, we use as benchmark case the system generated through function (7):
again, the limits (a, b) are set to (5, 100) and the parameter θ is fixed to 0.8.

For the random network case, we will simply use the probability function:

P (Ai,Aj) =
{
p, if i 6= j

0, if i = j
(22)

with p equal to 0.1, 0.2 and 0.36 We note here that with the value p = 0.1, the
(mean) number of edges in the system generated with function (22) is equal
to the (mean) number of edges in system generated with function (7):this is
equivalent to random reshuffling the links (and their weights) among all the
banks.

We cannot define a probability function that generates networks accord-
ing to the maximum entropy principle. For a consistent comparison with
the scale free scenario, we proceed in the following way: first we generate
a weight matrix W using the fitness algorithm described in section 2 (with
probability function given by eq. (7)), then we compute the sum of the rows
and the sum of the columns of that matrix: they are, respectively, the total
amount of interbank borrowing and the total amount of interbank lending
for each bank. The problem is then to determine a new weight matrix W ∗
such that (i) the sum of the rows and the columns are the same as for W ,
and (ii) the dispersion of the new bilateral exposures w∗ij is maximized. This
problem can be easily solved numerically using the RAS algorithm (see Cen-
sor and Zenos (1997) for technical details). The result is a banking system
populated by banks having exactly the same balance sheets as in the scale
free network case, but now connected in a way that maximizes the entropy
of the new weighted matrix W ∗.

Figure 6 shows the results. As in the previous simulations, we again
shock the largest bank in the system by wiping out all its external assets.
The figure shows the total number of defaults after the propagation of the
shock terminates (for better visibility, we do not report in this graph the

6 This will simply generate random networks with different densities.
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Fig. 6: Number of defaults as a function of the percentage of net worth for different
kinds of network topologies: scale-free networks, networks designed according to
the maximum entropy scenario and three random network scenarios with different
probability for the existence of links (the random networks generated with p = 0.1
have the same (mean) density as in the scale free case).

standard deviations). We note immediately from the figure that the scale
free scenario is the most critical in terms of number of defaults. The random
network scenario (no matter what the probability p is) always underesti-
mates the effect of a targeted attack: the large pool of small and medium-
sized banks now has a larger number of outcoming links randomly directed
to all the other banks in the system, and, for each bank, the weight on those
links is the same (in contrast to the scale free scenario, where the larger the
peculiarity of the node, the larger the weight on the links pointing to it).
This effect dramatically reduces the threshold value for the percentage of
net worth necessary for triggering chains of defaults.

We note moreover that also the maximum entropy scenario underesti-
mates the effects of a targeted attack, albeit to a smaller extent in com-
parison to the random networks. We see that the classical plateau that we
have seen in all the other cases now disappears: the reason is that the sys-
tems built via the maximum entropy principle are fully connected7, and so
the distinction between different shells is not applicable here, i.e. all banks
belong to the first shell.

7 Note that the result is not equivalent to use a random network with probability p = 1,
since the weights on the links are significantly different, affecting so the way a shock can
propagate in the system.
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4.5 The size of the hubs
In this section, we analyze the behavior of the networks when changing the
size of the largest bank in the system. Using our simulation engine, this
can be achieved simply by expanding the interval from which we draw the
fitness parameters of nodes. In particular, we leave the lower boundary a
of that interval constant (in our experiments it will be (and it was) fixed to
5), and increase the upper limit b. Since the fitness parameters are drawn
from a power law distribution most of the sampled values will be located in
a short subset at the left end of the interval. As an example, we can imagine
to sample the fitness parameters from a power law on the interval [5, 1000].
If the exponent is 2 it easy to see that more than 95% of the draws will lie
in the interval [5, 100], and that 99.5% of the values will lie in the interval
[5, 500]. So the result of increasing the upper limit of the interval [a, b] is
the introduction of a very small number of very big banks. The presence
of those banks has some intuitively plausible effects on the resistance of the
system to shocks. Consider, for example, the probability function of eq.
(7), with α = 0.25 and β = 1. When Amax increases, the probability of a
link involving two small banks or two medium-sized banks decreases: hence,
more edges will point to the few hubs of the networks. Furthermore, since
the edges in our model are weighted by the same probability function (see
eq. 10), most of the interbank loans will be loaded on the edges pointing to
these hubs.

After these preliminary considerations, we now investigate the behavior
of the network when bigger hubs are introduced in the interbank system.
We will show results for two particular values for the percentage of (excess)
net worth η, namely η = 0.1 and η = 0.01. These choices permit us to study
the system in two limiting cases: in the first case, as demonstrated in the
previous sections, the system is relatively well cushioned against systemic
risk, while in the second case the system is very weak. The parameter θ will
be fixed at the value 0.8. Furthermore, for each realization of the system,
we will again shock the largest bank by wiping out all its external assets
from its balance sheet.

Fig 7 shows the results for the case η = 0.1. As a first observation,
we note that as the value of the upper limit b exceeds the threshold value
b ∼= 230, first round effects start. We should emphasize that, in the previous
experiments, at (η, θ) = (0.1, 0.8) no defaults were reported in our system.
Figure 7 shows that occurrence or not of contagious defaults also depends
on the parameter b. In particular, we can see that the number of defaults
in the first round sharply increases in the range [230, 700]. That happens
because most of the banks are now linked to the hubs and moreover these
links become increasingly more loaded (higher in volume) as the parameter
b increases. As a consequence, when the largest bank defaults, the first shell
is no longer able to absorb the resulting losses.
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Fig. 7: Number of defaults as function of the upper limit of the interval for banks’
sizes used in the Monte Carlo simulations. The black bold line denotes the total
number of defaults, together with its standard deviation (light gray bars); colored
lines represent the next rounds. (η = 0.1, θ = 0.8).

Fig. 8: Number of defaults as function of the upper limit of the interval for banks’
sizes used in the Monte Carlo simulations. The black bold line denotes the total
number of defaults, together with its standard deviation (light gray bars); colored
lines represent subsequent rounds. (η = 0.01, θ = 0.8).
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Figure 8 shows the result in the case η = 0.01, θ = 0.8. For this pair
of parameters we know that the systems is extremely vulnerable against
systemic risk, and in particular in a few rounds the whole IbM usually had
failed after a shock. As one can see from Figure 8, these results change as
well if larger hubs are present in the system: as the size of the biggest bank
becomes larger, the pool of small and medium-sized banks effectively stops
dealing among themselves, and so the channels through which a shock can
propagate beyond the (relatively large) pool of trading partners of the largest
hub do vanish. We can see moreover that as the upper limit b increases, the
second round (yellow line in Figure 8) assumes basically the same importance
as the first round. At this point in the system there are few big hubs
(strongly) interconnected, and when the biggest of them fails (producing
the default of all banks in its first shell) the other hubs will be failing in due
course. When these secondary hubs fail, their first shells will fail as well, and
the result is a high number of defaults in the second round. As the upper
limit b increases further, networks will become very sparse, and the number
of defaults decreases due to lower overall connectivity of the system.

5 Conclusion

This paper has investigated the behavior of a scale-free interbank market,
characterized by a disassortative structure, in case of targeted attacks. The
networks have been constructed according to a fitness algorithm, where the
size of each node is used as a kind of peculiarity index for the bank itself:
the higher the index, the higher the probability that other banks will lend
money to it. For appropriate choices of the probability function, the net-
works are described by a decreasing mean neighbour degree distribution, i.e.
disassortative mixing. The results are networks composed of a large pool of
small and medium-sized banks which invest money in interbank loans to the
biggest banks, which in turn invest this liquidity into non-financial assets
and also redistribute part of it in the interbank market.

In this framework, we have investigated how the percentage of net worth
and the percentage of interbank assets (on total assets) affects the spread of
an idiosyncratic shock. The results show a shell structure in the propagation
of losses: banks belonging to the first shell (i.e. creditor banks of the de-
faulted entity) fail mostly before the others, and it is possible to distinguish
between defaults of the different shells in the cascade of events. Moreover,
in all three types of probability functions we investigated, a hump-shaped
dependency of the number of defaults on θ was observed, indicating higher
robustness of networks with very few and very many links. The intuitive ex-
planation is that if banks invest more money in the interbank market than
in other external markets, the risk for endogenous shocks decreases and,
moreover, banks are more able to absorb potential losses.

As it turns out, the role of the hubs is ambiguous in these networks: when
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the size of the hubs increases, the pool of small and medium-sized banks
tends to withdraw from dealing among themselves, and to start lending and
borrowing mostly from and to the hubs. Given our probability functions,
the hubs are also highly connected among themselves. The results of this
change in the network structure on the resilience of the system is linked to
two antagonistic phenomena: on one hand, the number of channels for the
shock propagation decreases as the hub sizes increase. Due to the smaller
number of connections in the pool of small and medium sized banks, on the
other hand, the same pool of banks concentrates their bilateral links to a
few very big banks, that assume a central position in the entire system. In
our model, the results from an endogenous shock are ambiguous and depend
on the state of the system in terms of its capital base: for a strong system
(γ = 0.1) the total number of defaults increases if the biggest bank meets
insolvency problems, for weakly capitalized system (γ = 0.01), the number
of defaults decreases with the size of the largest unit.

We also found that random networks or networks constructed on the base
of a maximum entropy principle lead to fewer contagious defaults than our
scale-free networks, under otherwise identical conditions. It is important to
note that this implies a potentially tremendous underestimation of contagion
risk, if due to a lack of detailed knowledge, stress tests are conducted with
the simple algorithms for random network creation or maximum entropy
allocation of interbank credit.

A Computation of the degree distribution via the probability
function

We provide here the derivation of eq.s 13 and 14. Starting from a particular
probability function PS(Ai,Aj), and a distribution for the size parameter
ρ(Ai), we can write the mean in-degree of a vertex as:

kin(Ai) = n

∫ b

a
PS(t,Ai)ρ(t)dt = n · Fin(Ai) (23)

and, simarly, for the out-degree we can write:

kout(Ai) = n

∫ b

a
PS(Ai, t)ρ(t)dt = n · Fout(Ai) (24)

where n is the number of nodes of the network. Assuming the function
Fin(Ai) and Fout(Ai) to be monotonous in Ai, and for n large enough,
we can invert the functions Fin and Fout in order to find the relationships
between the size parameter Ai and the the out-and in-degree of the node:

Ai = F−1
in

(
kin
n

)
(25)
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Ai = F−1
out

(
kout
n

)
(26)

The transformation of the parameter in the size-distribution ρ(Ai), from Ai
to kin/out, bring us to:

P (kin) = ρ

[
F−1
in

(
kin
n

)]
· d

dkin
F−1
in

(
kin
n

)
(27)

P (kout) = ρ

[
F−1
out

(
kout
n

)]
· d

dkout
F−1
out

(
kout
n

)
(28)
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