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1 Introduction

Price stability has become an important mandate of many central banks around the world
since the 1980s. It is now widely accepted that decision making becomes more complex in high
and persistent inflation scenarios, as inflation may cloud public confidence as well as economic
agents’ assessments of future economic activity (Golob, 1994). Moreover, low inflation seems to
promote growth and support sustainable employment in the long run (Bernanke, 2007). Thus,
it is not surprising that a lot of effort has been devoted to the development of models that can
accurately explain the dynamics of inflation rates.

In this article we contribute to the inflation literature by proposing and estimating a mul-
tivariate model of inflation with conditionally heteroskedastic common and country-specific
components. The model is estimated in one-step by means of Quasi Maximum Likelihood
(QML) which allows us to take time-series and cross-sectional information of (time-varying)
first and second order moments into account and jointly estimate all parameters of the model.
We analyze various specifications of the full model both in-sample and out-of-sample.

Our inflation model is motivated by the fact that it has become more difficult in the last
decades to find economic models which can accurately describe the ex-ante dynamics of inflation
(Stock and Watson, 2007). A possible reason given in the inflation literature to the ‘unpre-
dictability’ phenomenon is that inflation expectations seem to be now anchored over the long
term, that is, inflation is relatively insensitive to the arrival of new information. Rather, agents
appear to stick to their long-run reference of inflation when making their forecasts (Mishkin,
2007). This, in turn, would explain why empirical studies have found that the Phillips curve
has become flatter and why oil shocks and other macroeconomic variables have relatively less
explanatory power than in the past (Hooker, 2002). Nevertheless, while inflation expectations
seem to be relatively more anchored than in the past, some suggest that the anchoring is some-
what imperfect. In other words, agents seem to set expectations to a long term trend but
unanticipated shocks can cause temporary deviations from this trend (Gurkaynak et al., 2005).

Stock and Watson (2007) (SW henceforth) formalized an elegant statistical model that
accurately describes the dynamics of inflation in the United States (US) and that sheds light

on the hypothesis of imperfect anchoring of expectations. The SW model decomposes inflation



rates in the US into two components: a permanent and a transitory component which can also
be interpreted as a time-varying trend and a cycle. Following Bernanke (2007), the SW model
shows that there has been a moderation in the level of variability of trend inflation since the
1980’s suggesting that innovations to inflation expectations are much more likely to be transitory
now than three decades ago. However, the variability of the trend in inflation, although lower,
remains positive which suggests that long-run expectations are not perfectly anchored.

Along the lines of SW, a study by Broto and Ruiz (2009) (BR henceforth) finds evidence that
inflation rates can be modeled by means of conditionally heteroskedastic permanent and transi-
tory components. Interestingly, BR find that volatility of inflation seems to exhibit asymmetric
effects, that is, high (low) inflation today leads to high (low) volatility of inflation tomorrow.
This finding can be related to the literature on inflation uncertainty which suggests the that
high inflation can increase inflation uncertainty (Friedman, 1977; Golob, 1994).

An interesting study by Ciccarelli and Mojon (2010) (CM henceforth) recently documented
comovements of inflation amongst OECD economies. We interpret their result as evidence of a
common time-varying trend of inflation, very much in the spirit of the SW and BR decompo-
sitions but with a more concrete economic interpretation: global inflation rates are driven by
a highly persistent common stochastic trend. Moreover, similar to the finding by Cogley et al.
(2010) for the US, CM show that inflation gaps of their model (given by the spread of global in-
flation rates to the common global trend) shows some persistent autoregressive properties. The
model by CM not only provides evidence on international comovement and error correction of
inflation but also seems to outperform standard benchmarks (such as an autoregressive model
of inflation and a random walk) in out-of-sample analyzes.

Cecchetti et al. (2007) (CHKSW henceforth) use the SW model to extract smoothed esti-
mates of the transitory and permanent components of inflation for the G7 countries, as well
as their time-varying volatilities. Smoothed estimates of the permanent components are very
similar across G7 countries, reinforcing the evidence of a global trend in inflation reported by
CM. Moreover, CHKSW also provide some evidence on comovements in the wvolatility of the
permanent components of global inflation rates. In fact, the results of CHKSW document the

‘Great Moderation’ of inflation volatility in most of the G7 economies. Thus, it seems that the



comovement of global inflation rates is not only apparent in their first order moments but also
in their second order moments.

Overall, the results of the studies by SW, BR, CPS, CM and CHKSW seem to point to the
same direction: inflation rates in various countries can be described by a permanent-transitory
component specification and the permanent component along with its volatility seem to be
common amongst OECD economies. The time-series evidence also fits well to the hypothesis
on (imperfect) anchoring of inflation expectations over the long-term which partially explains the
so-called ‘Great Moderation’. In addition, if global and national inflation volatility are indeed
time-varying, global models of inflation with time-varying volatility can also contribute to the
burgeoning literature on inflation uncertainty. An accurate estimate of inflation uncertainty
would imply that consumers and businesses could better plan for the future (Golob, 1994).

The specification proposed in this study is rich in the sense that it incorporates all the
empirical determinants of inflation rates set forth by SW, BR, CPS, CM and CHKSW into
a compact global inflation model. To preview some of our results, we find that the estimated
common inflation component can explain on average more than 50% of the variability of national
inflation in the G7. The estimated volatility of the common inflation component captures the
international effects of the ‘Great Moderation’ and of the ‘Great Recession’. Various model
specifications considered fit well the first and second order dynamics of inflation in the G7. The
model also shows promising capabilities for forecasting inflation in several countries.

The article is organized as follows. In the next section we describe our empirical model.
Section 3 describes the data set used and the estimation methodology employed. Section 4
presents the forecasting design. Section 5 discusses the results of our analysis and the last

section concludes with some final remarks.



2 The model

We consider the following specification of inflation, denoted 7, for ¢ = 1, ..., N cross-sectional

members and t = 1, ..., T time periods:

Tit = Nigt + fits (1)

where g; and f;; are, respectively, common and country-specific latent components and J; is the
so-called loading coefficient. The components g; and f;; follow autoregressive processes of order

one, i.e.

g = (1—p)u+pgi1+e, (2)

fit = Gifit—1 + wi, (3)

where p and ¢; are parameters such that |p| < 1 and |¢;| < 1, and the disturbance terms
€, uir and uj;, @ # j are uncorrelated and have zero-mean. Note then, that E[my] = A\ip
is the unconditional mean of each inflation rate m;; in our set up in the case |p| < 1. The
common component g; follows from the time series evidence on the existence of a world trend
documented by CM whereas the autoregressive country-specific component f;; stems from both
CM and CPS who show that inflation gaps display serial correlation. Our set up for inflation

implies the following error correction model (ECM) obtained from the above system for each i:

Amie = @i fit—1 + NiAge + wit, (4)

where Am;; = mj — 1 is the change in inflation, f;; = m; — A;g; is the so-called error correction
term, Ag; = g — g1—1 is the change in the common inflation component and ¢; = (¢; — 1)
is the error correction parameter. In a nutshell, the ECM suggests that inflation rates are
mean-reverting to their long-run reference level g; with the speed of adjustment given by ;.
Furthermore, note that if we assume a random walk specification for the common component g,
i.e. p =1, then the variables 7;; would be integrated of order one, denoted I(1), as they would

be explained by a non-stationary component (g;) and a stationary component (f;;). However, as



long as p; < 0 (|¢i| < 1), model (4) is stable and country inflation 7 is said to be cointegrated
to the common inflation component g; with cointegrating (long-run) parameter \;, denoted
CI(1,—\;) for short. It is also worth noting that in the cointegration case p = 1, the shock
€: has a permanent effect on inflation m;; while the country specific shock u;; has a temporary
(mean-reverting) effect.

Following the empirical evidence documented by SW, BR and CHKSW, we assume that ¢

and u; are conditionally heteroskedastic:

€ ~ N(O, ’Ut), (5)

Ut ~ N(O, wit). (6)

Along the lines of BR who find evidence of asymmetry in inflation volatility (higher (lower)
inflation today can generate higher (lower) inflation volatility tomorrow), we employ a
Quadratic Generalized Autoregressive Conditionally Heteroskedastic specification of order one

(QGARCH(1,1) henceforth) for v; and wy, i.e.

2
vy = gt Q1€ + QU1 + g€, (7)

wit = Bio+ Biud_y + Biowir—1 + Bisuit—1, (8)

where the parameters aq, a1, as, ag and B0, 81, Bi2, Bis satisfy the usual conditions to guarantee
positivity of v; and w;; (Sentana, 1995). Under the QGARCH(1,1) specification, conditional
variances have different responses to shocks of the same magnitude but different sign (Broto
and Ruiz, 2009).

Note that the empirical model (1)-(6) is general enough to nest other interesting specifica-
tions analyzed in previous studies. For instance, when |p| < 1 and ¢; and u;; are homoskedastic,
we end up with the global specification proposed by CM.! Similar to BR, we may obtain a
permanent-transitory component specification for each country from the above system if g; = gy,

p=1 ¢, =0 and \; = 1. Moreover, if ¢t = g;z, p = 1, ¢; = 0 and \; = 1, but v; and wy

'Note, however, that CM do a multi-step approach to estimate their error-correction model whereas our
approach estimates all parameters jointly.



have an integrated stochastic volatility formulation we arrive at the specification used in SW
and CHKSW.
Collecting the equations (1)-(8) for all 7 leads to the following compact state-space repre-

sentation of a multivariate inflation model with conditionally heteroskedastic disturbances:

Ht - ASt7 (9)

Sy = BSi—1+&, &~ N(0,Qy), (10)

where IT; = (714, ..., T¢)" i the vector of inflation rates, Sy = (g¢, fit, --., fat)’ is the state vector
containing the common (global henceforth) component and the country-specific components,
and & = (&, uit, ..., unt)’ is the vector of state disturbances. The matrix A = [A, Iy] links the
observations to the unobserved states, where A = (Aq, ..., A\y)’ is the vector of loading coefficients
and Iy is an identity matrix of order N. Moreover, B = diag(p, ¢1, ..., on) is a diagonal state
transition matrix and Q; = diag(vt, w1y, ...,wn¢) is a diagonal covariance matrix whose elements
are defined in (7) and (8). In the subsequent sections we describe the estimation approach of

the state space model in (9)-(10) and the out-of-sample analysis designed for this study.

3 Data and estimation approach

The dataset comprises quarterly data on the Consumer Price Index (CPI) denoted P for
OECD economies in the G7 (Canada, France, Germany, Italy, Japan, United Kingdom and
United States). The full sample period runs from Q1-1960 to Q4-2009 and the data have been
obtained from the OECD Statistics Portal.? We employ year-on-year (yoy) inflation rates, i.e.
it = 100 X (In P;y — In Pj;_4) to avoid seasonalities (Ciccarelli and Mojon, 2010).

Model (9)-(10) is estimated by means of Quasi Maximum Likelihood. Note, that if & =
(€t,u1 ¢, ...,un )" were observed, the model (9)-(10) would be conditionally Gaussian and the
Kalman filter would be the optimal filter in the sense that it would yield minimum mean square

estimates of the states Sy = (g¢, fi¢, ..., fn,t). However, the disturbances & are unobserved and

2See http://www.oecd.org/statsportal for further details.



equations (7)-(8) cannot be computed. Harvey et al. (1992) propose to substitute €; and u; in

(7) and (8) by their conditional expectations, i.e.

v = ag+ B [ 1] + aovim + asE [e-1|Ti1], (11)

wit = Bio+ BunE [uf_1 1] + Biowir—1 + BisE [uie—1|TL—1] . (12)

In this approach, the state vector is augmented with the disturbances & such that the
Kalman filter recursions can be used to compute the expectations in (11) and (12). The aug-

mented measurement and state transition equations are then given by

I, = A*S; = [A,ON7N+1]S,?,
. St B ONt1,N+1 Si—1 Ingq (13)
Sy = = + &t
&t ONt+1,N+1 Ong1,N41 &1 INi1

Although the conditional distribution of & given &_; is assumed to be normal with mean
zero and variance (¢, the distribution of & conditional on past observations is unknown, as
knowledge of past observations does not imply knowledge of past disturbances. Harvey et al.
(1992) propose to treat the augmented state space (13) as if it were conditionally Gaussian and
to use the Kalman filter to obtain an approximate likelihood function based on the prediction

errors decomposition:

NT
log L(TIT) = — =~ log(2r) —leog =) Zet e, (14)

where II = (IIy, ..., II7)" are the observations, ¢ are the innovations and %; their corresponding
variances. The Quasi-Maximum Likelihood estimates of I' are obtained by maximizing the
Gaussian log-likelihood in (14) (see, for instance, Kim and Nelson (1999) for further details).

The vector of parameters to be estimated in the full version of model (9)-(10) is given by:

I'= (1,--'7)\7\/71%97 ¢17"'7¢N7a07a17a27a37601)"'750]\[76117"‘7ﬁ1N7621)"'7ﬁ2N76317' 7/63]\7) (15)

where we normalize the loading coefficients with respect to the loading coefficient of the US,



ie. Xf = \j/A fori=2,...,N. As introduced previously, our model is rich in the sense that it
allows us to analyze various nested specifications. In our in-sample and out-of-sample analysis
we study other submodels within the fully parameterized model. The different specifications
analyzed are denoted M1 to M6 and are displayed in Table 1.

We used Principal Component Analysis (PCA) to find initial values for the loading matrix A,
and an Ordinary Least Squares (OLS) regression of the first principal component on its lagged
values to obtain an initial value for the autoregressive parameter p of the global component.
Given the PCA estimate of A and ¢¢, we computed an estimate for fiz = mi — Aigs, © =
1,...,N, and subsequently estimated the autoregressive (AR) coefficients ¢; by means of an
OLS regression of the estimate for f;; on fi;—1. These initial values are used as starting point
in the BFGS (Broyden, 1970) numerical optimization routine, used to maximize (14) with a
homoskedastic version of our model (9)-(10), i.e. with Q; = Q. This restricted version of
the model (denoted M1) is conditionally Gaussian, and the Kalman filter is the optimal filter
for its estimation. The ML estimates of the subset parameter vector I'!) obtained from the
estimation of M1 are used to initialize the estimation of two larger models: M2 which contains
GARCH effects only in the country-specific components f;; and M3 which contains GARCH
effects only in the global component g;. Initial values for GARCH parameters are obtained
by estimating GARCH processes with estimates of ¢; and w; computed from M1. The QML
parameter estimates I'® and I'® obtained from M2 and M3, respectively, are subsequently used
to initialize the estimation of the other model specifications considered: M4 (with GARCH(1,1)
in g; and f;), M5 (with IGARCH(1,1) in ¢; and f;;) and M6 (with QIGARCH(1,1) in g; and
fit)

4 Out-of-sample analysis

The proposed model is also tested out-of-sample to shed light on its capabilities for forecasting
inflation. The out-of-sample period chosen for backtesting the model runs from Q1-1985 to Q4-

2009 which covers the second half of our sample.? In what follows we describe the forecasting

30ther samples yielded qualitatively similar results and can be provided upon request.



methodology employed for single and combined forecasts and the forecast evaluation.

4.1 Single forecasts

Let 7 denote the forecast origin. The out-of-sample forecasting analysis consists of estimating
the parameter vector I'®) of model I up to time 7 = R and using observations 7 = R, R+1, ..., T—
h to obtain forecasts 7.,y and Af;. p|; recursively for horizons h = 1,4,8, i.e. quarterly,
annually and bi-annually yoy-inflation, based on the Kalman filter estimates g, and fiT. Due to
the computationally intensive estimation procedure, we do not re-estimate parameters at each
7 in order to save on computational time.

Forecasts of inflation ;.. for each i, 7 and h are obtained as

7%1‘7—4,-]1\7— = j\jg’r—&—hh + fiT+h|T7 (16)
gT+h\T = p+ pAhgTa (17)
fi‘r+h\r = é?fz*r (18)

We obtain forecasts of inflation changes Af;. - for each i, 7 and h as

Aﬁ-iT—&—h\T = S‘:AQT—H‘L\T + AfiT+h|T’ (19)
Agrinr = (p=1)0"""g-, (20)
Afi7'+h\7' = (él - 1)&?_1]617 (21)

From an economic perspective, forecasts of inflation ;.. might be more interesting than
forecast of inflation changes Aft;; |- as they have a straight forward interpretation. However,
recent studies have suggested that accurate forecasts of the direction of inflation changes can
shed light (ex-ante) onto the type of monetary policy needed (i.e. tight versus loose) which

motivates us to also analyze them here (Sinclair et al., 2006).
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4.2 Combined forecasts

An important result from the methodological literature on forecasting is that a linear combi-
nation of two or more forecasts may yield more accurate predictions than using only a single
forecast (Granger, 1989; Newbold and Harvey, 2002; Aiolfi and Timmermann, 2006). In par-
ticular, there is recent evidence that combining forecast of nested models can significantly
improve forecasting precision upon forecasts obtained from single model specifications (Clark
and McCracken, 2009). Therefore, our proposed inflation model provides a good platform to
test out-of-sample complementarities between alternative nested models (Table 1) via forecast
combinations.

Combinations of inflation forecasts obtained from various models for each i = 1,..., N are

given by:

~ ~/ —~
Yir+h|r = Wirgp|7Mir4-h|rs (22)

where g, |- is the combined forecast of inflation (inflation change), 1;, +h|r 1s & vector that
collects forecasts of inflation (inflation change) of model [ and W is a vector that collects
the weights attached to each model /.

The weights W jrip)r, | = 1,...,5, are computed based on alternative criteria that measure
the out-of-sample performance of each inflation (inflation change) forecast . Note, however,
that since a forecaster would only have information available up to the forecast origin 7, the
sub-sample for forecast selection and computation of weights must contain data on or before
that period. Thus, we start by setting equal weights to all forecasts until the weighting schemes
could be based on the evaluation of realized forecast errors. This procedure guarantees that we
use only information available up to a particular period 7 to set weights of forecasts for period

T + h. The following 5 alternative combination strategies ¢ = {1,2,...,5} are considered:

1. Simple average (AFC): Various studies have demonstrated that simple averaging of a
multitude of forecasts works well in relation to more sophisticated weighting schemes
(Newbold and Harvey, 2002; Clark and McCracken, 2009). Therefore, the first scheme

that we use is of averaging all the forecasts obtained from the different models considered.
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2. Thick-modeling approach with OLS weights (TFC): A study by Granger and Jeon (2004)
proposes the so-called thick modeling approach (TMA) which consists of selecting the
z-percent of the best forecasting models in the sub-sample period for model evaluation,
according to the root mean square error (RMSE) criterion. We use the selection process of
Granger and Jeon and subsequently compute weights by means of OLS regressions along
with the constraint that the weights are all positive and sum up to one. The z-percent of

top forecasts selected is set to 2 (i.e. about z=35%).

3. Rank-weighted combinations (RFC): The RFC scheme, suggested by Aiolfi and Timmer-
mann (2006), consists of first computing the RMSE of all models in the sub-sample period
for evaluation. Defining RAN K}, ;- (1) as the rank of the [-th model based on its historical
RMSE performance up to time 7 for horizon h, the weight for the I-th forecast is then
calculated as: Wy jryp|r = RANK} ()71 >, RANK,, - ()7L

4. RMSE-weighted combinations (MFC): The MFC weighting scheme is similar to RFC and
consists of computing the RMSE of all selected models | and setting the weight of the [-th
model as Wy i, pr = RMSEp (1)) > RMSE i (1)1

5. Frequency combinations (FFC): The FFC scheme consists of assigning to each I-th forecast,
a weight equal to a model’s empirical frequency of minimizing the squared forecast error

over realized past forecasts.

4.3 Forecast evaluation

In order to evaluate forecasts of inflation we employ mean squared forecast errors (MSE) and
mean absolute forecast errors (MAE). MSE and MAE of a particular model are given in per-
centage of the MSE and MAE of either an autoregressive model of order one (AR) or a random
walk model (RW). More precisely, let 7 = 1,...,7 denote an out-of-sample forecast observation
with 7 =T — R— h. Let ‘0’ and ‘0’ indicate a particular competing model and the benchmark,

respectively. Forecast errors of model ‘@’ for country ¢ are computed as

Eiz(®) = miz — iz (e). (23)

12



The MSE and MAE of model ‘e’ are:
di(e) =T 1) diz(e), (24)

with diz(e) = é;z(e)? for MSE or diz(e) = |é;z(e)| for MAE. The average performance of a

competing model specification is given in relation to d;(0), obtaining relative MSEs or MAEs:

el

(o) )

aril®) = Ty

S0

where d;(0) is defined as in (24). Thus, dr;(e) values below one indicate a superior performance
of a particular model ‘o’ against the benchmark ‘0’ in terms of MSE or MAE. Note that (25)
computed with d;z(e) = é;z(e)? and d;z(0) = é;7(0)? in (24) is related to the so-called out-of-
sample R? as R2os,z' =1—dr;(e).

In order to analyze whether model ‘0’ has a statistically equal predictive accuracy to model
‘e’, we employ the modified Diebold Mariano (DM) test of Harvey et al. (1997). We address the
issue of forecast complementarities between ‘0’ and ‘e’ by means of the forecast encompassing
test proposed by Harvey et al. (1998). Lastly, we analyze the out-of-sample performance of our
model for forecasting the direction of change of inflation Am;y, by means of the directional-

accuracy test of Pesaran and Timmermann (1995).

5 Results

In this section we discuss the main results of our study. We consider first the in-sample results

(Tables 2 to 7) and subsequently the out-of-sample results (Tables 8 to 13).

5.1 In-sample results

Tables 6 and 7 display the parameter estimation results for the full sample period Q1-1960 to
Q4-2009. The first specification (M1) considers the multivariate inflation model with an AR

world component and homoskedastic shocks, i.e. [p| < 1, ax = 0 and G = 0 for k = 1,2
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and all i. Note, then, that this model is a variant of the global inflation model proposed by
CM (estimated in one step). We find for this version of the model that the normalized loading
coefficients 5\;“ and autoregressive coefficients ngbz are all statistically different from zero at the 5%
level. The estimate p in M1 is very close to one, indicating that the global inflation component
possibly follows a random walk process. This result suggests that the inflation rates of the G7
might be cointegrated with the global inflation component since the estimated autoregressive
parameters qBZ are all less than one (Table 3). The case of p = 1 is supported by unit root tests
and cointegration tests presented in Tables 2 and 3. In fact, imposing p = 1 yields a higher
log-likelihood value for M2-M6 than for M1 (Table 5).* Thus, models M2 to M6 assume a
cointegrated model of G7 inflation, that is we set p = 1.

Model 2 (M2) assumes that a = 0 for £ = 1,2, i.e. GARCH effects only in the country-
specific components f;;. For the latter model, we find that the loading coefficients 5\;" and
autoregressive coefficients b; are statistically different from zero as in the case of M1. However,
(G)ARCH parameters of the country-specific components f;; are statistically insignificant in
most countries. Moreover, in several countries the restriction 3;; + (2; < 1 is almost binding
suggesting that conditional volatility could be better approximated by an Integrated GARCH
(IGARCH) process. Interestingly, the latter results corroborates the model of SW who specify
conditional variances by means of integrated stochastic volatility processes.

Model 3 (M3) considers a heteroskedastic global inflation component g; but homoskedastic
country-specific components fi;, i.e. ap # 0 and B = 0 for k = 1,2 and all 5. The latter model
yields parameter estimates 5\:‘ and QASZ that are statistically different from zero in all countries
at conventional significance levels. Interestingly, M3 clearly shows that the world component
g: exhibits time-varying volatility v; as all GARCH parameters are statistically different from
zero (Table 7).

Model 4 (M4) assumes GARCH specifications for the global g; and the country-specific fi
components, i.e. ap # 0 and G # 0 for Kk = 1,2 and all i. However, as in the case of M2,
(G)ARCH parameter estimates of the country-specific shocks are not statistically different from

zero at the 5% level in most countries and the restrictions on these parameters are also almost

4 A higher log likelihood is also obtained for the homoskedastic case with p = 1. Results can be provided upon
request.
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binding in several countries.

Given the results on M2 and M4, we have imposed the restrictions as = 1 — a; and
Bi2 = 1 — (i1 throughout in Models 5 (M5) and 6 (M6) which specifies conditional variances
as (Q)IGARCH processes. As expected, the parameters of the integrated conditional variances
in M5 and M6 are found to be statistically different from zero in most countries and for the
world component. In fact, the model incorporating IGARCH and asymmetric variance effects
(M6) yields the highest log-likelihood value out of all models considered (Table 5). Moreover,
M6 displays evidence of asymmetry in volatility at the 5% level in most countries which sug-
gests that high (low) inflation can generate high (low) inflation uncertainty. The relationship
between inflation and inflation volatility seems to be positive in all countries except for Canada.
Interestingly, the pass-through of inflation to inflation volatility is highest in France, Canada
and Japan which are also the three countries with the fastest speed of adjustment p; = ¢; — 1
according to M6.

Figure 1 displays the filtered estimates of the country specific components for the G7
economies obtained from M6 which is the full model. To save on space, we only present the
figures for M6 although similar plots are also obtained for other versions of the model and can
be provided upon request. Similar to CM, our global inflation estimate (g;) suggests a highly
significant international co-movement of inflation for the G7. The figure also shows the mean
reverting features of the country-specific error correction terms ( fit = Tt — Xj g¢) suggesting that
global inflation is ‘attractive’ as proposed by CM. Visually, mean reversion seems to be fastest
(slowest) for France and Canada (USA and Italy) which is in line with their fast (slow) speed of
adjustment ;. Thus, it appears that France and Canada (USA and Italy) display a relatively
low (high) level of price ‘stickiness’ according to the data with M6 as underlying model.

Table 4 shows the results of a variance decomposition of M1 (the stationary case). We find
that the global inflation component explains on average more than 50% of national inflation rate
fluctuations, while a similar analysis for international business cycles shows that a global busi-
ness cycle component accounts on average for only 30% of the variance of industrial production
growth in OECD countries (Kose et al., 2008).

Figure 2 displays the conditional variance estimates for the G7 obtained from M6. Similar
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plots are also obtained for other versions of the model. Note that the volatility of the global
component captures the effect of the ‘Great Moderation’ but also shows a relative increase in
‘world’ inflation volatility after the start of the ‘Great Recession’. Interestingly, the effect of the
‘Great Recession’ in US national inflation volatility is affected not only via an increase in the
volatility of the global component, but also via the increase in the volatility of its country-specific
component.

Lastly, Figure 3 shows time-varying correlations obtained from our multivariate inflation
model for particular pairs of countries. Note that in all cases shown, the correlation of inflation
rates has increased in comparison to previous periods since the start of the ‘Great Recession’.
In fact, in some cases, the correlation level has come back to pre-‘Great Moderation’ levels.

Summing up, our proposed multivariate inflation model seems to describe the mean and
variance dynamics of inflation in the G7. However, some specifications seem to fit the data
better than others in-sample. In the next section we explore the out-of-sample implications of

the alternative specifications analyzed and their complementarities.

5.2 Out-of-sample results

In this section we discuss the out-of-sample performance of the various model specifications
considered and of combined forecasts, respectively. Tables 8 to 10 display the forecasting results

of the single model specifications. Tables 12 to 13 display the results on forecast combinations.

5.2.1 Single models

M1 which assumes homoskedastic (autoregressive) global and country-specific components,
yields relative MSEs (with RW as benchmark) which are below one for all countries except
for France. Forecasts of M1 encompass information of the RW forecasts according to the HLN
statistic in all countries except for France (Table 10). The latter result suggests that combining
forecasts of a RW and M1 for France would significantly improve inflation forecasts obtained
exclusively from M1 for this particular country. M1 also yields forecasts of inflation changes
that can accurately predict the direction of inflation change with a 95% confidence level in

Germany (h = 1,4), Italy (h = 8) and in the UK (h = 4, 8) (Table 10).
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Turning to M2, which assumes a random walk global component and GARCH variances
in the country-specific components, we find that the MSEs results improve upon M1 for most
countries considered and at most forecasting horizons (Table 8). As for M1, we also find that
only in the case of France it would be possible to improve inflation forecasts at certain horizons
by means of a linear combination of forecasts obtained from M2 and RW according to the HLN
statistic (Table 10). Results on directional accuracy for M2 remain similar to those of M1 in
Germany and the UK.

Accounting for conditional heteroskedasticity in the global component only (M3) yields
somewhat higher relative MSEs in relation to M2 in most countries (Table 8). M3 forecast
encompasses the RW benchmark in most cases except of Japan at h = 1, 4. Results on directional
accuracy for M3 show that the direction of inflation changes can be accurately predicted with
this specification in the USA (h = 4), Germany (h = 4) and Italy (h = 4). The model
with GARCH specifications in all shocks (M4) yields lower relative MSEs than M1 and M3
(Table 8). M4 forecast encompasses the RW model in most countries except for France. Results
on directional accuracy for M4 remain qualitatively similar to M1 and M2 (Table 10).

We find that M5 which restricts shocks to have IGARCH variances yields a qualitatively
similar out-of-sample performance to M4 in terms of relative MSEs. However, restricting the
model to have IGARCH variances results in better forecasts than M1-M3 in terms of relative
MSEs (Table 8). Results on forecast encompassing and directional accuracy remain similar to
all other models for M5. Lastly, M6 which accounts for asymmetric effects in the variance of the
shocks usually yields the best performance in terms of MSEs in relation to other models at most
forecasting horizons. The out-of-sample performance of the alternative model specifications
seems to be consistent with the in-sample fit of each model as given by the likelihood values in
Table 5.

The previous forecasting results for inflation are qualitatively similar when comparing the
performance across models by means of MAEs (Table 8 and Table 9). However, relative MAEs
are usually larger than MSEs when comparing both measures. Moreover, it is worth noting
that MSEs and MAEs relative to AR increase in relation to MSEs and MAEs relative to RW.

This suggests that the AR benchmark is more difficult to beat than the RW benchmark which
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corroborates previous studies on inflation forecasting (Ciccarelli and Mojon, 2010).

Summing up, we find that the multivariate inflation specification for the G7 performs well
out-of-sample in relation to the standard benchmarks of the literature. This can be appreciated
visually at the aggregate level in Figures 4 and 5 which display (by means of boxplots) the
cross-section of relative MSEs for selected model specifications. In particular, we find that the
model with a common non-stationary component and QIGARCH shocks (M6) leads to better

forecasts than other nested specifications considered.

5.2.2 Combined forecasts

Tables 12 to 13 display the results of the forecast combination exercise. As is usually the case
in the forecasting literature, simple averaging of the forecasts (AFC) yields good results when
compared against more sophisticated methods (e.g. TFC, MFC, FFC). We find that combining
forecasts improve upon forecasts of several single models at various forecasting horizons. For
instance, in the USA, simple averaging of the forecasts (AFC) and the forecast combination
based on rank weights (RFC) improves upon M1 and M3 in terms of relative MSEs and MAEs.
Similarly, relative MSEs and MAEs of models M1 and M4 for Germany are improved by most
forecast combination strategies. In the case of France, where relative MSEs and MAEs are found
greater than one in all model specifications, TFC and FFC usually improve relative MSEs and
MAESs of most single models (although these quantities are still greater than one). The overall
benefits of combining forecast can be appreciated in Figures 4 and 5 which show that relative
MSEs remain similar to the ‘best’ model specifications but improve upon the ‘worst’ model
specifications. Indeed, in several countries there is an increase in the number of rejections of
the DM test in relation to single models.

The results on the HLN and PT test remain, however, qualitatively similar to those of single
models. As in the case of single models, MSEs and MAEs relative to the RW benchmark are
somewhat lower than those relative to the AR model, suggesting again that the AR model is

harder to beat.
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6 Conclusion

We contribute to the empirical inflation literature by proposing and estimating a multivariate
model of inflation with conditionally heteroskedastic common and country-specific components.
Our empirical specification is rich in the sense that it incorporates all the determinants of
inflation that reconcile the empirical evidence set forth by SW, BR, CPS, CM and CHKSW.
The model is estimated in one-step by means of QML and we analyze various specifications of
the full model both in-sample and out-of-sample. In general, we find that the proposed model
(with some parameter restrictions) fits the data quite well and has good forecasting performance
relative to the RW, AR and a variant of the benchmark proposed by CM.

We find that the estimated global inflation trend can explain on average more than 50% of
the variability of national inflation in the G7. The volatility of the global inflation trend captures
the international effects of the ‘Great Moderation’ and of the ‘Great Recession’. We also find
that there is an increase in correlation of inflation for certain country pairs since the start of
the ‘Great Recession’. Moreover, there is evidence of asymmetry in inflation volatility which
is consistent with the idea from Friedman (1977) that higher inflation levels lead to greater
uncertainty about future inflation.

An interesting extension to this model would be to allow for stochastic volatility in the
shocks. Furthermore, it would be interesting to investigate the dynamics of world volatility of

various macro variables. We leave these issues for future research.
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A Time varying correlations
Time varying correlations of the model based on the parameter estimates are computed as:

COVt 1 Wztaﬂgt]

\/V&I't 1 7th \/V&I't 1 7T]t

COYt 1 Tth, Tth

with
Vareafmie] = AP + Moo+ 20i6ipPE + 6FPIY + (26)
Coviilmn,mjr] = AAj(p2PY9, + 00) + Xipd; PP+ 3,pdiPYi + $idi PIP . (27)

where Pﬁ 1 is the period ¢t — 1 covariance between the estimates of states ¢ and j.
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US  Canada France Germany Italy Japan UK
TADF -2.168 -1.498  -0.974 -2.122 -1.016 -1.885 -1.619

Table 2: Results from Augmented Dickey-Fuller test with 4 lags and a constant term. 10%
critical value of T4pF is —2.569.

Null Hypothesis  Jirace Jmaz

r=20 169.255 53.311
crit 90% 120.367  43.295
crit 95% 125.619  46.230
crit 99% 135.982  52.307
r=1 115.944  44.693
crit 90% 91.109 37.279
crit 95% 95.754 40.076
crit 99% 104.964  45.866
r=2 71.2510 28.633
crit 90% 65.820 31.238
crit 95% 69.819 33.878
crit 99% 77.820 39.369
r=23 42.618 18.140
crit 90% 44.493 25.124
crit 95% 47.855 27.586
crit 99% 54.682 32.717

Table 3: Results from cointegration tests.
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Model US Canada France Germany  Italy Japan UK
M1 78.78% 88.32% 95.36%  53.37% = 90.47% 45.18% 79.17%

Table 4: Share of national inflation variance explained by the global inflation component

Model logL

M1  -1468.041
M2  -1266.156
M3  -1453.968
M4  -1236.072
M5  -1243.685
M6  -1214.944

Table 5: Likelihood value for each model
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Country  Model Af Pi Boi Bui Bai Bsi
M1 1.000 0.968 0.487 — — —
(0.028)  (0.035)
M2 1.000 0.922 0.155 0.290 0.651 —
(0.055)  (0.115)  (0.373)  (0.297)
M3 1.000 0.913 0.542 — — —
(0.032)  (0.029)
USA
M4 1.000 0.955 0.119 0.204 0.752 —
(0.050)  (0.139)  (0.342)  (0.245)
M5 1.000 0.937 0.104 0.305 — —
(0.030)  (0.032)  (0.103)
M6 1.000 0.957 0.099 0.239 — 0.020
(0.023)  (0.028)  (0.085) (0.064)
M1 0.771 0.863 0.608 — — —
(0.094)  (0.046)  (0.035)
M2 0.969 0.850 0.515 0.279 0.711 —
(0.138)  (0.081)  (0.340)  (0.460)  (1.095)
M3 1.045 0.877 0.631 — — —
(0.075)  (0.036)  (0.030)
CAN
M4 0.904 0.857 0.526 0.218 0.710 —
(0.292)  (0.125)  (0.356)  (0.586)  (1.063)
M5 0.908 0.852 0.225 0.492 — —
(0.085)  (0.047)  (0.062)  (0.161)
M6 0.875 0.920 0.297 0.599 — -0.180
(0.122)  (0.046)  (0.099)  (0.308) (0.096)
M1 0.933 0.926 0.391 — — —
(0.116)  (0.037)  (0.030)
M2 1.119 0.931 0.133 0.450 0.440 —
(0.380)  (0.223)  (0.568)  (0.989)  (1.010)
M3 1.533 0.987 0.352 — — —
(0.128)  (0.014)  (0.040)
FRA
M4 1.019 0.797 0.159 0.840 0.150 —
(0.228)  (0.266)  (0.542)  (1.811)  (0.967)
M5 0.998 0.917 0.143 0.610 — —
(0.096)  (0.052)  (0.033)  (0.192)
M6 1.152 0.668 0.124 0.784 — 0.219
(0.115)  (0.090)  (0.024)  (0.150) (0.001)
M1 0.525 0.946 0.423 — — —
(0.078)  (0.024)  (0.024)
M2 0.729 0.938 0.153 0.134 0.720 —
(0.392)  (0.089)  (0.145)  (0.141)  (0.196)
M3 0.740 0.966 0.439 — — —
(0.093)  (0.023)  (0.024)
GER
M4 0.608 0.926 0.192 0.145 0.655 —
(0.267)  (0.094)  (0.107)  (0.303)  (0.319)
M5 0.644 0.916 0.109 0.272 — —
(0.076)  (0.032)  (0.039)  (0.128)
M6 0.724 0.944 0.070 0.153 — 0.054
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(0.086)  (0.021)  (0.019)  (0.038) (0.001)
M1 1.133 0.932 0.823 — — —
(0.184)  (0.043)  (0.049)
M2 0.735 0.974 0.086 0.350 0.640 —
(0.224)  (0.044)  (0.624)  (1.000)  (0.982)
M3 1.676 0.921 0.825 — — —
(0.135)  (0.035)  (0.045)
ITA
M4 0.769 0.984 0.085 0.380 0.610 —
(0.431)  (0.030)  (0.618)  (1.004)  (0.972)
M5 0.740 0.977 0.085 0.371 — —
(0.101)  (0.013)  (0.024)  (0.076)
M6 0.820 0.983 0.084 0.339 — 0.098
(0.110)  (0.010)  (0.021)  (0.065) (0.001)
M1 1.240 0.977 0.945 — — —
(0.214)  (0.017)  (0.052)
M2 0.813 0.936 0.257 0.279 0.671 —
(0.340)  (0.062)  (0.129)  (0.167)  (0.142)
M3 1.955 0.990 0.942 — — —
(0.275)  (0.020)  (0.053)
JAP
M4 0.795 0.927 0.240 0.306 0.659 —
(0.414)  (0.096)  (0.221)  (0.199)  (0.265)
M5 0.807 0.941 0.221 0.329 — —
(0.140)  (0.030)  (0.045)  (0.061)
M6 0.926 0.923 0.228 0.258 — 0.231
(0.132)  (0.020)  (0.041)  (0.050) (0.001)
M1 1.079 0.906 0.966 — — —
(0.152)  (0.034)  (0.052)
M2 0.925 0.908 0.128 0.280 0.710 —
(0.676)  (0.191)  (1.143)  (0.998)  (0.981)
M3 1.472 0.948 0.988 — — —
(0.159)  (0.028)  (0.050)
GRB
M4 0.862 0.929 0.117 0.260 0.730 —
(0.285)  (0.070)  (1.138)  (0.999)  (0.919)
M5 0.840 0.923 0.108 0.267 — —
(0.108)  (0.034)  (0.033)  (0.060)
M6 0.960 0.928 0.094 0.248 — 0.093
(0.125)  (0.031)  (0.027)  (0.048) (0.001)

Table 6: In-sample estimation results per country for the various model speci-

fications. For acronyms see Table 1.
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gt Model o p o aq g as

M1 3.399 0.989 0.492 — — —
(2.544)  (0.009)  (0.055)
M2 — 1.000 0.415 — — —
(0.155)
M3 — 1.000 0.104 0.038 0.308 —
FAC (0.047)  (0.012)  (0.156)
M4 — 1.000 0.133 0.820 0.170 —
(0.351)  (1.168)  (0.996)
M5 — 1.000 0.130 0.784 — —
(0.033)  (0.187)
M6 — 1.000 0.137 0.887 — 0.086
(0.026)  (0.108) (0.046)

Table 7: In-sample estimation results of the global inflation component for the various model
specifications. For acronyms see Table 1.
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h 1 4 8 1 4 8

Country  Model MSE MAE
M1 0.996 0.972 0.936 1.001 0.990 0.976
M2 0.981 0.898 0.848 1.019 0.984 0.942
USA M3 0.996 0.973 0.967 1.004 0.995 1.003
M4 0.981 0.896 0.836 1.011 0.977 0.930
M5 0.981 0.898 0.850 1.011 0.981 0.939
M6 0.982 0.898 0.905 1.027 1.001 0.970
M1 0.967 0.880 0.810 0.984 0.961 0.946
M2 0.952 0.849 0.801 0.982 0.950 0.940
CAN M3 0.983 0.933 0.878 0.993 0.975 0.977
M4 0.944 0.816 0.804 0.985 0.938 0.933
M5 0.949 0.827 0.805 0.986 0.945 0.941
M6 0.987 0.952 0.900 0.994 0.981 0.972
M1 1.101 1.148 1.702 1.053 1.147 1.295
M2 1.181 1.190 1.571 1.097 1.155 1.233
FRA M3 1.000 1.001 1.048 1.002 1.011 1.038
M4 1.188 1.162 1.596 1.105 1.157 1.245
M5 1.152 1.187 1.630 1.087 1.179 1.255
M6 1.114 1.053 1.228 1.050 1.085 1.108
M1 0.967 0.843 0.683 0.976 0.898 0.827
M2 0.971 0.873 0.739 0.980 0.920 0.862
GER M3 0.960 0.804 0.635 0.972 0.869 0.795
M4 0.963 0.832 0.670 0.971 0.889 0.814
M5 0.961 0.820 0.641 0.969 0.876 0.796
M6 0.971 0.836 0.661 0.974 0.879 0.804
M1 0.922 0.892 0.717 0.964 0.936  0.909
M2 0.943 0.903 0.823 0.971 0.950 0.923
ITA M3 0.968 0.955 0.920 0.985 0.983 0.982
M4 0.928 0.880 0.799 0.967 0.941 0.923
M5 0.933 0.889 0.809 0.968 0.944 0.921
M6 0.946 0.907 0.834 0.972 0.951 0.925
M1 0.998 1.008 0.982 1.002 0.998 0.999
M2 0.985 0.992 0.917 1.000 1.004 0.988
JAP M3 1.041 1.189 1.404 1.034 1.147 1.265
M4 0.973 0.959 0.857 0.998 1.031 1.003
M5 0.976 0.976 0.891 0.999 1.043 1.027
M6 0.965 0.943 0.815 0.994 1.009 0.980
M1 0.945 0.803 0.685 0.977 0.925 0.859
M2 0.920 0.766 0.628 0.968 0.906 0.820
GRB M3 0.985 0.952 0.925 1.003 1.015 1.026
M4 0.926 0.769 0.629 0.967 0.908 0.822
M5 0.961 0.882 0.795 0.987 0.956 0.912
M6 0.993 0.871 0.725 1.000 0.971 0.838

Table 8: Results on forecasting accuracy of inflation models with random walk benchmark. The
table shows MSE and MAE for the various model specifications relative to MSE and MAE of
a random walk model for horizons h = 1,4, 8. Entries in bold denote statistical significance at
the 10% level according to the Diebold Mariano test. For acronyms see Table 1.
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h 1 4 8 1 4 8

Country  Model MSE MAE
M1 1.001 0.992 0.966 1.003 0.992 0.988
M2 0.986 0.916 0.875 1.021 0.986 0.954
USA M3 1.002 0.993 0.998 1.006 0.997 1.015
M4 0.987 0.915 0.863 1.013 0.979 0.942
M5 0.987 0.917 0.877 1.013 0.983 0.951
M6 0.987  0.917 0.934 1.029 1.003 0.982
M1 0.972 0.898 0.852 0.987 0.968 0.958
M2 0.957 0.867 0.842 0.984 0.957 0.952
CAN M3 0.988 0.953 0.923 0.996  0.982 0.990
M4 0.949 0.833 0.845 0.988 0.945 0.945
M5 0.954 0.845 0.846 0.989 0.952 0.953
M6 0.992 0.972 0.946 0.997 0.988 0.984
M1 1.108 1.169 1.770 1.056 1.159 1.320
M2 1.189 1.212 1.634 1.100 1.167 1.257
FRA M3 1.007 1.019 1.089 1.004 1.021 1.058
M4 1.195 1.183 1.659 1.108 1.169 1.269
M5 1.160 1.209 1.694 1.089 1.192 1.280
M6 1.121 1.072 1.277 1.052 1.096 1.129
M1 0.974 0.866 0.714 0.980 0.911 0.841
M2 0.978 0.897 0.773 0.985 0.933 0.876
GER M3 0.967 0.827 0.664 0.977 0.882 0.808
M4 0.970 0.855 0.701 0.976  0.902 0.827
M5 0.968 0.843 0.671 0.974 0.889 0.809
M6 0.978 0.859 0.691 0.978 0.891 0.817
M1 0.941  0.927 0.773 0.975 0.954 0.943
M2 0.962 0.938 0.887 0.982 0.968 0.957
ITA M3 0.987 0.992 0.991 0.996 1.002 1.018
M4 0.946 0.914 0.861 0.978 0.959 0.957
M5 0.952 0.923 0.872 0.979 0.962 0.955
M6 0.965 0.942 0.899 0.984 0.970 0.959
M1 1.016 1.086 1.122 1.012 1.034 1.078
M2 1.003 1.068 1.048 1.010 1.040 1.066
JAP M3 1.059 1.281 1.604 1.044 1.189 1.365
M4 0.990 1.034 0.979 1.007 1.068 1.082
M5 0.994 1.052 1.018 1.009 1.081 1.108
M6 0.983 1.016 0.931 1.003 1.046 1.057
M1 0.959 0.837 0.737 0.977 0.926 0.860
M2 0.933 0.798 0.676 0.968 0.907 0.820
GRB M3 0.999 0.993 0.995 1.003 1.016 1.027
M4 0.939 0.802 0.677 0.967 0.909 0.822
M5 0.975 0.920 0.855 0.987 0.957 0.912
M6 1.008 0.908 0.780 1.000 0.972 0.838

Table 9: Results on forecasting accuracy of inflation models with autoregressive benchmark.
The table shows MSE and MAE for the various model specifications relative to MSE and MAE
of an autoregressive model of order one for horizons h = 1,4, 8. Entries in bold denote statistical
significance at the 10% level according to the Diebold Mariano test. For acronyms see Table 1.
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h 1 4 8 1 4 8 1 4 8

Country  Model HLNAR HLNRW PT
M1 0.337 -0.374 -0.363 -0.653 -1.857 -1.673 0.166 1.587  -0.187
M2 -0.065 -0.786 -0.193 -0.110 -0.734  0.017 -0.543  1.092 0.101
USA M3 0.545 -0.342  0.287 -0.561 -1.686  -0.802 -0.189  2.407 0.346
M4 -0.234 -1.101 -0.773 -0.286 -1.020 -0.524 0.078 1.092  -0.246
M5 -0.265 -1.071  -0.680 -0.309 -0.982 -0.395 0.078 1.092  -0.246
M6 0.217 -0.330  1.028 0.204 -0.282  1.176 -0.286  0.876 0.937
M1 -1.091 -1.258 -0.532 -1.010 -1.192  -0.482 0.955 -0.046 -0.743
M2 -0.959  -0.989 -0.173 -0.891  -0.955 -0.168 1.191 0.430  -1.349
CAN M3 -1.273 -1.399 -0.821 -1.275  -1.366  -0.826 0.502 0.556  -0.655
M4 -0.361  -0.730  0.308 -0.332  -0.701  0.261 0.704 0.032 -1.021
M5 -0.467 -0.784  0.180 -0.438 -0.758  0.145 0.704 0.032 -1.021
M6 -1.545 -1.539 -1.141 -1.334  -1.462 -1.032 0.618  -0.458 -0.446
M1 2.617 2.121 1.817 2.580 1.987 1.786 -0.545  0.776 0.773
M2 2.797 1.984 1.614 2.777 1.895 1.573 -0.823  0.662  -0.250
FRA M3 1.091 1.111 1.239 0.220 0.233 0.944 1.258  -0.427 -1.128
M4 2.896 1.740 1.647 2.879 1.639 1.613 0.119 1.078  -0.269
M5 3.235 1.971 1.689 3.264 1.867 1.648 -1.145 0.854  -0.533
M6 2.920 1.985 1.951 2.937 1.726 1.917 0.337 1.299  -0.539
M1 -0.330  -1.928 -2.094 -0.263  -1.587 -1.730 1.931 2.690 1.096
M2 -0.655  -2.167 -2.124 -0.537  -1.744 -1.707 1.931 2.690 1.096
GER M3 -0.123  -2.271  -2.322 -0.065 -1.786 -1.808 2.606 2.630 0.631
M4 -0.280 -1.786 -1.961 -0.193  -1.430 -1.519 1.681 2.690 1.096
M5 -0.203  -1.790 -2.063 -0.125  -1.447 -1.668 1.379 2.354 0.806
M6 0.215 -0.972 -1.557 0.257  -0.735 -1.100 1.379 2.354 0.806
M1 -1.007 -0.586 -0.921 -1.161  -0.979  -1.200 1.175 0.106 2.051
M2 -1.038 -1.046 -0.716 -0.990 -1.029 -0.626 0.484 0.385 0.394
ITA M3 -0.726  -0.217  0.098 -1.149 -1.124 -0.974 1.280 1.892 1.693
M4 -0.831 -0.811 -0.286 -0.790 -0.783 -0.198 0.484 0.385 0.394
M5 -0.941 -0.914 -0.471 -0.896 -0.889 -0.385 0.484 0.385 0.394
M6 -0.976  -0.998 -0.593 -0.949 -0.993 -0.533 0.484 0.385 0.394
M1 1.198 1.553 1.108 0.137  0.527  0.249 -0.021  0.010 0.011
M2 0.831 1.379 1.248 0.039 0.599 0.452 0.984 1.050 0.023
JAP M3 2.465 2.705 2.672 2.204 2.568 2.819 -0.021  0.010 0.011
M4 1.184 1.579 1.838 0.764 1.009 1.071 1.643 0.876 0.029
M5 1.286 1.741 2.003 0.868 1.166 1.228 1.643 0.876 0.029
M6 0.747 1.239 1.281 0.259 0.627 0.521 2.181 1.652 1.012
M1 -0.326  -1.164 -0.997 -0.587  -1.206  -1.047 1.049 1.993 2.319
M2 -0.500 -0.998 -1.170 -0.388 -0.768 -0.937 1.796 0.704 3.030
GRB M3 0.808 0.912 0.987 -0.014 -0.127  -0.004 -0.771  -0.390  1.026
M4 -0.389  -1.079 -1.227 -0.319 -0.810 -1.006 2.352 1.265 2.289
M5 -1.425 -1.805 -1.701 -1.101  -1.131 -1.092 2.228 0.704 2.586
M6 0.973 0.636 0.391 1.005 0.721 0.614 1.249 0.023 1.847

Table 10: Results on forecast encompassing and directional accuracy of inflation models. The
table displays the results on the forecast encompassing test of Harvey et al. (1998) with respect
to the autoregressive (HLNAR) and random walk (HLNRW) benchmarks, and the directional-
accuracy test of Pesaran and Timmermann (1995) (PT). For acronyms see Table 1.
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h 1 4 8 1 4 8
Country  Model MSE MAE
AFC 0.983 0.913 0.857 1.005 0.980 0.940
TFC 1.004  0.911 0.872 1.013  0.989  0.956
USA RFC 0.986 0.920 0.886 1.002 0.983 0.957
MFC 0.983 0.913 0.860 1.005 0.980 0.942
FFC 0.985 0.930 0.893 1.002  0.985  0.960
AFC 0.960 0.866 0.812 0.983 0.952 0.944
TFC 0.953 0.873 0.881 0.985  0.941 0.955
CAN RFC 0.958 0.863 0.812 0.984 0.946 0.940
MFC 0.960 0.868 0.817 0.983 0.952  0.945
FFC 0.962 0.895 0.895 0.985 0.960 0.975
AFC 1.108 1.101 1.409 1.055 1.117 1.172
TFC 1.064 1.072 1.200 1.026 1.093 1.106
FRA RFC 1.105 1.104 1.377 1.054 1.113 1.166
MFC 1.105 1.098 1.379 1.054 1.114 1.161
FFC 1.063 1.052 1.231 1.031 1.074 1.103
AFC 0.964 0.832 0.668 0.973 0.888 0.813
TFC 0.971 0.818 0.657 0.974 0.880 0.810
GER RFC 0.966 0.830 0.679 0.972 0.885 0.821
MFC 0.964 0.832 0.668 0.973 0.888 0.813
FFC 0.967 0.835 0.674 0.975 0.891 0.817
AFC 0.935 0.896 0.792 0.967 0.944 0917
TFC 0.943 0924  0.806 0.978 0964 0.971
ITA RFC 0.935 0.894 0.796 0.969 0.941 0.938
MFC 0.935 0.896 0.794 0.967 0944  0.919
FFC 0.934 0.896 0.793 0.966 0.944 0.937
AFC 0.983  0.993  0.937 1.002 1.030 1.029
TFC 0.984  0.993  0.890 1.005 1.049 1.033
JAP RFC 0.981 0.989  0.900 1.003 1.036 1.024
MFC 0.983 0992  0.928 1.002 1.029 1.025
FFC 0.991 1.002  0.858 1.007 1.025  0.979
AFC 0.935 0.801 0.681 0.976  0.929 0.859
TFC 0.934 0.870 0.781 0.963 0.923 0.890
GRB RFC 0.955 0.811 0.718 0.990 0.937 0.893
MFC 0.935 0.808 0.692 0.976  0.928 0.863
FFC 0.937 0.825 0.702 0.978 0.944 0.869

Table 11: Results on forecasting accuracy of combinations of inflation models with random
walk benchmark. The table shows MSE and MAE for the various forecast combination schemes
relative to MSE and MAE of a random walk model for horizons h = 1,4,8. Entries in bold
denote statistical significance at the 10% level according to the Diebold Mariano test. AFC =
simple average, TFC: thick modeling with OLS, RFC: rank weighted, MFC: RMSE weighted,

FFC: frequency weighted.
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h 1 4 8 1 4 8
Country  Model MSE MAE
AFC 0.988 0.932 0.885 1.007 0.982 0.952
TFC 1.010  0.930  0.900 1.015 0.990  0.968
USA RFC 0.991 0.939 0.915 1.004 0.984 0.969
MFC 0.988 0.932 0.888 1.007  0.982  0.954
FFC 0.990 0.950 0.922 1.005  0.987  0.973
AFC 0.965 0.885 0.853 0.986  0.960  0.956
TFC 0.958 0.891 0.926 0.988  0.948  0.967
CAN RFC 0.963 0.881 0.853 0.987 0.953 0.952
MFC 0.965 0.886  0.859 0.986  0.959  0.957
FFC 0.967 0.914 0.941 0.988  0.967  0.988
AFC 1.115 1.121 1.465 1.058 1.129 1.195
TFC 1.071 1.092 1.248 1.029 1.104 1.128
FRA RFC 1.113 1.124 1.432 1.057 1.125 1.189
MFC 1.112 1.117 1.434 1.057 1.126 1.184
FFC 1.070 1.071 1.280 1.034 1.085 1.125
AFC 0.971 0.855 0.698 0.978 0.901 0.827
TFC 0.978 0.840 0.686 0.978 0.893 0.824
GER RFC 0.973 0.853 0.710 0.977 0.897 0.835
MFC 0.971 0.855 0.698 0.978 0.901 0.827
FFC 0.974 0.858 0.704 0.979 0.904 0.831
AFC 0.954 0.930 0.854 0.978 0.962 0.951
TFC 0.962  0.960  0.868 0.990  0.983 1.007
ITA RFC 0.954 0.928 0.858 0.980 0.959 0.973
MFC 0.954 0.930 0.855 0.978 0.962 0.954
FFC 0.953 0.931 0.854 0.978 0.962 0.972
AFC 1.001 1.070 1.070 1.012 1.067 1.110
TFC 1.001 1.070 1.017 1.015 1.088 1.115
JAP RFC 0.999 1.066 1.028 1.013 1.074 1.105
MFC 1.001 1.069 1.060 1.012 1.067 1.106
FFC 1.009 1.079  0.980 1.017 1.062 1.056
AFC 0.948 0.835 0.733 0.976  0.930 0.860
TFC 0.948 0.907 0.840 0.962 0.924 0.891
GRB RFC 0.969 0.846 0.772 0.989 0.938 0.894
MFC 0.949 0.842 0.744 0.976 0.929 0.864
FFC 0.951 0.860 0.755 0.978 0.945 0.869

Table 12: Results on forecasting accuracy of combinations of inflation models with autoregressive
benchmark. The table shows MSE and MAE for the various forecast combination schemes
relative to MSE and MAE of a random walk model for horizons h = 1,4,8. Entries in bold
denote statistical significance at the 10% level according to the Diebold Mariano test. AFC =
simple average, TFC: thick modeling with OLS, RFC: rank weighted, MFC: RMSE weighted,

FFC: frequency weighted.
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h 1 4 8 1 4 8 1 4 8
Country  Model HLNAR HLNRW pPT
AFC -0.438 -1.261 -1.266 -0.499 -1.165 -0.892 -0.219  1.382  -0.246
TFC 1.202 -0.746 -0.154 0.697 -0.715  0.041 -0.174  1.092 0.101
USA RFC -0.403 -1.164 -0.663 -0.562 -1.115 -0.514 0.085 1.092 0.101
MFC -0.435 -1.242 -1.183 -0.497 -1.151 -0.832 -0.219  1.382  -0.246
FFC -0.526  -1.280 -0.710 -0.635 -1.226  -0.527 -0.219  1.092 0.101
AFC -1.053  -1.206  -0.492 -1.033  -1.159  -0.466 0.930 -0.302 -0.894
TFC -1.176  -0.948  -0.008 -1.136  -0.989 -0.123 0.921 -0.242 -0.511
CAN RFC -0.998 -1.225 -0.558 -0.942  -1.179  -0.520 0.930 -0.016 -1.223
MFC -1.065 -1.241 -0.493 -1.044 -1.191 -0.470 0.930 -0.302 -0.894
FFC -1.122  -1.272  -0.183 -1.052  -1.232  -0.314 0.930 -0.302 -0.874
AFC 2.888 1.860 1.671 2.872 1.696 1.623 -0.296  0.714 0.082
TFC 2.035 2.278 1.968 1.972 2.048 1.921 2.389 1.078 -0.116
FRA RFC 2.720 1.682 1.682 2.694 1.530 1.635 -0.828  0.662  -0.231
MFC 2.859 1.904 1.680 2.844 1.692 1.621 -0.296  0.714 0.082
FFC 1.940 1.988 1.803 1.880 1.706 1.717 -0.555  0.452 0.414
AFC -0.243 -1.882 -2.101 -0.168  -1.505 -1.638 1.596 2.037 1.074
TFC -0.243  -2.053 -2.027 -0.189 -1.619 -1.578 1.633 3.138 0.806
GER RFC -0.262  -1.778  -2.037 -0.191  -1.414 -1.568 1.633 2.354 0.806
MFC -0.243 -1.883 -2.100 -0.169 -1.506 -1.635 1.596 2.037 1.074
FFC -0.241  -1.912 -2.105 -0.173  -1.531 -1.635 1.633 2.037 1.074
AFC -1.317  -1.314 -1.189 -1.225  -1.253 -1.048 1.534 -0.068  0.179
TFC -0.493 -0.110 -0.341 -0.693 -0.437 -0.551 0.153 0.201 0.718
ITA RFC -1.224  -1.145 -0.967 -1.175  -1.201  -0.959 0.093 0.034 1.113
MFC -1.314 -1.302 -1.161 -1.223  -1.245 -1.037 1.534  -0.395 0.179
FFC -1.259  -1.196  -0.907 -1.192  -1.256  -0.951 0.166  -0.101  -0.380
AFC 1.072 1.622 1.749 0.503 0.983 1.045 0.984 1.050 0.023
TFC 1.346 1.839 1.710 0.845 1.223 0.954 1.337 1.215 0.427
JAP RFC 1.128 1.711 1.715 0.596 1.052 0.924 1.337 1.050 0.023
MFC 1.069 1.613 1.715 0.499 0.970 0.992 0.984 1.050 0.023
FFC 1.152 1.625 1.194 0.549 0.925 0.310 0.984 1.050 0.016
AFC -0.572  -1.105 -1.202 -0.471  -0.848 -0.982 2.352 0.588 2.670
TFC -1.505 -2.152 -0.946 -1.387  -1.374  -0.930 1.596 0.054 2.831
GREB RFC -0.461 -1.265 -1.077 -0.463 -1.030 -0.944 1.227 1.968 2.269
MFC -0.599 -1.167 -1.219 -0.497 -0.885 -0.987 2.352 0.588 2.670
FFC -0.358  -0.869  -1.203 -0.279  -0.645 -0.953 1.763 0.390 2.453

Table 13: Results on forecast encompassing and directional accuracy of combinations of inflation
models. The table displays the results on the forecast encompassing test of Harvey et al. (1998)
with respect to the autoregressive (HLNAR) and random walk (HLNRW) benchmarks, and the
directional-accuracy test of Pesaran and Timmermann (1995) (PT). AFC = simple average,
TFC: thick modeling with OLS, RFC: rank weighted, MFC: RMSE weighted, FFC: frequency

weighted.
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