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We provide a calculation tool to assess the properties of a maximum-likelihood (ML) estimator that 

extrapolates the true prevalence of an infectious disease from a random sample. The tools allow the 

researcher to correct for the specificity and sensitivity of the underlying medical test, calculate the 

standard deviation of the estimator and to plan the needed sample size. This document explains the 

underlying methods of the calculation tools and provides instructions for their proper use. We apply 

an adaption of the epidemiological SEIR-model to show that ML-estimators from random sampling 

tests provide a more realistic rate of infection than common approaches. 
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Abstract

We provide a calculation tool to assess the properties of a maximum-
likelihood (ML) estimator that extrapolates the true prevalence of an
infectious disease from a random sample. The tools allow the researcher
to correct for the specificity and sensitivity of the underlying medical
test, calculate the standard deviation of the estimator and to plan the
needed sample size. This document explains the underlying methods
of the calculation tools and provides instructions for their proper use.
We apply an adaption of the epidemiological SEIR-model to show that
ML-estimators from random sampling tests provide a more realistic rate
of infection than common approaches.
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1 Aim of the calculators

During pandemic outbreaks of infectious diseases policy makers are forced to

take actions against the spread quickly, often at the expense of economic ac-

tivity. A recent study by Burns et al. (2006) estimates that 60% of economic

damages incurred during a pandemic can be attributed to demand shocks,

i.e. the indirect costs of an outbreak. Factoring in the interruption of supply

chains and detrimental uncertainty likely increases the economic costs signif-

icantly. While human health must be protected, governments typically have

limited information on the actual spread of the disease. Indeed, the true rate

of infection in the population is rarely known. Random testing can be a rem-

edy to achieve the needed information of the prevalence. However, given that

specificity and sensitivity of a test can deviate from one, the prevalence has to

be estimated from test results e.g. via a Maximum Likelihood estimation.

We provide the ready-to-use tools for such a Maximum Likelihood esti-

mation, which calculates the standard deviation of the estimator for given

sensitivity, specificity, sample size and expected prevalence. Vice versa the

needed sample size can be retrieved for a standard deviation or precision that

shall be achieved.

While the tools presented in this paper are applicable to any infectious

disease, we provide examples from the COVID-19 pandemic. Indeed, the out-

break of Sars-CoV-2 is a suitable illustration for the need of statistical tests:

At the moment, mainly patients who are at high risk of infection (e.g. be-

cause of contact with an infected individual) are tested for the presence of

the pathogen by use of a rRT-PCR (reverse transcription polymerase chain

reaction) test. This approach swiftly diagnoses COVID-19 and helps to trace

the chain of infection. However, the virus has a high level of contagion, an

incubation period of approximately five days (Lauer et al., 2020) and results

only in minor symptoms for many people. This suggests that the true rate of
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infection may be a multiple of the observed rate of infection. This makes it

difficult for epidemiologists and policy makers to ascertain "herd immunity" or

select the health measures that are most appropriate to balance human health

and economic interest. As for Covid-19, antibody tests provide a veritable

supplement to the current testing approach. While the antibody tests only

detect the immune system’s response to the virus’ presence, they are cheap

and yield results fast. This makes them ideal for the use of random sampling

in the population. The methods illustrated in detail in chapter 2 assist in

planning and interpreting the random samples. In short, our approach uses

a Maximum-Likelihood-Estimator (ML-estimator) and corrects for the tests’

sensitivity and specificity. This helps the researcher to predict the statistical

properties of the estimator for a planned random sample and to interpret its re-

sults. Tu further assist this process, we provide three calculators programmed

with Microsoft Excel that calculate the standard deviation of the estimator for

a planned sample or, in reverse, dictate the needed sample size for a required

precision of the estimator. Chapter 3 introduces these calculators. Lastly, we

apply our considerations to an epidemiological model of infectious diseases in

chapter 4. We show for two epidemic scenarios that random sampling meth-

ods provide significantly better insights into the true rate of infection in the

population than current approaches do.

2 Concepts and Methods

We estimate the true rate of infection in the entire population from the rate

of positive test results in a random sample taking into account the known

sensitivity and specificity of the underlying test via a maximum likelihood

estimator.

The corresponding model is as given: Let us define p = P (y = 1) as the

probability of being infected and q = P (x = 1) the probability that a test
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is positive. The sensitivity of a test is the conditional probability that the

test is positive given that the person is infected s = P (x = 1|y = 1) and the

specificity of the test is conditional probability that the test is negative given

the person is not infected z = P (x = 0|y = 0).

The test result follows a Bernoulli distribution:

P (x) = qx(1− q)(1−x). (1)

Since the aim is the estimation of p, we reparameterize the distribution by

stating that a test can be positive when an infected person gets a right test

results and a non-infected gets a wrong test result q = s · p+ (1− z) · (1− p).

A test can be negative when an infected person gets a wrong test decision and

a non-infected gets a right test result (1 − q) = (1 − s) · p + z · (1 − p). The

distribution can be written as follows:

P (x) = [s · p+ (1− z) · (1− p)]x[(1− s) · p+ z · (1− p)](1− x). (2)

Given a sample of size n the corresponding likelihood takes the following

form:

L(p|x1, ..., xn)

=
n∏

i=1

[s · p+ (1− z) · (1− p)]xi [(1− s) · p+ z · (1− p)](1−xi). (3)

The loglikelihood is

l(p|x1, ..., xn) =
n∑

i=1

xilog[s · p+ (1− z) · (1− p)]

+
n∑

i=1

(1− xi)log[(1− s) · p+ z · (1− p)], (4)
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which can be rewritten as

l(p|x1, ..., xn) = n1log[s · p+ (1− z) · (1− p)]

+ (n− n1)log[(1− s) · p+ z · (1− p)], (5)

where n1 denotes the number of positive tests in the sample.

The score function of the log likelihood is the partial derivative with respect

to p:

∂l

∂p
= n1

s+ z − 1

s · p+ (1− z) · (1− p)
+ (n− n1)

1− s− z
(1− s) · p+ z · (1− p)

. (6)

Setting the score function to zero and solving for p̂ gives the maximum

likelihood estimator, which can be denoted as

p̂ =
n1 · s− (n− n1)(1− s)

n(s+ z − 1)
. (7)

The variance of the ML estimator can be derived as the inverse of n times

the the outer product of the score Sc. That is:

1/var(p̂) = n1

(
s+ z − 1

s · p+ (1− z) · (1− p)

)2

+ (n− n1)

(
1− s− z

(1− s) · p+ z · (1− p)

)2

. (8)

Let us define w1 the share of positive tests. Thus, n1 = w1 ·n and n−n1 =

n(1− w1). Thus, the inverse of the variance can be written as:

1/var(p̂) = n

[
w1

(
s+ z − 1

s · p+ (1− z) · (1− p)

)2

+ (1− w1)

(
1− s− z

(1− s) · p+ z · (1− p)

)2
]
. (9)

This equation relates the sample size and the probabilities of being infected

4



Figure 1: The accuracy of the ML-estimator depends on the test quality

(a) Example 1: 2% infection rate (b) Example 2: 50% infection rate

and testing positive to the standard deviation of the estimator. Calculator 1

automates this procedure and yields the standard deviation given the various

inputs.

Also, the equation can be solved for n quite easily. This allows the re-

searcher to anticipate the needed size of a random sample given a desired

precision expressed in standard deviation. Calculators 2 and 3 make this ap-

proach easily accessible.

At this point, we stress the importance of the test’s sensitivity specificity

for the standard deviation in above calculations.

Figure 1 shows the calculated standard deviation of the ML-estimator for a

sample size of 10,000 on the vertical axis. The standard deviation does depend

on both the sensitivity and specificity, as well as the true rate of infection that

is to be determined.

3 Calculators

3.1 Calculator 1

The first calculator produces the standard deviation of the estimator. The

only inputs required from the user are the total population in question, the

expected number of infected people and the planned size of the random sample.
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Figure 2: Calculator 1 - Approximating the Standard Deviation

The population is by default set to the population of Germany. One also needs

to insert the expected number of infections. While it is, of course, the ultimate

goal of the random sample to calculate the true rate of infection, the accuracy

of the estimation tool depends itself on the rate of infection. Therefore, the

calculator requires at least an estimate of the number of infected people. The

third input is the intended sample size.

Next, the calculator shows two derived values: The expected prevalence

is simply the ratio of the number of infected people and the population with

which the user has supplied the calculator. Given the expected prevalence

one would expect a sample to have positive outcomes at the rate of positive

antibody tests. These differ because one has to correct for the sensitivity

and the specificity of the tests lower than 1. These qualities of the test are

summarized under assumptions. The values in the example of a 0.95 specificity

and a 0.33 sensitivity relate to current antibody tests for Sars-CoV-2 and

should be updated if the test or the test quality changes. For instance, the

rRT-PCR test for Sars-CoV-2 has a much higher sensitivity with which the

calculator can be updated.

6



Figure 3: Calculators 2 and 3 - Approximating the needed sample size

(a) Calculator 2 (b) Calculator 3

The output cell highlighted in orange reports the expected standard de-

viation in percentage points. In the setting displayed, a rate of infection of

10% can be verified with a standard deviation of ±1.35 percentage point. The

graph to the right of the respective calculator shows the result as a function of

different levels of the prevalence. The higher the uncertainty over the expected

rate of infection the more advisable it is to consult this sensitivity analysis.

3.2 Calculators 2 and 3

Calculators 2 and 3 calculate the needed sample size in order to estimate the

rate of infection with a given precision. The second calculator should be used

for an expected prevalence of 5% or above and the third for a prevalence below

5 %. The two tools have in common that they demand the desired standard

deviation as input and yield the minimum required sample size as output.

The second calculator is almost identical to calculator 1, except that the

cells for the standard deviation and the sample size are exchanged.
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The output of calculator 2 should be interpreted as follows: To obtain an

estimate for an expected prevalence of 5% with a standard deviation of 2.5 or

better, one must at least test 1,223 individuals.

For any expected prevalence below 5% the use of the third calculator is

recommended. A more nuanced analysis is necessary because common choices

of standard deviations are too large to accurately measure very small rates

of infection. A standard deviation of 2.5 from the previous example would

be insufficient to differentiate between rates of infections of 1%,0.1% or 0.01%.

Following (Naing et al., 2006), calculator 3 internalizes the choice of the needed

standard deviation by dividing the expected rate of infection by half. Hence,

for an expected rate of infection of 1% the calculator automatically chooses a

required standard deviation of 0.5 percentage points. This scaling factor can be

set to any desirable value by changing the precision factor in the assumptions

cells.

4 Application

In this illustration we model two outbreaks using a canonical model in epi-

demiology and show that the results of random samples are better suited than

currently applied methods to estimate the true rate of infection.

We use the well-known susceptible-exposed-infected-recovered model (SEIR)

that has been adapted by Peng et al. (2020) and modeled by Cheynet (2020)

to reflect a quarantine response by governments. The basic structure of the

model is as follows: Individuals advance from a pool of susceptible individuals

(S) to those exposed (E), infected (I), quarantined (Q) and recovered (R) or

dead (D). The changes of these compartments are given by these derivatives

over time:
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dS(t)
dt

= −αS(t)− βS(t)I(t)
Npop

(10)

dE(t)
dt

= −γE(t) + β
S(t)I(t)

Npop

(11)

dI(t)
dt

= γE(t)− δI(t) (12)

dQ(t)
dt

= δI(t)− λ(t)Q(t)− κ(t)Q(t) (13)

dR(t)
dt

= λ(t)Q(t) (14)

dD(t)

dt
= κ(t)Q(t) (15)

The parameters are the protection rate α, the infection rate β, the inverse

of the average incubation period γ, the inverse of the average quarantine time

δ, the cure rate λ and the mortality rate κ. In contrast to other SEIR-models

this application does not feature immigration, the birth rate or the natural

mortality rate to reflect the short-time nature of the outbreaks modeled. The

mortality and cure rate of the infection are independent of time for similar

reasons. Note that at any point in time, the fraction δ of the infected individ-

uals are discovered to be infected and quarantined. This number of infected

and discovered people Q is what is known to the public. In contrast, the true

rate of infection is the sum of quarantined infected Q and the undiscovered

infected I. Random sampling aims to discover this total rate.

The models are parameterized with a latency period of five days, three

weeks in quarantine, an initial population of 83 Million, 100 initial infections

occurring on February 1st and and an infection rate of 1. The ML-estimator is

produced correcting for a sensitivity of 33% and a specificity of 95%. Scenario

(A) shows the dynamics of an outbreak without any successful attempt to slow

the spread of the disease (β =0.01). This scenario reaches a herd immunity

of 60%. In scenario (B) on the other hand, some measures are in place to re-

duce the extent of the epidemic and at most 7% of the population are infected
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Figure 4: Random sampling reveals undiscovered infections

(a) Scenario (A)

(b) Scenario (B)
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at the same time. The public would observe the rate of discovered infection,

i.e. individuals that are quarantined, shown as the red line. The true rate of

infection instead is shown in black. The ML-estimator from random samples

involving 10,000 tests traces this total rate of infection with a standard devi-

ation exemplified by the blue ribbon. These examples clearly show that the

ML-estimator would differ from the rate of infection derived from the discov-

ered infections. The scenarios also show that the statistical power of a random

sample including 10,000 people is better suited for uncontrolled outbreaks than

for more controlled ones.

5 Conclusion

We provide support to assist random sample analyses to determine the true

rate of infection in a population. The Maximum-Likelihood estimator provides

a way to correct for the medical tests’ sensitivity and specificity, which influence

the estimator’s accuracy. The Excel-calculators allow the researcher to analyze

the statistical power of such random samples or to plan the needed sample size.

In addition to that, we model two pandemic outbreaks using the SEIR-model

and demonstrate that random samples will improve the public’s knowledge of

the true rate of infection. We do highlight that the statistical power of random

samples decreases the more rare a disease is in a population. An estimate of

the broad progress of a pandemic outbreak is nevertheless feasible.
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