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Abstract One of the major potential consequences of climate change is damage to earth’s
ecosystems, damage which could manifest itself in the form of tipping risks. We establish
an economic growth model of ecosystem tipping risks, set in the context of possible forest
dieback. We consider different specifications of impacts arising from the forest dieback tip-
ping point, specifications such as changes in the systemdynamics of the forests, changes in the
forest mass, and impacts on economic output. We also consider endogenous and exogenous
tipping point probabilities. For each specification we compute the optimal policies for forest
management and emission control. Our results show qualitative differences in patterns of
post-tipping event, optimal forest harvest, and either precautionary or aggressive pre-tipping
event harvest patterns, a feature consistent with the findings of the existing literature. Optimal
control of deforestation and carbon dioxide emission reduction also exhibits varied patterns
of post- and pre-tipping levels depending on the nature of the tipping risk. Still, today’s
optimal policy is one of more stringent emissions control in presence of a potential forest
dieback tipping point.
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1 Introduction

One of the major potential consequences of climate change is damages to earth’s ecosystems,
damage which could manifest itself in the form of tipping risks (e.g., World Bank 2012)—or,
put differently—regime shifts that are hard to be predicted1. Climate change is known to
be one of the major drivers of ecosystem changes, and of habitat change, over-exploitation,
pollution, and invasive species (Millennium EcosystemAssessment 2005). There is evidence
that ecosystem tipping events may exist on a local scale (e.g., Folke et al. 2004; Lenton et al.
2008) and also speculation that they may exist on a planetary scale Barnosky et al. (2012).
Given the influence of ecosystem services on economic activity, examination of these tipping
risks could help inform debates regarding optimal emission control (e.g., Stern 2013) and to
guide the optimal reduction of emissions from deforestation.

There already exists an extensive literature of analytical studies of the economic analysis
of environmental regime shifts (which could also be conceived as tipping events as considered
in Lenton et al. 2008, etc.). Recent contributions include thosemade byMargolis andNaevdal
(2008), Brozović and Schlenker (2011), Polasky et al. (2011), de Zeeuw and Zemel (2012),
Zemel (2012), and Ren and Polasky (2014). These studies focus, using restrictive models,
on finding clear-cut conditions for precautionary and aggressive exploitation of renewable
resources. A drawback of these models is that they are rather parsimonious and might not be
able to model relatively complex but realistic features of potential regime shifts relevant to
climate change, such as, for example, the characteristic that both risk-subjected ecosystem
functions and emissions from economic activities affect the climate system. On the other
hand, with the exception of Cai et al. (2015b), an emerging literature of climate-policy and
tipping-risk modeling studies focuses on climate tipping events but does not consider tipping
risks in ecosystems (Bahn et al. 2008; Cai et al. 2015a; Crost and Traeger 2011; Keller et al.
2004; Lemoine and Traeger 2014; Lontzek et al. 2015).

This paper is an attempt to fill this current gap in research.We consider a simple, dynamic,
stochastic integrated assessment model and compute optimal policies under climate change
and ecosystem risks, specifically in the form of large-scale forest dieback. Forest dieback is
considered to be a major tipping risk associated with climate change and could significantly
affect the global carbon cycle through the release of carbon stored in woody biomass and
forest soils (Lenton et al. 2008; Kriegler et al. 2009). Widespread dieback of forests has
already been observed in Canada (Kurz et al. 2008a, b), and many general circulation and
vegetation models forecast an extensive forest dieback both in tropical and boreal regions in

1 The words “tipping points” and “regime shifts” are often used in similar contexts without clarifying whether
the one necessarily accompanies the other or not. A definition distinguishing the two concepts is that by
Biggs et al. (2011): they term “regime shifts” “large, abrupt persistent changes in the structure and function
of ecosystems” entailing “the shift of a system from one basin of attractor to another when a critical threshold
or tipping point is exceeded.” By this definition, a regime shift could occur only in the presence of a tipping
point, but the reverse is not necessarily the case. In the following, we mainly use the term “tipping points”
even in the cases also involving a regime shift, as that term is the one frequently used in the literature of the
economics of climate change, such as in Lemoine and Traeger (2014), Cai et al. (2015b), or Lontzek et al.
(2015). In discussing our model, however, we make clear which of our examined cases could be also seen as
“regime shifts” by Biggs et al.’s definition and which are not.
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the future (Lucht et al. 2006; Cook and Vizy 2008; Lenton et al. 2008; Kriegler et al. 2009;
Rammig et al. 2010; Hirota et al. 2011; Staver et al. 2011; Good et al. 2013). Forest dieback
could, for example, occur due to climate-related changes in precipitation and temperature
patterns but its onset is not precisely predictable (Lenton et al. 2008; Kriegler et al. 2009). In
the context of climate change impacts, forest dieback is often interpreted as an irreversible
loss of forest areas, but in our analysis we consider both the case of an irreversible area loss
and an alternative case in which forest dieback involves a recoverable loss of forest stock.
While the impacts of forest dieback on human welfare are wide-ranging including loss of
biodiversity and of other ecosystem services, in ourmodel analysis we focus on two relatively
well-quantifiable functions of forests that affect human welfare—namely, the input for the
production of economic output in the form of wood as a resource, and the function of carbon
sequestration. Treating the forest as a renewable resource, our model could be seen as an
extension to Polasky et al. (2011), an extension that additionally accounts for climate change
dynamics. In addition to the use of the forest resource and the control of production-related
carbon dioxide emissions, we also explicitly consider the control of deforestation through
measures to reduce emissions from deforestation and forest degradation (REDD/REDD+),
a mechanism operating under the auspices of the UN Framework Convention on Climate
Change (UNFCCC) and one of the key topics of climate change policy debate.

The model computes optimal policy choices when the economy produces output by using
reproducible capital and a renewable resource (forest), a resource which has a potential to
regenerate and is also subject to a tipping risk. Climate change may raise the probability of
tipping, and is in turn determined by carbon dioxide emission reduction and deforestation
control, both of which influence the carbon stock. However, motivated by existing studies
of regime shifts (discussed by Polasky et al. 2011), we also consider alternative cases of
an exogenous probability of tipping. We focus on analyzing the basic trade-offs of policy
choices on a global level, and the simple settings of the model miss many detailed features.
But this in turn means that our model’s framework has some degree of generality and is
also potentially applicable to other problems of ecosystem risks induced by climate change.
By modeling the growth and optimal harvest of global forest stock, we compute the time
paths of optimal control policy for deforestation (i.e., REDD policy) and also of optimal
policy for carbon dioxide emission reduction and compute the effects of tipping risks on
those policy decisions. We calibrate our model parameters with representative values drawn
from the existing literature, but given the scarcity of empirical information on this problem,
we conduct an extensive sensitivity analyses as well.

In line with the existing economic literature of regime shifts, especially with Polasky
et al. (2011), we examine different cases characterized by whether a tipping event changes
the system dynamics or the level of the forest stock. A reason for a systematic change in
forest stock dynamics could for example be a permanent habitat loss due to a change of
climate-related hydrological conditions. An abrupt reduction in the level of the forest stock
could be induced by extremeweather, fire, diseases, or pests (e.g., bark beetle attack on boreal
forests).

The results show qualitative differences in patterns of post-event optimal resource har-
vesting, leading to either precautionary or aggressive pre-event harvest patterns. The optimal
control of deforestation and carbon dioxide emission reduction also exhibit varied patterns
of post- and pre-tipping levels depending on the nature of the tipping risk. In particular,
when the tipping risk triggers a drop in the amount of forest mass (in the way of “stock
collapse” modeled by Polasky et al. (2011), although here, the stock does not vanish but is
only reduced by a certain amount), the emission reduction rate (optimal deforestation rate)
exhibits a positive (negative) post-tipping jump, which so far has been only found in the case
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of multiple interacting tipping points in Cai et al. (2016b). In our case, this is a reflection
of a weak or absent risk-reduction effect: the tendency to conduct precautious climate and
resource policies to decrease the probability of the tipping event. In contrast, if the tipping
event induces a systematic change in the resource stock dynamics (in the way of “changed
system dynamics” modeled by Polasky et al. 2011), the risk reduction effect is much stronger
and optimal emission reduction (deforestation control) exhibits a post-tipping drop (positive
jump) as a reflection of reduced incentives to delay the tipping by aggressive climate pro-
tection policies. We find further evidence for these effects studying a comparable version
of the model with an exogenous (i.e., temperature-independent) tipping point probability.
In contrast to the case with endogenous tipping risk, optimal emission reduction is lower
today and exhibits a positive post-tipping jump, since it is no longer possible to delay the
expected timing of the tipping point event. These findings suggest that it is crucial to distin-
guish between endogenous and exogenous tipping risks when assessing optimal climate and
resource management policies.

The initial-year emission reduction is enhanced with any forms of tipping risk, suggesting
the influence of the consumption smoothing effect. In this sense, while analysis of our model
reveals differences in the effects of different tipping risks on optimal policy choices, it thus
still supports the conclusion of existing studies on climate policy and tipping risk that the
presence of tipping risks generally raises the stringency of the optimal current climate policy
(see, e.g., Lemoine and Traeger (2014) and Cai et al. (2015a), as well as Lontzek et al.
(2015)).

We also examine the combined effect where the tipping risk also has a direct effect on
output. In line with Cai et al. (2015a) we find that the risk reduction effect is much stronger
in this setting. This implies significantly larger pre-tipping climate and resource protection
policies to delay the tipping event and hence a pre-tipping reduction (increase) of emission
reduction (deforestation control). Furthermore, we find that separating risk aversion from
the intertemporal elasticity of substitution (IES) can significantly change optimal policy
responses. This result is in line with Ha-Duong and Treich (2004) or Cai et al. (2015a),
contributions to the literature that find that, by assuming standard preferences of constant
relative risk aversion (CRRA), the sensitivity of optimal climate policies with regard to risk
aversion may be misleading. Therefore we consider Epstein–Zin–Weil preferences (Epstein
andZin (1989);Weil (1989)) that allow for a separation of the relative risk aversion coefficient
and the IES. Recent findings in the literature of long-run risk (see Bansal and Yaron 2004;
Bansal et al. 2012) find a calibration of a risk aversion of 10 and an IES of 1.5 to be consistent
withmany empirical features of financial markets.We compare themodel’s results for CRRA
preferences (where risk aversion is given by the reciprocal of the IES) to theEpstein–Zin–Weil
specification with disentangled coefficients.

We find that if the tipping risk has a direct effect on output and there is uncertainty about
themagnitude of the tipping event, risk aversion has a significant influence on optimal climate
and resource policies. In particular an increase in risk aversion amplifies the risk reduction
effect, which implies larger investments in pre-tipping emission reduction and deforestation
control. This effect can not bemodeled by standard CRRA preferences, which suggests that it
is important to consider Epstein–Zin–Weil preferences for the analysis of stochastic tipping
events. In contrast, if the tipping point event does not directly affect output, Epstein-Zin
preferences with a larger risk aversion compared to the corresponding CRRA have only a
marginal influence on model outcomes.

We describe our model in Sect. 2 and present results in Sect. 3. Section 4 concludes.
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Fig. 1 Schematic of the model economy

2 Descr iption of the Model

Our model builds on the standard Ramsey-type economic model with exogenous growth but
we include a renewable resource (forest mass) as an additional factor of production.2 Figure 1
presents a schematic of the model economy.

We assume that the production of output generates carbon emissions, which can be con-
trolled. Uncontrolled emissions increase the atmospheric stock of carbon. The latter causes
climate change resulting in damage to economic output. The atmospheric stock of carbon
also interacts with the carbon content of the renewable forest mass. Since forests store car-
bon, harvesting and uncontrolled deforestation will release carbon into the atmosphere. At
the same time, growth in the forest mass absorbs atmospheric carbon.

In addition to these features we include the possibility of a forest dieback tipping event.
The determinants and impacts of the tipping event are not perfectly known and we choose a
stochastic formulation of both to represent this lack of knowledge.We study different cases of
the tipping event, each representing different characteristics of the determinants and impacts
of a possible forest dieback. More specifically we study the case of (a) a tipping point which
reduces the size of the forest resource, and (b) a tipping point which leads to a permanent
reduction in the carrying capacity of the forest resource, which in turn reduces its growth
rate. Figure 2 depicts schematics of each case. We investigate those two distinct cases partly
because it allows for comparison of our analysis with the existing studies (especially Polasky
et al. 2011), but also because both of these two mechanisms are possible to exist in reality
as there is still scarcity of knowledge about the ecological mechanisms of forest dieback.
Note that in the first case (left panel in Fig. 2), the loss of resource is partial, and therefore
the resource stock could recover. This is a more conservative formulation than Polasky et
al.’s total collapse of resource and also is not a regime shift by the definition of Biggs et al.
(2011), in the sense of not involving a shift to a different state of the system. As we see below,

2 In some economies, the forestry sector provides a significant proportion of economic output. For example,
22 countries have over 3% of GDP coming from the forestry sector in 2011 (FAO 2014).
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Fig. 2 Schematic of how a tipping point affects the level of the resource. Left tipping point reduces the size
of the forest resource. Right tipping point leads to a permanent reduction in the carrying capacity of the forest
resource, which reduces its growth rate

however, the modeling results for this case show consistent characteristics with Polasky et
al’s, implying that a risk of partial loss, not of total collapse, is sufficient for obtaining some
effects on optimal resource management. Meanwhile, the second case (right panel in Fig. 2)
does involve a permanent shift of the system and so is a regime shift according to Biggs et al.
(2011).

Because of the imprecise knowledge about the nature of a forest tipping point we also
include the possibility of an additional damage to economic output. This type of tipping risk
is a representation of the general climate tipping risk as considered in Cai et al. (2015a). In
this case, the tipping point affects directly both the economic output and the forest stock.

The social planner’s objective is to maximize expected welfare which is the sum of dis-
counted utility flows over an infinite horizon. We assume non-separable preferences are of
Epstein–Zin–Weil type, and that the time horizon is infinite. The timing of the forest tipping
point event is unknown to the social planner, leading to substantial risk regarding future wel-
fare. The social planner facing this riskmust determine in each time period the optimal choice
of consumption, emission reductions, harvesting of the forest resource, and controlling the
deforestation of the forest resource

We first present the structure of the general model and set up the social planner’s opti-
mization problem. Afterward, we describe how the structure of the model is altered when we
study different sub-versions of the general model.

2.1 The General Model

We denote by Yt total economic output in nominal units, and by At = A0(1+ gA)t the level
of total factor productivity with an annual exogenous growth rate gA. We therefore convert

output into efficiency units, and define yt =
Yt
At
. We also convert other, infinitely growing

variables into efficiency units. The conversion of the model is presented in Section 5 in the
Appendix. Furthermore, output is a function of the capital stock (in efficiency units) kt =

Kt
At
,

and the input of the forest resource. We assume that the effective input of the forest resource
is given by Qt = qt (1 + gq )t , where qt ≥ 0 is the controlled level of the forest resource
harvested. Furthermore, we assume an harvesting technology which grows at a constant rate
gq . The harvesting technology advances at the same rate as total factor productivity, implying
gq = gA. We can then write economic output in efficiency units as

yt =
Yt
At

= kνt (qt / A0)
μ
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where qt
A0

= Qt
At
. The dynamics of the forest resource Rt are represented by

Rt+ 1 = Rt + G Rt , ω
G
t+ 1 − qt − ξ (1 − φt ) + ωD

t+ 1 (1)

where G Rt , ωG
t+ 1 = gRRt 1 − Rt

ωGt+ 1Rmax
is the natural growth rate of the forest mass.

Here, gR is a growth rate parameter. Equation (1) allows for two possible types of tipping
point events to be studied. First, 0 < ωG

t+ 1 ≤ 1 denotes a stochastic shock to the maximum
sustainable yield of the forest mass Rmax withωG

t+ 1 = 1 before a tipping event has occurred.
Second, we include the possibility of a tipping point that leads to a drop in the level of the
forest resource, denoted byωD

t+ 1 ≤ 0 withωD
t+ 1 = 0 before the tipping event. Details of both

tipping point cases are presented in Sect. 2.2. As such, Eq. (1) serves the purpose of a general
description of the forest dynamics. In addition, we assume a constant level of deforestation
ξ . The latter can be controlled by, for example, a REDD policy and we denote by φt the rate
of the deforestation control with 0 ≤ φt ≤ 1 . Furthermore, we denote by t = ζφ2t the
share of output spent on REDD measures.

Equation (2) describes the dynamics of the atmospheric carbon stock. The first term of
the right-hand denotes the amount of carbon absorbed by other carbon sinks and δS is the
absorption rate.

St+ 1 = 1 − δS St + ωy
t+ 1 0A0yt (1− mt ) − G Rt , ω

G
t+ 1 + qt + ξ (1 − φt ) − ωD

t+ 1

Rt

(2)

The second term represents the emission inflow from the output sector. Here, 0 ≤ mt ≤ 1
is the controlled fraction of emissions and Mt = 1m 2

t denotes the share of output spent
on mitigation. Similar to Nordhaus (2008) we assume a constant rate of decarbonization of
output, gI . The emissions-output ratio is given by t = 0

(1+ gI )t
. By assuming gI = gA, the

term 0A0y denotes nominal units.3 Furthermore, we assume that a forest tipping point could
induce a permanent reduction in economic productivity given by ωy

t+ 1 ≤ 1 with ωy
t+ 1 = 1

before the tipping point has occurred. Finally, the remaining (underbraced) terms represent
the inflow of carbon from the forest resource, either from harvesting and deforestation control
or from the natural growth process of the forest resource.

Tomodel the impact of climate change on the economy and potential forest dieback tipping
points we implicitly assume that the global average temperature Tt is a linear function of
cumulative carbon emissions—that is to say, Tt = τ (St − SP I ), where SP I denotes the
preindustrial stock of carbon and τ is a parameter. With the former implicit assumption we
follow the specification in Cai et al. (2016a) and denote the endogenous factor of damage to
output by

DK
t = 1 + κ1(τ (St − SP I ))

2 + κ2(τ (St − SP I ))
6.754.

With κ2 = 0 in our benchmark case, the damage factor is that of the DICEmodel in Nordhaus
(2008) but for a calibrated value of κ2 we can also incorporate (in a sensitivity analysis) a
much more convex temperature-to-damage relationship as has been recently suggested by
Dietz et al. (2013).

3 Note that emissions can be proportional to output even if Y is a function of the renewable resource that
originates from the natural system and does not involve fossil fuel combustion itself. For example, the burning
ofwood does not produce net emissions itself (it is carbon-neutral) but the use of timber accompanies emissions
as a form of either logging and transportation of products or of enhanced activities in housing construction,
etc.
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The accumulation dynamics of capital (in efficiency units) are then given by

kt+ 1 = 1 − δK kt + ωy
t+ 1yt

1 − Mt − t

DK
t

− ct (1 + gA)− 1 (3)

where δK is the rate of depreciation of capital and non-depreciated capital and output net of
mitigation and afforestation costs can be invested in capital accumulation and consumption
ct (in efficiency units). See Appendix 5 for details of obtaining Eq. 3.

2.2 Specification of the Forest Tipping Point

We use the general model specified above to study different cases of impacts from a tipping
point in the forest resource. Regarding the impacts on the forest resource itself we distinguish
between the cases of a permanent reduction of the carrying capacity of the forests, which
affects its growth rate (growth rate tipping point) and a single-event abrupt dieback of the
forests (level tipping point). Furthermore, we also include the possibility that in addition
to the impacts on the forest resource, the tipping point will also reduce economic output.
We also study a deterministic version without any tipping risk as a benchmark case. In the
following we specify the model equations for these different cases.

2.2.1 Deterministic (No Tipping) Benchmark Case

To set up the deterministic benchmark case, we impose:ωG
t+ 1 = 1 andωD

t+ 1 = 0∀θRt+ 1 where
θRt is a discrete variable indicating the state of the tipping point event. In the deterministic
benchmark case, the only source of damage is DK

t , the smooth damage factor to economic
output. Therefore, we also set ωy

t+ 1 = 0∀θRt+ 1.

2.2.2 Growth Rate Tipping Point

The conditional probability of the tipping point event not occurring at time t is given by

p(Tt ) = exp(− pω ∗max(0, Tt − T0)) (4)

where pω is a hazard rate parameter and T0 denotes the degree of global warming at the
initial time. Thus, the tipping probability is endogenous, depending on the level of global
warming. Given this dependence, the state of the tipping point event is described as

θRt+ 1 = h(Tt , θ
R
t ). (5)

Using Equ. (4) we specify the Markov probability matrix for θRt+ 1 as

P =
p(Tt ) 1 − p(Tt )
0 1

with θRt+ 1 = 1 for the pre-tipping state and θRt+ 1 = 2 for the post-tipping and irreversible
state. The transition probability matrix is set up, so that the probability of remaining in the
pre-tipping state is p(Tt ) and there is a probability of 1− p(Tt ) for the tipping event to occur
(going from state 1 to state 2). Once the tipping event has occurred, the system remains in
the post tipping state.

For the magnitude of the tipping point impact, we assume that, in case of tipping, the
carrying capacity of forests drops by 25%, corresponding to a change inωG

t+ 1 from 1 to 0.75
as specified in Equ. (6)—note that the 25% loss specification does not result from rigorous
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calibration with empirical data but is rather taken as a benchmark of a significant loss, as is
used by Rammig et al. (2010). We show in Sect. 3.2 that changing the level of reduction does
not change the qualitative features of our computed results.

After a tipping point event in the carrying capacity the growth rate of the forest mass
G Rt , ωG

t+ 1 is substantially reduced for any positive level of the forest resource mass.

ωG
t+ 1 =

1 if θRt+ 1 = 1

0.75 if θRt+ 1 = 2
(6)

Since in this case, the tipping point does not affect directly the level of the resource stock,
we set ωD

t+ 1 = 0∀θRt+ 1. In addition, we also set ωy
t+ 1 = 0∀θRt+ 1 as we assume that the

tipping point event has no direct impact on economic output.

2.2.3 Level Tipping Point

In this case, we assume that the tipping point event leads to an abrupt dieback of the forest
resource. We specify the immediate dieback to be 30% of the forests above a minimum
level Rmin. As in the case of a growth rate tipping point, this 30% level should be seen as a
benchmark of a significant loss. In fact, some modeling studies even forecast well over 50%
of forest loss toward the end of the 21st century under climate change (e.g., Cook and Vizy
2008; Rammig et al. 2010), though the reduction is generally expected to be gradual (Lenton
et al. 2008). For this case, we also show in Sect. 3.2 that changing the level of reduction does
not change the qualitative features of our computed results.

To model this case, there are three different states for ωD
t+ 1

ωD
t+ 1 =

⎧⎪⎨
⎪⎩
0 if θRt+ 1 = 1

− 0.3(Rt − Rmin) if θRt+ 1 = 2

0 if θRt+ 1 = 3

(7)

where θRt+ 1 = 1 denotes the pre-tipping state, θRt+ 1 = 2 denotes the state in the period of the
tipping point event, and θRt+ 1 = 3 is the post-tipping state needed to ensure that the tipping
point event can only occur once—in this study, we restrict the number of tipping events to
one for the reasons of the clarity of discussion and of conser.

Furthermore, in line with the specification for the growth rate tipping point, the Markov
transition probabilities for θrt are given by

P =

⎡
⎣
p(Tt ) 1 − p(Tt ) 0
0 0 1
0 0 1

⎤
⎦

where p(Tt ) is given by Eq. (4). Again, the transition probability matrix is set up, so that
the probability of remaining in the pre-tipping state is p(Tt ) and there is a probability of
1 − p(Tt ) for the tipping event to occur. State 2 describes the tipping state with the drop in
the forest mass. Once the system is in state 2, it will deterministically move to state 3 in the
subsequent period to prevent that a tipping point may occur twice.

For this case we set ωG
t+ 1 = 1∀θRt+ 1 and ωy

t+ 1 = 0∀θRt+ 1 as we again assume that the
tipping point event has no direct impact on economic output.
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2.2.4 Additional Reduction of Output

For both tipping scenarios, the growth rate tipping point and the level tipping point, we also
consider cases, in which the tipping point event will on average induce a 2.5% permanent
reduction of output, which is a representation of the general climate tipping risk as first studied
in Cai et al. (2015a). We analyze the influence of different volatilities of the tipping shock
to output. In particular, we consider a case, in which the tipping event will, with certainty,
induce a 2.5% drop to output (σy = 0). Furthermore, we study a case, in which the reduction
of output will be 3.75 or 1.25% (both with 50% probability) and a case in which there the
reduction of output will be 5 or 0% (both with 50% probability). The two latter cases are
denoted by σy = 0.0125 and σy = 0.025 respectively. We choose those parameter levels
only as benchmarks rather than rigorously calibrated values, and we examine a single, not
multiple, tipping risk only for the clarify of discussion. For a technical formulation of these
cases see Section 6 in the Appendix.

2.3 The Social Planner ’s Optimization Problem

We assume the social planner has Epstein–Zin–Weil preferences (Epstein and Zin 1989;Weil
1989) and write the value function as

V(St ) = max
Ct ,qt ,mt ,φt

C
1− 1

ψ
t

1 − 1
ψ

+ β
1

(1 − 1
ψ )

E[(1 −
1

ψ
)V(St+ 1)]

1− γ

1− 1
ψ

1− 1
ψ

1− γ

whereSt = kt , St , Rt , θRt , θ
y
t is the vector of the five state variables of themodel, β = 1

1+ ρ
is the utility discount factor and ρ being the pure rate of time preference. Furthermore, γ is
the coefficient of relative risk aversion and ψ is the IES. By defining V∗(St ) = V(St )

A
1− 1

ψ
t

we

can rewrite the value function as

V∗(St ) = max
ct ,qt ,mt ,φt

c
1− 1

ψ
t

1 − 1
ψ

+ β
(1 + gA)1−

1
ψ

1 − 1
ψ

E[(1 −
1

ψ
)V∗(St+ 1)]

1− γ

1− 1
ψ

1− 1
ψ

1− γ

.

The social planner maximizes expected welfare. Solving the social planner’s problem is
equivalent to solving the Bellman equation of the problem together with the state dependent
equality constraints. The advantage of the infinite horizon model is that the time index can
be dropped and the decisions depend solely on the current state. The dynamic programming
problem is given by

V∗(S) = max
c,q,m,φ

c1−
1
ψ

1 − 1
ψ

+ β
(1 + gA)1−

1
ψ

1 − 1
ψ

E[(1 −
1

ψ
)V∗(S+ )]

1− γ

1− 1
ψ

1− 1
ψ

1− γ

.

s.t.k+ = 1 − δK k + ωy+ y
1 − M −

DK
− c (1 + gA)− 1

S+ = 1 − δS S − G R, ωG+ − q + ξ (1 − φ) + ωy+
0A0y(1 − m) − ωD+

R+ = R + G R, ωG+ − q − ξ (1 − φ) + ωD+

θR+ = h(T, θR). (8)
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We solve the model numerically by value function iteration using a collocation projection
method. For a detailed exposition on value function iteration, see Judd (1992 and 1998).
We approximate the value function by tensor product Chebychev polynomials of degree 6
together with 7 Chebychev nodes in each dimension and fit the unknown solution coefficients
for the value function by least squares. We iterate over the value function until the maximum
absolute approximation error is less than 10− 8.We have found that increasing the polynomial
degree, the approximation range or the number of collocation nodes does not significantly
change the results, suggesting accuracy of our computational method.

2.4 Calibration of the Model

Functional forms The functional forms for the production function (Yt ), deterministic dam-
age (DK

t ), andmitigation costs (Mt ) are similar to those of the DICEmodel (Nordhaus 2008)
with the exception of the resource as an input in the production function. For simplicity, we
assume a quadratic function for the cost of reducing deforestation ( t ). The growth of forest
mass (Gt ) is a common specification for a renewable resource stock, except for the stochastic
component (ωG ).

Output and cost parameters The share of input of forest products in the production
function (μ) is set at 0.002, which comes from FAO’s (2010) estimate that the annual value
of forest product use is around USD 100 billion. With ζ = 0.0008572, the cost function
of deforestation control is set to yield USD 180 per tC at 0.5GtC, which is relatively high
but still at a realistic level based on the review of REDD modeling studies by Lubowski and
Rose (2013). The capital elasticity in the production function (ν) is 0.3. The capital stock at
the initial time is set to USD 160 trillion (K0 = 160) and A0 is set to 47.88 to yield a world
GDP of USD 70 trillion. Capital depreciates at 10% per year (δK = 0.1). We furthermore
assume an annual growth rate of total factor productivity of 1.5% (gA = 0.015), which
is consistent with the DICE model (Nordhaus, 2013). Regarding the mitigation costs, we
assume 1 = 0.15 and 2 = 2.5. This implies costs of 0.3% of GDP for a 25% reduction
in emissions, 2.2% of GDP for a 50% emission reduction, and 15% of GDP for a 100%
emission reduction.

Carbon stock and damage function parameters The emissions–output ratio ( 0 =
0.00139) is set in line with the DICE model (Nordhaus 2013). The rate of decarbonization
of output is set at 1.25% per year (gI = gA = 0.0125). We specify the preindustrial stock
of carbon to be 600GtC (SP I = 6) and in line with the DICE model (Nordhaus, 2013) we
assume that today’s atmospheric stock of carbon is 830GtC (S0 = 8.3).

With δS = 0.0004 we model an annual net uptake of carbon by the oceans, and thus partly
capture the dynamics of the carbon cycle (at S0 = 8.3, our assumption implies that the annual
net carbon uptake is about 0.33GtC). With this specification we calibrate τ = 0.45 such that
our emission-to-temperature relationship is in line with that of the default specification of
MAGICC 6.0 (Meinshausen et al. 2011) for all four representative concentration pathways.

An alternative specification of the emissions-to-temperature relationship would be to set
δS = 0, update S0 and then to interpret S as the total cumulative stock of carbon emissions.
The latter could be calibrated according to Matthews et al. (2009) who propose a linear
relationship between cumulative carbon emissions and global warming. However, in this
study we chose to explicitly model the atmospheric carbon stock as we specifically focus on
the two-directional carbon flows between the resource stock (with carbon content) and the
atmospheric carbon stock. Finally, the damage coefficient κ1 = 0.003 is in accordance with
the DICE model (Nordhaus 2008).
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Resource stock parameters Using information from theGlobal Forest ResourcesAssess-
ment 2010 (FAO2010), we assume that the current size of global forests is 300GtC (R0 = 3),
and that the current global harvest rate of forest mass and the global rate of uncontrolled
deforestation are 1.5 and 0.5GtC (ξ = 0.005), respectively. From the Millennium Ecosys-
tem Assessment (2005) we infer that global forests have been reduced by about 50% from
their pristine levels. Therefore, we assume that the maximum possible size of forest mass
is 600GtC (Rmax = 6), and the current annual growth of forests is 1.5GtC (the amount of
current human forest use excluding the factor of deforestation). These assumptions imply
gR = 0.0135.

Preference parameters The pure rate of time preference is set at 1% per year (ρ = 0.01).
Furthermore, we choose the risk aversion parameter (γ = 10) and the IES (ψ = 1.5) to be in
line with the parameter estimates obtained from the long-run risk literature that is consistent
with many empirical findings of investor behavior in financial markets (see, e.g., Bansal and
Yaron 2004; Bansal et al. 2012).We use these parameters as our default setting of preferences.
For the influence of different parameters of risk aversion and the intertemporal elasticity of
substitution on optimal climate policies, see, for example, Ha-Duong and Treich (2004) and
Cai et al. (2015a).

Tipping point event parameters We set the hazard rate parameter pω = 0.007, which
implies that for an additional warming of 1 Celsius, the conditional probability of tipping
increases by 0.7%. This parametrization will produce cumulative tipping probabilities for
the forest resource that are in line with recent probability assessment studies, such as those
in Kriegler et al. (2009). We also use the Kriegler et al. (2009) definition of the magnitude
of impacts from the tipping point events as an orientation for our study. In our growth rate
tipping point case, we assume that the tipping point event reduces the carrying capacity of
the forest mass by 25% (from Rmax = 6 to Rmax = 4.5). For the single-event level tipping
point we assume that the stock of the forest mass in excess of 100GtC (Rmin = 1) is instantly
reduced by 30%. For the cases in which the tipping point event also affects economic output,
we assume an expected permanent output damage of 2.5% per year and study model variants
for which σy {0, 0.0125, 0.025}.

3 Results and Discussion

Given the optimal solution to the social planner’s problem of Equ. (8), we conduct a Monte
Carlo analysis with 1000 simulated time paths of the model, ranging from 2014 to 2200. In
Sects. 3.1–3.3 we consider tipping point events that only affect the dynamics of the forest
resource. In Sect. 3.4 we study cases in which the tipping point event also affects economic
output. In Sect. 3.5 we present the results of a sensitivity analysis on preferences and impact
on output.

3.1 Optimal Harvesting and Climate Policies Under Forest Tipping Risks

We first analyze versions of the model without deforestation control, implying φt = 0∀t . We
assume that the tipping point event only affects the dynamics of the forest resource and has no
direct impact on economic output. Figure 3 shows the time paths for the atmospheric carbon
stock (St ), the forest stock (Rt ), the emission reduction rate (mt ), and the forest harvesting
rate (qt ).

For comparison, the left panel of Fig. 3 shows the time paths of these variables obtained
from our deterministic benchmark case without any tipping risk. The center panel in Fig. 3
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Fig. 3 Time paths of the carbon stock (St ), the forest stock (Rt ), the emission reduction rate (mt ), and the
forest harvesting rate (qt ) over the years 2014–2200. These cases are without deforestation control (φt = 0∀t)
and the tipping point event does not directly affect output, (ωy = 0). We show the deterministic paths (solid
blacklines), the expected paths (blue lines), 25 and 75%quantiles (dashed blacklines), a sample path producing
a tipping point in the the year 2100 (red lines), and the maximum ranges (grey areas) obtained from 1000
Monte Carlo simulations. The variables S, R and q are in units of 100GtC. (Color figure online)

shows the results of the case of a tipping point event that affects the growth rate of the resource
by permanently reducing its carrying capacity by 25% (growth rate tipping point). The right
panel shows the results of the case of a tipping point event that leads to a single-event, abrupt
30% dieback in the forest stock above Rmin = 1 (Level Tipping).

We find that in the deterministic benchmark case without any tipping risk, conducting
optimal climate policies would lead to an increase in the atmospheric carbon stock from
822GtC today to 1018GtC in 2100 and 1160GtC in 2200. That implies global temperature
levels of 1 today, 1.88 in 2100, and 2.52 in 2200.4 Accounting for the risk of tipping events
in the resource changes the optimal paths of the model variables fundamentally and those

4 For comparison, we have also computed a business-as-usual scenario (not reported in the graphs) where
qt remains at its level of today (qt = 0.0152) and there is no mitigation control (mt = 0). In such a case
temperaturewould risemuch higher with 2.94 in 2100 and 4.46 in 2200. Thus, we see that optimally controlling
emissions (on average about 30% over the next two centuries) and optimally reducing the harvesting of the
forest resource (an average reduction of 50%) will have a strong effect on reducing global warming.
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changes differ with respect to the type of tipping point event under consideration.We consider
each case separately.

Level tipping point In the case of a level tipping point, the forest stock Rt is reduced
when the tipping point occurs. Because of the interactions between the resource stock and
the atmospheric carbon stock, we observe that the latter, (St ), also increases immediately
after the level tipping point event occurs. The optimal forest harvesting rate qt exhibits a
sharp drop after the tipping event as a consequence of the lower resource stock. Two effects
could explain this optimal response. First, the incentive to build up the resource stock and
compensate for the negative shock. Second, because a higher atmospheric stock of carbon
leads to higher damages to output, it appears optimal to engage in reducing the accumulation
of atmospheric carbon. A higher net growth rate of the resource is one way to achieve this.
At the same time, increasing emission control in response to the tipping point event will also
dampen the accumulation of carbon in the atmosphere. Consequently, the slope of the carbon
stock in the atmosphere is significantly lower post-tipping, as can be seen in Fig. 3.

The sharp drop in qt in the tipping period is partly offset in the subsequent period, which
can be explained by considering the timing of the system dynamics. A sudden dieback of
the forests will increase the growth rate of forests in the period after the tipping point occurs
but not in the period in which the tipping point event occurs (this is the case because the
growth rate is monotonically decreasing for R ≥ 3). Therefore, a much larger reduction
in the harvesting of the resource is required in the tipping event period to compensate for
this delay. As we show in Fig. 4, it appears that, from a decision making point of view, the
essential variable is the net growth rate of the resource G Rt , ωG

t+ 1 − qt − ξ and as that
figure shows, the pattern of the net growth rate is smooth post-tipping.

Growth rate tipping point In the case of a growth rate tipping point, the growth rate of the
forest stock is reduced and the expected buildup of Rt is slowed down,while the actual sample
path shows a sharp decrease in the level of Rt . This is because the growth rate is substantially
lower for any level of Rt and the new steady-state level of Rt will be lower as well. In contrast
to the level tipping case, qt temporarily increases after the tipping point event. This is because
the system adjusts to a lower carrying capacity and exploits an “excess” amount of the forest
stock. Such an increase is temporary, however, and qt eventually converges to a lower steady
state compared to the deterministic case. Figure 4 clarifies this somewhat paradoxical pattern.
It shows the net growth rate of the resource stock G Rt , ωG

t+ 1 − qt − ξ that, in fact, exhibits
a sharp decrease in the event of a growth rate tipping point but slightly recovers thereafter.
Because of the interactions between the resource stock and the atmospheric carbon stock,
we observe that the latter, (St ), gradually rises after the tipping point event occurs.

Also, contrary to the level tipping case, we observe that emission control is reduced,
albeit only slightly. There are two major effects driving this result. First, in anticipation of
the tipping point event emission control is higher than in the deterministic benchmark case.
This is because the likelihood of tipping is endogenous, rising with higher carbon content in
the atmosphere. The optimal policy is to delay the expected tipping time. Once the tipping
point event occurs, this risk-reduction effect will vanish as we assume that the tipping point
can only occur once. Second, after the tipping point event occurs there will be a desire to
increase emission control to optimally respond to the more rapidly accumulating stock of
carbon. As our sample path shows, it appears that the former effect is stronger than the latter.

We find further evidence for this pattern by running a comparable model version with
exogenous tipping point probabilities, which mean that the tipping probabilities are indepen-
dent of the temperature change or climate change, unlike in the previous cases, with which
the occurrence of a tipping event is not influenced by the reduction efforts of carbon dioxide
emissions. Such an analysis corresponds to the analysis of exogenous risks conducted by the
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Fig. 4 Time paths of the net growth rate of the resource stock G Rt , ωGt+ 1 − qt − ξ (1 − φt ) (in units of

100GtC) over the years 2014–2200. This model case does not allow for deforestation control (φt = 0∀t) and
the tipping point event does not directly affect output (ωy = 0). We show the deterministic paths (solid black
line), the expected paths (blue lines), 25 and 75% quantiles (dashed black lines), a sample path producing a
tipping point in the the year 2100 (red lines), and the maximum ranges (greyareas) obtained from 1000Monte
Carlo simulations. (Color figure online)

previous studies on regime shifts such as Polasky et al. (2011). In the context of our analysis,
examining the case with the exogenous tipping probabilities is useful in that it allows us
to see the pure effects of risk-averse resource emission reduction decisions, separated from
the effects of random future reduction in the forest resource. Figure 12 in Section 7 in the
Appendix shows our results. We find that, in contrast to the case with endogenous tipping
risk, optimal emission reduction will increase after the growth rate tipping point occurs, since
it is no longer possible to delay the expected timing of the tipping point event and there is no
risk-reduction effect. Furthermore, assuming an exogenous tipping probability results in a
higher optimal initial-year harvesting compared to the deterministic benchmark, in particular
in the case of a growth rate tipping point. Hence, a tipping risk does not necessarily justify
precautionary actions. This finding is consistent with Polasky et al. (2011) and other existing
studies.

These results show, that it is crucial to distinguish between endogenous and exogenous
tipping risks as well as tipping risks that change the system dynamics or the level of the forest
stock as they can have quantitatively and qualitatively different impacts on optimal climate
and forest harvesting policies. We next introduce the possibility of deforestation control and
study how it affects optimal policy.

3.2 Sensitivity Analysis on the Benchmark Case

In this section we study whether the effects described above hold qualitatively for different
parameter settings. In particular, we consider changes in the damage function DK

t , the growth
rate of total factor productivity gA and the growth rate of the resource gR.

Figure 5 shows the robustness of our findings for a much steeper damage factor DK
t .

We consider the original specification as in the benchmark model with κ2 = 0 (solid lines)
and the damage factor specification of Dietz et al. (2013) with κ2 = 0.000004 where the
overall damage of an increase in the carbon stock on output is much larger. We find that
in the deterministic case investments into emission control mt are increased and resource
extraction qt is reduced compared to the benchmark specification. These optimal policies are
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Fig. 5 Time paths of the carbon stock (St ), the forest stock (Rt ), the emission reduction rate (mt ), and the
forest harvesting rate (qt ) over the years 2014–2200. These cases are without deforestation control (φt = 0∀t)
and the tipping point event does not directly affect output, (ωy = 0). Solid lines show the benchmark model
specification as shown in Fig. 3 with κ2 = 0 while dashed lines depict the case with κ2 = 0.000004. We show
the deterministic paths (black lines), the expected paths (blue lines) and sample paths producing a tipping
point in the the year 2100 (red lines). The variables S, R and q are in units of 100GtC. (Color figure online)

conducted in order to reduce the additional damage to output by lowering the overall level
of the carbon stock. This effect also occurs in the two cases with the tipping risks. However,
the optimal policy responses to the tipping risks don’t change qualitatively and the effects
described above also hold for the new damage function specification.

In Fig. 6 we show the influence of different values for the average growth rate of total
factor productivity gA. The deterministic case shows, that a lower growth rate (dashed line)
leads to less investments in emission control and less extraction of the resource. The opposite
is true for a larger growth rate (dotted line). One possible explanation for this is that a lower
growth rate implies less output growth in the economy and hence there is less capital left for
investments in carbon emissions. To account for the resulting increase in the carbon stock, it
is optimal to extract less of the resource to reduce emissions. Again, this finding is consistent
with the two tipping scenarios and the implications obtained from the previous section about
the impacts of the tipping risks don’t change qualitatively.

For a third robustness check we analyze different variations for the resource dynamics. In
particular we analyze if slow resource growth effects qualitatively change our results. There-
fore, we decrease the growth rate of the resource from gR = 0.0135 as in the benchmark case
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Fig. 6 Time paths of the carbon stock (St ), the forest stock (Rt ), the emission reduction rate (mt ), and the
forest harvesting rate (qt ) over the years 2014–2200. These cases are without deforestation control (φt = 0∀t)
and the tipping point event does not directly affect output, (ωy = 0). Solid lines show the benchmark model
specification as shown in Fig. 3 with gA = 0.0125, dashed lines depict the case with gA = 0.01 and dotted
lines the case with gA = 0.015. We show the deterministic paths (black lines), the expected paths (blue lines)
and sample paths producing a tipping point in the the year 2100 (red lines). The variables S, R and q are in
units of 100GtC. (Color figure online)

to gR = 0.01 and gR = 0.0065. Figure 7 shows the results. A lower growth rate leads to a
smaller optimal extraction rate qt andhence lowers the stockof the resource.Tounderstand the
dynamics of the carbon stock and the optimal emission controlwe need to analyze the induced
changes on the net growth rate of the resource G Rt , ωG

t+ 1 − qt − ξ which enters the carbon
stock as emissions (see Fig. 8). We find that the net growth rate decreases with gR (the reduc-
tion in G Rt , ωG

t+ 1 is larger than the induced reduction in optimal qt ) which implies more
carbon inflows to St G Rt , ωG

t+ 1 − qt − ξ negatively enters the carbon stock . Hence the
optimal response implies an increase in the emission control mt . Again, we find these pat-
terns for the benchmark as well as the two tipping scenarios and the qualitative effects of
the tipping point events do not change. Although, no details are reported in this study, we
have found that the results presented in this section are qualitatively robust to changes in the
magnitude of both tipping point cases so we can conclude that the qualitative effects induced
by the tipping risks are fairly robust with regard to changes in the model parameters.

123



590 T. S. Lontzek et al.

× × ×

S

R

q

m

Fig. 7 Time paths of the carbon stock (St ), the forest stock (Rt ), the emission reduction rate (mt ), and the
forest harvesting rate (qt ) over the years 2014–2200. These cases are without deforestation control (φt = 0∀t)
and the tipping point event does not directly affect output, (ωy = 0). Solid lines show the benchmark model
specification as shown in Fig. 3 with gR = 0.0135, dashed lines depict the case with gR = 0.01 and dotted
lines the case with gR = 0.0065.We show the deterministic paths (black lines), the expected paths (blue lines)
and sample paths producing a tipping point in the the year 2100 (red lines). The variables S, R and q are in
units of 100GtC. (Color figure online)

3.3 Optimal Deforestation Control under Forest Tipping Risks

Until now, we have restricted our model by excluding the option of deforestation control
(φt = 0∀t). For the remainder of this study, we allow for optimal deforestation control.
Figure 9 shows the climate system dynamics as well as the optimal deforestation control rate
(φt ) for the deterministic case, the growth rate tipping case, and the level tipping case.

We find that resource harvesting in the initial period increases to q2014 ≈ 0.008
(0.8GtC/yr) in the casewith the possibility of deforestation control, fromabout q2014 ≈ 0.007
(0.7GtC/yr) in the case without deforestation control. Hence, the ability to control some frac-
tion of the natural deforestation rate allows for higher harvesting quantities. This result holds
for both the deterministic case and the cases with tipping risks.

Inclusion of deforestation control does not fundamentally change the time profiles of the
other variables. In comparison to the deterministic benchmark case we find that tipping risks
do not necessarily result in distinctively stronger initial-year effects on φt and qt . This is
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Fig. 8 Time paths of the net growth rate of the resource stock G(Rt , ωGt+ 1) − qt − ξ(1 − φt ) (in units of
100GtC) over the years 2014–2200. This model case does not allow for deforestation control (φt = 0∀t)
and the tipping point event does not directly affect output (ωy = 0). Solid lines show the benchmark model
specification as shown in Fig. 4 with gR = 0.0135, dashed lines depict the case with gR = 0.01 and dotted
lines the case with gR = 0.0065.We show the deterministic paths (black lines), the expected paths (blue lines)
and sample paths producing a tipping point in the the year 2100 (red lines). (Color figure online)

in contrast with the pattern of the emission reduction rate, mt , as discussed in the previous
subsections, which robustly induces more stringent policy.

Post-tipping patterns of the deforestation control rate φt , a decline for the growth rate
tipping case, and an increase for the level tipping case are qualitatively different from the
patterns of the forest harvesting rate qt . Since, now, the net growth of the resource is given by
G Rt , ωG

t+ 1 − qt − ξ (1 − φt ) deforestation control serves as an additional policy for con-
trolling the exchange of carbon between the atmosphere and the forest mass. Consequently,
as Fig. 9 shows, the responses of the harvesting rate qt are slightly dampened.

3.4 Additional Tipping Impacts on Economic Output

In this section we analyze the model’s implications for cases in which the tipping point event
causes a permanent reduction in economic output in addition to its impacts on the resource
stock. Regarding the latter, we again distinguish between the cases of a growth rate tipping
point and a level tipping point. As for the impact on output, we assume that the tipping point
event will also induce a 2.5% permanent reduction in output (σy = 0). Figure 10 shows the
results for the core variables.

We find that in both cases (growth rate tipping and level tipping) mitigation control mt in
the initial period increases strongly (from about 0.26 to about 0.38) when also including the
tipping risk to output. Also resource harvesting, qt , drops sharply (from 0.84 to 0.35GtC/yr)
and optimal deforestation, φt , increases (from 70 to 100%).

In contrast to the previous cases studied, we see that the pre- and post-tipping patterns
of each variable are qualitatively the same, irrespective of the tipping point event under
consideration. Clearly the prospect of a permanent reduction in output of 2.5% induces a
stringent policy with the purpose of delaying the expected occurrence of the tipping point
event and thus reducing risks regarding future output. This risk-reduction effect significantly
intensifies the post-tipping responses of mt , qt , and φt in the case of the growth rate tipping
point. In the caseof a level tipping event, the risk-reduction effect evenchanges the directionof
post-tipping responses in those control variables. This risk-reduction effect has been observed
in Cai et al. (2013) and is also the prime driver of our results in these cases.
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Fig. 9 Time paths of the carbon stock (St ), the forest stock (Rt ), the emission reduction rate (mt ), the forest
harvesting rate (qt ) and the deforestation control rate (φt ) over the years 2014–2200. In these cases the tipping
point event does not directly affect output (ωy = 0). We show the deterministic paths (solid black lines), the
expected paths (blue lines), 25 and 75% quantiles (dashed black lines), a sample path producing a tipping
point in the the year 2100 (red lines), and the maximum ranges (grey areas) obtained from 1000 Monte Carlo
simulations. The variables S, R and q are in units of 100GtC. (Color figure online)

Studying the statistical distribution of the optimal paths, we observe that the 25% quantile
is roughly at the year 2150, implying that there is a 75% chance that the tipping point event
will occur after the year 2150 (see Figure 14 and in Appendix 7.3 for a plot of the likelihood
of tipping). In the cases without the reduction in output the 25% quantiles were at around
the year 2100 (see Figure 11 in Section 7.1 in the Appendix) and our exogenous probability
case produced a 25% chance of tipping by the year 2030 (see Figure 13 in Section 7.2 in
the Appendix). Thus, in the case of an endogenous probability and the possibility of output
reduction, optimal policy is quite effective in delaying the expected occurrence of the tipping
point event.

Our tipping likelihood is calibrated quite conservatively, but in conclusion—despite this—
we observe severe efforts to reduce emissions as suggested by higher emission control, lower
harvesting levels, and much higher reduction in deforestation.

123



Stochastic Integrated Assessment of Ecosystem Tipping Risk 593

S

R

q

φ

m

Fig. 10 Time paths of the carbon stock (St ), the forest stock (Rt ), the emission reduction rate (mt ), the
forest harvesting rate, (qt ) and the deforestation control rate (φt ) over the years 2014–2200. The tipping event
has a direct effect on output as specified in Section 6.1 in the Appendix and there is no uncertainty about
the magnitude of the output shock (σy = 0). We show the expected paths (solid black lines), 25 and 75%
quantiles (dashed black lines), a sample path producing a tipping point in the the year 2100 (red lines), and
the maximum ranges (grey areas) obtained from 1000 Monte Carlo simulations. The variables S, R and q are
in units of 100GtC. (Color figure online)

3.5 Sensitivity Analysis on Preferences and Impacts on Output

In this section we perform a sensitivity analysis on our results with respect to different
preferences and uncertainty about the magnitude of the post-tipping reduction in economic
output. For all previous cases we have assumed non-separable preferences with an elasticity
of inter-temporal substitution ψ = 1.5 and a risk aversion parameter γ = 10. With only

123



594 T. S. Lontzek et al.

Table 1 Expected values of emission control rate, mt , and temperature, Tt in the years 2014, 2100 and 2200

mt Tt

Growth rate TP Level TP Growth rate TP Level TP

EZ CRRA EZ CRRA EZ CRRA EZ CRRA

σy = 0

2014 0.3865 0.3803 0.3788 0.3740 1 1 1 1

2100 0.3742 0.3732 0.3748 0.3719 1.35 1.36 1.36 1.38

2200 0.3589 0.3624 0.3430 0.3448 2.01 2.00 2.04 2.03

σy = 0.0125

2014 0.3925 0.3806 0.3844 0.3743 1 1 1 1

2100 0.3778 0.3726 0.3801 0.3724 1.33 1.36 1.34 1.38

2200 0.3623 0.3593 0.3496 0.3451 1.97 2.02 1.98 2.03

σy = 0.025

2014 0.4112 0.3815 0.4014 0.3751 1 1 1 1

2100 0.3926 0.3733 0.3942 0.3745 1.27 1.36 1.28 1.37

2200 0.3731 0.3596 0.3603 0.3454 1.87 2.02 1.89 2.03

No output shock

2014 0.2635 0.2634 0.2582 0.2582 1 1 1 1

2100 0.3065 0.3066 0.2940 0.2937 1.79 1.79 1.84 1.84

2200 0.3395 0.3394 0.3237 0.3235 2.53 2.51 2.56 2.56

Det. case

2014 0.2473 1

2100 0.2926 1.82

2200 0.3258 2.44

few exceptions non-separable preferences are not commonly used in stochastic integrated
assessment. However, as for example, Cai et al. (2015a) have recently shown, they have
a strong effect on optimal climate policy, when compared to standard CRRA preferences
for which the elasticity of inter-temporal substitution and the risk aversion parameter are
entangled by an inverse relationship. For comparison, we study the CRRA case ofψ = 1

γ =
1.5.

Regarding the uncertainty about the magnitude of the post-tipping reduction in economic
output we study the following cases: A case for which the tipping in the resource induces
a permanent reduction of output of 2.5% (σy = 0); a case where once the tipping occurs
there is a 50% probability of a 1.25% reduction of output and a 50% probability of a 3.75%
reduction of output (σy = 0.0125); and a case with a 50% probability that there is no
reduction of, and a 50% probability that there is a 5% reduction, of output once the tipping
occurs (σy = 0.025). Note that in all cases the average reduction of output is 2.5%. We also
report two cases as a reference. First, a case in which the tipping point event has no additional
impact on economic output (see Sect. 3.3). Second, our deterministic benchmark case. For
all analyses we report the expected values of mt , qt , φt , and Tt for the years 2014, 2100, and
2200.

Table 1 reports the results of the sensitivity analysis for the emission control rate and
the implied degree of global warming. Accounting only for the tipping point (TP) event

123



Stochastic Integrated Assessment of Ecosystem Tipping Risk 595

Table 2 Expected values of the forest harvesting rate, qt (in 100GtC), and the deforestation control rate, φt
in the years 2014, 2100 and 2200

qt φt

Growth rate TP Level TP Growth rate TP Level TP

EZ CRRA EZ CRRA EZ CRRA EZ CRRA

σy = 0

2014 0.0034 0.0035 0.0035 0.0036 1 0.9995 0.9991 1

2100 0.0050 0.0050 0.0045 0.0046 0.9625 0.9639 0.9825 0.9783

2200 0.0064 0.0062 0.0060 0.0060 0.8681 0.8828 0.9094 0.9181

σy = 0.0125

2014 0.0033 0.0035 0.0034 0.0036 1 0.9995 0.9994 1

2100 0.0049 0.0051 0.0044 0.0046 0.9633 0.9606 0.9854 0.9787

2200 0.0063 0.0064 0.0058 0.0060 0.8755 0.8694 0.9212 0.9183

σy = 0.025

2014 0.0030 0.0035 0.0031 0.0036 1 0.9996 1 1

2100 0.0045 0.0050 0.0041 0.0046 0.9750 0.9611 0.9882 0.9809

2200 0.0058 0.0063 0.0055 0.0059 0.8978 0.8696 0.9288 0.9196

No output shock

2014 0.0079 0.0079 0.0080 0.0080 0.7172 0.7175 0.7078 0.7082

2100 0.0077 0.0077 0.0074 0.0074 0.7199 0.7223 0.7577 0.7511

2200 0.0072 0.0072 0.0070 0.0070 0.7684 0.7649 0.8112 0.8052

Det. case

2014 0.0084 0.6811

2100 0.0076 0.7384

2200 0.0071 0.7714

in the resource (no impacts on output) will slightly increase global warming over the next
two centuries. This is because both types of the resource tipping points enhance the carbon
flux from the the forest mass to the atmosphere. Emission control also increases slightly in
the initial period and, as discussed earlier, is more pronounced for the growth rate tipping
point.

In the previous section we have discussed that when, in addition, a reduction of output is
included, the effects on emission control and global warming will be severe. We called the
motive to delay the expected timing of the tipping point event as risk-reduction effect. Thus,
Table 1 provides further indication for the strong risk reduction effect induced by the tipping
risk to output compared to the model with only tipping in the resource dynamics. We also
see that risk aversion plays a crucial role for optimal policies. We find that, in the case of
CRRA preferences the volatility of the shock to output has only a marginal influence (e.g. the
results forσy = 0 andσy = 0.025 do not differ substantially). That result does hold for both,
the growth rate tipping point and the level tipping point. This changes with the assumption
of Epstein–Zin–Weil preferences with higher risk aversion. Here we find that the volatility
in the tipping intensifies the risk reduction effect and induces higher emission control rates.
These effects also have significantly influence on temperature levels. For example, in the case
of CRRA preferences optimal climate policies would lead to a temperature level of about
2.02◦C in the year 2200 while with the Epstein–Zin–Weil specification and increased risk
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aversion temperature would only increase to 1.79◦C. Hence, the findings show that focusing
on special preferences, such as CRRA, can give misleading policy implications as there is in
general a large uncertainty about the magnitude of tipping events.

We observe similar effects on the harvest rate and the deforestation control rate, as shown
in Table 2. Themuch lower (higher) levels of harvesting (deforestation control) are motivated
by the risk-reduction effect. In all cases in which the tipping point event also impacts output,
deforestation control is about 100% (compared to about 70%without the reduction in output)
and the harvesting rate is reduced by more than 50%.

4 Conclusion

We have analyzed optimal resource management and climate policy under tipping risk, set
in the context of a possible forest dieback. We have studied several plausible cases of post-
tipping impacts, such as changes the system dynamics, reduction of the forest stock, and an
additional reduction of economic output. Our results show either precautionary or aggressive
pre-tipping harvest patterns depending on the nature of the tipping risk. We also find qualita-
tive differences in patterns of the post-tipping optimal forest harvest, control of deforestation,
and carbon dioxide emission.

When the tipping risk concerns a single-event drop in the amount of forest mass, the
time trend of the emission reduction rate exhibits a pattern of a post-tipping jump, which
is not reported in the previous research, with the exception of Cai et al. (2016b). This is a
reflection of a weak or absent risk-reduction effect. Correspondingly, the optimal control rate
of deforestation exhibits a post-tipping jump after a tipping event on the amount of forest
mass.

In contrast, when the tipping event changes the system dynamics of the forest stock,
optimal policy responses are fundamentally different. In the case of endogenous tipping
probabilities (depending on the level of climate change), the risk-reduction effect is much
stronger, leading to more stringent climate policies. If, on the other hand, the tipping prob-
abilities are exogenous, the risk-reduction effect is absent and a risk of tipping events does
not necessarily justify precautionary actions. This finding is consistent with Polasky et al.
(2011) and other existing studies.

We also find that the risk-reduction effect is amplifiedwith the degree of risk aversionwhen
there is uncertainty about the magnitude of post-tipping impacts on economic output. This
finding suggests that it is crucial to distinguish between the risk aversion and the intertemporal
elasticity of substitution for the analysis of optimal climate and resource policies under tipping
risks. In contrast, if there is no additional damage of a tipping point on output, the results for
CRRA preferences are not significantly different from the corresponding Epstein-Zin case
with the same IES and a higher risk aversion.

Finally, our results show that initial-year emission reduction is enhanced with any form of
tipping risk. In this sense, the analysis of ourmodel thus still does not change the conclusion of
existing studies of climate policy and tipping risk: that the presence of tipping risks generally
raises the stringency of the optimal current climate policy. However, our results show that
the effects of forest tipping risks on the level of emission control rates are small, with both
the CRRA and Epstein-Zin preferences. Although our model calculations are illustrative,
small impacts of forest tipping risk across various cases of parameter levels suggest that the
risk of forest dieback may not strongly affect the optimal climate policy in practice as well.
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In other words, the most important implications of forest dieback are likely to be those for
forest harvesting and management.
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