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1 Introduction

With more than 232 million international migrants worldwide (United Nations, 2013), mi-
gration implies high costs and benefits for both source and destination countries. Economic
research has only recently devoted more attention to the source countries of migrants. An
intense academic and policy debate goes on whether the costs of migration outweigh the
benefits for source countries, for example with respect to gains and losses in human capital
(Docquier and Rapoport, 2012).1 For households in developing countries, migration is a
potential strategy to increase household income and diversify income sources. Migration
often splits households, with some household members migrating and remitting money to
members left behind in the source country. Although income effects are widely accepted
to be positive (McKenzie, Gibson, and Stillman, 2010), the overall effect of migration on
household welfare is ambiguous since absence of household members might affect household
welfare negatively. A burgeoning literature investigates effects of migration on various as-
pects of welfare of household members left behind, such as children’s health and educational
attainment, labor supply of spouses, and household poverty.2

Identification of the effects of migration on remaining household members faces two
major selection problems. Most of the literature address the non-random selection of
households into migration (i.e., which households send migrants). However, selection within
households poses another source of endogeneity that has almost entirely been ignored
(i.e., which members of the household migrate). The identification problem is further
complicated if all household members migrate (all-move households). In that case, the
household will not be included in data collected in the source country, i.e., the household
is not included in household surveys since no household member was left to respond to a
survey. I refer to this issue as invisible sample selection.

The following stylized research design illustrates the complications these selection prob-
lems create for identification. For simplicity, consider one-adult-one-child households. As-
sume the adult participates in a visa lottery, and migrates if he wins and stays if he does
not. Due to random assignment of the visa, adult migration is unrelated to household
characteristics, and thus selection of households into migration does not pose a problem
for identification. The decision to take the child along, however, is not random. It is
taken by the household, and depends on household characteristics. Assume for example
that only wealthier households can take the child, and poorer households leave the child
behind.3 Children left behind in the sample of lottery winners live, on average, in less
wealthy households than children in non-migration households. This negative correlation

1See media coverage in The Economist (2011, May 28). “Drain or gain?”
2Antman (2013) provides a comprehensive overview of the literature on the effects of migration on

remaining household members and the empirical strategies employed in this literature.
3The direction of the selectivity is irrelevant for the resulting sample selection problem.
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biases estimates obtained by comparing outcomes of children left behind in migrant and
non-migrant households even though adult migration is randomly assigned. Consider fur-
ther that outcome data are collected by a household survey in the source country after the
lottery occurs. Wealthier households disappear from the sample of lottery winners since no
individual remains to respond to the survey. Sample selection becomes invisible since, in
the absence of data on the initial population, no information is recorded on these all-move
households.

One reason this issue has not received much attention might be that the problem that
arises for identification of causal effects is not obvious since sample selection in cross-
sectional data is invisible. It is not apparent that households that leave no members
behind are relevant for identification of causal effects of migration on remaining household
members. However, as the example above illustrates, selection within households and
related migration of whole households constitute sample selection problems that can lead
to biased estimates.4

This paper contributes to the literature in several ways. First, I address the identifi-
cation problems induced by selection between and within households and invisible sample
selection by applying the statistical concept of principal stratification (Frangakis and Ru-
bin, 2002) to model behaviors of household members and selectivity of migrants. This
approach allows a clear discussion of the assumptions made implicitly about the selection
process if the second form of selection is ignored. I derive non-parametric bounds on the
effects of migration on household members left behind under transparent sets of behavioral
and distributional assumptions. Second, I show that results from previous studies that
ignore invisible sample selection might suffer from substantial bias. I replicate results from
a study with well-identified point estimates of migration effects on household composition
and household assets (Gibson, McKenzie, and Stillman, 2011a). I compare these results to
the bounds derived in my paper, which identify effects for a broader population and can
be applied if non-migrants cannot be identified based on observable characteristics. The
bounds suggest that estimates not taking into account invisible sample selection might un-
derstate the true magnitude of the effects of migration for some outcomes (e.g., agricultural
assets) and indicate significant effects on outcomes for which the bounds can not reject a
zero effect (e.g., number of elderly individuals living in a household). In a second applica-
tion, I revisit the effect of migration on the educational attainment of children left behind
in Mexico (McKenzie and Rapoport, 2011). I consider that observational data miss migrat-

4The problem of whole households moving and not being included in source country data has been
acknowledged in studies that estimate the overall number of emigrants (Ibarraran and Lubotsky, 2007) or
migrant selectivity (McKenzie and Rapoport, 2007) based on source country data.

Gibson, McKenzie, and Stillman (2011a) exploit specific visa regulations, which allow identification of
the effects of migration for household members who are not eligible to migrate and therefore always stay
behind. This approach addresses selection within the household and also the case of all-move households
at the cost of focusing on a relatively specific subpopulation.
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ing children in all-move households, and derive bounds under varying assumptions. The
bounds indicate that unadjusted point estimates are likely lower bounds of the true effects.
Overall, the empirical examples show that a combination of behavioral and distributional
assumptions provides substantial identifying power to derive informative bounds.

This paper also contributes to literature on sample selection that derives from Gronau
(1974) and Heckman (1974), and in particular to literature on partial identification (Man-
ski, 1989, 1994). It extends the literature on sample selection by studying a situation
during which for some units, not only the outcome is unobserved, but also the units are
not included in cross-sectional data at all. A random sample of households drawn after mi-
gration began is not representative of the original population. An important finding is that
instrumental variable estimates are biased even if there is no systematic selection within
the household. It suffices that complier households differ in their potential outcomes from
households that do not comply with the instrument (always and never migrating house-
holds) for estimates to be biased. For this scenario, I propose an alternative estimator.
The paper also contributes to related literature on mediation analysis, which decomposes
individual causal mechanisms from overall causal effects.5 In the previous example, mi-
gration of the child does not only create a sample selection problem but is a treatment in
itself. Migration of the adult can be seen as the main treatment and migration of the child
as a mediator, a channel through which adult migration affects child outcomes. Identifying
the effect of adult migration with the child staying behind corresponds to identifying the
direct effect of adult migration and ruling out indirect effects through child migration.

The paper builds on the approach of principal stratification, introduced by Frangakis
and Rubin (2002) to deal with post-treatment complications in bio-medical literature (e.g.,
death of patients during drug evaluation). Principal stratification allows characterizing the
potential – not the observed – behaviors of household members, which in turn allows trans-
parency regarding assumptions needed for identification of causal effects. Several recent
papers use principal stratification to derive bounds on the effects of policy interventions
in the presence of post-treatment complications.6 To derive bounds in a setting with non-
compliance and sample selection, I use an approach from Chen and Flores (2014). To
my best knowledge, principal stratification has neither been used to model interactions
between units, nor in a migration context.

Invisible sample selection can also appear if other sources of data are used or in com-
pletely different settings. Administrative school data could, for example, provide outcome

5For rather general mediation models, see for example Pearl (2001) and Albert and Nelson (2011).
Recent studies in economics mostly evaluate mechanisms through which active labor market policies work
(Flores and Flores-Lagunes, 2009, 2010; Huber, 2014; Huber, Lechner, and Mellace, 2014). Heckman,
Pinto, and Savelyev (2013) investigate mechanisms through which the Perry Preschool program affects
outcomes later in life.

6Recent papers include Zhang and Rubin 2003; Mattei and Mealli 2007; Zhang, Rubin, and Mealli 2008;
Huber, Laffers, and Mellace 2014; Chen and Flores 2014; Blanco, Flores, and Flores-Lagunes 2013a,b.
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measures for children. Children who migrate are not enrolled and therefore not included
in the data. More generally, often researchers only obtain data from a population that is
already affected by a treatment, with the treatment affecting not only the outcome but
potentially also the composition of the population. For example, Almond (2006) investi-
gates the long-term effects of the 1918 influenza pandemic using U.S. census data from the
second half of the 20th century. Selective attrition due to death constitutes a potential
selection problem that leads the sampled population to be different from the “treated” pop-
ulation.7 Studies concerning intergenerational effects are particularly prone to this type
of sample selection, as a treatment affecting the parent generation might not only affect
child outcomes but also fertility of the parent generation and thus the composition of ob-
served children (for a discussion of endogenous fertility decisions see Heckman and Mosso,
2014). Consider another example, how selective outmigration affects the composition of
rural populations. Observed changes in poverty rates between two census waves can either
be driven by changing poverty rates of a stable population or a change in the composition
of the populations (World Bank, 2008).

The remainder of the paper is structured as follows. Section 2 discusses intra-household
selection and invisible sample selection. Section 3 introduces an econometric framework
to structure the identification problem and bound the effects of interest, relating to the
introductory example. To focus on the second selection problem, I first assume randomly
assigned migration of the principal migrant. In a second step, I investigate the problem
in an instrumental variables setting. Section 4 illustrates the approach for the effects of
migration on households in Tonga and the effect of adult migration on school attendance of
children in Mexico. Section 5 discusses possible extensions and variations of this approach.
Section 6 concludes.

2 The effect of migration on household members left

behind and the invisible sample selection problem

I illustrate the selection problems and the proposed approach using the example from the
introduction, in which interest is in the effect of adult migration on child outcomes, which
several studies address. Researchers usually investigate the case in which one parent (or
another adult member of the household) migrates and the child remains in the source
location. Equation (1) displays a stylized linear model common in migration literature.
Yij denotes an outcome of child i in household j. hmigj is a binary indicator whether the
household has at least one adult member living abroad (for simplicity, assume households

7In an earlier version, Almond provides an extensive discussion about the direction – though not the
exact magnitude – of potential bias (Almond, 2005).
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have only one adult individual), and uij is an error term.

Yij = �
0

+ �
1

hmigj + uij (1)

The selection problem addressed in most studies is non-random selection of households
into migration. Households that send a migrant might, for example, be wealthier and
therefore find it easier to finance the costs of migration. Members of these households
might also differ in terms of education, demographics, or preferences from members of
non-migrant households. Many factors that drive a migration decision might also influence
decisions of monetary and time investments in child-raising, which lead to an endogeneity
problem. Thus, the concern is whether the error term correlates with the variable of interest
(E[hmigjuij ] 6= 0). Various strategies have been implemented to address this endogeneity,
including selection on observables (e.g., Kuhn, Everett, and Silvey, 2011), instrumental
variables (e.g., Hanson and Woodruff, 2003; McKenzie and Hildebrandt, 2005; McKenzie
and Rapoport, 2011), or fixed-effects approaches (e.g., Antman (2012) uses family fixed-
effects). For a discussion of the various approaches used in the literature, see Antman
(2013).

However, in some households that migrate, not only one individual migrates, but sev-
eral or even all household members migrate (see Gibson, McKenzie, and Stillman, 2013,
2011a, for a related discussion). Also, the child might be among the migrants, which gives
rise to two problems. First, outcomes for children who migrate are not observed or not
well defined. Second, children who stay behind and for whom we observe the outcome are
a selected group that might differ in its characteristics from children who migrate. This
complication worsens regarding the way data are normally collected; household surveys
in source countries ask respondents whether one or several household members are cur-
rently abroad. Households that answer yes are referred to as migrant (treated) households.
Households that answer no are referred to as non-migrant (control) households. However,
if the whole household migrates, no individual is left to answer the survey, and those house-
holds are not included in cross-sectional datasets. Thus, we can estimate only Equation
(2), where sj is a binary selection indicator, which is one if the household is observed and
zero if the household is not observed (i.e., if all household members migrated).8

sjYij = �
0

sj + �
1

sjhmigj + sjuij (2)

Instead of assuming hmigj to be uncorrelated with the error, this model requires that
E[hmigjsjuij ] = 0. The migration status of the adult (hmigj) needs to be uncorrelated
with the error in the sample of observed children. Assume the migration status of the

8I will elaborate on the selection problem in the case of households with more than two members in
more detail in Section 3.1.
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adult household member is assigned randomly, and migration of the child is the choice of
the household, whereby children would not migrate without the adult. Due to random
assignment, hmigj is uncorrelated with uij . After households learn about their assigned
hmigj , they decide whether the child should migrate (sj = 0) or stay (sj = 1). If households
have a disutility from being separated and if migration is costly, richer households are more
likely to migrate with the child. Observed children in the treated group are therefore,
on average, poorer than children in households that are unobserved. At the same time,
household wealth has a positive influence on child welfare (Almond and Currie, 2011). In
the observed sample, hmigj correlates negatively with uij and estimates of Equation (2)
are biased negatively.

In panel data, when entire households migrate between two waves of data collection,
the existence of the household is at least documented in the earlier wave. However, it
might not always be possible to distinguish migration and other forms of attrition.

Vast econometric literature that dates back to Gronau (1974) and Heckman (1974)
deals with the problem of sample selection for the identification of causal effects. The
literature addresses the problem that outcomes (e.g., wages) are not observed for part of
the population (e.g., the unemployed). Broadly, this literature developed two solutions
to the selection problem. The first approach uses latent variable models as the Heckman
selection model (Heckman, 1979) corrects for selection bias, but require strong parametric
assumptions or a valid instrument. The second approach, based on Manski (1989, 1994),
derives bounds on the quantities of interest. Such bounds can be derived under various
– usually weaker – assumptions. Two complications set the current paper apart from ex-
isting literature on sample selections. First, the unit of analysis is defined less clearly in
the context of the effect of migration on remaining household members. The treatment
is the migration of one or several household members. This treatment changes the com-
position of the remaining household members; in the counterfactual situation, migrants
are among household members. Second, literature on sample selection assumes researchers
have a random sample of units with observed treatment state and covariate values, where
for some units, the outcome is unobserved. All-move households however are not included
in data collected after migration begins. In the example above, a random sample of house-
holds drawn from the population after migration starts is unrepresentative of the initial
population since all-move households are not included in the data.

Sample selection is only one problem that arises if children are among migrants. Assume
we observe child outcomes even if all household members migrate (e.g., by collecting data
on the child in the destination country from peers in other households). We could obtain
unbiased estimates from Equation (1), which would correspond to the overall effect of
adult migration, with the outcome for some children measured in the source and for others
in the destination country. However, migrating as a family from one country to another
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is a different treatment than migration of an adult when the child stays behind. Child
migration is both, a selection indicator and a treatment/mediator. This paper focuses on
the direct effect of adult migration, ruling out indirect effects through child migration.

Recently, use of (quasi-) experiments for future research on migration has been encour-
aged strongly (McKenzie and Yang, 2010; McKenzie, 2012). However, as randomization
usually addresses only the first source of endogeneity (which households engage in migra-
tion), the second form (who and how many household members migrate) is a problem
in experimental settings as well. The solution of the few papers that use visa lotteries
to account for the first form of endogeneity and address the second form of endogeneity
has been to define a different parameter of interest and estimate the effect for only those
households and household members that can be identified as never migrants based on ob-
servable characteristics. Gibson, McKenzie, and Stillman (2011a) and Gibson, McKenzie,
and Stillman (2013) use visa rules that dictate which household members are allowed to
migrate with the principal migrant. In their setting of migration from Tonga and Samoa
to New Zealand, they removed all eligible individuals from the estimation sample. They
therefore estimate the effect for individuals who are ineligible to join the principal migrant
and are therefore always observed. This subgroup consists primarily of siblings, nephews,
nieces, and parents of the migrant. Estimating the effect of migration on the migrant’s
nuclear family is not possible using their approach. In studies based on observational panel
data, several papers recognize the second form of endogeneity and provide some discussion
on how severe the problem could be, but do not address it (Yang, 2008; Antman, 2011).

3 Econometric framework

This section introduces the econometric approach to structure the identification problem.
First, I introduce the setup and parameters of interest. In a second step, I concentrate
on the second selection problem by assuming randomly assigned migration status of the
principal migrant. In a third step, I show identification in a setting with an instrumental
variable for migration of the principal migrant and sample selection problems induced by
migration of other household members.

3.1 Setup and parameter of interest

Following treatment evaluation literature, I use a potential outcome framework developed
by Rubin (1974). The idea is to compare the outcome of interest in two hypothetical
states of the world: one in which a unit receives the treatment, and one in which the same
unit does not. In the setting under investigation, we might ask whether a particular child
would attend school if he lived in a migrant household and whether the same child would
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attend school if he did not live in a migrant household. The problem is that only one of
these two situations can be observed in the real world. Suppose that households consist
of two individuals (I

1

, I
2

). With reference to the second empirical application, I refer to
these individuals as principal migrant/adult (I

1

) and accompanying migrant/child (I
2

). In
empirical applications, I

1

and I
2

may refer to different entities, not only individuals. In the
Tongan application, I

1

refers to the individual, who applied for a visa, and I
2

refers to the
household as a whole. The unit of analysis is the household. In the Mexican application,
I
1

refers to any adult in the household, and I
2

refers to an individual child. The unit
of analysis is the child. The setup can be applied to different forms of intra-household
selection, including a scenario in which the household dissolves as all members migrate.

Mj = mj ✏ {0, 1} denotes the migration status of individual j. I
1

makes the first
migration decision and chooses either to stay (M

1

= 0) or migrate (M
1

= 1). I discuss the
general selection problem under the simplifying assumption of randomly assigned M

1

. I
2

chooses to stay (M
2

= 0) or migrate (M
2

= 1) depending on the choice of I
1

. This does
not necessarily have to be a sequential decision process nor the decision of I

2

, but can also
be a household decision. Crucial is that M

2

is a function of M
1

.
If migration of the principal migrant is considered the treatment of interest, migration

of children might be considered a post-treatment complication. The econometric literature
usually refers to this type of complication as endogenous sample-selection (Gronau, 1974;
Heckman, 1974); those for whom the outcome (i.e., stayers) is observed are endogenously
selected, and this selection is a function of treatment.

I observe the outcome Y (e.g., school attendance of the child) at some point after M
1

and M
2

have been realized. I define a set of potential outcomes for Y and M
2

. Y is a
function of M

1

and M
2

. Y depends on M
1

since migration of an adult household member
is likely to affect the educational attainment of the child. Y depends on M

2

since migration
of the child also affects educational attainment. Y (m

1

,m
2

) denotes the potential values
of the outcome. Y (0, 0) is the outcome of the child in case no member of the household
migrates; Y (1, 0) is the outcome in case the adult migrates and the child stays behind;
Y (0, 1) is the outcome in case the adult stays and the child migrates; and Y (1, 1) is the
outcome if the adult migrates and takes the child with her. Similarly, M

2

(m
1

) denote the
potential migration state of I

2

as a function of migration of I
1

. M
2

(0) is the migration
state of the child if the adult stays, and M

2

(1) is the migration state of the child if the
adult migrates.

I assume having a random sample of households from the population in the source
country, drawn after the households were treated (i.e., individuals migrated). The sample
and population do not include households in which both adult and child migrate (M

1

= 1,
M

2

= 1). Although the sample is representative of the population at that point, the
observed population is different from the population at the time the treatment was assigned.
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If only a subset of household members migrate, the household is still observed but intra-
household selection problems prevail if a child is among the migrants.

In this setting we distinguish several effects. The difference Y (1, 0)�Y (0, 0) is the effect
of adult migration if the child stays (i.e., the partial effect of M

1

on Y for M
2

being zero). I
focus on Y (1, 0)�Y (0, 0) since this effect is most policy relevant and has received the most
attention in the literature.9 If we do not assume treatment effect homogeneity, we must
define the population for which we want to identify the effect. I focus on children who would
always stay behind even if the adult migrates (i.e., children for whom M

2

(0) = M
2

(1) = 0).
This is a latent group, and whether an individual belongs to this group is unobservable
since only either M

2

(0) or M
2

(1) can be observed, but not both. I focus on this group since
it is the only group for which the outcome is observed under both migration states of the
adult. In countries with predominantly labor migration in which only a small fraction of
households migrates with the children, it is also quantitatively the most important group.
The average partial effect of M

1

for children who would never migrate is defined as

✓ ⌘ E [(Y (1, 0)� Y (0, 0)) |M2(0) = 0,M2(1) = 0] . (3)

This definition disqualifies interactions between units of households, an assumption
referred to commonly as Stable Unit Treatment Value Assumption (SUTVA) (Rubin, 1980).
In most applications, SUTVA implies that potential outcomes of a unit are independent of
treatment statuses of any other units. In this setting, it implies that potential outcomes
of a child are unaffected by treatment of units in other households.

3.2 Identification with randomly assigned migration of principal

migrant

To focus on the identification problem induced by the migration of I
2

, I assume random
assignment of the migration status of I

1

. From the random assignment of M
1

, it follows
that all potential outcomes are independent of M

1

(Assumption 1).

Assumption 1. Randomly assigned migration status of I
1

{Y (m1,m2),M2(m1)} ? M1 for all m1,m2 ✏ {0, 1}

3.2.1 Stratification on potential migration behavior

Consider the potential migration behavior of I
2

. Based on the joint value of the potential
migration behavior (M

2

(0),M
2

(1)), children can be stratified into four latent groups (Ta-
ble 1). Following Frangakis and Rubin (2002), I refer to these groups as principal strata,
sub-populations of units (in this case, households) that share the same potential values

9I discuss several other effects in Section 5.
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of intermediate variables under various treatment states. We can distinguish four com-
binations of potential migration behaviors of I

2

(Table 1). These four types correspond
to the classification in the Local Average Treatment Effects (LATE) framework (Imbens
and Angrist, 1994; Angrist, Imbens, and Rubin, 1996). In the LATE framework, the types
describe potential behaviors of units regarding an instrumental variable. In my setting,
the types describe the potential migration behaviors of the child concerning the migration
status of the adult. With reference to the LATE framework, I refer to the types (G) as
(A)lways migrants, (C)ompliers, (D)efiers, and (N)ever migrants. Children characterized
as always migrants would migrate, irrespective of the migration status of the adult. Com-
pliers would migrate if the adult migrates, but stay if the adult stays. Defiers would
migrate if the adult stays, and stay if the adult migrates. Never migrants would always
stay. These four principal strata are hypothetically possible combinations of the potential
values of M

2

. Not all strata necessarily exist in reality.

[Table 1 about here]

Principal stratification compares units within principal strata. Since treatment assign-
ment does not affect membership to a principal stratum, the estimated effects are causal
effects (Frangakis and Rubin, 2002). A principal stratum carries the information whether
a child would migrate or stay if the adult migrates or stays. Conditional on the principal
strata, potential outcomes Y (m

1

,m
2

) are independent of the treatment M
1

. This implica-
tion is substantially different from the notion that potential outcomes are independent of
treatment M

1

given the observed migration status of I
2

. The problems for identification
become more obvious in Table 2, which shows the correspondence between observed groups
and latent strata. The observed group O(0, 0) with M

1

= 0 and M
2

= 0 is comprised of
compliers and never migrants (Column (1)). Similar for the other observed groups: the
observed group O(0, 1) is comprised of always migrants and defiers, the observed group
O(1, 0) is comprised of defiers and never migrants, and the observed group O(1, 1) is com-
prised of always migrants and compliers.

Ignoring the second selection problem leads to estimation of E [Y |M
1

= 1,M
2

= 0]�
E [Y |M

1

= 0,M
2

= 0]. However, this implies taking the difference between strata D and
N under treatment and strata C and N under control. The assumption one would have
to make to give this difference a causal interpretation is that the potential outcomes under
control are equal for compliers and never migrants, and that they are equal under treat-
ment for defiers and never migrants, which is a strong, and in most scenarios, implausible
assumption.

[Table 2 about here]

As explained above, a principal effect within a stratum is a well-defined causal effect.
One can estimate the effect for a specific stratum, and the average partial effect for never
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migrants is defined as

✓N ⌘ E [(Y (1, 0)� Y (0, 0)) |G = N ] . (4)

This is identical to the effect defined in Equation 3, and I focus on identification of this
effect. To complete the notation, let ⇡A denote the share of always migrants, ⇡C the share
of compliers, ⇡D the share of defiers, and ⇡N the share of never migrants.

3.2.2 Bounds on the treatment effect

To derive bounds on ✓N , I impose additional behavioral assumptions. One weak assumption
in the setting where I

2

is a child is that I
2

would not migrate alone. If the household has
more than one adult, this assumption means that the child would not migrate unless at
least one adult migrates. This assumption disqualifies the existence of always migrants and
defiers since children in these two strata would migrate if the adult would not migrate.

Assumption 2. I2 only migrates if I1 migrates

M2(0) = 0

Column (2) in Table 2 shows the correspondence between observed groups and latent
strata under Assumption 2. This assumption has empirically testable implications. Since
Assumption 2 disqualifies defiers and always migrants we should not observe any households
with the combination M

1

= 0 and M
2

= 1, meaning any household in which the adult stays
and only the child migrates.10 Given Assumption 2, group O(1, 0) corresponds directly to
the stratum of never migrants under treatment. Therefore, the mean potential outcome
under treatment for never migrants is identified as

E [Y (1, 0)|G = N ] = E [Y |M1 = 1,M2 = 0] . (5)

The observed outcome in group O(0, 0) is a mixture of the potential outcomes of com-
pliers and never migrants under control

E [Y |M1 = 0,M2 = 0] = E [Y (0, 0)|G = C]⇡C + E [Y (0, 0)|G = N ]⇡N . (6)

This expression can be transformed to obtain the potential outcome of never migrants
under control

E [Y (0, 0)|G = N ] =
E [Y |M1 = 0,M2 = 0]� E [Y (0, 0)|G = C]⇡C

⇡N
. (7)

10For the bounds derived below, a weaker monotonicity assumption that rules out defiers would be
sufficient. Only strata proportions in Equation 6 need to be adjusted by dividing by (⇡C + ⇡N ). I use
Assumption 2 since it is necessary for identification in the setting in which migration of the adult is not
random, and it is a plausible assumption in this setting.
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The share of compliers and never migrants could be obtained directly from ⇡C =

P (M
2

= 1|M
1

= 1) and ⇡N = P (M
2

= 0|M
1

= 1) if the existence of households in which
all individuals migrated is known and the absence of individuals in remaining households
is recorded. However, information about the existence of these households is usually un-
available in cross-sectional datasets. In this case, strata proportions must be calculated
using other data sources as demonstrated in the empirical examples.

I calculate �, the ratio of the number of all-move households O(1, 1) to the observed
number of migrant households O(1, 0). If no external information on all-move households is
available, � can be used to investigate sensitivity of results with respect to sample selection.
I.e., it can be tested which values of � allow ruling out certain values of ✓N . Based on � ,
I can calculate strata proportions ⇡N =

1/1+� and ⇡C =

�/1+�.
Following Zhang and Rubin (2003) and Lee (2009), sharp bounds11 on E [Y (0, 0)|G = N ]

and ✓N can be derived. The observed group of households in which neither the adult nor
child migrated (O(0, 0)) consists of the two latent groups of never migrants and compli-
ers with proportions ⇡N and ⇡C . The two extreme scenarios we can imagine are a) the
outcome of the worst complier is better than the outcome of the best never migrant. In
this case we can remove the upper ⇡C quantiles from the distribution of Y in cell O(0, 0)

and estimate the average outcome for the remaining individuals, which gives us the low-
est possible outcome for never migrants under control. The opposite scenario b) would
be that the outcome of the best complier is worse than the outcome of the worst never
migrant. Removing the lower ⇡C quantiles from the distribution and estimating the mean
gives us the upper bound for the outcome of never migrants under control. Let q(a) be the
a-quantile of the distribution of Y |M

1

= 0,M
2

= 0. E [Y (0, 0)|G = N ] can be bounded
from above by the mean of Y in the upper 1� ⇡N quantiles of the distribution in the cell
O(0, 0), and from below by the mean in the lower ⇡N quantiles12 (see Appendix B.1).

The lower and upper bounds on E [Y (0, 0)|G = N ] are

EL
N [Y (0, 0)|G = N ] = E [Y |M1 = 0,M2 = 0, Y < q(⇡N )]

EU
N [Y (0, 0)|G = N ] = E [Y |M1 = 0,M2 = 0, Y > q(1� ⇡N )]

11Bounds are sharp if they are the tightest bounds one could obtain given the available data and as-
sumptions made.

12If Y is discrete, the occurrence of mass points with equal outcome values cause the quantile function
to be non-unique. For this reason, I replace the non-unique quantile function with a modified version as
Kitagawa (2009) and Huber, Laffers, and Mellace (2014) suggest. Intuitively, I use a rank function instead
of a quantile function to break ties. I sort data in observed cell M1 = 0,M2 = 0 on the outcome. For
the lower bound, I estimate the mean in the subsample of the first ⇡N ⇤ N00 observations, where N00

denotes the number of observations with M1 = 0,M2 = 0. For the upper bound, I estimate the mean in
the subsample of the last ⇡N ⇤N00 observations.
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and for the corresponding causal effects

✓UN = E [Y |M1 = 1,M2 = 0]� EL
N [Y (0, 0)|G = N ]

✓LN = E [Y |M1 = 1,M2 = 0]� EU
N [Y (0, 0)|G = N ] .

3.3 Identification with non-random migration of the principal mi-

grant

Many empirical studies use an instrument for the migration decision of the principal mi-
grant.13 Therefore, I study identification with an instrumental variable in more detail.
Assume a binary instrument Z = z ✏ {0, 1} exists, which is assigned randomly and affects
the migration decision of the principal migrant. M

1

(z) denotes the potential migration
of I

1

as a function of the value of instrument Z. Let us for the moment also write the
potential values of migration of the child M

2

(m
1

, z) and the outcome Y (m
1

,m
2

, z) as func-
tions of Z. In the presence of the second selection problem, we must modify the classical
IV assumptions (Imbens and Angrist, 1994; Angrist, Imbens, and Rubin, 1996). Assump-
tion 3 suggests that the instrument is assigned randomly and therefore independent of all
potential outcomes.

Assumption 3. Randomly assigned instrument

{Y (m
1

, m
2

, z), M
2

(m
1

, z), M
1

(z)} ? Z for all z,m
1

,m
2

✏ {0, 1}

Assumption 4 suggests that the effect of Z on the potential outcomes Y must be through
an effect of Z on M

1

and M
2

(the effect of Z on M
2

is indirect through M
1

). The instrument
affects outcomes only through its effect on the migration status of the household members.

Assumption 4. Exclusion restriction of Z with respect to Y

Y (m
1

,m
2

, z) = Y (m
1

,m
2

, z0) = Y (m
1

,m
2

) for all m
1

, m
2

, z ✏ {0, 1}

Assumption 5 suggests that the effect of the instrument on the potential migration
status of I

2

must be through an effect of Z on M
1

. The decision of the household of whether
only the adult or also the child migrates does not depend on the value of the instrument.
Assumptions 4 and 5 allow us to use the previous notation of potential outcomes and write
the potential variables M

2

(m
1

) and Y (m
1

,m
2

) as a function of migration status only.

13See for example Hanson and Woodruff (2003); McKenzie and Hildebrandt (2005); Yang (2008);
Amuedo-Dorantes, Georges, and Pozo (2010); McKenzie and Rapoport (2011); Antman (2011); Gibson,
McKenzie, and Stillman (2011b).
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Assumption 5. Exclusion restriction of Z with respect to M
2

M
2

(m
1

, z) = M
2

(m
1

, z0) = M
2

(m
1

) for all m
1

,m
2

, z ✏ {0, 1}

Assumption 6 suggests that the instrument has a non-zero average effect on the migra-
tion of I

1

. For the moment, I do not assume anything about the direction of the effect.

Assumption 6. Non-zero average effect of Z on M
1

E [M1(1)�M1(0)] 6= 0

A valid instrument must satisfy Assumptions 3, 4, 5, and 6 simultaneously (Imbens and
Angrist, 1994; Angrist, Imbens, and Rubin, 1996). An important difference regarding the
exclusion restriction is that I require Z to be a valid instrument for Y and M

2

(similar to
Imai (2007) and Chen and Flores (2014)). However, there are two differences to the settings
in these papers. First, in my setting, M

2

is both an indicator of whether the individual is
observed and a treatment in itself. The identified effect can therefore be seen as the net or
direct effect of adult migration. In Imai (2007) and Chen and Flores (2014), the outcome is
not a function of the selection indicator. Second, in my setting, the probability to observe
a household decreases with adult migration since this increases the probability that the
entire household migrates. In the studies mentioned above, the probability of observing
the outcome increases for treated individuals. However, since this is a symmetric problem,
it does not affect identification.

I distinguish principal strata with respect to the instrument. We can differentiate the
types of adults regarding the instrument as always migrants (A), compliers (C), defiers (D),
and never migrants (N). An adult who is an always migrant would migrate irrespective
of the value of the instrument. A complier would migrate if the instrument takes a value
of one but not if it takes zero. A defier would migrate if the instrument is zero but not
if the instrument is one. A never migrant would not migrate irrespective of the value of
the instrument. We can also distinguish these four types of children. I define the types of
children also with respect to the instrument, even though I assume that the effect works
only indirectly through M

1

. Combining the four strata of adults with the four strata of
children gives in total 4 ⇥ 4 = 16 principal strata (latent household types) (see Table 3
in Appendix A). I refer to the strata using a two-letter system; the first letter refers to
the type of I

1

, the second to the type of I
2

(e.g., CN refers to a household in which the
principal migrant is a complier and the child would never migrate).

Assumption 5 disqualifies the existence of strata AC, AD, NC, ND. In these strata,
the instrument has a direct effect on M

2

since I
1

does not react to the instrument in these
strata. I continue to assume that the child would only migrate if the principal migrant
migrates (Assumption 2). This assumption disqualifies the existence of strata CA, CD,
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DA, DC, NA, NC, ND.14 Again, this has the empirically testable assumption that no
households with M

1

= 0 and M
2

= 1 should be observed. I assume a monotone effect
of the instrument on migration of I

1

, which is a standard assumption in the instrumental
variables literature (Imbens and Angrist, 1994; Angrist, Imbens, and Rubin, 1996). This
assumption suggests that every principal migrant is at least as likely to migrate if Z = 1

as he would be if Z = 0.

Assumption 7. Individual-level monotonicity of M1 in Z

Mi1(0)  Mi1(1) for all i

Assumption 7 disqualifies defiers among adults and therefore eliminates strata DA,
DC, DD, DN . Assumptions 2, 5, and 7 combined disqualify the existence of 11 of the
16 principal strata (last column, Table 3 in Appendix A). Table 4 in Appendix A shows
the correspondence between observed groups and latent strata. Column (1) presents the
corresponding strata without Assumptions 2, 5, and 7, Column (2) the remaining strata if
these assumptions are imposed.

I concentrate on the effect for stratum CN . In this stratum, M
1

is induced to change
from 0 to 1 by the instrument, and M

2

is always zero. This is the only stratum for which
outcomes are observed for both children in non-migrant and migrant households. The
effect for this stratum can be identified without making assumptions about unobserved
outcomes. The causal effect for this stratum is therefore the local average treatment effect
(LATE) for children who are never migrants. In the absence of always migrating adults,
this effect is also the average treatment effect on the treated (ATET) for children who are
never migrants.

✓CN ⌘ E [(Yi (1, 0)� Yi (0, 0)) |G = CN ] (8)

3.3.1 Latent types of all-move households

Evident from Column (2) in Table 4 in Appendix A, all-move households (O(0, 1, 1) and
O(1, 1, 1)) could belong either to stratum AA or CC under the proposed assumptions. If
information about migration of children is available, all strata proportions are identified
(Appendix B.2). If this information is not available, external information on the number
of unobserved children can be used. I define �, the ratio of unobserved children in all-move
households to the observed number of children in migrant households.15 However, to point
identify strata proportions, we need further assumptions about the existence of strata AA

and CC. Information on the institutional setting could help to disqualify the existence of
one of these strata. I discuss identification for two extreme scenarios. First, all all-move

14The existence of some strata is disqualified by more than one assumption.
15See Section 4.2.1 for an explanation of how I calculate � using information from other data sources.
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households belong to stratum AA, and second, all all-move households belong to stratum
CC.

In the simpler case, all all-move households belong to stratum AA (⇡CC = 0). In this
situation, the process that motivates migration of whole households is independent of the
instrument. The observed samples with Z = 0 and Z = 1 both contain only households
of type CN , NN , AN (Column (2), Table 4). Sample selection is not a problem, and
the conventional Wald estimator yields consistent estimates of ✓CN (see calculations in
Appendix B.3).

More problematic is if all-move households belong to stratum CC (⇡AA = 0). In this
scenario, observed group O(0, 0, 0) contains households of type CC, which are not observed
in the sample with Z = 1.

In a first step, I calculate the number of households missed based on external informa-
tion or assumptions about �. If ⇡AA = 0, all all-move households are in group O(1, 1, 1)

(Column (3), Table 4). Denote Nzm1m2 the number of observations in each cell. The
number of missed observations in group O(1, 1, 1) is N

111

= � ⇤ (N
010

+N
110

). With this
information, all strata proportions are identified:

⇡AN =

N
010

N
000

⇡CC =

N
111

N
100

+N
111

⇡NN =

N
100

N
100

+N
111

⇡CN = 1� ⇡AN � ⇡NN � ⇡CC .

To simplify notation, I denote Y
zm1m2 ⌘ E [Y |Z = z,M

1

= m
1

,M
2

= m
2

] for the ob-
served mean outcomes. The potential outcome of CN under treatment, Y (1, 0)|G = CN ,
is observed as part of the mixture distribution in the observed group O(1, 1, 0).

Y
110

=
E [Y (1, 0)|G = CN ]⇡CN + E [Y (1, 0)|G = AN ]⇡AN

⇡CN + ⇡AN
(9)

can be reformulated to

E [Y (1, 0)|G = CN ] =
Y

110
(⇡CN + ⇡AN )� E [Y (1, 0)|G = AN ]⇡AN

⇡CN
. (10)

Stratum AN corresponds directly to the observed group O(0, 1, 0), and the mean po-
tential outcome under treatment for this stratum is identified as

E [Y (1, 0)|G = AN ] = Y
010

. (11)

Using Equations 10 and 11, the mean potential outcome under treatment for stratum
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CN is identified as

E [Y (1, 0)|G = CN ] =
Y

110
(⇡CN + ⇡AN )� Y

010
⇡AN

⇡CN
. (12)

The mean potential outcome under control for stratum CN is part of the mixture
distribution in group O(0, 0, 0), which consists of strata CN , NN , and CC:

Y
000

=
E [Y (0, 0)|G = CN ]⇡CN + E [Y (0, 0)|G = NN ]⇡NN + E [Y (0, 0)|G = CC]⇡CC

⇡CN + ⇡NN + ⇡CC
. (13)

E [Y (0, 0)|G = NN ] is identified since group O(1, 0, 0) corresponds directly to stratum
NN . However, the two conditional means of strata CN and CC are not. I derive bounds
on E [Y (0, 0)|G = CN ] following the procedure Chen and Flores (2014) suggest. For sim-
plification, I introduce additional notation. Let y000a be the a-th quantile of Y in the
observed group {Z = 0,M

1

= 0,M
2

= 0}, and let the mean outcome in this cell for those
outcomes between the a0-th and a-th quantiles of Y be

Y (y000a0  Y  y000a ) ⌘ E
⇥
Y |Z = 0,M

1

= 0,M
2

= 0, y000a0  Y  y000a

⇤
(14)

The idea behind these bounds is to find the lowest and highest possible values for
E [Y (0, 0)|G = CN ], subject to the constraint Y

100

= E [Y (0, 0)|G = NN ]. In the uncon-
strained case, the upper and lower bound of E [Y (0, 0)|G = CN ] can be derived similarly
as in the scenario with randomly assigned M

1

. We can bound E [Y (0, 0)|G = CN ] from
below by the expected value of Y for the ⇡CN/(⇡CN + ⇡NN + ⇡CC) fraction of smallest
values of Y and from above by the expected value of Y for the ⇡CN/(⇡CN + ⇡NN + ⇡CC)

fraction of largest values of Y in group O(0, 0, 0).
I assess whether this unconstrained solution satisfies the constraint Y 100

= E [Y (0, 0)|G = NN ].
Under the assumption that the smallest values in group O(0, 0, 0) are only from CN ob-
servations, the lower bound for E [Y (0, 0)|G = NN ] is given by Y (y000↵CN

 Y  y000
1�↵CC

),
the mean estimated in the central area in Figure 1. In case this estimated lower bound is
lower than Y

100, the unconstrained solution is identical to the solution of the constrained
problem (upper line in Equation 15).

[Figure 1 about here]

If the constraint is unsatisfied, we can derive a lower bound from the mixture distribu-
tion of CN and NN in the lower 1�⇡CC/(⇡CN +⇡NN +⇡CC) quantiles of the distribution
of Y in cell {Z = 0,M

1

= 0,M
2

= 0} by assuming all CC observations are at the top of
the distribution, and the remaining lower part is a mixture of CN and NN (lower line in
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Equation 15). The upper bound can be derived similarly (Equation 16).16

EL
CN [Y (0, 0)|G = CN ] =

8
<

:
Y (Y  y000

↵CN
), if Y (y000

↵CN
 Y  y000

1�↵CC
)  Y

100

Y (Y  y000
1�↵CC

) ⇤ ⇡NN+⇡CN
⇡CN

� Y
100 ⇤ ⇡NN

⇡CN
, otherwise

(15)

EU
CN [Y (0, 0)|G = CN ] =

8
<

:
Y (Y � y000

1�↵CN
), if Y (y000

↵CC
 Y  y000

1�↵CN
) � Y

100

Y (Y � y000
↵CC

) ⇤ ⇡NN+⇡CN
⇡CN

� Y
100 ⇤ ⇡NN

⇡CN
, otherwise

(16)

Bounds on the causal effect ✓CN can be constructed by combining the point identified
potential outcomes under treatment with the bounds on potential outcomes under control:

✓UCN = E [Y (1, 0)|G = CN ]� EL
CN [Y (0, 0)|G = CN ] (17)

✓LCN = E [Y (1, 0)|G = CN ]� EU
CN [Y (0, 0)|G = CN ] (18)

A scenario during which the group of all-move households are a mixture of strata AA

and CC would, for a given �, lead to smaller bounds in comparison to a situation in which
they are all of type CC. The smaller ⇡CC , the narrower the bounds on E [Y (0, 0)|G = CN ].
If ⇡CC becomes zero, we are back to the point-identified case.

3.3.2 Distributional assumptions to tighten the bounds

In addition to the behavioral assumptions presented above, distributional assumptions can
further tighten the bounds (Chen and Flores, 2014). These distributional assumptions are
specific to the setting under study and might vary by outcome variable. Such assump-
tions can be derived from theoretical arguments about migrant selectivity. For example, a
standard assumption is that migration is costly and that costs increase with the number
of migrating individuals. Assume that being separated generates disutility for households
(Agesa and Kim, 2001). In such a scenario, households that can afford taking their children
with them will be selected positively. Better-off households are also likely to invest more
in the education of children (Leibowitz, 1974; Blau, 1999; Case, Lubotsky, and Paxson,
2002; Currie, 2009; Almond and Currie, 2011). Therefore, children in CC households will,
on average, have more favorable outcomes (e.g. greater school attendance) than children
in CN households, as formalized in Assumption 8.

16Alternative formulations for Equation 15 and 16 are given by

EL
CN [Y (0, 0)|G = CN ] = max

⇢
Y (Y  y000↵CN

), Y (Y  y0001�↵CC
) ⇤

⇡NN + ⇡CN

⇡CN
� Y

100 ⇤
⇡NN

⇡CN

�

EU
CN [Y (0, 0)|G = CN ] = min

⇢
Y (Y � y0001�↵CN

), Y (Y � y000↵CC
) ⇤

⇡NN + ⇡CN

⇡CN
� Y

100 ⇤
⇡NN

⇡CN

�
.
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Assumption 8. Mean dominance 1

E [Y (0, 0)|G = CC] � E [Y (0, 0)|G = CN ]

Assumption 8 tightens the bound on E [Y (0, 0)|G = CN ]. We can write

Y
000

=
E [Y (0, 0)|G = CN,CC] (⇡CN + ⇡CC)

⇡CC + ⇡CN + ⇡NN
+

E [Y (0, 0)|G = NN ]⇡NN

⇡CC + ⇡CN + ⇡NN
(19)

where E [Y (0, 0)|G = NN ] is identified. Assumption 8 implies that E [Y (0, 0)|G = CN ] 
E [Y (0, 0)|G = CN,CC]. E [Y (0, 0)|G = CN,CC] therefore provides an upper bound on
E [Y (0, 0)|G = CN ] that is lower or equal as the one in Equation (16):

EU,MD
CN [Y (0, 0)|G = CN ] =

Y
000

(⇡NN + ⇡CN + ⇡CC)� Y
100

⇡NN

⇡CN + ⇡CC
(20)

Consider as another example the question of how migration affects the number of chil-
dren living in origin households. Assume the mean number of children in all-move house-
holds (CC) under control is lower or equal to households in which children stay behind
(CN). This assumption appears plausible since each additional child living in a household
increases the chance that at least one child stays behind. The mean number of children in
CN households is higher than in CC households (Assumption 9).

Assumption 9. Mean dominance 2

E [Y (0, 0)|G = CC]  E [Y (0, 0)|G = CN ]

We can derive exactly the same quantity as in Equation (20), which in this scenario
provides a lower bound on E [Y (0, 0)|G = CN ]:

EL,MD
CN [Y (0, 0)|G = CN ] =

Y
000

(⇡NN + ⇡CN + ⇡CC)� Y
100

⇡NN

⇡CN + ⇡CC
(21)

Bounds on causal effect ✓CN can be constructed by combining point identified potential
outcomes under treatment (Equation 12), with the alternative bounds on the potential
outcomes of stratum CN under control:

✓U,MD
CN = E [Y (1, 0)|G = CN ]� EL,MD

CN [Y (0, 0)|G = CN ] (22)

✓L,MD
CN = E [Y (1, 0)|G = CN ]� EU,MD

CN [Y (0, 0)|G = CN ] (23)
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3.3.3 Instrumental variables bias without systematic intra-household selection

The bias in the setting with randomly assigned migration status of the principal migrant
came solely from differences in potential outcomes under control between children in com-
plier and never migrant households (see Section 3.2). Uncorrected instrumental variables
estimates, however, can be biased even if the potential outcomes under control are identical
for household types CN and CC. Assumption 10 states the the mean potential outcomes
under control are equal for households of type CN and CC.17

Assumption 10. No systematic selection of accompanying migrant

E [Y (0, 0)|G = CC] = E [Y (0, 0)|G = CN ]

The effect on stratum CN can be point identified as Assumption 10 implies that
EU/L,MD

CN [Y (0, 0)|G = CN ] (derived in Section 3.3.2) corresponds now to the identified
mean potential outcome under control. Combining the identified outcome under treat-
ment with the identified outcome under control identifies the causal effect for stratum
CN :

✓NS
CN =

Y
110

(⇡CN + ⇡AN )� Y
010

⇡AN

⇡CN
� Y

000

(⇡NN + ⇡CN + ⇡CC)� Y
100

⇡NN

⇡CN + ⇡CC
(24)

For comparison, consider a Wald estimator in the sample of observed households:

✓W =

E[Y |Z = 1,M
2

= 0]� E[Y |Z = 0,M
2

= 0]

E[M
1

|Z = 1,M
2

= 0]� E[M
1

|Z = 0,M
2

= 0]

(25)

The four quantities in Equation (25) can be formulated as means of observed outcomes
weighted by strata proportions (for calculations and a more detailed discussion refer to
B.4)

✓W =


⇡NN⇤Y 100+(⇡CN+⇡AN )⇤Y 110

⇡NN+⇡CN+⇡AN

�
�

h
(⇡CC + ⇡CN + ⇡NN ) ⇤ Y

000
+ ⇡AN ⇤ Y

010
i

h
⇡CN+⇡AN

⇡NN+⇡CN+⇡AN

i
� [⇡AN ]

.

Subtracting ✓NS
CN from ✓W gives the bias of the Wald estimator:

bW = ✓W � ✓NS
CN =

⇡CC

h⇣
Y

100 � Y
000

⌘
a+

⇣
Y

110 � Y
010

⌘
b
i

c
, (26)

where a = (⇡CN⇡NN ) (⇡CN + ⇡CC + ⇡NN ), b = ⇡AN
�
⇡2
CN + ⇡CN⇡CC + ⇡CN⇡AN + ⇡CC⇡AN

�
,

and c =
�
⇡2
CN + ⇡CN⇡CC

� �
⇡CN⇡CC + ⇡CC⇡AN + ⇡2

CN + ⇡CN⇡AN + ⇡CN⇡NN
�
. The bias is zero if

there are no all-move households (⇡CC = 0) or if Y
100

= Y
000 and Y

110
= Y

010. The latter
conditions imply that mean potential outcomes under control are equal for latent groups CN ,

17Mean potential outcomes under treatment are irrelevant in this setting.
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CC, NN and under treatment for latent groups AN and CN . ✓NS
CN instead of ✓W should be used

in settings, in which Assumption 10 is credible.

3.4 Estimation and inference

Bounds derived in section 3.3.1 include minimum or maximum operators. These operators
create several problems for estimation and inference. Hirano and Porter (2012) show
that for non-differentiable parameters such as min and max operators, no asymptotically
unbiased estimators exist. Therefore, estimators for bounds that use min and max functions
can be severely biased in finite samples, and confidence intervals cannot be estimated using
standard asymptotics or bootstrap methods. Chernozhukov, Lee, and Rosen (2013) derive
a method to obtain half-median unbiased estimators for the lower and upper bound, and
confidence intervals for the true parameter. The idea is to apply the min (max) function
not directly to the bounding function, but to a precision-corrected version of it. Precision
is adjusted by adding to each estimated bounding function its point-wise standard error
times an appropriate critical value. Estimates with higher standard errors therefore require
larger adjustments. The estimated bounds are conservative, and the half-median unbiased
estimator of the upper bound exceeds the true value of the upper bound with the probability
of at least 0.5 asymptotically. The estimator of the lower bound falls below the true bound
with probability 0.5. Appendix B.5 provides a detailed description of the implementation of
the procedure based on Huber, Laffers, and Mellace (2014) and Chen and Flores (2014).18

Confidence intervals for bounds that do not involve min and max operators are based on
the results from Imbens and Manski (2004), which include the treatment effect of interest
with probability 95%: ⇣

ˆ✓L � 1.654�̂L, ˆ✓U + 1.654�̂U
⌘

ˆ✓L and ˆ✓U denote the estimated bounds and �̂L and �̂U the respective estimated stan-
dard errors which are obtained by bootstrap with 999 replications.

4 Empirical applications

This section presents two empirical applications of the bounds. The first applies bounds
to data from a visa lottery in Tonga used by Gibson, McKenzie, and Stillman (2011a)
(henceforth GMS) to study the effects of migration on remaining household members. I
apply the bounds to a set of outcomes at the household level – household composition and
household assets. This application allows comparing the bounds to well-identified point

18Due to precision adjustment, bounds and confidence intervals can be outside the support for outcomes
with limited support if the unadjusted estimate is close to the limits of the support. If estimates or
confidence intervals of the upper/lower bound of E[Y (0, 0)|CN ] are larger/smaller than the support of Y ,
I replaced the estimate with the upper/lower limit of the support of Y .
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estimates. The unit of analysis (I
2

) is the household as a whole, while the principal migrant
(I

1

) is the individual, who applied for the visa lottery. The second application is based
on a paper from McKenzie and Rapoport (2011) (henceforth MR) that studies the effect
of migration on school attendance in Mexico and does not address the issue of invisible
sample selection. I test sensitivity of results to various assumptions regarding all-move
households. The unit of analysis (I

2

) is the individual child and the principal migrant (I
1

)

is any adult household member.

4.1 Effect of migration on remaining household members in Tonga

GMS study the effects of migration from Tonga to New Zealand on household members
left behind in Tonga. New Zealand allows a quota of 250 Tongans to immigrate to New
Zealand each year without going through the usual migration categories. Among eligible
registrants (Tongan citizens aged 18 to 45 years who meet English, health, and character
requirements), a random ballot decides who receives a visa to migrate. These registrants
are the principal migrants in my framework. Ballot winners must provide a job offer in New
Zealand within six months after the lottery to have their application to migrate approved.
Ballot winners can apply for visas for their immediate family (spouses and dependent
children up to age 24).19

GMS use data from a household survey in Tonga that was designed to capture the
effects of migration. The survey does not contain households of ballot winners in which all
household members join the principal migrant. GMS use the random ballot to instrument
for migration of the principal migrant. Instrumental variable estimation is necessary since
15% of ballot winners (among observed households) do not comply with the lottery and
do not move to New Zealand (GMS refer to concerns regarding this non-compliance as
dropout bias). GMS argue that substitution bias is of little concern in this context since
the chances of eligibility to migrate under another migration channel are low.

I use household-level data from GMS that include only households that participated
in the visa lottery. This sample consisted of 124 households that were unsuccessful in the
lottery and have no migrants (O(0, 0, 0)), 26 households that were successful in the lottery
but where nobody migrated (O(1, 0, 0)), and 61 households that were successful in the
lottery and where the principal migrant (and potentially other household members) mi-
grated to New Zealand, but at least one person stayed behind (O(1, 1, 0)). These observed
patterns have two important implications. First, the data do not contain households in
which all individuals migrated. Second, the data contain no households with migrants who
were unsuccessful in the lottery O(0, 1, 0). The second observation is evidence that no
households of type AN exist, and it is a strong indication that no other households with

19For a more extensive description of this visa lottery, refer to GMS.
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always migrants or defiers exist, as GMS assume.

4.1.1 All move-households

GMS use visa regulations and define all-move households as households in which all in-
dividuals would be eligible to join the principal migrant in case he wins the lottery and
migrates. Since these visa rules are based on observable characteristics (i.e., age, relation-
ship with the principal migrant), GMS identified these households and removed them from
their data. I refer to these households as visa all-move households. GMS therefore identi-
fied the effect for households that leave more distant relatives behind. This concerns 75 of
124 households in the observed group O(0, 0, 0), and 18 of 26 households in the observed
group O(1, 0, 0) (see Table 5, Panel A). Finding visa all-move households in group O(1, 0, 0)

shows that the definition of all-move households based on observable characteristics is not
identical to latent stratum CC. All households in group O(1, 0, 0) belong to the latent
stratum NN - households in which no individual would migrate (see Table 4). However,
we can use the information on visa all-move households to estimate ⇡CC .

Using only information from observed group O(0, 0, 0) leads to the conclusion that ⇡̂CC

equals NV AM
000

/N
000

= 75/124 = 0.61. However, in observed group O(1, 0, 0), which consists
only of stratum NN , 18 of 26 identify as visa all-move households (NV AM

100

/N
100

= 18/26 =

0.7). The overall share of visa all-move households in O(0, 0, 0) is therefore a combination
of the 70% visa all-move households in stratum NN and 100% visa all-move households
in stratum CC (Equation 27). The ratio of ⇡CN/⇡NN = N

110

/N
100

= 2, 34.20 Since no
households of type AN exist, it holds that ⇡NN+⇡CN+⇡CC = 1 (Equation 29). Combining
this information gives a system of three equations, which we can solve to obtain the strata
proportions:

NV AM
100

/N
100

⇤ ⇡̂NN + ⇡̂CC = NV AM
000

/N
000

(27)

N
110

/N
100

⇤ 1.368 = ⇡̂CN/⇡̂NN (28)

⇡̂NN + ⇡̂CN + ⇡̂CC = 1 (29)

Panel b of Table 5 shows the estimated strata proportions. No households belong to
stratum AN , 35% to stratum CN , 53% to stratum CC, and 11% to stratum NN . The
ratio of unobserved to observed migrant households � = 1.5.

[Table 4 about here]
20This ratio must be adjusted by a factor of 1.368 due to differential sample weights (Equation 28).

Group O(0, 0, 0) has an expansion factor of 37.9, group O(1, 0, 0) of 2.5, and group O(1, 1, 0) of 3.4. For
the estimation of the bounds this is relevant only when calculating the ratio ⇡CN/⇡NN .
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4.1.2 Assessment of assumptions

Assumption 2 holds since we do not see any migrants in households in which the principal
migrant does not migrate. Assumption 3 holds through the random ballot that decides
who receives a visa. The two exclusion restrictions, Assumption 4, and 5 are also likely to
hold. Obtaining a visa has no direct effect on household welfare, except through its effect
on migration. Other household members can only obtain a visa if the principal migrant
takes up his visa and migrates. Therefore, the visa affects migration of other household
members only through its effect on migration of the principal migrant. Assumption 7 is
very likely to hold since it appears unreasonable that a visa makes a person less likely to
migrate. Another question is whether all-move households are of type AA or CC. GMS
argue that it is difficult to obtain another type of visa, which strongly suggests that all-
move households must be of type CC. We do not observe any households with migrants,
who are not lottery winners, which is further evidence that all-move households are of
type CC. I discuss distributional assumptions in the results section for individual outcome
variables.

4.1.3 Results

Table 6 shows the bounds on the effect of migration on household composition. House-
hold composition is a particularly appropriate outcome to study the problem of invisible
sample selection since it relates strongly to the propensity of households to migrate as a
whole.21 An approach that ignores selection due to all-move households would conclude
that migration reduces total household size by 0.85 persons, not statistically different from
zero. Removing all visa all-move households from the estimation sample, GMS conclude
that the effect is -2.26.

I find that the point identified household size of CN households under treatment is 4.69.
Without a mean dominance assumption, the size of CN households under control can be
bounded between 2.17 and 8.56, which leads to bounds on the effect between -3.87 and
2.54. Assuming CC households are on average smaller than CN households (Assumption
9), increases the lower bound on E[Y (0, 0)|G = CN ] to 5.38 and decreases the upper bound
on the effect to -0.69, which shows that this assumption has substantial identifying power.

[Table 6 about here]

The bounds analysis confirms the negative effect of migration on household size, driven
by a reduction in the number of children and prime-age individuals in the households. The
number of elderly is not reduced.

21The results in this section correspond to Tables 4 and 6 in GMS.
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A second set of results examines the effects of migration on household assets (Table 7).
48% of CN households under treatment own a home. Without distributional assumptions,
home ownership under control can only be bounded between 0 and 1. These bounds
correspond to the bounds Manski (1994) suggests that use only the fact that the outcome
variable is bounded. The resulting bounds on the treatment effect are -0.52 and 0.48. The
bounds can be narrowed substantially by assuming CC households are less likely to own
a home since home ownership increases the probability that someone stays behind.22 The
upper bound of E[Y (0, 0)|G = CN ] lowers to 0.4, and the effect can be bounded between
-0.52 and 0.08. The unadjusted estimate (0.12) lies outside of these bounds.

I invoke the same mean dominance assumption when identifying the effect on livestock
owned; households that leave someone behind (CN) own, on average, more livestock than
households that leave nobody behind (CC). The bounds under this assumption suggest
negative effects on the number of pigs, chickens, and cattle owned, though the confidence
intervals do not disqualify zero effects.

[Table 7 about here]

The difference between the point identified effects under assumption 10, ✓NS
CN , and the

unadjusted effect ✓W is the bias described in Section 3.3.3. For example, for total household
size, the bias is -0.16, which corresponds to 23% of the corrected estimate. The effect on
the number of pigs owned is biased by -0.11, more than 100% of the corrected estimate.

Analysis of the Tongan data shows that bounds with a monotonicity and mean domi-
nance assumption have significant identifying power, even in situations with a high share
of all-move households. However, they also reveal that instrumental variables estimates
ignoring invisible sample selection can be biased substantially.

4.2 Effect of migration and school attendance in Mexico

The second empirical application follows MR, estimating the effect of migration on school
attendance in Mexico. MR use historic migration rates as an instrument for current mi-
gration, finding that migration of an adult household member reduce school attendance
rates for 12 to 15 year old boys by 16 percentage points, and by 9 percentage points for
girls; however, the latter effect is not significantly different from zero.23

22Home ownership is generally seen as having an impeding effect on migration. See, for example, Massey
and Espinosa (1997) and Nivalainen (2004).

23Unlike MR, I focus only on the effect of migration on school attendance in the sample of children aged
12 to 15 years. Restricting analysis in this way offers two advantages. First, children in this age group
are unlikely to migrate without their parents, which is required by Assumption 2. This assumption does
not hold for 16 to 18 year old adolescents, the second group that MR consider. Second, in comparison to
years of education, school attendance is the more natural outcome for children and adolescents who have
not yet completed their education.
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Data stem from the Mexican 1997 Encuesta Nacional de la Dinàmica Demográfica
(ENADID).24 I follow MR and define a child as living in a migrant household if the house-
hold has a member aged 19 and over who has ever been to the United States to work, or
who has moved to the United States in the last 5 years for any other reason.25

The outcome of interest is school attendance. Although school attendance in Mexico
is compulsory up to the age of 16 years,26 attendance rates at the time of the survey were
significantly below 100% (74% for boys and 66% for girls in the estimation sample).

4.2.1 Sample selection due to child migration

No children in the sample are categorized as current migrants.27 Potential sample selection
therefore arises from migration of whole households. Although the ENADID dataset pro-
vides rich information on individual migration histories, it lacks information on households
that migrate as a whole. To gain an understanding of how widespread the phenomenon of
all-move households is in Mexico, I build on existing research that uses census data from
the source and destination countries of migrants. Ibarraran and Lubotsky (2007) estimate
the size of the Mexican immigrant population in the United States based on a) the 2000
Mexican census and b) the 2000 U.S. census. Since the Mexican census was conducted as a
household survey, it ignored all-move households. The estimated size of the Mexican-born
population living in the United States based on the Mexican census is 1,221,598,28 and
based on the U.S. census is 2,205,356. Thus, the total migrant population in the Mexican
census is only 55.4% the size of the population in the U.S. census. This rate is lower for
female (33.6%) than for male migrants (69.9%).

The authors argue the difference is primarily due to married couples that dissolved
their household in Mexico and are therefore not counted in the Mexican census. Once
married couples with both spouses present in the United States are removed from U.S.
census estimates, the remaining migrant number is 1,492,111, closer to the number from
the Mexican census. In a similar analysis, McKenzie and Rapoport (2007) use the U.S.
census 5% public use sample to analyze the marital status of recent Mexican immigrants.

24The ENADID is a nationally representative household survey, with a sample of 73,412 households. This
corresponds to roughly 2,300 households in each of the 32 states. To allow comparability of results with
MR, I restrict the sample similarly to households in municipalities outside of cities with more than 50,000
inhabitants. The estimation sample consists of 15,665 children aged 12 to 15 years in 11,160 households.

25This is not the optimum migrant definition to study sample selection since it also includes return
migrants. To maximize comparability of results with existing research, I follow the definition from MR,
who argue that prior migration episodes of adult household members also influence the education outcomes
of children. For a more extensive discussion on the advantages and disadvantages of this migrant definition,
refer to MR.

26http://www.sep.gob.mx/en/sep_en/Basic_Education_a
27Fourteen children reported prior migration episodes, and of these, six come from non-migrant house-

holds. However, the questionnaire included several questions on migration, and the answers to these
observations are inconsistent. Therefore, data problems seem to be the reason for this finding.

28This number excludes migrants who returned to Mexico.
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They find that 14.4% of male and 48% of female recent Mexican migrants are married,
with their spouses present in the United States, concluding these individuals are likely not
counted in Mexico-based surveys.

Discrepancies between numbers from the Mexican and U.S. censuses are even larger for
children. In the age group 12 to 15 years, the number of migrants in the Mexican census
is only about 50% of the number of migrants in the U.S. census. Again, the reason is most
likely that children migrate with their whole families and are therefore not counted in the
Mexican census anymore. Overall, the U.S. census counts 82,240 Mexican-born children in
this age group, which are most likely not included in Mexican data.29

I use the ENADID to calculate the total number of children in migrant households in
Mexico. Using the definition of a migrant household described above and the expansion
factors provided with the data, I calculate the total number of children aged 12 to 15 years
who live in a migrant household to be 1,516,924. Dividing the number of children missed
by the observed number of children in migrant households, I calculate � to be 0.054.30

This ratio appears low, but this is because of the broad definition of a migrant household
in the ENADID, and thus the large denominator. I test the sensitivity of results to various
values of � ranging from zero to 0.5. For the main analysis, I use a ratio of � = 0.054.

4.2.2 Assessment of assumptions

To overcome the problem of self-selection into migration, a number of recent studies (e.g.
McKenzie and Hildebrandt, 2005; McKenzie and Rapoport, 2011) use historic migration
rates to measure current migration. Existing networks lower migration costs for subsequent
migrants, and therefore trigger additional migration. The exclusion restriction is that these
historic migration rates do not affect educational outcomes today except through current
migrations of household members (Assumption 4). A detailed discussion of this instru-
ment and the exclusion restriction regarding educational attainment can be found in MR.
However, the bounds in this paper require an additional assumption about the instrument.
Assumption 5 suggests the instrument must not influence the migration decision of a child
directly, which appears reasonable if migration networks primarily help adult migrants find
a job in the destination country.

Like MR, I use state-level migration rates to the United States from 1924 taken from
Woodruff and Zenteno (2007). I recode this continuous measure into a binary one by
defining states as low-migration states (Z = 0) if the migration rate is below the state-
level median (3.78%) and as high-migration states (Z = 1) if the migration rate is above
(see Frölich (2007) for details on this transformation). I do this to allow stratification on

29Thanks go to Darren Lubotsky for providing this estimate.
30I calculate this ratio for Mexico as a whole since I can not identify the origin region within Mexico of

migrants in the U.S. census. Therefore I have to assume that this ratio is equal between rural and urban
regions.
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instrument assignment, which would not be possible with a continuous instrument. Figure
2 in Appendix A shows the positive relationship between historic migration rates and
the probability of a child living in a migrant household (Assumption 6). In this setting,
compliers are individuals who would migrate only if they live in a high-migration state.
Unlike MR, I abstain from including additional covariates in my estimation to ensure
Assumption 3 holds. Covariates would substantially complicate the analysis since I do not
observe the distribution of covariates for all-move households. Two-stage, least-squares
point estimates with a binary instrument without covariates differ only slightly from those
using covariates, and are similar to results from MR.31

No children in the sample are categorized as current migrants. This is strong evidence
in support of Assumption 2, that children would not migrate alone. Whether all-move
households react to the instrument (CC) or are always migrants (AA) cannot be clarified
with these data. Assuming they are all type CC leads to conservative bounds.

4.2.3 Results

The bounds are on the effect of migration on school attendance for the group of children
who would never migrate but live in a household in which adults react to the instrument.
Ignoring sample selection and estimating effects using a simple Wald estimator suggests
the effect for boys is -0.19 and significant, and the effect for girls is 0.08 and not significant
(Table 8).32

The first rows of Table 8 show the estimated strata proportions. The proportion of
stratum CN for boys is 0.26, and the proportion of stratum CC is 0.02. NN is the largest
stratum, with a proportion of 0.6. Strata proportions are similar for girls. The next
three rows display the point identified mean potential outcomes for stratum NN under
control, and for strata AN and CN under treatment. The expected school attendance rate
under treatment for stratum CN is 0.63 for boys and 0.6 for girls. School attendance is
slightly higher for boys than girls in all strata. The bounds under monotonicity for school
attendance rates of boys in stratum CN under control are 0.78 and 0.89. For girls, they
are substantially lower, 0.49 and 0.57, respectively.

The lower and upper bounds on ✓CN for boys are -0.28 and -0.14. For girls, the
respective numbers are -0.01 and 0.15. However, confidence intervals are wide for both
groups. For boys, the 95% confidence intervals exclude zero.

31For the model with controls, I use the following state-level control variables: number of schools per
1,000 inhabitants in 1930, literacy rate in 1960, and male and female attendance rates in 1930. These
are not the same controls used by MR since those controls could not be reconstructed. Including these
covariates changes the point estimate in a two-stage, least-squares estimation for boys from -19.5 to -14.7
percentage points and for girls from 8.2 to 7.4 percentage points.

32Although the estimates for boys with and without covariates are similar to results from MR, there is
a larger discrepancy in the estimates for girls. Unreported estimates using the continuous instrument are
much closer to MR’s result.
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Imposing the additional mean dominance assumption that the mean outcome under
control of stratum CC is weakly greater than of stratum CN , narrows the bounds by
increasing the lower bound on ✓CN . For boys, the lower bound increases to -0.19 and for
girls to 0.07.

The effect of living in a migrant household for boys is negative even when sample
selection is considered. The opposite is true for girls, and the estimated bounds suggest that
the effect might even be positive. This result accords with arguments and empirical findings
from a series of recent papers. Antman (2012) suggests paternal migration associates with a
shift in decision-making power toward the mother, and that mothers choose to spend more
on the education of girls. Antman (2011) finds that in the short run, boys must respond
to paternal absence with an increase in work and decrease in study hours. Both channels
might contribute to the fact that boys experience a negative effect on school attendance
and no, or even a positive, effect exists for girls.

[Table 8 about here]

4.3 Sensitivity with respect to �

For main results, I compute � to be 0.054. However, due to the substantial uncertainty in
the computation of this number, I repeat analysis for � between zero (i.e., no children in
all-move households) and 0.5 (i.e., for every two children observed in a migrant household,
one child in an all-move household is missed).

[Figure 3 about here]

Figure 3 shows the resulting bounds on the effects for boys and girls. The width of the
bounds does not increase constantly over the range of the observed ratios. For boys, the
lower bound decreases steeply up to a value of � of about 0.14, and only slightly thereafter.
Up to a ratio of 0.14, the estimate of the upper bound on E [Y (0, 0)|G = CN ] stems from
the constrained solution. Once ⇡CN is sufficiently small so the constraint no longer binds,
the estimate stems from the unconstrained solution. A slight decrease after this threshold
results from a steady decline in ⇡CN and the fact that the expected value is computed in
a decreasing fraction of largest values of the outcome Y in group O(0, 0, 0). For girls, we
observe a constrained solution up to a ratio of 0.41.33

Two additional insights can be gained from Figure 3. First, � is not the only determinant
of the behaviors of the bounds. For example, at a value of 0.3, the width of the bounds is
0.33 for boys and 0.59 for girls, which is due to the various distributions of the outcome

33The kink in the upper bound for boys at a ratio of about 0.3 stems from the precision adjustment.
Above this ratio, the unrestricted solution is not considered “close” enough to influence the asymptotic
distribution of the upper bound.
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variable. Second, the lower bound under monotonicity and mean dominance is insensitive
to variations in �.

5 Discussion

This section discusses extensions of the proposed approach and avenues for future research.
An alternative to the bounds derived from Chen and Flores (2014) would be an approach

outlined in Imai (2007). Imai suggests subtracting the full distribution of Y (0, 0)|G = NN

derived from the observed group O(1, 0, 0) from the distribution of Y in the observed
group O(0, 0, 0), and employing the trimming procedure in the remaining distribution.
Although this approach might tighten the bounds somewhat, estimating and subtracting
distributions instead of means creates complications for estimation. Since this approach is
not developed fully, I abstain from including those bounds here.

Many applications rely on covariates to ensure instrument validity or conditional inde-
pendence. Incorporating covariates in the principal stratification framework is an active
field of research. Frangakis and Rubin (2002) suggest conducting the analysis within cells
defined by observed pre-treatment variables. Lee (2009) shows that this strategy can be
used to narrow the bounds. Two issues complicate this approach in the migration setting.
First, when it is desirable to condition on multiple variables, cells might become too small
due to the curse of dimensionality. However, computing a propensity score and conducting
the analysis within strata of the propensity score might circumvent this problem. The
second and more complicated issue is that covariates are usually unobserved for all-move
households, and therefore it is impossible to condition on the covariates of this group.

This paper investigates a situation in which the principal migrant can be identified and
distinguished from other household members, even if nobody in the household migrates.
Extensions should examine situations in which the principal migrant(s) cannot be identi-
fied, and allow for more complicated household structures. Especially when interest is in
the effect of migration of an adult on other adult household members (i.e., the effect of
migration on labor supply of other household members), identifying the principal migrant
might be impossible.

The proposed setting is applicable to situations in which sample selection occurs due
to all-move households, and situations in which sample selection occurs due to migration
of only a subset of household members. However, special attention should be given to
situations where sample selection is driven by both as the migration decision of the “last”
household member might be driven by a different decision process (e.g., someone has to
stay behind to take care of property). Another potential refinement would be to con-
sider situations of stepwise migration. Migration processes often take the form that one
individual leaves first and the remaining household members follow with some delay.
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While this paper discusses intra-household selection mainly from a sample selection
perspective, the proposed approach can also be used to identify various other effects and
disentangle mechanisms (as a reference to literature on mediation analysis see for example
Pearl (2001); Flores and Flores-Lagunes (2009, 2010); Huber (2014)). Researchers and
policymakers might be interested in Y (1, 1)�Y (0, 0), the effect if a child migrates with an
adult, in comparison to a situation in which no household member migrates (e.g., Stillman,
Gibson, and McKenzie, 2012) or in Y (1, 1)�Y (1, 0), which is the effect of migration of the
whole household in comparison to a situation in which the child remains while the adult
migrates (e.g., Gibson, McKenzie, and Stillman, 2011b). One could identify the effects not
only for one latent population, but for various populations. Huber, Laffers, and Mellace
(2014) derive bounds for average treatment effects on the treated and other populations
in a setting with non-compliance. Chen, Flores, and Flores-Lagunes (2014) derive bounds
for population average treatment effects. Such approaches could be extended and applied
to the migration setting.

6 Conclusion

This paper examines identification of the causal effects of migration on remaining household
members in the presence of selection into migration between and within households. If
households migrate as a whole, they are usually not included in source country data, which
creates additional problems due to invisible sample selection. Households that are observed
comprise a selected sample and estimates of migration might be biased. Addressing the
selection of migrants within the household and the related problem of invisible sample
selection has been largely ignored in existing literature.

This paper derives nonparametric bounds on the effect of migration on remaining house-
hold members. Using principal stratification allows structuring the identification problem
by making transparent assumptions about migration decisions of household members. This
approach allows point or partial identification of effects even in complex settings with mul-
tiple selection problems present. An important though less obvious insight from the econo-
metric analysis is that invisible sample selection biases instrumental variables estimates
even if intra-household selection is unrelated to potential outcomes.

Two empirical applications illustrate the proposed approach. The first uses data from a
visa lottery in Tonga to study the effects of migration on household composition and house-
hold assets. The Tongan context allows a comparison of the bounds with a) estimates that
ignore the second selection problem and b) estimates for a specific subpopulation that
take into account both selection problems (Gibson, McKenzie, and Stillman, 2011b). The
second example uses data from a study on the effects of migration on educational attain-
ment in Mexico that does not address invisible sample selection (McKenzie and Rapoport,
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2011). I calculate the share of children missed in Mexican data by comparing census data
from Mexico and the United States. The results suggest that ignoring the second selec-
tion problem can bias estimates in both directions, understating the true magnitude of an
effect, or suggesting significant effects where the true effect might be zero. The proposed
approach can also be used to disentangle direct and indirect effects of migration. I discuss
several possible extensions to identify not only the effects discussed in this paper, but also
a variety of other related effects and the effects on other latent and observed populations.

More generally, the issue of invisible sample selection is not specific to migration re-
search. Invisible sample selection changes the composition of a population in unobserved
ways and can for example be the result of endogenous fertility decisions, household forma-
tion, death, or firm entry and exit. Therefore, the insights from this paper can be adapted
and applied to a wider literature in applied economics.

Finally, the paper encourages partial instead of point identification in contexts in which
point identification can be achieved only under strong and unrealistic ignorability assump-
tions, which is often the case in migration research. A strength of this approach is that
instead of making strong ignorability assumptions, many weaker assumptions can be com-
bined to derive informative bounds. Instead of assuming selection processes are indepen-
dent of outcome-generating processes, making assumptions about the direction of selection,
positive or negative, might be more appropriate. The approach is especially suited to mi-
gration studies since theoretical and empirical literature on migrant selectivity provides a
foundation from which to derive credible assumptions.
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Table 2: Correspondence between observed groups and latent strata
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Panel a: Observed groups Panel b: Latent strata proportions

O(z,m1,m2)
Number of households

share standard error
all visa all-move

O(0, 0, 0) 124 75 ⇡AN 0
O(0, 0, 1) - ⇡CN 0.35
O(0, 1, 0) - ⇡CC 0.53
O(0, 1, 1) - ⇡NN 0.11
O(1, 0, 0) 26 18
O(1, 0, 1) - � 1.5
O(1, 1, 0) 61
O(1, 1, 1) -

Note: The left panel presents the observed number of households in the dataset of GMS by
value of the instrument and migration status. Visa all-move households are households
where all individuals would be eligible to join the principal migrant. The right panel shows
the estimated ratio of unobserved to observed migrant households and the estimated strata
proportions. Standard errors in parentheses from 999 bootstrap replications.

Table 5: Tonga: observed groups and latent strata
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Boys Girls

⇡AN 0.12*** (0.03) 0.12*** (0.03)
⇡CN 0.26*** (0.04) 0.25*** (0.04)
⇡CC 0.02*** (0.00) 0.02*** (0.00)
⇡NN 0.60*** (0.04) 0.61*** (0.03)

E [Y (0, 0)|G = NN ] 0.73*** (0.02) 0.70*** (0.02)
E [Y (1, 0)|G = AN ] 0.77*** (0.03) 0.71*** (0.02)
E [Y (1, 0)|G = CN ] 0.63*** (0.04) 0.60*** (0.04)

Bounds under assumptions 2-7

Bounds on E [Y (0, 0)|G = CN ] [0.78 0.89] [0.49 0.57]
CLR 95% confidence interval (0.70 0.99) (0.32 0.73)
Bounds on ✓CN [-0.28 -0.14] [-0.01 0.15]
CLR 95% confidence interval (-0.40 -0.04) (-0.16 0.31)

+ mean dominance assumption (8)

Bounds on E [Y (0, 0)|G = CN ] [0.78 0.82] [0.49 0.53]
CLR 95% confidence interval (0.70 0.92) (0.32 0.68)
Bounds on ✓CN [-0.19 -0.14] [0.07 0.15]
CLR 95% confidence interval (-0.32 -0.04) (-0.11 0.31)

Unadjusted IV ✓W -0.19** (0.08) 0.08 (0.12)
✓NS
CN -0.19** (0.08) 0.07 (0.11)

Observations 7,993 7,663

Note: Results based on the assumption that the ratio of the number of children not included in the
sample due to migration of the whole household to the number of children observed in migrant
households is 0.054. Standard errors in parentheses from 999 bootstrap replications clustered at the state
level. For the bounds without mean dominance, numbers in parentheses in the bottom rows are 95%
confidence intervals calculated using the procedure suggested by Chernozhukov, Lee, and Rosen (2013),
while numbers in square brackets are identified sets determined by the half-median unbiased estimators.
For the bounds with mean dominance, the 95% confidence interval is calculated using the procedure
suggested by Imbens and Manski (2004). * denotes that estimate is statistically different from zero at the
10%, ** at 5%, and *** at 1% significance level.

Table 8: Mexico: effect on school attendance
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Figure 1: Unconstrained lower bound for E [Y (0, 0)|G = CN ]
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Figure 2: Cut-off for binary instrument
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Figure 3: Sensitivity of bounds for different ratios of unobserved to observed children in
migrant households
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B Technical Appendix

B.1 Bounds on E [Y (0, 0)|G = N ] with randomly assigned M1

The observed outcome in group O(0, 0) is therefore a mixture of the potential outcomes of
compliers and never migrants under control

E [Y |M1 = 0,M2 = 0] = E [Y (0, 0)|G = C]⇡C + E [Y (0, 0)|G = N ]⇡N

This expression can be transformed to obtain the potential outcome of never migrants
under control

E (Y (0, 0)|G = N) =
E [Y |M1 = 0,M2 = 0]� E [Y (0, 0)|G = C]⇡C

⇡N

The upper bound on E [Y (0, 0)|G = C] can be obtained by taking the upper ⇡C quan-
tiles in the observed group O(0, 0)

EU
N [Y (0, 0)|G = C] = E [Y |M

1

= 0,M
2

= 0, Y > q(1� ⇡C)]

The respective lower bound can be obtained by taking the lower ⇡C quantiles. Thus
the lower and upper bound for E (Y (0, 0)|G = N) can be rewritten as

EL
N [Y (0, 0)|G = N ] =

E [Y |M1 = 0,M2 = 0]
⇡N

� E [Y |M1 = 0,M2 = 0, Y > q(1� ⇡C)]⇡C

⇡N

= E [Y |M1 = 0,M2 = 0, Y < q(1� ⇡C)]

EU
N [Y (0, 0)|G = N ] =

E [Y |M1 = 0,M2 = 0]
⇡N

� E [Y |M1 = 0,M2 = 0, Y  q(⇡C)]⇡C

⇡N

= E [Y |M1 = 0,M2 = 0, Y > q(⇡C)]

The simplifications presented in these two equations make use from the fact that sub-
tracting the weighted mean of Y in the upper (lower) ⇡C quantiles is equivalent of taking
the mean in the lower (upper) 1� ⇡C quantiles.
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B.2 Identification of strata proportions if migration of I2 is ob-

served

⇡AN = P (M
1

= 1,M
2

= 0|Z = 0)

⇡AA = P (M
1

= 1,M
2

= 1|Z = 0)

⇡NN = P (M
1

= 0,M
2

= 0|Z = 1)

⇡CC = P (M
1

= 1,M
2

= 1|Z = 1)� P (M
1

= 1,M
2

= 1|Z = 0)

⇡CN = P (M
1

= 1,M
2

= 0|Z = 1)� P (M
1

= 1,M
2

= 0|Z = 0)

B.3 Point identification if ⇡CC = 0

This section shows that the Wald estimator in the sample of observed households provides
an unbiased estimate of E [(Yi (1, 0)� Yi (0, 0)) |G = CN ] if ⇡CC = 0 and ⇡AA � 0.

E [Y (1, 0)|G = CN ] is identifed in Equation (10)

E [Y (1, 0)|G = CN ] =
Y

110
(⇡CN + ⇡AN )� Y

010
⇡AN

⇡CN
.

E [Y (0, 0)|G = CN ] is identified from Y
000

= E[Y (0,0)|G=CN ]⇡CN+E[Y (0,0)|G=NN ]⇡NN
⇡CN+⇡NN

and
E [Y (0, 0)|G = NN ] = Y

100

E [Y (0, 0)|G = CN ] =
(⇡CN + ⇡NN )Y

000 � Y
100

⇡NN

⇡CN
.

Therefore, the causal effect is identfied as

✓CN =

⇣
Y

110
(⇡CN + ⇡AN )� Y

010
⇡AN

⌘
�

⇣
(⇡CN + ⇡NN )Y

000 � Y
100

⇡NN

⌘

⇡CN
.

For comparison, consider a Wald estimator in the sample of observed households:

✓W =

E[Y |Z = 1,M
2

= 0]� E[Y |Z = 0,M
2

= 0]

E[M
1

|Z = 1,M
2

= 0]� E[M
1

|Z = 0,M
2

= 0]

(30)

The four quantities in Equation (30) can be formulated as weighted means of observed
outcomes and strata proportions
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E[Y |Z = 1,M2 = 0] =
⇡NN ⇤ Y

100
+ (⇡CN + ⇡AN ) ⇤ Y

110

⇡NN + ⇡CN + ⇡AN

E[Y |Z = 0,M2 = 0] =
(⇡CN + ⇡NN ) ⇤ Y

000
+ ⇡AN ⇤ Y

010

⇡CN + ⇡NN + ⇡AN

E[M1|Z = 1,M2 = 0] = P (M1 = 1|Z = 1,M2 = 0) =
⇡CN + ⇡AN

⇡NN + ⇡CN + ⇡AN

E[M1|Z = 0,M2 = 0] = P (M1 = 0|Z = 1,M2 = 0) =
⇡AN

⇡CN + ⇡NN + ⇡AN

The Wald estimator

✓W =

h
⇡NN⇤Y 100

+(⇡CN+⇡AN )⇤Y 110

⇡NN+⇡CN+⇡AN

i
�

h
(⇡CN+⇡NN )⇤Y 000

+⇡AN⇤Y 010

⇡CN+⇡NN+⇡AN

i

h
⇡CN+⇡AN

⇡NN+⇡CN+⇡AN

i
�

h
⇡AN

⇡CN+⇡NN+⇡AN

i

simplifies to

✓W =

⇣
⇡NN ⇤ Y 100

+ (⇡CN + ⇡AN ) ⇤ Y 110

⌘
�
⇣
(⇡CN + ⇡NN ) ⇤ Y 000

+ ⇡AN ⇤ Y 010

⌘

⇡CN
,

which equals the effect for stratum CN :

✓W =

⇣
Y

110

(⇡CN + ⇡AN )� Y
010

⇡AN

⌘
�
⇣
(⇡CN + ⇡NN )Y

000 � Y
100

⇡NN

⌘

⇡CN
= ✓CN .

B.4 Bias of instrumental variables estimate withouth systematic

intra-household selection

Assumption 10 (E [Y (0, 0)|G = CC] = E [Y (0, 0)|G = CN ]) allows point identification of
✓CN even if ⇡CC > 0. E [Y (1, 0)|G = CN ] is identifed in Equation (10)

E [Y (1, 0)|G = CN ] =
Y

110
(⇡CN + ⇡AN )� Y

010
⇡AN

⇡CN
.

E [Y (0, 0)|G = CN ] can be identified using Y
000

= E[Y (0,0)|G=CN,CC](⇡CN+⇡CC)+E[Y (0,0)|G=NN ]⇡NN
⇡CN+⇡NN+⇡CC

and E [Y (0, 0)|G = NN ] = Y
100. Assumption 10 implies that (E [Y (0, 0)|G = CN,CC] =

E [Y (0, 0)|G = CN ]) and therefore

E [Y (0, 0)|G = CN ] =
Y

000
(⇡CN + ⇡NN + ⇡CC)� Y

100
⇡NN

⇡CN
.

Therefore, the causal effect is identfied as

✓NS
CN =

Y
110

(⇡CN + ⇡AN )� Y
010

⇡AN

⇡CN
� Y

000

(⇡NN + ⇡CN + ⇡CC)� Y
100

⇡NN

⇡CN + ⇡CC
.
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For comparison, consider a Wald estimator in the sample of observed households

✓W =

E[Y |Z = 1,M
2

= 0]� E[Y |Z = 0,M
2

= 0]

E[M
1

|Z = 1,M
2

= 0]� E[M
1

|Z = 0,M
2

= 0]

(31)

The four quantities in Equation 31 can be formulated as weighted means of observed
outcomes and strata proportions, making use of ⇡CC + ⇡CN + ⇡NN + ⇡AN = 1.

E[Y |Z = 1,M2 = 0] =
⇡NN ⇤ Y

100
+ (⇡CN + ⇡AN ) ⇤ Y

110

⇡NN + ⇡CN + ⇡AN

E[Y |Z = 0,M2 = 0] =
(⇡CC + ⇡CN + ⇡NN ) ⇤ Y

000
+ ⇡AN ⇤ Y

010

⇡CC + ⇡CN + ⇡NN + ⇡AN
= (⇡CC + ⇡CN + ⇡NN ) ⇤ Y

000
+ ⇡AN ⇤ Y

010

E[M1|Z = 1,M2 = 0] = P (M1 = 1|Z = 1,M2 = 0) =
⇡CN + ⇡AN

⇡NN + ⇡CN + ⇡AN

E[M1|Z = 0,M2 = 0] = P (M1 = 0|Z = 1,M2 = 0) =
⇡AN

⇡CC + ⇡CN + ⇡NN + ⇡AN
= ⇡AN

The Wald estimator is

✓W =


⇡NN⇤Y 100+(⇡CN+⇡AN )⇤Y 110

⇡NN+⇡CN+⇡AN

�
�

h
(⇡CC + ⇡CN + ⇡NN ) ⇤ Y

000
+ ⇡AN ⇤ Y

010
i

h
⇡CN+⇡AN

⇡NN+⇡CN+⇡AN

i
� [⇡AN ]

,

which can be simplified to

✓W =
⇡NN ⇤ Y

100
+ (⇡CN + ⇡AN ) ⇤ Y

110 � (⇡NN + ⇡CN + ⇡AN ) ⇤
⇣
(⇡CC + ⇡CN + ⇡NN ) ⇤ Y

000
+ ⇡AN ⇤ Y

010
⌘

⇡CN + ⇡AN � ⇡AN ⇤ (⇡NN + ⇡CN + ⇡AN )

Subtracting ✓NS
CN from ✓W gives the bias of the Wald estimator

bW = ✓W � ✓NS
CN =

⇡CC

h⇣
Y

100 � Y
000

⌘
a+

⇣
Y

110 � Y
010

⌘
b
i

c

where

a = (⇡CN⇡NN ) (⇡CN + ⇡CC + ⇡NN )

b = ⇡AN

�
⇡2
CN + ⇡CN⇡CC + ⇡CN⇡AN + ⇡CC⇡AN

�

c =
�
⇡2
CN + ⇡CN⇡CC

� �
⇡CN⇡CC + ⇡CC⇡AN + ⇡2

CN + ⇡CN⇡AN + ⇡CN⇡NN

�
.

B.5 Inference based on Chernozhukov, Lee, and Rosen (2009)

I explain the estimation procedure for EL
CN [Y (0, 0)|G = CN ]. Recall that the lower bound

of the expected value of stratum CN under control is given by �

L
= maxv2V={0,1}[�

L
(v)],

with �

L
(0) = Y (Y  y000↵CN

) and �

L
(1) = Y (Y  y000

1�↵CC
) ⇤ ⇡NN+⇡CN

⇡CN
� Y

100 ⇤ ⇡NN
⇡CN

. Let
�L

= [�

L
(0)�

L
(1)]

0 be the vector containing the two bounding functions. I subsequently
discuss the estimation of the lower bound along with its confidence region (the proceeding
for the upper bound is analogous). I use the procedure of Chernozhukov, Lee, and Rosen
(2013) to obtain a half-median-unbiased estimator of maxv2V

⇥
�

L
(v)

⇤
. This appendix is
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based on similar descriptions of this method in Chen and Flores (2014); Huber, Laffers,
and Mellace (2014). The main idea is that instead of taking the maximum of the estimated
ˆ

�

L
(v) directly, one uses the following precision adjusted version, denoted by ˜

�

L
(p), which

consists of the initial estimate plus s(v), a measure of the precision of ˆ

�

L
(v), times an

appropriate critical value k(p):

˜

�

L
(p) = max

⇡01,i

[

ˆ

�

L
(v) + k(p) · s(v)].

As outlined below, k(p) is a function of the sample size and the estimated variance-
covariance matrix of

p
n( ˆ�L � �L

), denoted by ˆ

⌦. For p =

1

2

, the estimator ˜

�

L
(p)

is half-median-unbiased, which implies that the estimate of the upper bound exceeds its
true value with probability at least one half asymptotically.

The following algorithm briefly sketches the estimation of �

L along with its upper
confidence band based on the precision adjustment.

1. Estimate the vector ˆ�UB
01

by its sample analog. Estimate its variance-covariance
matrix ˆ

⌦ by bootstrapping B times.34

2. Denoting by ĝ(v)> the v-th row of ˆ

⌦

1
2 , estimate ŝ(v) =

kĝ(v)kp
n

, where k·k is the
Euclidean norm.

3. Simulate R35 draws, H
1

, . . . , HR from a N(0, I
2

), where 0 and I
2

are the null vector
and the identity matrix of dimension 2, respectively.

4. Let H⇤
r (v) = ĝ(v)>Zr/ kĝ(v)k for r = 1, . . . , R.

5. Let ˜k(c) be the c-th quantile of maxv2V H⇤
r (v), r = 1, . . . , R, where c = 1� 0.1

log(n) .

6. Compute the set estimator ˆV = {v 2 V :

ˆ

�

UB
01

(v0)  maxv02V {[ ˆ�L
(v0)+˜k(c) · ŝ(v0)]+

2 · ˜k(c) · ŝ(v0)}}.

7. Estimate the critical value ˆk(p) by the p-th quantile of maxv2ˆV H⇤
r (v), r = 1, . . . , R.

8. For half-median-unbiasedness, set p =

1

2

and compute ˜

�

L
(

1

2

) = maxv2V [ ˆ�
L
(v) +

ˆk( 1
2

) · ŝ(v)].

9. To obtain the upper confidence band, estimate the half-median-unbiased lower bound
˜

�

U
(p).

10. Let � = max(0, ˜�U
(

1

2

) � ˜

�

L
(

1

2

)), ⇢ = max(

˜

�

L
(

3

4

) � ˜

�

L
(

1

4

), ˜�U
(

3

4

) � ˜

�

U
(

1

4

)) and
⌧ = (⇢ log(n))�1. Compute â = 1��(⌧ ·�)↵, where ↵ is the chosen confidence level.

11. The lower confidence band for the estimate of �L is obtained by ˜

�

L
(â).

34In the empirical part I use 1,999 bootstrap replications.
35I set R=1,000,000.
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