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Abstract According to household production function theory households combine mar-
keted goods and nonmarket environmental goods to produce service flows of direct value to
the household. This readily explains why, as an input to household production activities,
households might have preferences over the climate. Using techniques more frequently
employed to account for differences in the demographic composition of households we
use household production function theory to estimate climate equivalence scales using
household expenditure data drawn from 51 Japanese cities over the period 2000–2009.
Our results indicate that warmer temperatures result in a small but statistically highly
significant reduction in the cost of living. Combining these estimates with climate change
scenarios associated with the IPCC A2, A1B, and B1 emissions scenarios other things being
equal points to a slight reduction in Japanese households’ cost of living.

1 Introduction

According to the household production function theory of Becker (1965) households seldom
consume marketed commodities directly. Rather, households combine marketed commodi-
ties with nonmarket environmental goods and household labour according to some house-
hold production technology in order to provide services flows.1 And it is only these which
are of direct value to the household.

Household production function theory explains why households inhabiting areas characterised
by different levels of nonmarket environmental goods might experience differences in wellbeing.

Climatic Change
DOI 10.1007/s10584-012-0478-5

1Henceforth we ignore the role of household labour in the production of service flows.
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The theory also explains why households inhabiting areas characterised by differing quantities of
nonmarket environmental goods might purchase different patterns of marketed goods. Differ-
ences in the levels of nonmarket environmental goods cause households to substitute marketed
goods for nonmarket environmental goods in household production activities. And differences in
the ‘price’ of service flows in turn causes households to substitute between different service flows
with additional consequences for the derived demand for marketed goods (Smith 1991).

The main purpose of this paper is to provide an empirical test of the hypothesis that
climate is an important input to household production functions and to measure the impact of
climate on households’ cost of living.

Although logical to ask about the impact of climate change on the cost of living
estimating the direct value of climate to households is on the face of it very difficult.2 This
is because climate is potentially an input to the production of numerous service flows, none
of which are directly observable.3 Some researchers therefore regard household production
function theory as a purely heuristic device, explaining the importance of nonmarket
environmental goods, but not actually providing a basis for estimating the value of changes
in their availability. Such views may however be misguided since the techniques we employ
below involve neither estimating household production functions nor the demand for
unobservable service flows.

In fact ours is not the first attempt to use the household production function technique
empirically to estimate the value of climate and the impact of climate change on households.
But our analysis uses repeated cross sectional data from 51 cities within a single country (Japan)
and because the key assumptions of common tastes and common household production func-
tions are more plausible any differences in household patterns of demand can more credibly be
attributed to environmental conditions. Furthermore, because the household expenditure data are
drawn from specific cities the corresponding climate variables can be measured with great
accuracy. And of course, with repeated cross sectional data it is possible to assess the temporal
stability of any observed relationship between climate and household expenditure patterns.

To anticipate our findings it appears that climate provides a statistically significant
explanation of the observed geographical variation in Japanese households’ expenditure
patterns. Furthermore estimated climate equivalence scales point to small, but statistically
highly significant, differences in the cost of living arising from climatic conditions.4

Changes in climate associated with popular IPCC emissions scenarios point to a small
reduction in the cost of living in Japan, other things being equal.

The remainder of the paper is organised as follows. Section 2 contains a general review of the
empirical literature estimating the value of climate to households. Section 3 focuses in particular
on studies employing the household production function technique to value the climate. In
section 4 the paper demonstrates how climate variables can be incorporated into a system of
demand equations in a theoretically consistent manner. Section 5 describes the data underlying
the empirical exercise and section 6 describes the results from two very different models of
consumer demand. Section 7 investigates further the extent to which climate contributes to
differences in the cost of living in various Japanese cities. The final section concludes.

2 Writing the utility function of a household in location i as v(p(zi), y(zi), zi) where v is utility, p is a vector of
prices and z is climate the direct effect of climate on households is the direct effect of zi on vi and not the
indirect effect via p and y. We do not measure the value of a change in climate in alternative location j even if
the household does have preferences over zj.
3 It may be for this reason that researchers, intent on estimating the economic costs of climate change, have
focused attention on measuring changes in agricultural productivity or the cost of building sea defenses.
4 Climate equivalence scales are analogous to household equivalence scales but include climate variables
rather than, as is more commonly the case in economics, the numbers of adults and children.
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2 Literature review

It is possible to measure in monetary terms the impact on households of a change in climate.
But assuming that households have property rights to the current climate the appropriate
measure depends on the direction of change. For a move to an inferior climate the
appropriate measure is the minimum compensation necessary to persuade the household to
accept the change. For a move to a superior climate the appropriate measure is the maximum
willingness to pay to secure the change. Together, these are referred to as compensating
surplus (CS) measures of welfare change.5

Researchers have employed a wide variety of valuation techniques to estimate the CS for
a marginal or a non-marginal change in climate. None appear to have involved asking
individuals e.g. “What is the maximum amount your household is willing to pay in order to
enjoy a climate similar to that of Nice?” For although conceptually meaningful this type of
question is regarded as simply too difficult. Instead, studies have relied on revealed
preference techniques exploiting the existence of spatial variation in climate such as the
hedonic technique.6

The hedonic technique uses as its point of departure the observation that if households are
able to select from different localities then climate becomes a ‘choice’ variable. And the
diverse costs and benefits associated with particular climates should therefore be reflected in
geographical differences in house prices and wage rates induced by hedonic (literally
‘pleasure-seeking’) migration. The value to the household of marginal changes in climate
variables can thus be inferred from the derivatives of the hedonic house price and wage rate
functions, evaluated at the chosen location of the household.

Using the hedonic technique Nordhaus (1996) analyses county level wage rate data,
adjusted for regional differences in the cost of living, to estimate the value of climate to US
households. He then utilises his results to predict the impact of various climate change
scenarios. Maddison (2001a) presents hedonic house price and wage rate regressions for 127
counties, metropolitan areas and unitary authorities in Great Britain using data from 1994.
His work involves running separate regressions for house prices, and for wage rates paid to
blue collar and white collar workers. Households prefer higher annual average temperatures
and lower annual precipitation. Mendelsohn (2001) presents another hedonic analysis for the
US. Using county level data he estimates separate regressions for rents and for four different
kinds of employment using 30-year averages for winter, spring, summer and fall temperature
and precipitation as explanatory variables.

Maddison and Bigano (2003) use the hedonic technique to analyse the amenity value of
the climate of Italy. Using data on Italian provinces they find that labour incomes net of
housing costs are significantly higher in areas with high July mean temperatures and high
January precipitation implying these are disamenities. Rehdanz and Maddison (2009) use
the hedonic approach to measure the value of climate to households in Germany. Their work
suggests that households are compensated for climate mainly through the operation of

5 The compensating surplus (CS) is implicitly defined by the difference in income required to maintain
welfare constant as environmental quality changes from z0 to z1.

v p; y� CS; z0
� � ¼ v p; y; z1

� �

6 Revealed preference techniques use spatial variation in climate as an analogue for future climate change. In
so doing, they address the issue of adaptation by making comparisons between households that have already
perfectly adapted to the climate.
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hedonic housing markets rather than hedonic labour markets.7 Houses are significantly more
expensive in areas with higher January mean temperatures and lower precipitation in
January, as well as in areas with lower July mean temperatures.

Turning to other less commonly employed revealed preference valuation techniques,
according to the Random Utility Model (RUM) of choice, migration decisions are made
on the basis of differences in wage rates, housing costs and employment possibilities. But do
regions with more desirable climates ceteris paribus experience net inward migration? Using
the RUM modelling framework Cragg and Kahn (1997) examine the propensity of individ-
uals to move to different US states as a function of their climate holding constant a range of
other site-specific factors. Results indicate that individuals are attracted by higher wintertime
temperatures and lower summertime temperatures.

In the hypothetical equivalence scales technique a respondent is asked whether they
would describe a particular household income as ‘good’ or ‘bad’ for a household sharing the
same set of circumstances. Alternatively, respondents are asked about the minimum income
necessary to achieve a standard of living that they would for example, describe as ‘satisfac-
tory’. Statistical analysis aims to identify which factors explain why certain households
require higher or lower incomes to reach a verbally-described standard of living.

Van Praag (1988) uses hypothetical equivalence scales to analyse the effect of climate on
European households’ standard of living. He asks survey respondents about the minimum
income required for their household to reach a variety of welfare levels ranging from ‘very
bad’ to ‘very good’. Dividing his data into 90 different climatic zones results suggest that
households living in areas characterised by higher annual mean temperatures, higher annual
precipitation and higher annual average relative humidity require less income to achieve the
same standard of living.

Recently economists have started inviting individuals to state how happy or how satisfied
they feel on a numerical scale in order to explore important economic questions e.g. what are
the welfare costs of inflation and whether individuals are voluntarily unemployed. Adopting
this approach, Frijters and Van Praag (1998) use the responses of individuals asked to rate
their happiness on a 1–10 scale to construct climatic equivalence scales for six Russian
cities. The cost of living in Dudinka, located on the edge of the Arctic Circle, is almost two
and a half times greater than the cost of living in Moscow.

Rehdanz and Maddison (2005) analyse cross-country data on subjective wellbeing.
Despite including a large number of covariates only GDP per capita and climate provide a
statistically significant explanation of the cross-country variation in subjective wellbeing.
Lower temperatures in the coolest month and higher temperatures in the warmest month
reduce subjective wellbeing. Rehdanz and Maddison use their results to estimate the CS for
various climate change scenarios.

Summarising the literature, some studies employ international data but most use data
from a single country.8 Particularly in cross-country studies, data are frequently aggregated
over large, climatically diverse regions. Most studies include temperature and precipitation
but far fewer include other potentially important climate variables such as sunshine and
relative humidity. Researchers characterise climate variables in a different way e.g. annual
mean temperature versus heating and cooling degree-days. Households’ preferences for
changes in the climate are likely to depend on the baseline climate. Geographical context

7 For a discussion of the circumstances in which compensation for nonmarket goods should occur in the
housing market rather than the labour market or vice-versa see Roback (1982).
8 The more diverse the climate the easier it is to identify households’ preferences for particular types of
climate.
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therefore frustrates any attempt to compare the results obtained by different studies. Some
studies have used their results to estimate the CS for particular climate change scenarios.
Despite the uneven quality of the data most studies indicate that households are willing to
pay substantial sums to enjoy more preferred types of climate.

3 The household production function approach

Economists often analyse household expenditure patterns in order to calculate equivalence
scales for households with differing demographic composition. Such analyses are motivated
by questions like “How much more money would a family with two adults and two children
need before it attains the same level of wellbeing as a household of two adults but without
any children?” This same approach can be extended to answer questions, not about the
relative costs of households with different numbers of children and adults, but about the
relative costs of households enjoying different quantities of nonmarket environmental goods
(in our case, a different climate).

Determining the value of the climate using the household production function approach
requires data on expenditures by households inhabiting different climates, in addition to
some variation in commodity prices and household incomes. Many countries conduct annual
surveys of household expenditures potentially suitable for empirical analysis.

Compared to other techniques used to estimate the value of climate to households this
approach possesses certain appeal. It is neither necessary to assume the existence of a unified
market for land and labour, nor to assume that households are, without incurring any costs,
willing to move significant distances to eliminate the net benefits of particular locations. And
many economists are unwilling to believe that different individuals use the identical same
function for mapping utility onto an integer scale which is a necessary assumption for
analyses based on subjective wellbeing.

But the household production function approach itself involves a number of assumptions.
As such it is best viewed as a complementary rather than a superior valuation technique. It is
assumed for example, that households possess the same underlying tastes and production
technologies, and that expenditures therefore differ only to the extent that households face
different prices, enjoy different incomes, are of a different demographic composition or
enjoy a greater abundance on nonmarket environmental goods.9 More importantly, the
technique also assumes that non-market environmental and marketed goods exhibit demand
dependency (Bradford and Hildebrand 1977). Demand dependency requires that there exists
a price vector where marginal changes in the quantity of nonmarket environmental goods do
not affect utility. The root purpose of this assumption is to ensure that all relevant parameters
of the indirect utility function can be obtained through econometric estimation of the
Marshallian demand functions.

As mentioned the household production function approach has already been used to
estimate the value of climate. Maddison (2001b) invokes procedures identical to those used
to incorporate demographic variables into systems of demand equations.10 Using per capita
expenditure data provided by the 1980 International Comparisons Project, Maddison finds
that including climate variables greatly enhances the ability of the Quadratic Expenditure
System to explain international variations in the pattern of household expenditures. Maddison
then uses his results to estimate the CS for a 1 °C increase in annual mean temperature and a

9 On the assumption of common tastes see Stigler and Becker (1977).
10 These techniques are described in more detail in the next section.
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1 mm increase in annual precipitation for each of 60 countries. Building on his earlier work,
Maddison (2003) analyses household expenditures for 88 countries once more using data from
the International Comparisons Project. This time however he uses the Quadratic Almost Ideal
Demand System and calculates the CS for a climate change scenario associated with a doubling
of carbon dioxide equivalent concentrations.

But although climate variables demonstrably help explain cross-country variation in per
capita expenditure patterns there are serious concerns with the existing literature. Whilst the
International Comparisons Project uses consistently defined expenditure categories it cannot
realistically be assumed that people in different countries share identical tastes and technol-
ogies. Maddison’s analyses also fail to account for differences in the demographic compo-
sition of households, which are probably a much more important determinant of household
expenditure than climate.11 And cross-country differences in demographic composition are
likely to be profound. Maddison also uses nationally averaged data from large, climatically
diverse countries. Amongst other things this involves creating for each country a population-
weighted ‘average’ climate. Finally, surveys undertaken as part of the International Compar-
isons Project might not reflect year-round consumer expenditures and might be affected by
one-off macroeconomic factors or atypical weather conditions.

The empirical analysis described in this paper uses repeated cross-sectional data from
Japan. It does not suffer from any of the aforementioned shortcomings (i.e. including people
with potentially different tastes and technologies, absent controls for demographic compo-
sition of the household, errors in the measurement of climate and using data from a single,
potentially atypical year). It therefore provides a decidedly superior test of whether house-
hold production function theory has any empirical content. And it yields for the first time an
estimate of the value of climate to Japanese households.

4 Extending systems of demand equations to reflect the role of environmental goods

The household production function approach employs techniques identical to those used to
account for differences in the demographic composition of households in systems of demand
equations (see Pollak and Wales 1981).

The advantage of using these techniques is that first, they make very clear the implied
household production function technology and second, they can be used in conjunction with
well established systems of demand whose limitations are already well understood. We
discuss one such technique called ‘demographic scaling’.12, 13

In demographic scaling the prices of marketed goods are scaled according to the level of
environmental nonmarket goods. Scaling replaces the original system of demand equations

qi ¼ qi p1; p2; . . . ; yð Þ ð1Þ
Where q is the quantity of commodity i, the p’s are prices, y is income and qi(•) is the

Marshallian demand function, by

qi ¼ miqi p1m1; p2m2; . . . ; yð Þ ð2Þ

11 In fact he analyses per capita expenditures rather than household expenditures.
12 For an example of an environmental valuation study which does not use demographic scaling see Shapiro
and Smith (1981).
13 We note that scaling is not the only way of pooling data from households with a different demographic
composition.
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Where the m’s are scaling functions whose value is given by

mi ¼ 1þ
X

dijzj ð3Þ
Where zj represents one of j measures of environmental quality and δij are parameters.

This corresponds to the direct utility function

u ¼ u q1=m1; q2=m2; . . .ð Þ ð4Þ
Where u is household utility. Demographic scaling therefore, describes a situation in

which a change in the quantity of nonmarket environmental goods results in a proportionate
change in the level of the service flow associated with that commodity. When the zj refer not
to the levels of nonmarket environmental goods but instead to the numbers of additional
adults and children in the household, the scaling function is often interpreted in terms of
‘adult equivalents’ and the m’s are referred to as commodity specific scales (Barten 1964).

A simple case is one in which the all of the commodity specific scales m are identical

m1 ¼ m2 ¼ . . . ¼ m ð5Þ
Where m contains details regarding the demographic composition of the household it is

often referred to as the Engel scale.14 Whereas commodity specific scales require some
relative price variation, Engel scales can be identified even in the absence of price variation.
The equivalence scale for a household with environmental quality z1 relative to a household
with environmental quality z0 is given by

m z1ð Þ
m z0ð Þ ð6Þ

In what follows we calculate Engel equivalence scales for Japanese households with
different numbers of individuals inhabiting different climatic zones.

5 Data

Household expenditure data are taken from the Household Expenditure Survey (HES)
conducted by the Japanese Ministry of Internal Affairs and Communications (MIAC).15

The HES is a nationwide survey of approximately 9,000 households, conducted on a
monthly basis and collecting expenditure data for 10 categories of expenditures (see Tables 1
and 2). We use annual data from 2000 to 2009 for 47 prefectural capital cities, and annual
data from 2008 to 2009 for another 4 large cities (Kawasaki, Hamamatsu, Sakai, and
Kitakyushu). Observations represent average expenditure shares (s) for each commodity
category i for each city. The HES also contains information on the average number of
persons (PERSON) in each household.

Price data are obtained from the Consumer Price Index (CPI) database. This database
provides an annual price index (p) for each prefecture for each category of expenditure. But
to account for regional differences in base prices we further adjust these indices using data
from the 2005 National Survey of Prices (NSP) conducted every 5 years by the MIAC.
Because price data are available only at the level of the prefecture prices for four cities

14 This relates to Engel’s claim that a comparison of the money income of households of different size but
with the same food share would yield a household equivalence scale (Engel 1895).
15 Expenditure and price data used for analysis are all downloaded at http://www.e-stat.go.jp.
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(Kawasaki, Hamamatsu, Sakai, and Kitakyushu) are identical to those of the capital cities of
the same prefecture. The price for each commodity (averaged over the entire country) in
2005 is set at 100.

Table 1 Marketed commodity
definitions

See text

Commodity Definition

Food Food and drink

Housing Rents, repairs and maintenance

Utility Fuel, lighting and water

Furniture Furniture and household utensils

Clothing Clothing and footwear

Medical Medical goods

Transport Transport and communications

Education Education

Recreation Reading material and recreation

Miscellaneous Miscellaneous

Table 2 The data

Variable Mean Std. Dev. Min. Max.

SFood 0.2274822 0.0169606 0.1672028 0.280174

SHousing 0.082 0.0213399 0.034587 0.1672298

SUtility 0.0691227 0.0091723 0.0477486 0.1102496

SFurniture 0.03156 0.0053582 0.0209012 0.0880581

SClothing 0.0462165 0.0067474 0.027613 0.07161

SMedical 0.0387165 0.0056967 0.0233006 0.06014

STransport 0.1236708 0.0193109 0.0799011 0.2828076

SEducation 0.032498 0.0079035 0.0127734 0.0588525

SRecreation 0.1069505 0.0130747 0.0765576 0.1800075

SMiscellaneous 0.241783 0.0307833 0.1584583 0.4388694

PFood 99.58866 2.856619 93.99015 108.6211

PHousing 91.47299 14.2919 66.16905 151.2386

PUtility 100.3825 6.090368 86.28955 125.7363

PFurniture 106.6447 11.03946 83.24025 147.2177

PClothing 97.85642 10.74903 57.05212 130.318

PMedical 99.67389 1.69173 95.32054 105.7439

PTransport 98.54667 2.961194 92.19762 110.2093

PEducation 94.26401 7.78037 76.98318 115.4926

PRecreation 102.406 5.32742 91.95471 118.0698

PMiscellaneous 96.83266 4.333254 84.84776 105.9442

PERSON 2.402814 0.2474093 1.8 3.4

TEMP (°C) 14.58224 2.216319 8.226666 22.42

PREC (mm) 1627.989 422.3395 938.3 2592.603

See text
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Climate data are from the Japan Meteorological Agency.16 These data represent the
1961–1990 annual average temperature (TEMP) and precipitation (PREC) frommeteorological
stations located within each city. Four cities (Saitama, Otsu, Kawasaki, and Kitakyushu) do not
have meteorological stations and records from the nearest available stations are used instead for
these cities.17

6 Empirical analysis

Before analysing the data, it is first necessary to select a particular system of demand. In
order to observe the extent to which different models of consumer demand might result in
different estimates of the scaling function we choose two very different systems of demand.
For the purposes of comparison each of these models is estimated with and without a
common scaling function for location k given by

mk ¼ 1þ d1PERSONk þ d2TEMPk þ d3PRECk ð7Þ
Note that we do not include city-specific dummy variables. This is because the purpose of

the paper is to examine whether it is possible to explain regional heterogeneity by reference
to the climate and not to absorb all city-specific heterogeneity. It is also not possible to
estimate commodity specific scaling functions because this would involve too many param-
eters. Fitting commodity specific scaling functions furthermore requires relative price
variation for the purposes of identification.18

The Linear Expenditure System (LES) of Stone (1954) is in share form

si ¼ pig i
y

þ bi 1�
P

pig i
y

� �
ð8Þ

Where si refers to the share of commodity bundle i and γi and βi (interpreted as
subsistence requirements for commodity i and the proportion of supernumerary expenditure
spent on commodity i respectively) are parameters to be estimated. In additionX

i

bi ¼ 1 ð9Þ

Fitting the LES involves estimating only 2n-1 parameters where n is the number of
commodities.19 The theoretical requirements of symmetry, homogeneity and adding up are
all automatically satisfied.

Model 1 sets the parameters of the scaling function equal to zero. The parameters of the
LES are well determined but the model fails to explain much variation in expenditure shares.
Here and elsewhere the parameters of the demand system are presented in an Appendix

16 Data are downloaded at http://www.data.jma.go.jp/obd/stats/data/en/smp/index.html.
17 We use meteorological data from Kumagaya which is 40 km from Saitama; Hikone which is 55 km from
Otsu; Yokohama which is neighbouring Kawasaki; and Iizuka which is 40 km from Kitakyushu.
18 Although Japanese HES data does exhibit relative price variation this is insufficient to identify separate
commodity scales. Maddison (2001a, b) solves the problem of too many parameters by aggregating the data
into four expenditure categories thereby enabling him to estimate separate equivalence scales for each
commodity. But the process of aggregation obscures the precise role of climate just as much as estimating a
single commodity scale does.
19 For this reason in what follows β10 is not separately estimated. It is customary to estimate demand
equations in share form in order to combat heteroscedasticity.
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because they are voluminous and not the main focus of the paper. Note that standard errors
assume clustering at the level of the city.

Model 2 allows the parameters of the scaling function to vary. The estimated parameters
of the scaling function are displayed in Table 3. The coefficients on PERSON and TEMP are
both statistically significant at the 1 % level of confidence. The more people there are in the
household the higher the household’s cost of living whereas higher average annual temper-
ature has the opposite effect. Higher annual precipitation has no statistically significant
effect, not even at the 10 % level of confidence.

Next we present results from a more flexible demand system containing many more
parameters. In the Almost Ideal Demand System (AIDS) of Deaton and Muellbauer (1980)
the commodity share equations are given by

si ¼ ai þ
X

g ij log pj þ bi log y=Pð Þ ð10Þ
Where X

a ¼ 1 ð11Þ

X
b ¼ 0 ð12Þ

X
i

g ij ¼
X
j

g ij ¼ 0 ð13Þ

g ij ¼ g ji ð14Þ
As before α, β and now γ are parameters to be estimated. The aggregate price index P is

given by20

logP ¼ a0 þ
X
i

ai log pi þ 1

2

X
i

X
j

g ij log pi log pj ð15Þ

Unlike in the LES symmetry and homogeneity may be explicitly tested in the AIDS
model.21

Model 3 estimates the AIDS model setting the parameters of the scaling function equal to
zero and ignoring the theoretical restrictions imposed by symmetry and homogeneity.22 The
parameters of the demand system are presented in the Appendix. Model 4 imposes the
theoretical restrictions imposed by symmetry and homogeneity. Once more the parameters
of the demand system are presented in the Appendix. A Likelihood Ratio test suggests that
the theoretical restrictions of symmetry and homogeneity are not valid. This finding is very
common in the literature.23

20 Here as in many other studies the price index is approximated.
21 The Japanese HES data has been analysed before by Asano (1997) and Asano and Fukushima (2006) both
of whom used the AIDS model.
22 As expected the AIDS offers a much improved fit to the data. This is the finding of many other papers that
have compared the LES and the AIDS models of consumer demand.
23 It is not possible to test whether the Hicksian matrix of compensated price elasticities is negative semi
definite but this can be assessed by examining the eigenvalues of the matrix.
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Model 5 imposes symmetry and homogeneity and allows the parameters of the common
scaling function to vary. The parameters of the scaling function indicate that the main
determinant of the household’s cost of living is once more the number of persons in the
household. And yet again higher annual average temperature has a beneficial impact on the
cost of living that is statistically significant at the 1 % level of confidence. But although the
statistical significance of temperature is high the impact of the higher annual mean temper-
ature on the cost of living is nevertheless relatively small.

It is interesting that the two different systems of demand (the LES and AIDS) do not
provide dramatically different estimates of the parameters of the common scaling function
(see Table 3).

Finally in this section we ask to what extent the addition of a common scale improves the
ability of the system of demand equation to explain the variation in the demand for marketed
commodities.

Table 4 displays the R2 statistics for the AIDS model (imposing symmetry and
homogeneity) first without (Model 4) and then with the common scale (Model 5).
There is a substantial improvement in the fit of some of the commodity share
equations particularly for spending on fuel, water and lighting. But overall the overall
fit of many of the share equations remains quite poor. This indicates that the AIDS
model is not wholly adequate or that the assumption of common tastes and technologies is
not valid or that important environmental goods have been omitted from the model, or
something else.

Table 3 Scaling parameters

Model 2 Model 5 Difference

PERSON 0.5301221*** (5.74) 0.5745269*** (5.52) −0.0444048
TEMP −0.0251642*** (−5.72) −0.0204463*** (−4.32) 0.0047179

PRECIP 0.0000258 (0.91) 0.0000295 (0.92) −0.0000037

See text. Note that *** means statistically significant at the 1 % level of confidence; ** means statistically
significant at the 5 % level of confidence; and \ast means statistically significant at the 10 % level of
confidence

Table 4 Goodness of fit

See text

Model 4 Model 5

SFood 0.5112 0.6253

SHousing 0.1567 0.0780

SUtility 0.3424 0.6513

SFurniture 0.0803 0.0825

SClothing 0.2465 0.2305

SMedical 0.1810 0.2235

STransport 0.1523 0.2134

SEducation 0.2347 0.1481

SRecreation 0.2718 0.3291

SMiscellaneous
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7 Discussion

This section further explores the relationship between climate and the cost of living in Japan.
In this section we present econometric estimates of the scaling function for a range of
alternative specifications using the AIDS model with symmetry and homogeneity
imposed.24

First we investigate whether at some point households find higher annual average
temperatures increase rather than decrease the cost of living. Model 6 therefore includes
temperature squared as an additional scaling variable. Temperature is demeaned by sub-
tracting long run nationally averaged temperature TEMP before it is squared in order to
reduce multicollinearity. The scaling function is thus

mk ¼ 1þ d1PERSONk þ d2TEMPk þ d3 TEMPk � TEMP
� �2 þ d4PRECk ð16Þ

The results shown in Table 5 indicate that temperature squared is not statistically
significant at the 10 % level of confidence. This is not to deny the existence of a point at
which higher annual average temperatures start to increase rather than reduce the costs of
living. It may be that any turning point lies outside the range of annual average temperatures
encountered within Japan and as such cannot be identified.

Model 7 considers the possibility that the variability of temperatures is also an important
determinant of the household’s cost of living. Model 7 therefore replaces annual average
temperature with the expected number of degree-days for each location.25 More specifically
the variable DDk represents average annual degree days measured over a period of 5 years
(1826 days).26

DDk ¼
Pt¼1826

t¼1
ABS TEMPtk � 65ð Þ

� �

5
ð17Þ

The scaling function for model 7 is

mk ¼ 1þ d1PERSONk þ d2DDk þ d3PRECk ð18Þ
The econometric estimates for model 7 suggest that degree days are not statistically

significant even at the 10 % level of confidence. This may be because the base temperature
of 65°F is not appropriate, because the data refer only to 5 year averages instead of the more
customary 30 year averages, because the concept of degree days is not appropriate or some
other reason.

Model 8 includes in the scaling function nine dummy variables (DUM01-DUM09) each
denoting a different year. These variables account for technological progress in households’
production functions but they also absorb any inter-annual variation in the cost of living caused
by atypical weather conditions or macroeconomic disturbances. The scaling function is

mk ¼ 1þ d1PERSONk þ d2TEMPk þ d3PRECk þ d4DUM01þ d5DUM02þ d6DUM03
þd7DUM04þ d8DUM05þ d9DUM06þ d10DUM07þ d11DUM08þ d12DUM09

ð19Þ

24 The results for the AIDS model without symmetry and homogeneity imposed are very similar.
25 Information on degree days is taken from http://www.degreedays.com.
26 Most analyses employ as we do, 30-year averages for climate but data from http://www.degreedays.com
goes back only 5 years.
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One of the year dummies is statistically significant at the 5 % level of confidence.
Another dummy is statistically significant at the 10 % level of confidence. But both the
number of persons present in the household and annual mean temperature remains statistically
significant at the 1 % level of confidence. And neither does the magnitude of any of the
coefficients change.

We now use the results of Model 5 to estimate the extent to which households’ cost of
living differs between different cities in Japan. The climate equivalence scales displayed in
Fig. 1 use the climate of Tokyo as a base (see Appendix 4 for a complete listing). Darker
colours indicate higher costs of living due to the climate. Note carefully that the geograph-
ical differences in the cost of living shown in Fig. 1 reflect only differences in the climate.
Even greater differences occur because of geographical differences in prices but these are
suppressed in both Fig. 1 and Appendix 4. For example, the price index for Tokyo for 2009
is 108.2 whilst the price index for Naha is 93.0. These are respectively the most expensive
and the cheapest cities in Japan. The price index for Sapporo, the coldest city, is 99.3.
Combining the price index and the climate equivalence scale together indicates that the
overall cost of living in Naha is 0.809 whilst in Sapporo it is 0.979. The place with the
highest overall cost of living is Tokyo with an overall cost of living index of 1.000. Even if
its climate is not as cold as other cities further north this is not enough to overturn the fact
that in Tokyo prices are very high. Finally, the cost of living index for a three person
household in Tokyo compared to a two person household is 1.306 which points to significant
economies of scale in living arrangements.

Last of all we turn our attention to the potential impact of climate change on Japanese
households suggested by this exercise. According to the Japanese Ministry of the Environment
by 2100 annual mean temperatures will increase by 2.1–4.0 °C whereas precipitation will
increase by around 5 %. These estimates are based on the IPCC’s A2, A1B, and B1 emissions
scenarios (A2 is the highest and B1 the lowest). Combining these climate change scenarios with

Table 5 Scaling parameters

Model 6 Model 7 Model 8

PERSON 0.8990408*** (4.50) 1.166491*** (3.18) 0.6662847*** (4.51)

TEMP −0.0324456*** (−6.27) −0.022744*** (−4.56)
PRECIP 0.0000273 (0.65) 0.0000328 (0.45) 0.0000391 (1.06)

(TEMP-TEMP)2 −0.0041023 (−1.92)
DEGREEDAYS 0.0001142 (1.16)

DUM01 −0.0125534 (−0.76)
DUM02 0.0318989 (1.14)

DUM03 0.0536639 (1.58)

DUM04 0.0736079 (1.69)

DUM05 0.0679291 (1.49)

DUM06 0.1062695* (1.82)

DUM07 0.0753258 (1.27)

DUM08 0.1255019 (1.79)

DUM09 0.1715247** (2.10)

See text. Note that *** means statistically significant at the 1 % level of confidence; ** means statistically
significant at the 5 % level of confidence; and * means statistically significant at the 10 % level of confidence
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results fromModel 5 suggests that climate change may result in a slight reduction in the cost of
living. The climate equivalence scale for Tokyo for example falls from 1.000 to between 0.980
and 0.962 depending on the precise climate change scenario. Note however that, particularly for
the southern most cities such estimates involve prediction outside the range of average mean
temperatures currently experienced by Japan.27 And once again these estimates refer only to the
‘direct’ impact of climate change on Japanese households.

8 Conclusion

Compared to alternative valuation techniques the household production function methodol-
ogy offers both advantages and disadvantages. Unlike the hedonic technique it does not
assume a nationally unified market in land and labour. And unlike analyses based on the
spatial variation in subjective wellbeing it does not assume that different individuals use the
identical same function for mapping utility onto an integer scale. The household production
function technique’s chief limitation is the non-testable assumption of demand dependency.

We use repeated cross-sectional data on household commodity expenditures from 51
Japanese cities to estimate climate equivalence scales using the household production
function methodology. Our results indicate that higher annual average temperatures are

Fig. 1 Climate equivalence scales for Japan

27 Source: http://www.env.go.jp/earth/ondanka/rep091009/pamph_full.pdf

Climatic Change

http://www.env.go.jp/earth/ondanka/rep091009/pamph_full.pdf


associated with a small but statistically highly significant reduction in households’ cost of
living. By contrast, precipitation does not appear significantly to affect the cost of living.
Our results are unaffected by the choice of two popular but very different systems of
demand. Neither are they affected by the inclusion of time dummies.

Combining our estimates of the impact of temperature and precipitation on the cost
of living with IPCC climate change scenarios suggests a small reduction in the cost of
living. But because they do not account for the indirect impacts of climate change
such estimates do not provide a comprehensive account of the impact of climate
change on Japanese society. In particular, there may be additional impacts arising from
changes in prices or changes in household incomes. These are impacts not included in the
foregoing analysis.

Future analyses should endeavour to obtain data on household expenditures from house-
holds in more extreme climates in order to identify better the impact of climate on the cost of
living. At the same time it is important to include, where possible, a wider range of climate
variables as well as non-climate geographical variables. Should data with sufficient price
variation be available another obvious step would be to estimate commodity specific
equivalence scales.

Appendix

Table 6 LES models

Model 1 Model 2

Coefficient (Z-statistic) Coefficient (Z-statistic)

γ1 290.2903 (11.47) 149.7763 (5.76)

γ2 142.7235 (3.53) 26.83411 (1.02)

γ3 107.5634 (7.45) 81.23322 (6.60)

γ4 14.01085 (2.67) 8.897586 (2.86)

γ5 13.24078 (1.55) 8.549464 (1.38)

γ6 43.34672 (5.33) 22.69661 (4.91)

γ7 −59.07475 (−1.90) −67.98703 (−2.57)
γ8 −4.098496 (−0.31) 17.09272 (2.42)

γ9 −24.11557 (−1.08) −46.5604 (−3.50)
γ10 −229.6767 (−2.15) −111.6541 (−1.65)
β1 0.1291895 (13.21) 0.1227787 (8.98)

β2 0.035174 (2.38) 0.0680832 (4.02)

β3 0.0303375 (5.73) 0.0077566 (1.78)

β4 0.029022 (9.78) 0.026146 (11.63)

β5 0.0464297 (13.56) 0.0428116 (8.25)

β6 0.0246357 (6.14) 0.0231308 (6.58)

β7 0.1650218 (13.99) 0.1870283 (13.26)

β8 0.0383526 (7.46) 0.0217954 (3.78)

β9 0.1313919 (11.04) 0.1534316 (11.66)

See text
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Table 7 AIDS models

Model 3 Model 4 Model 5

Coefficient (Z-statistic) Coefficient (Z-statistic) Coefficient (Z-statistic)

α1 0.8318402 (2.18) 1.044739 (10.48) 1.229908 (13.23)

α2 0.0337627 (0.06) 0.5686559 (3.04) 0.0187876 (0.09)

α3 0.602629 (1.73) 0.1962303 (3.21) 0.5379053 (8.99)

α4 0.0187468 (0.14) 0.0469519 (1.35) 0.0856397 (2.92)

α5 −0.1401684 (−0.72) 0.0333797 (0.74) 0.0167893 (0.46)

α6 0.4413313 (2.53) 0.1045721 (2.59) 0.1740774 (6.01)

α7 0.55387 (1.08) −0.1248597 (−0.99) −0.3601871 (−2.66)
α8 −0.3272966 (−1.35) −0.147098 (−2.81) 0.0542872 (1.07)

α9 0.1157041 (0.29) 0.081727 (0.82) −0.1407331 (−1.61)
β1 −0.0994576 (−7.74) −0.1035015 (−8.19) −0.1402724 (−11.95)
β2 −0.0532592 (−2.59) −0.061878 (−2.62) 0.0088665 (0.29)

β3 −0.0181556 (−2.14) −0.0162753 (−2.11) −0.0659449 (−8.41)
β4 −0.0035411 (−0.84) −0.0021001 (−0.47) −0.00775 (−1.89)
β5 0.0034007 (0.64) 0.0016221 (0.28) 0.0041092 (0.79)

β6 −0.0094008 (−1.97) −0.0080887 (−1.57) −0.01868 (−4.65)
β7 0.0310741 (2.05) 0.0321313 (2.01) 0.0685058 (3.63)

β8 0.0258515 (4.05) 0.0230171 (3.45) −0.0029032 (−0.41)
β9 0.0064174 (0.55) 0.0039207 (0.31) 0.0355986 (2.91)

γ10 0.0649024 (1.74)

γ11 0.0694668 (1.62) −0.0162959 (−0.59) −0.0110152 (−0.30)
γ12 0.0188938 (1.35) 0.0316741 (2.79) 0.0327838 (3.22)

γ13 −0.0473854 (−2.10) −0.0339433 (−3.09) −0.0380756 (−3.90)
γ14 0.0157162 (0.93) 0.020098 (2.37) 0.0217394 (2.37)

γ15 −0.0225707 (−1.52) −0.0256329 (−2.38) −0.0147688 (−1.59)
γ16 −0.117343 (−2.26) −0.0588132 (−5.09) −0.0648828 (−5.18)
γ17 0.0304154 (0.60) 0.0139007 (0.48) −0.0049687 (−0.16)
γ18 0.0061252 (0.26) 0.0026153 (0.22) 0.0193433 (1.29)

γ19 0.0210318 (0.56) 0.0078984 (0.56) −0.0062854 (−0.44)
γ20 −0.0782061 (−1.32)
γ21 −0.016229 (−0.23)
γ22 0.015668 (0.64) 0.0322817 (1.32) 0.0282643 (1.06)

γ23 −0.0047751 (−0.12) 0.0023599 (0.33) 0.0039287 (0.72)

γ24 0.0351199 (1.30) −0.0115596 (−3.63) −0.0117424 (−3.83)
γ25 −0.0251842 (−0.84) 0.0069863 (1.78) 0.0073083 (1.81)

γ26 0.001627 (0.02) −0.0004178 (−0.10) −0.0001662 (−0.04)
γ27 0.2012398 (2.80) 0.0129969 (0.81) 0.0134218 (0.92)

γ28 0.0125732 (0.44) 0.0040101 (0.82) 0.0066426 (1.21)

γ29 −0.0402127 (−0.67) 0.0381376 (5.16) 0.0352866 (5.18)

γ30 −0.0574649 (−2.79)
γ31 0.0273417 (0.82)

γ32 0.0039487 (0.41)

γ33 0.0418494 (2.64) 0.0628735 (6.12) 0.0496201 (4.98)

γ34 −0.0066428 (−0.69) −0.0038892 (−0.98) −0.0059797 (−1.60)
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Table 7 (continued)

Model 3 Model 4 Model 5

Coefficient (Z-statistic) Coefficient (Z-statistic) Coefficient (Z-statistic)

γ35 0.005818 (0.73) −0.013135 (−3.19) −0.0085104 (−2.10)
γ36 −0.0122185 (−0.27) 0.0118594 (2.27) 0.0097154 (1.84)

γ37 −0.0278481 (−0.78) 0.0379159 (2.60) 0.0390203 (2.75)

γ38 −0.0203188 (−1.23) −0.0178034 (−2.95) −0.0183574 (−3.27)
γ39 −0.0396866 (−1.78) −0.0236273 (−3.42) −0.0202934 (−3.02)
γ40 −0.0031134 (−0.30)
γ41 0.0135252 (1.10)

γ42 −0.0086471 (−2.54)
γ43 −0.001886 (−0.25)
γ44 −0.00665 (−1.30) 0.0023488 (0.57) 0.0026527 (06.8)

γ45 0.0093635 (2.12) 0.0083054 (3.22) 0.009451 (3.52)

γ46 0.021843 (1.14) −0.0066752 (−1.62) −0.0071774 (−1.73)
γ47 −0.0272954 (−2.12) −0.0161779 (−1.75) −0.0191066 (−1.94)
γ48 −0.0061606 (−0.95) −0.0017816 (−0.46) −0.0011415 (−0.28)
γ49 0.0175561 (1.81) 0.0017814 (0.26) 0.0013682 (0.22)

γ50 0.0135618 (1.10)

γ51 −0.0357189 (−1.88)
γ52 0.0027939 (0.55)

γ53 −0.0037138 (−0.45)
γ54 −0.0018344 (−0.27)
γ55 0.0072921 (1.25) 0.0137508 (3.99) 0.0148486 (4.05)

γ56 −0.015881 (−0.57) −0.0030218 (−0.76) −0.0024088 (−0.59)
γ57 0.0113637 (0.42) −0.0026963 (−0.30) −0.0124383 (−1.28)
γ58 0.0025592 (0.28) −0.0097364 (−1.87) −0.0074568 (−1.47)
γ59 0.054231 (3.22) 0.0136508 (2.24) 0.0098027 (1.66)

γ60 0.0084644 (0.56)

γ61 −0.0394364 (−2.48)
γ62 0.0010929 (0.25)

γ63 0.0021961 (0.30)

γ64 −0.0139025 (−2.17)
γ65 0.0057975 (1.29)

γ66 −0.003438 (−0.20) 0.0242918 (1.71) 0.0227606 (1.64)

γ67 −0.018483 (−0.86) 0.0219022 (1.19) 0.0249508 (1.31)

γ68 0.0077391 (0.82) 0.0055215 (0.67) 0.0063271 (0.71)

γ69 −0.0209975 (−1.85) −0.0237568 (−3.27) −0.022938 (−3.24)
γ70 0.0755765 (2.25)

γ71 −0.0914399 (−1.85)
γ72 0.0157743 (1.02)

γ73 0.0487516 (1.93)

γ74 −0.0428197 (−2.44)
γ75 −0.0095155 (−0.79)
γ76 −0.0382413 (−0.54)
γ77 −0.1400733 (−2.66) −0.1143007 (−2.25) −0.0901137 (−1.69)
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Table 7 (continued)

Model 3 Model 4 Model 5

Coefficient (Z-statistic) Coefficient (Z-statistic) Coefficient (Z-statistic)

γ78 0.0329957 (1.41) 0.0048133 (0.26) −0.0096573 (−0.45)
γ79 0.0037113 (0.09) −0.0358631 (−2.18) −0.0223213 (−1.30)
γ80 0.0124987 (0.93)

γ81 0.0268576 (0.96)

γ82 −0.002436 (−0.43)
γ83 −0.0155253 (−1.65)
γ84 0.0138002 (1.51)

γ85 −0.0206476 (−3.49)
γ86 −0.0359357 (−1.20)
γ87 0.0301919 (1.33)

γ88 0.0324404 (2.73) 0.0293627 (3.20) 0.0257923 (2.26)

γ89 −0.0069565 (−0.34) 0.0035083 (0.43) 0.004917 (0.56)

γ90 0.0685391 (2.62)

γ91 −0.0326104 (−0.97)
γ92 0.0368416 (3.47)

γ93 −0.0043717 (−0.26)
γ94 −0.0147928 (−0.98)
γ95 −0.0081262 (−0.74)
γ96 −0.0844835 (−1.46)
γ97 −0.0219366 (−0.50)
γ98 0.0209796 (1.09)

γ99 0.0285128 (0.87) −0.0223313 (−1.42) −0.0213009 (−1.51)

See text

Table 8 More AIDS models

Model 6 Model 7 Model 8

Coefficient (Z-statistic) Coefficient (Z-statistic) Coefficient (Z-statistic)

α1 1.101702 (13.37) 1.121826 (12.33) 0.9706328 (12.06)

α2 0.0916689 (0.45) −0.2383186 (−1.60) −0.183355 (−1.48)
α3 0.4630853 (8.95) 0.5396137 (9.82) 0.4415478 (9.35)

α4 0.0720713 (2.74) 0.0977546 (3.96) 0.0893086 (4.59)

α5 0.0198962 (0.61) 0.0356379 (1.03) 0.0417485 (1.47)

α6 0.1519412(5.70) 0.1704851 (7.05) 0.1418664 (7.53)

α7 −0.2917845 (−2.64) −0.3614749 (−2.88) −0.2838003 (−2.99)
α8 0.0482979 (1.11) 0.1081263 (2.18) 0.0842077 (2.11)

α9 −0.1025272 (−1.37) −0.1442084 (−1.82) −0.1171005 (−1.80)
β1 −0.1362677 (−11.98) −0.1295208 (−10.58) −0.1242541 (−10.95)
β2 −0.0015403 (−0.05) 0.0465773 (2.15) 0.044542 (2.14)

β3 −0.061785 (−8.00) −0.0685405 (−9.63) −0.0627475 (−9.59)
β4 −0.0065106 (−1.57) −0.0097836 (−2.73) −0.0098873 (−2.97)
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Table 8 (continued)

Model 6 Model 7 Model 8

Coefficient (Z-statistic) Coefficient (Z-statistic) Coefficient (Z-statistic)

β5 0.0040922 (0.80) 0.0015251 (0.30) 0.0007464 (0.16)

β6 −0.0173556 (−4.34) −0.0188194 (−5.38) −0.0169507 (−5.70)
β7 0.0656603 (3.70) 0.0710896 (3.92) 0.0691028 (4.32)

β8 −0.0022895 (−0.33) −0.0108409 (−1.50) −0.0084973 (−1.28)
β9 0.0336905 (2.86) 0.0373635 (3.31) 0.0386185 (3.75)

γ10

γ11 −0.0102799 (−0.28) −0.0139846 (−0.35) −0.0265037 (−0.71)
γ12 0.036775 (3.54) 0.0304042 (3.04) 0.0419244 (3.63)

γ13 −0.038221 (−3.93) −0.0282923 (−2.90) −0.0223933 (−2.21)
γ14 0.020423 (2.22) 0.0221282 (2.41) 0.021426 (2.60)

γ15 −0.0138017 (−1.57) −0.0219792 (−196) −0.0263852 (−2.35)
γ16 −0.0637423 (−5.14) −0.0647997 (−4.91) −0.0600719 (−4.75)
γ17 −0.0135086 (−0.44) 0.0096945 (0.30) 0.0156757 (0.54)

γ18 0.0157986 (1.09) 0.0222882 (1.43) 0.0179362 (1.19)

γ19 −0.0043985 (−0.30) −0.0066469 (−0.46) −0.0051747 (−0.39)
γ20

γ21

γ22 0.0296249 (0.45) 0.0270323 (1.04) 0.0252326 (0.97)

γ23 0.005515 (0.96) 0.0036702 (0.80) 0.009824 (1.81)

γ24 −0.0117045 (−3.82) −0.0118611 (−4.05) −0.010782 (−3.79)
γ25 0.0074735 (1.87) 0.0064693 (1.54) 0.0066357 (1.56)

γ26 0.0002376 (0.06) −0.0000879 (−0.02) 0.0016232 (0.44)

γ27 0.0098729 (0.68) 0.0164548 (1.12) 0.0071104 (0.47)

γ28 0.0062809 (1.16) 0.0065066 (1.14) 0.0071259 (1.31)

γ29 0.0344982 (5.04) 0.0357715 (5.16) 0.0324086 (4.51)

γ30

γ31

γ32

γ33 0.0501544 (4.86) 0.0536697 (5.45) 0.0594901 (6.31)

γ34 −0.006242 (−1.66) −0.0054955 (−1.58) −0.0046846 (−1.30)
γ35 −0.0084306 (−2.07) −0.0100253 (−2.29) −0.0109168 (−2.38)
γ36 0.0097696 (1.86) 0.0115112 (2.12) 0.0134365 (2.48)

γ37 0.0364404 (2.59) 0.03624 (2.69) 0.0279416 (1.78)

γ38 −0.0196663 (−3.24) −0.0173941 (−3.34) −0.0184939 (−3.27)
γ39 −0.0200324 (−2.97) −0.0225809 (−3.40) −0.0238083 (−3.39)
γ40

γ41

γ42

γ43

γ44 0.0023686 (0.60) 0.0025844 (0.67) 0.0027596 (0.65)

γ45 0.0093477 (3.48) 0.0093093 (3.52) 0.0090564 (3.54)

γ46 −0.0072212 (−1.76) −0.0070035 (−1.68) −0.0064974 (−1.54)
γ47 −0.0181442 (−1.85) −0.0194914 (−1.98) −0.0201363 (−2.01)
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Table 8 (continued)

Model 6 Model 7 Model 8

Coefficient (Z-statistic) Coefficient (Z-statistic) Coefficient (Z-statistic)

γ48 −0.0014482 (−0.36) −0.0002144(−0.05) −0.0005409 (−0.13)
γ49 0.0018664 (0.29) 0.0014224 (0.22) 0.0014208 (0.22)

γ50

γ51

γ52

γ53

γ54

γ55 0.0149611 (4.01) 0.0144987 (4.12) 0.0140043 (4.11)

γ56 −0.0021984 (−0.55) −0.003464 (−0.84) −0.0032877 (−0.81)
γ57 −0.0136443 (−1.44) −0.0073114 (−0.69) −0.0043543 (−0.41)
γ58 −0.0077822 (−1.54) −0.0065779 (−1.27) −0.0073634 (−1.42)
γ59 0.0100356 (1.68) 0.0111956 (1.94) 0.0120598 (2.14)

γ60

γ61

γ62

γ63

γ64

γ65

γ66 0.0227431 (1.64) 0.0226429 (1.63) 0.0233831 (1.68)

γ67 0.0234335 (1.24) 0.0263163 (1.39) 0.0211146 (1.12)

γ68 0.0060397 (0.68) 0.0061987 (0.69) 0.0061922 (0.69)

γ69 −0.0230194 (−3.27) −0.0233384 (−3.24) −0.0242623 (−3.38)
γ70

γ71

γ72

γ73

γ74

γ75

γ76

γ77 −0.0768968 (−1.46) −0.1059527 (−2.10) −0.1000888 (−1.96)
γ78 −0.0064268 (−0.31) −0.0146736 (−0.67) −0.0099457 (−0.46)
γ79 −0.0234514 (−1.35) −0.0234363 (−1.38) −0.0239902 (−1.44)
γ80

γ81

γ82

γ83

γ84

γ85

γ86

γ87

γ88 0.0257991 (2.26) 0.0272998 (2.29) 0.0259728 (2.24)

γ89 0.0057824 (0.66) 0.0037514 (0.42) 0.0042138 (0.50)

γ90
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Table 8 (continued)

Model 6 Model 7 Model 8

Coefficient (Z-statistic) Coefficient (Z-statistic) Coefficient (Z-statistic)

γ91

γ92

γ93

γ94

γ95

γ96

γ97

γ98

γ99 −0.0217599 (−1.53) −0.0215343 (−1.50) −0.0214631 (−1.54)

See text

Table 9 Climate equivalence scales for Japan

City Climate equivalence scale

Akita 1.048

Aomori 1.056

Chiba 1.003

Fukui 1.028

Fukuoka 0.996

Fukushima 1.024

Gifu 1.011

Hamamatsu 1.005

Hiroshima 1.007

Kagoshima 0.992

Kanazawa 1.031

Kawasaki 1.003

Kitakyushu 1.009

Kobe 0.999

Kochi 1.009

Kofu 1.011

Ku-areas of Tokyo 1.000

Kumamoto 1.001

Kyoto 1.005

Maebashi 1.012

Matsue 1.019

Matsuyama 0.996

Mito 1.021

Miyazaki 1.000

Morioka 1.054

Nagano 1.033

Nagasaki 0.997
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