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Mapping Africa’s Infrastructure Potential with

Geospatial Big Data and Causal ML

Sebastian Krantz*

October 18, 2024

Abstract

Using rich geospatial data and causal machine learning (ML), this paper maps potential
economic benefits from incremental investments in all major types of public and economic
infrastructure across Africa. These ’infrastructure potential maps’ cover all African populated
areas at a spatial resolution of 9.7km (96km2). They show that the local returns to infra-
structure are highly variable and context-specific. For example ’hard infrastructure’ such as
paved roads and communications is more beneficial in cities, whereas ’social infrastructure’
such as education, health, public services and utilities is more critical in rural areas. Market
access and agglomeration effects largely govern these returns. The open Africa Infrastructure
Database built for this project provides granular data in 54 economic categories/sectors. It
reveals that Africa’s infrastructure is concentrated in urban areas, with cities exhibiting marked
heterogeneity in infrastructure, public services, and economic activities. Spatial inefficiency
is common. The findings are consistent with economic literature, highlighting causal ML and
explainable AI’s potential to generate insights from geospatial data and assist spatial planning.

Keywords: Africa, infrastructure, investment potential, geospatial big data, causal ML
JEL Classification: O18; R11; R40; C14

1 Introduction

It is well recognized in economic literature and policy discourse that Africa has great public infra-
structure deficits. The African Development Bank (ADB) estimates that Africa’s infrastructure
needs amount to $130-170 billion (2018 USD) per year, with a financing gap in the range of $68-108
billion (ADB, 2018). Recent estimates are even higher at $181-$221 billion (2024 USD) annual
needs (ADB, 2024). An influential World Bank report stated that Sub-Saharan Africa (SSA) has 31
paved roads km per 100km2 of land, compared to 134km in other low-income countries, estimated
the annual infrastructure gap at $93 billion, and urged SSA countries to spend one percent of
GDP on roads (Foster & Briceño-Garmendia, 2010). Large gaps also remain in other areas; for
example, according to World Bank statistics, by 2022, 51% of Sub-Saharan Africans had access to
electricity, 36% were using the internet (although 84% had mobile phones), and 34% were using
basic sanitation services. These deficits suggest that public infrastructure investments in Africa
may have high returns for economic activity and wealth generation.

Much academic research also finds sizeable economic returns to infrastructure−such as historical
railway access increasing real agricultural incomes by 16% (Donaldson, 2018) or land values by
60% (Donaldson & Hornbeck, 2016), power cuts reducing firm revenues and producer surplus
by 5-10% (Allcott et al., 2016), internet availability inducing 2% higher growth and structural
change (Goldbeck & Lindlacher, 2021), joint roads/power investments yielding an 11% increase in
welfare (Moneke, 2020), road network inefficiencies implying a 1.3% welfare loss (Graff, 2024), and
changes in transport costs invoking large reshufflings of population, wealth, and economic activity
(Storeygard, 2016; Jedwab & Storeygard, 2022; Faber, 2014; Baum-Snow et al., 2020). Foster et
al. (2023) and Gorgulu et al. (2023) provide qualitative and quantitative reviews of the effects of
infrastructure on development outcomes and find sizeable and overwhelmingly positive effects.
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This paper contributes to the debate on the returns to infrastructure investments by utilizing
the wealth of granular geospatial data that has become available in recent years to observationally
estimate local returns to different types of public and economic infrastructures across Africa. It
first introduces the Africa Infrastructure Database, the largest open compilation of categorized
infrastructure assets in Africa to date, comprising 15.1 million points/buildings of interest (POIs)
and 4.4 million km of network infrastructure classified into 54 economic categories. It then applies
recently developed causal machine learning (ML) methods (Chernozhukov, Chetverikov, et al.,
2018; Athey et al., 2019; Nie & Wager, 2021), enabling more credible and targeted inferences from
observational datasets. These methods, also known as ’double’ or ’debiased’ ML (DML), employ
MLmodels to remove factors confounding the relationship between a treatment (infrastructure) and
an outcome (economic activity or wealth). Following this first-stage ’debiasing’ step, a second-stage
’causal model’ estimates a heterogeneous treatment effect. With only a large spatial cross-section,
identification cannot be established as in dynamic settings. However, I demonstrate causal ML’s
ability to remove confounding influences, such as political favouritism (Dreher et al., 2019).

The paper is among the first to apply causal ML to large-scale geospatial data. Many papers
use ML methods to map poverty (Jean et al., 2016; Yeh et al., 2020; Chi et al., 2022; Lee &
Braithwaite, 2022), or improve aid targeting (Aiken et al., 2022). Others use ML to track in-
frastructure, e.g., road expansion and changes in builtup (Peng & Chen, 2021), or infrastructure
quality (Oshri et al., 2018). These advances led to various ’hybrid’ impact evaluations. For example
Ratledge et al. (2022) use ML to track changes in wealth following electricity grid expansion in
Uganda. The impact assessment is done with a difference-in-difference estimator. Conversely, Peng
& Chen (2021) track roads and builtup and evaluate the outcomes using nightlights and DHS data
among other indicators with a market-access IV approach. Pollmann (2020) uses ML methods to
find counterfactual treatment locations to evaluate spatial treatments. As one of the few spatial
applications of causal ML, Gilbert et al. (2021) develop a spatial causal inference framework and
examine the heterogeneous effects of pollution via DML. To my knowledge, causal ML has not
yet been used to estimate economic returns to infrastructure. Most applications of causal ML
have been in non-spatial settings, e.g. health (Chernozhukov, Demirer, et al., 2018) and education
(Athey & Wager, 2019), business analytics (Huenermund et al., 2021) and marketing (Huber,
2024), sociology (Brand et al., 2023), and increasingly in broader social science (Imbens, 2024).

Why should causal ML be used to evaluate returns to infrastructure−alongside classical impact
evaluations and hybrid approaches? One reason is that causal identification is difficult to establish,
particularly with infrastructure. Infrastructure interventions are costly, rarely (quasi-)random, and
seldomly extend beyond a single type of infrastructure, country or region. Few studies are able to
provide local heterogeneity in infrastructure effects (Foster et al., 2023). Limited external validity
and differences in data and methodology complicate drawing broad inferences from such studies
(Gorgulu et al., 2023). Conflicting studies of the same intervention in different settings also produce
conundrums in academic knowledge, exemplified by the RCT literature on household electrification
(Lee et al., 2020; Bayer et al., 2020) and some work on rural roads (Asher & Novosad, 2020).
In contrast, granular geospatial data has recently become very rich and uniform and is globally
available. By analyzing this data with causal ML, I can make a contribution vastly exceeding
the scope of econometric research. In particular, I provide localized (1) marginal effects and
counterfactual predictions for (2) 14 different types of public and economic infrastructure as well
as local and overseas market access, at (3) 9.7km (96km2) spatial resolution,1 for (4) >100,000
populated locations across Africa. My results thus exhibit comparability between different types
of infrastructure and across space, and suggest that heterogeneity in returns to infrastructure is
indeed eminent. These high-resolution ’infrastructure potential maps’ thus present an advance
toward policymakers asking about the returns to an additional road, generator, school, or hospital
in a specific city, village, or suburb. They are limited by the quality of geospatial data for Africa
and of spatial measures of wealth/activity, by the identifying assumptions of causal ML,2 and by
their static partial equilibrium nature. Nevertheless, they represent a flexible empirical advance
with potential to inform policymakers’ spatial and sectoral infrastructure allocation problems.

1Which is roughly the size of a medium-sized city, or of the center of a smaller capital city such as Kigali.
2Well known in the literature as the unconfoundedness assumption, stipulating the conditional independence of

treatment and outcome based on observables. I will present evidence that, in the face of rich geospatial data, this
assumption is not easily dismissed via classical arguments such as political favouritism (Dreher et al., 2019).
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Apart from estimating marginal returns to infrastructure, granular geospatial data is also useful
for gaining deeper insights into Africa’s spatial economy. Section 3 of this paper demonstrates that
explainable AI (XAI) and nonparametric methods such as PCA and clustering, can help understand
the concentration and the local and global economic significance of different types of infrastruc-
ture, as well as the spatial economic efficiency implied by current infrastructure allocations. Hall
et al. (2022) call for the use of XAI to better understand wealth/poverty prediction models, and
in Section 3, I explain the model of Lee & Braithwaite (2022), the current state-of-the-art in Africa.3

The remainder of this paper is structured as follows: Section 2 introduces the detailed geospatial
data and describes how it is processed into analyzable form. Section 3 studies the processed data
and expounds several stylized facts about Africa’s spatial economy. Section 4 introduces the causal
ML framework and presents average and heterogeneous partial infrastructure effects. Section 5 does
the same for counterfactual predictions. Section 6 summarizes the findings and concludes.

2 Data and Preprocessing

The Africa Infrastructure Database4 constructed for this project is large and built up from granular
data sources. It combines detailed geospatial point and vector data with raster data on population,
accessibility, and various economic outcome measures. In the following I introduce these different
types of geospatial data, harmonize, and aggregate them into a precise spatial grid.

2.1 Geospatial Data on Infrastructure

The main source of open geospatial data on infrastructure is Open Street Map (OSM). The Africa
OSM has expanded rapidly over the past years. The growing reliability of OSM is also reflected
in the increased research use of the map. For example, Peng & Chen (2021) use the Zambia OSM
in 2019 to train their image segmentation model, and Graff (2024) uses the OSM routing service
to generate network connectivity data for his spatial model. As a statistical point of reference,
Microsoft Research released a global dataset of segmented roads in 2022 indicating that globally
only 2.3% of roads are missing from OSM, and in Africa around 2.6%. To optimally utilize the map,
I develop a basic functional classification of OSM features and apply it to the entire Africa OSM,
yielding a database of ∼12.6 million points/buildings and ∼3.8 million km of lines of economic
interest. An R package osmclass (Krantz, 2023) to classify OSM features was built for this task.

Apart from OSM, the Overture Maps Foundation aims to create comprehensive open maps
data for developers, with steering members Amazon, Meta, Microsoft, and TomTom. In July
2023, the first production-grade maps dataset was released. With all transport-related data taken
from OSM and buildings untagged, the biggest addition is a global dataset of 57 million places of
interest (POIs) combined from OSM, Meta, and Microsoft. Within Africa, this adds an additional
1.3 million places mostly from Meta, of which 824k have a minimum confidence score above 0.4.
In addition to OSM and Overture, the Alltheplaces open-source project provides web-scraped POI
data, adding 114k POIs mostly from established brands like Starbucks or KFC in Africa.

These sources do not reliably map all infrastructures of economic significance, thus I complement
them with several curated datasets covering specific infrastructures. In particular, I assemble data
on cell towers (OpenCellid), health facilities managed by the public sector (Maina et al., 2019),
power plants (Global Integrated Power Tracker and WRI database (Byers et al., 2018)), steel plants
(Global Steel Plant Tracker), special economic zones (SEZs) (Open Zone Map), and ports (2015
World Port Index (MSI, 2019) and World Bank). Table 1 summarizes the places dataset by source.

While the osmclass R package provides a basic classification of features closely aligned with
the OSM tagging system, and curated datasets have a limited number of functionally distinct
features, the Overture places (OVP) data has > 1000 primary place categories. I thus perform
a second, more rigorous, classification step to categorize features across sources into 47 specific

3This explanation, based on an XGBoost model and SHAP values (Lundberg et al., 2020), is credible as Lee &
Braithwaite (2022) also use XGBoost on many of the same features (alongside a CNN) to predict the wealth index.

4Available at https://drive.google.com/drive/folders/1hpROhpjQ3UHzOTYvzPwnJdEs5dpZP584?usp=sharing
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Table 1: Africa Infrastructure Database: Places Dataset by Source

Source Count of which Polygons Categories

Open Street Map (OSM) 12,221,198 9,038,206 45
OpenCellid (Cell Towers) 1,894,356 0 1
Overture Maps Places (confidence > 0.4) 823,786 0 44
All The Places (Open Web-Scraped POIs) 114,382 0 12
Health Facilities in SSA (Nature Scientific Data) 96,290 0 1
Global Integrated Power Tracker 871 0 1
WRI Global Power Plants Database 363 0 1
Global Steel Plant Tracker 41 0 1
Open Zone Map (Special Economic Zones) 387 0 1
World Port Index 235 0 1
WorldBank Global International Ports 9 0 1

SUM 15,151,918 9,038,206 47

Notes: Table shows places of interest (POIs) data collected from different sources. In OSM POIs may be tagged buildings/have geometries.

economic categories and 26 simplified ones. The full classification process is detailed in Appendix
A. Appendix Table A3 shows the final harmonized classification.

Following harmonization, I also deduplicate the data across sources by allowing only features of
the same category from one source within a 10m radius.5 Curated datasets thereby take precedence
over OSM, which in turn supersedes OVP. Tables 1 and A3 summarize already deduplicated data.

In addition to POIs, I extract linestring features such as (non-residential) roads, larger waterways,
power lines, railways, aeroways, pipelines, and telecommunication lines from OSM. I complement
OSM power lines with electricity grid maps from the European Commission (Kakoulaki & Moner-
Girona, 2020) and the World Bank. Table 2 provides a breakdown. In Total, I collect ∼ 4.4 million
km of network infrastructure, of which ∼1.6 million km are roads, ∼1.5 million km are waterways,
and 967 thousand km are power lines. The other categories sum to 272 thousand km.

Table 2: Africa Infrastructure Database: Lines Data by Category

Category Count Length (Km)

road 763,912 1,621,144
waterway 359,756 1,507,112
power1 1,013,150 967,317
railway 84,707 128,408
aeroway 27,360 11,019
pipeline 9,453 55,394
storage 8,551 389
ferry 2,412 48,259
aerialway 171 175
telecom 87 28,682

SUM 2,269,903 4,379,392
1 OSM power lines were combined with datasets from the EC’s
Joint Research Centre (JRC) and the World Bank.

Lastly, I also obtain 2022 fixed and mobile download and upload speeds from OOKLA via the
EU Africa Knowledge Platform - within map tiles at a resolution of around 610m at the equator.

2.2 Spatial Measures of Wealth and Economic Activity

To study the returns to infrastructure, accurate spatial measures of quantities of interest such
as economic activity/value-added or household wealth are needed. A popular spatial proxy for
economic activity, following the seminal work of V. Henderson et al. (2011, 2012), is remotely sensed
nightlight luminosity (Donaldson & Storeygard, 2016). Since 2011, nightlights data is available
at high resolution (15 arc seconds or ∼500m at the equator) from the Visible Infrared Imaging

5This is done by shifting a 10m grid over the POI features in steps of 1m and deduplicating features within each
10m × 10m square, thus there is some path dependence in terms of which POIs are compared first.
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Radiometer Suite (VIIRS) onboard the Suomi satellite (Gibson et al., 2020). Recently, NASA’s
’Black Marble’ product offers a more processed version of the VIIRS imagery for monitoring
human activities (Román et al., 2018). Early adopters Peng & Chen (2021) show that this data is
substantially more accurate than the conventional VIIRS data in tracking Zambian GDP over time.

Several contributions also spatially distribute GDP (value-added) from national and/or regional
accounts via high-resolution data on population, geophysical features, and nightlights. The widely
used G-Econ database (Nordhaus et al., 2006) provides global GDP estimates for 1-degree grid cells
from 1990 to 2005. More recently, Kummu et al. (2018) distribute national GDP in constant 2015
PPP dollars at 5 arc-min (0.0833 degrees or 9.3km at the equator) resolution, using subnational
value-added estimates from Gennaioli et al. (2013) and population from the HYDE 3.2 database.

Recent efforts, starting with Jean et al. (2016), also use richer data sources to predict wealth
at high spatial resolutions. Notably, Chi et al. (2022) combine vast and heterogeneous data from
satellites, mobile phone networks, topographic maps, as well as connectivity data from Meta to
estimate nationally comparable estimates of wealth - a Relative Wealth Index (RWI) - for all low
and middle-income countries at 2.4km resolution. Focussing on SSA, Lee & Braithwaite (2022)
develop a cross-country prediction methodology combining day- and nighttime satellite imagery,
high-resolution population estimates, and OSM to predict the International Wealth Index (IWI)
- a comparable asset-based wealth index calculated from DHS Surveys for 25 SSA countries since
2017 - for 929,295 populated places in 44 SSA countries at 1-square mile resolution.6 They obtain
a cross-country R2 of 91.7% for the IWI, outperforming all previous research results.

Appendix Figure A1 shows the wealth/activity estimates by Román et al. (2018), Kummu et al.
(2018), Chi et al. (2022), and Lee & Braithwaite (2022). None of these measures is ideal to study the
returns to infrastructure. Nightlights are, by definition, correlated with power infrastructure and
also relatively sparse since very low-light areas are set to 0 in the Black Marble product. Gridded
GDP is, by definition, highly correlated with population and may thus be biased towards residential
areas. The RWI is not constructed to be comparable across countries and is not available for (South-
)Sudan, whereas the IWI is not available for North Africa and uses parts of OSM and population
in its construction. In the following, I use all 4 estimates shown in Figure A1 to determine weights
applied during the aggregation of granular data, but focus on the IWI for final estimation since it
is an accurate high-resolution and cross-country comparable estimate. I also conduct robustness
exercises with nightlights and ground truth IWI estimates from DHS surveys conducted since 2010
to ensure that key results are not driven by the ML model of Lee & Braithwaite (2022).

2.3 Covariate Raster Layers

Many further sources of high-resolution data layers about geophysical features, agriculture, climate,
and conflict could be included as covariates in an analysis of infrastructure and wealth/economic
activity. But economic research such as Storeygard (2016), Jedwab & Storeygard (2022), Donaldson
(2018) and Peng & Chen (2021) has focussed on two particularly important dimensions of spatial
variation affecting economic outcomes: population (urbanization) and market access.

I obtain population estimates for 2020 from the Gridded Population of the World Version
4 (GPW4) project (CIESIN, 2016), which is based on administrative data. I broadly distinguish
between the infant (0-14 years) and working-age (15-49 years) population to allow for local variation
in demographic characteristics. To approximate market access, I consider global accessibility
indicators from Weiss et al. (2018), who develop a global map of travel time (in minutes) to
cities with more than 50,000 people in the year 2015 at 1 km2 resolution. The map is based on a
global friction surface constructed from detailed spatial data on transport networks and geophysical
features. Nelson et al. (2019) expands this work to settlements of 9 different sizes, from tows of 5000
inhabitants to megacities with more than 5 million inhabitants. Nelson (2022) further computes
travel time to ports of 4 different sizes (very small, small, medium, and large) using data from the
2015 (26th) edition of the WPI. From these 12 accessibility maps, I compute 4 which appear most

6From OSM, Lee & Braithwaite (2022) employ the total length of roads, distance to the closest road, number of
junctions, distance to the closest junction, total building area, and the number of buildings for each 1 square-mile
populated area, and the number of and distance to 24 locations of interest such as schools, hospitals, and markets.
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relevant in Africa: (1) travel time to cities >50,000 as in Weiss et al. (2018); (2) travel time to
cities >1 million; (3) travel time to the nearest port, and (4) travel time to one of 43 medium or
large African ports.7 Figure A3 shows 3 of these accessibility maps and total GPW4 population.

2.4 The Ideal Spatial Grid

Jointly analyzing infrastructure and wealth/activity requires spatial binning and data aggregation.
For accurate spatial analysis, an equal area grid is desirable. Discrete Global Grid Systems (DGGS)
enable this via hierarchical tessellation of cells partitioning the globe. Sahr et al. (2003) propose the
Icosahedral Snyder Equal Area Aperture 3 Hexagon (ISEA3H) as a good general-purpose geodesic
DGGS.8 ISEA3H is available at 31 different resolutions, from 12 global cells spaced 7054km apart
to 2059 trillion cells spaced 0.5m apart. High spatial resolutions are desirable but increase the
computational burden and reduce the number of features in each cell, limiting statistical models’
ability to learn about the spatial economy. I thus empirically gauge the highest resolution grid that
still yields acceptable predictions for wealth/economic activity by counting POIs in each cell and
category and computing the average correlation of these counts with the 4 indicators in Figure A1.
I also compute the average R2 of linear models predicting the wealth/activity indicator from all
category counts. Appendix Table A8 reports the results for ISEA3H grids of 7 different resolutions,
ranging from 3,901 cells 87km apart down to 557,766 cells 3.2km apart.

Both individual and joint predictions become less accurate with increasing grid resolution. The
largest drop occurs when moving from a resolution 11 grid (16.8km) to a resolution 12 grid (9.7km).
Resolution 12 cells have a size comparable to the city center of Kigali (a larger city like Kampala
being covered by 3-4 cells) and contain 94 POIs on average (10 in the median cell). To enable high-
resolution estimation for city centers and suburban regions, I opt for the resolution 12 grid and
mitigate the drop in predictive performance and the effects of hard cell borders by allowing spatial
spillovers from up to 2nd-order neighbours. The implementation of these spillovers is described
below. Figure 1 visualizes the grid with GPW4 2020 total population estimates.

2.5 Data Aggregation

I first aggregate the raster data over the 96km2 ISEA3H grid by taking the mean of wealth indices,
travel times, and internet speed, and the sum of GDP, nightlights, and population within each cell.
I also compute the total length in m of network features (Table 2) per cell, distinguishing paved
from unpaved roads and combining 3 types of waterways using average harmonized coefficients from
a Ridge Regression against the outcomes in Figure A1.9 I count POIs in each cell and category
(Table A3), but also consider a weighted approach where I compute quartiles of the building-
areas of all OSM features tagged to buildings, and use counts of 2/3/4 if the area is within the
2nd/3rd/4th quartile. In this way, large features such as large school buildings receive up to 4
times the weight of small school buildings or schools that are just points. Similarly, I also apply
these quartiles counts to the areas of SEZ’s, the capacity of power and steel plants, and the outflow
of ports. The quartile method thus takes into account the intensive margin of features.

To aggregated the 47 detailed categories in Table A3 into the 26 simplified ones, which are
more independent and thus more useful for analysis, I employ weights derived from penalized
regressions predicting the 4 outcomes from Figure A1. Formally, let there be Pj detailed categories
for simplified category j indexed by p. For example the ’communications’ category combines Pj =

7This choice of accessibility maps is sensible as diversified economic activity in SSA tends to take place in the
largest urban centers, of which most countries have one or two. Towns of 50,000 people often function as important
hubs to gather agricultural produce from the region for sale on local markets or transport to larger cities and ports
(Jedwab & Storeygard, 2022). The vast majority of exporting or importing in Africa also happens through medium
and large-sized ports, with modern container terminals and often intersecting international shipping routes.

8An aperture of 3 implies that hexagon areas decrease by a factor of 3 as grid resolution increases. The grid is
implemented in the DGGRID C++ library (Sahr, 2022), and accessed via the ’dggridR’ package (Barnes, 2020).

9Namely rivers, man-made canals, and man-made waterways relating to utilities or agricultural activities such as
drains and ditches, which are initially summed into a variable called ’waterway other’. I then use Ridge Regression
to estimate an equation of the form y = β0 +β1 +river+β2 +canal+β3 +waterway other+ ϵ, where y is the log of
GDP, the IWI or the RWI (nightlights is too sparse). The coefficients are restricted to be greater than zero, and the
optimal Ridge penalty is chosen by 10-fold cross-validation. I then obtain relative coefficients by dividing through
by β1, and averaging them across the 3 outcomes. The result is β1 = 1, β2 = 9.035, and β3 = 6.13, indicating that
man-made features are much more important for spatial activity. Their length is thus increased by a factor βj .
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Figure 1: GPW4 2020 Population in 160,719 96km2 ISEA3H Cells Covering Areas with any POI

Notes: Figure shows GPW4 population summed over an ISEA3H 96km2 discrete global grid covering areas with any POI.

3 detailed categories: ’communications network’ (cell towers, antennas), ’communications other’
(TV or radio station, newspaper, publisher), and ’telecom len’, which is the length (in m) of OSM
telecommunications lines in each cell. I combine these detailed categories into a simplified one (xj)
using appropriate linear weights βjp maximizing the correlation with the outcomes (y)

max
βjp

cor(xj ,y) ∀ j s.t. βjp ≥ 0 where xj =

Pj∑
p=1

βjpxjp. (1)

To prevent overfitting and negative coefficients βjp, this problem is solved using a Ridge Regression,
restricting βjp to be positive, and choosing the optimal penalty parameter (λ∗) via 10-fold cross-
validation. The resulting coefficients βjp are normalized by the coefficient of the most populous
category (’communications network’), and surprisingly consistent across outcomes. I thus average
them to compute final weights. Appendix Table A6 provides three examples. For ’communica-
tions’, the coefficient on ’communications other’ is 11.7 and the coefficient on ’telecom len’ is 0.1,
which are sensible in relation to a cell tower (’communications network’) having a weight of 1.

Finally, I account for economic geography and mitigate cell-border effects by creating additional
’spillover’ variables (i.e., spatial lags) as inverse-distance-weighted average of neighbouring cells

xneigh
j =

∑
i̸=j

xi

δij
/
∑
i̸=j

1

δij
∀i where δij < τ. (2)

I choose τ = 24.2km, which includes all second-order neighbours. The results are robust to the
absence of spillover variables and also to using simple counts instead of quartile counts, but richer
processing results in increased predictive power and spatial lags help limit confounding influences.
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Appendix Table A4 shows summary statistics for the final gridded dataset (simple counts).
Appendix Figure A2 additionally shows histograms of the aggregated wealth/activity measures,
and Appendix Table A5 shows pairwise Pearson’s correlations of these measures aggregated over
the grid. All measures are moderately correlated but follow slightly different distributions.

3 Africa’s Spatial Economy

With rich geospatial data on infrastructure, population, and wealth/activity in Africa at hand, I
investigate Africa’s spatial economy and the current allocation of infrastructure using a graduated
approach. I first analyze the spatial concentration of infrastructure and visualize its allocation.
This yields a characterization of locations relatively lacking infrastructure, further illustrated
by a case study of 5 African capital cities. I then examine the spatial clustering of different
infrastructures and create an index of spatial efficiency measuring the proximity of residential areas,
core infrastructure, and economic clusters. I find that this index is correlated with development
indicators, logistic performance, and Graff (2024)’s road network inefficiency measure. Finally,
I predict the IWI from infrastructure using ML models and interpret them with XAI methods,
yielding a global and local characterization of important infrastructure predictors of wealth.

3.1 Infrastructure Concentration

To study infrastructure concentration, I only consider 88,960 grid cells with more than 960 in-
habitants according to both GPW4 and WorldPop 202010 estimates, that is, cells with more than
10 persons/km2 that have any POI. I then count the POIs in simplified categories and compute
proportions across cells. Sorting these proportions in descending order and cumulatively summing
them yields an empirical CDF measuring infrastructure concentration, which I plot against the
cell index. Figure 2 shows the result, both for individual feature categories, some of which
are highlighted in colour, and for averages across categories, computed before or after the CDF
calculation. GDP and GPW4 population are also included as a reference.

Figure 2: POI Feature Concentration - Empirical CDF’s
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10WorldPop (https://www.worldpop.org/) uses rich geospatial data to estimate population at 1km2 resolution.
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Figure 2 reveals that infrastructure in Africa is highly concentrated - more than population and,
for most categories, GDP. The top 1000 cells (1.12% of 88,960) account for 62% of infrastructure
in the average feature category, but only 49% of total GDP and 27% of total population. Only
education (schools) and power infrastructure (generators) are less concentrated than GDP. The
average CDF suggests that close to 100% of any given infrastructure is allocated in ≤ 10,000 cells.
The only widely mapped feature present in nearly all cells is residential buildings. When infra-
structure is pooled across categories, it is less concentrated, and the top 1000 cells only account
for 30% of infrastructure. If residential buildings, farmland, power, and construction are excluded,
this share rises to 66%. Excluding these four categories also yields 21,891 populated cells (24.6%)
that have no other POI. Infrastructure is only moderately correlated with GDP and population,
and weakly when aggregated to the country level (see Appendix Table A7).

Figure 3 shows analogous results for line features, indicating that frequent features such as
roads, waterways, power, and railways (Table 2) are less concentrated than GDP, and, in the case
of unpaved roads and waterways, also than population. The top 1000 cells only account for 10%
of waterways and unpaved roads, 17% of power lines, 23% of paved roads, and 40% of railways.
Concentration also proceeds gradually: the top 3000 cells account for 20% of unpaved roads and
waterways, 39% of paved roads and 70% of railways, and the top 10,000 cells account for 40%
of unpaved roads and 70% of paved roads. Excluding waterways yields 27.3% of populated cells
that have no other line feature. Appendix Table A7 shows that the total line length in each cell
correlates slightly stronger with household wealth than the total POI feature count.

Figure 3: OSM Line Feature Concentration - Empirical CDF’s
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To also provide a spatial overview, Appendix Figure A4 plots the spatial allocation of 9 critical
infrastructures on a log10 scale. The top panel shows paved roads, power, and communications,
indicating large gaps in central Africa, the Sahel, and the Horn of Africa regions. The great lakes
region zoomed in in these plots is well connected in the central populated areas, but still lacks
connectivity in sparsely populated peripheries such as eastern Congo and Northern Kenya. The
middle and bottom panels of Appendix Figure A4 show education and health facilites, public
services and utilities (excl. power), automotive facilities, public transport, and financial services.
Exempting education and health facilities, these features are largely concentrated in urban areas.11

11Some of these plots evidence differences in data coverage; for example, Tanzania and Uganda both have a
very large amount of educational facilities, averaging around 1 facility per 1000 people, suggesting that OSM
mappers have been more active in these countries. Health seems more balanced across countries partly due to
the data contribution by Maina et al. (2019). Public services (e.g., post-office), automotive (e.g., gas station) and
public transport (e.g., train/bus station) facilities as well as financial services (banks/ATMs) are more consistently
mapped across countries and largely concentrated in cities/towns. Public transport facilities are concentrated along
railway lines in some countries. In general, OSM is far from perfect, and national differences in data coverage may
entail empirical problems which econometrically can be alleviated via fixed effects. In a ML setting, this amounts to
including country dummies (One Hot Encoding). Practically, I find that such dummies do not alter the results but
significantly increase training times, and hence omit them. The flexible ML approach with high-dimensional data
(including spatial lags) appears to deals gracefully with spatial differences in mapping intensity. Yet, comprehensive
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3.2 Comparing Major African Cities

To engage more specifically with the data, I compare 5 large African cities: Accra, Cairo, Lagos,
Nairobi, and Johannesburg. I take 7 hexagons covering the central parts of each city, 692km2 in
total, compute the counts of POIs and the length of lines within these areas and divide them by
the WorldPop 2020 population estimate.12 Figure 4 shows the feature intensities per 1000 people.

Figure 4: Feature Density in 5 Major African Capital Cities per 1000 People

0.011 0.12

0.2 0.97

0.14 1.2

0.092 0.87

0.075 0.59

0.075 0.42

0.54 4.8

0.1 1

0.53 2.9

0.16 0.75

0.036 0.2

0.031 0.24

0.091 1.2

0.092 2.8

4.3 23

0.24 0.89

1.50.06

0.078 0.43

0.0970.012

0.051 1.1

25 410

11 370

33 750

1900.3roads_unpaved

roads_paved

railway_len

power_len

power

storage

mining_industrial

construction

financial

communications

transport_other

automotive

public_service_utility

institutional

services

entertainment

food

shopping

accommodation

tourism_recreation

sport

health

education

farming

0.00 0.25 0.50 0.75 1.00
Proportion of Maximum City Value

F
ea

tu
re

 (
C

ou
nt

 o
r 

m
 fo

r 
R

oa
ds

/R
ai

lw
ay

/P
ow

er
, p

er
 1

00
0 

P
eo

pl
e)

City

Accra

Lagos

Cairo

Nairobi

Johannesburg

Notes: Figure shows feature counts per 1000 inhabitants (WorldPop 2020 estimates) for 5 significant African cities. For
each city, seven 96km2 hexagons covering essential parts of the city are considered. Features are counted in detailed
categories and then combined into simplified categories using the weighted aggregation procedure described in Section 2.5.

Ostensibly, the cities are very heterogeneous, with Johannesburg topping the ranks in most
feature categories. Notably, Johannesburg has 750m of paved transport roads, 370m of railway, and
410m of power lines per 1000 inhabitants, as well as significantly higher automotive, other (public)
transport, communications, education, and health infrastructure than other cities. Conversely,
Lagos ranks at the bottom in many categories, providing less than a quarter of the services per
capita than Johannesburg. Between these two, Nairobi and Accra are performing well, with Nairobi
having the most institutions alongside high densities of education, public services, industrial
facilities, construction, accommodation (hotels), services, tourism and recreation. Accra also has
a high level of institutions, shopping, financial services, accommodation, and education facilities.
It is noteworthy that, apart from Johannesburg, the level of infrastructure in these cities does not
align with their IWI (Accra: 73.5, Lagos: 67.4, Nairobi: 64.2, Cairo: 70.7 [RF prediction], Johan-
nesburg: 81.6) or GDP per Capita13 estimates, with Lagos and Cairo relatively underperforming.

geospatial information would increase the reliability and robustness of the results. Providers like Google or Dataplor
may offer significantly improved coverage, but are too expensive to purchase at scale.

12WorldPop (https://www.worldpop.org/) provides high-resolution (1km2) global population estimates using
geospatial big data (including infrastructure) and ML models to distribute administrative estimates. Thus, it
is locally more accurate than GPW4 data based solely on administrative sources, but ultimately a function of
infrastructure and thus only used for descriptive analysis in this paper.

13Accra: 3953, Lagos: 7872, Cairo: 9672, Nairobi: 10439, Johannesburg: 14317 in 2015 USD PPP. These
estimates are based on coarse administrative data by Gennaioli et al. (2013), scaled by Kummu et al. (2018).
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3.3 Correlations and Clustering

To determine which types of infrastructure cluster together and which are found in populated and
high-income locations, I cluster their spatial correlations. I take the natural log of feature counts in
the simplified classification, compute Pearson’s correlations among all variables, and use 1 minus
the correlations as a distance matrix for hierarchical clustering with complete linkage. Figure 5
shows a dendrogram, and Appendix Figure A5 the corresponding clustered correlation matrix.

Figure 5: Hierarchical Clustering of Variables using Correlation and Complete Linkage
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Notes: Figure shows dendrogram from hierachical clustering with complete linkage using a correlation-based distance
metric, see also Appendix Figure A5. Variables in simple counts correspond to Appendix Table A4 and are cast in logs
before computing correlations, except for the IWI and RWI which are included in levels. Also, travel time estimates (in
minutes) are first log-transformed and then negated to yield positive correlations with other variables.

Different dissimilarity cutoffs reveal distinct groups of correlated variables. Notably, setting
the cutoff around h = 0.98 reveals three prominent groups in the dendrogram, corroborated by the
correlation matrix (Figure A5). The group on the RHS includes travel times, household wealth,
nightlights, power infrastructure, paved roads, and communications. These variables seem to be
a proxy for physical infrastructure, which in turn correlates highly with nightlights and wealth.
The second group, comprising most variables on the LHS of the dendrogram, includes economic
activities in the broadest sense. Finally, the middle cluster includes population, residential areas,
farming, and GDP, which is interpolated across space using population data. The dendrogram and
correlation matrix (Figure A5) thus suggest spatial disparities between where people live, where
they work, and where most physical infrastructure is located. Presumably, more efficient spatial
organizations imply stronger spatial correlations among these three groups of features.

3.4 An Index of Spatial Efficiency

Informed by these observations, I compute an index of spatial efficiency (ISE) along 3 dimensions:
the GPW4 working age (15-49) population, the first principal component (PC1) of paved roads,
power, and communications as a compound measure of (hard) infrastructure, and the PC1 of
education, institutional, health, religion, public service utility, food, shopping, beauty, services,
commercial, mining industrial, tourism recreation, sport, construction, farming, entertainment,
financial, and accommodation as a compound measure of (broadly conceived) economic activity.
The PC1 of roads, power, and communications accounts for 63% of their joint variance, and the PC1
of the activity variables captures 56% of their joint variance. Table 3 shows Pearson’s correlations
among these components. The ISE is then computed as the geometric mean of these correlations

ISE = cor(P, I)
1
3 cor(P,A)

1
3 cor(I, A)

1
3 = 0.642. (3)
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Table 3: Correlations of ISE Dimensions

N = 160,499 P I A

GPW4 POP 15-49 (P) 1.000
Roads & Power PC1 (I) 0.589 1.000
Economic Activity PC1 (A) 0.634 0.708 1.000

Notes: Table reports Pearson’s correlations among dimension indices
(PC1) and population. Their geometric mean is the ISE (Eq. 3).

It is thus an index on the range [0, 1], a value of 1 indicating perfect spatial efficiency with all
productive resources of the spatial economy concentrated in the same location. This is unachievable
in any real-world setting, but the all-Africa ISE of 0.64 suggests much room for improvement. Table
4 shows ISE estimates at the country level, and Appendix Figure A6 a corresponding map. The
average ISE estimate across countries is 0.645.

Table 4: Country-Level ISE Estimates

# ISO3 ISE ISO3 ISE ISO3 ISE ISO3 ISE ISO3 ISE

1 SYC 0.950 TUN 0.788 ZAF 0.719 COD 0.624 BWA 0.508
2 MLI 0.908 MAR 0.783 BFA 0.717 MDG 0.621 LBY 0.486
3 MUS 0.889 TGO 0.779 SWZ 0.715 DJI 0.619 LBR 0.440
4 UGA 0.868 EGY 0.779 GMB 0.712 BDI 0.617 NAM 0.429
5 RWA 0.860 BEN 0.774 GAB 0.694 CAF 0.612 ESH 0.410
6 KEN 0.849 MWI 0.763 NGA 0.693 MOZ 0.593 ERI 0.360
7 GHA 0.830 LSO 0.750 ZWE 0.688 AGO 0.573 SOM 0.284
8 CIV 0.822 TZA 0.745 GIN 0.686 SDN 0.568 CPV 0.252
9 SLE 0.813 ETH 0.744 MRT 0.675 CMR 0.564 COM 0.214
10 STP 0.812 DZA 0.741 COG 0.672 TCD 0.543 GNQ 0.153
11 SEN 0.809 NER 0.729 ZMB 0.651 GNB 0.542 SSD 0.105

Notes: Table reports sorted country-level ISE estimates (Eq. 3) computed from cells within each country.

The country-level ISE estimates are mildly correlated with key development indicators in 2020,
such as GDP per Capita PPP (r = 0.159), Life-Expectancy at Birth (r = 0.215), and the Human
Development Index (r = 0.185). Interestingly, they shows stronger correlations with the 2018
Logistics Performance Index (r = 0.396) and the 2020 Doing Business Index (r = 0.592). They are
also negatively correlated to the hypothetical welfare gains (in percent) from an optimal reallocation
of the road network in each country as calculated by Graff (2024)(r = −0.360). The stronger
association of the ISE with these indicators vis-a-vis development outcomes suggests that it indeed
measures spatial (in)efficiency. The index is uncorrelated with total land area (r = −0.033),
although some smaller states like Seychelles score particularly high.

3.5 ML Prediction and Interpretation

Given the rich nature of Africa’s spatial economy, a ML approach predicting wealth from infra-
structure able to capture non-linear associations in the data can yield further insights. Borisov
et al. (2021) show that gradient-boosting machines (GBMs) (J. H. Friedman, 2001) still generally
outperform deep learning methods on tabular data. Thus, I employ the competition-winning
XGBoost algorithm (Chen & Guestrin, 2016) and tune its hyperparameters with Optuna (Akiba
et al., 2019) on a test set containing 25% of the data.14 The IWI model trained with early stopping
achieves a test set R2 of 78.8%. For comparison, I also train a Random Forest (RF) (Breiman, 2001)
model with default parameters and 1000 trees, which achieves a test set R2 of 73.3%. Appendix
Figure A7 shows empirical CDFs of the absolute values of the residuals, indicating that the XGB
model predicts 76% of test-set observations with an error of less than 5 IWI points.

14The optimal hyperparameters generally feature a low learning rate (η = 0.01− 0.02), deep trees (max depth =
9 − 15), significant randomization over samples (subsample = 0.5 − 0.8) and significant regularization, especially
through constraints on the minimal size of final nodes (min child weight = 6− 20).
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To accurately attribute predictions across the different variables, I compute Shapely Values, a
game theoretic approach to fairly attribute the contribution of variables to a single prediction. In
particular, SHAP values following Lundberg & Lee (2017) give additive variable contributions for
each instance that sum to the difference of the prediction from the average model prediction. I
compute (interventional) SHAP values following Lundberg et al. (2020) for two different XGBoost
models: the model trained on the full dataset evaluated above, and a model excluding population
and travel time estimates. The latter removes strong correlations of these variables with wealth.
The top panel of Figure 6 summarizes overall variable importance for the IWI based on the average
absolute SHAP value across instances. Appendix Figure A9 does the same for nightlights.

Figure 6: (Average) SHAP Values for XGBoost Models Predicting the IWI
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Notes: Figure shows (average absolute) interventional SHAP values for XGBoost models following Lundberg et al. (2020)
(i.e., using the TreeSHAP algorithm to compute SHAP values on tree-based ensemble models like XGBoost efficiently).
Shapely Values are a game-theoretic approach to fairly attribute ML model predictions to the predictors (variables) at the
instance level. SHAP values quantify such attributions as the contribution of each predictor to the difference between the
prediction and the average model prediction across all instances. The average absolute SHAP value across instances (top
panel) thus gives a precise summary of a predictor’s global significance, whereas plotting individual SHAP values using a
Beeswarm plot and colouring them by the feature level (bottom panel) compactly summarizes the direction of the effect
(which may vary non-linearly with the predictor level, more clearly visible in scatterplots as in Appendix Figure A13).

Figure 6 suggests that, apart from population and travel time to major cities and ports, roads,
communications, education, power infrastructure, and residential buildings are the most significant
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predictors of wealth. Many further features such as accommodation (hotels), sport, health, automo-
tive, and public transport facilities are also important. With nightlights (Figure A9), population,
travel time, communications, roads, and power remain important, but sports, automotive facilities,
and industrial areas are large emitters of light and thus rise in the predictor ranking.

To gauge the direction of the effects, which may be heterogeneous as SHAP values are computed
at the instance level and tree ensembles may be highly non-linear, the bottom panel of Figure
6 provides a beeswarm plot of the SHAP values coloured by feature value/intensity. The plot
suggests that most variables have the intended effect, with larger values translating into higher
SHAP values (predictions). Defying the intuition, residential buildings, education, health, and
religion have largely negative effects. This spatial pattern needs to be cautiously interpreted ceteris
paribus, i.e., in the presence of other correlated features often found in wealthy urban locations
(e.g., paved roads, power, communications), more education and health facilities may decrease
model predictions. Appendix Figure A10 shows the same plot for nightlights, with similar results.

The relationship between predictor levels and SHAP values also resembles Accumulated Local
Effects (ALE) plots (Apley & Zhu, 2016; Lundberg et al., 2020). Appendix Figures A13 and A14
provide ALE scatterplots corresponding to the beeswarm plots. They are particularly useful for
detecting thresholds where a feature’s effect on the prediction begins to change. For example, the
SHAP value of paved roads strongly increases above 104 = 10km in a cell, suggesting that roads
are more important for prediction in urban areas. The same applies to power beyond a threshold of
102.5 ≈ 300 facilities (e.g., transformers, generators) per cell. With education, the opposite is the
case: up to 10 facilities per cell, the SHAP value is high, but beyond that, it reduces, indicating that
in central urban spaces, the presence of schools decreases wealth predictions. Health and religious
facilities exhibit similar but weaker dynamics. In contrast, communications (mainly cell towers)
have an almost log-linear positive effect on model predictions. In models with population, the
infant (0-14) population has a strong negative effect on predictions, whereas the adult population
(15-49) has a strong positive effect, implying significant Malthusian dynamics in the data.

4 Estimating Marginal Infrastructure Benefits

Having explored the data in some depth, this section advances by asking about the marginal
effects of infrastructure on wealth/activity. If this were an applied economics paper, I would now
present an identification strategy (such as RCT, IV, RDD, DID) to causally identify the effects
of infrastructure. But quasi-experimental variation is not available at this spatial scale, making it
impossible estimate the (local) returns to any infrastructure across Africa with classical methods.
Fortunately, observational causal inference−causal ML−allows approximating such effects.

The traditional econometric view, still held to some extent in other disciplines, is that if one
can control for the most important confounding factors in an observational setting, a careful ceteris
paribus interpretation of the partial effect is possible. So far, this premise has been applied almost
exclusively in the context of linear regression, implying that if all confounders are observed and
the population model is linear-additive, a careful ceteris paribus interpretation is possible.

However, the ceteris paribus statement need not be that strong, as one can relax the assumptions
of linearity and additivity. The premise of causal ML (also known as ’double’ or ’debiased’ ML) is
that if one observes all factors that confound or proxy for confounding influences, the relationship
between treatment and outcome can be specified conditional on an optimal ML prediction of both
from observables. In the setting at hand, this means that if Africa’s spatial economy is sufficiently
observed through the available granular data on infrastructure, POIs, population, and market
access, and if appropriate ML models are deployed, it may be possible to identify marginal partial-
equilibrium effects of individual infrastructures on wealth/economic activity. Before examining
these identification assumptions in more detail, I introduce this estimation strategy more formally.

I follow Nie & Wager (2021) and Chernozhukov et al. (2017); Chernozhukov, Chetverikov, et al.
(2018), and adopt some notation from Hirano & Imbens (2004). Let Y be an outcome of interest,
W a continuous treatment of interest (a specific infrastructure) with possible values ω ∈ Ω, and
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X = [X′
H ,X′

C ]
′ be a vector of observed confounders, where XH includes covariates that also affect

treatment effect heterogeneity. The unconfoundedness assumption is then formally stated as

Y (ω) ⊥ W | X ∀ ω ∈ Ω, (4)

meaning that the potential outcome Y (ω) is independent of the treatment realization W = ω
conditional on characteristics X. The quantity of interest is the Conditional Average Partial Effect
(CAPE) τ(XH) = E[∂Y/∂W |XH ]. I further make the strong assumption that the CAPE can be
additively separated from the effect of X on Y , such that the following partial linear specification
holds15

Y = τ(XH) ·W + g(X) + ϵ (5)

W = f(X) + η (6)

E[ϵ | X] = E[η | X] = E[η · ϵ | X] = 0. (7)

The nuisance functions g() and f(), and also the treatment effect function τ(), are assumed to be
general functions that can be approximated by appropriate ML estimators. Taking the expectations
of Eq. 5 conditional on X and subtracting it yields

Y − E[Y |X] = τ(XH) · (W − E[W |X]) + ϵ. (8)

This is the specification of Robinson (1988). Assuming one can estimate m(X) = E[Y |X] and
f(X) = E[W |X], and denoting the ’debiased’ variables by Ỹ = Y −m(X) and W̃ = W −f(X) one
can then, following Nie & Wager (2021), estimate the CAPE τ̂(XH) by minimizing the R-Loss

τ∗() = argminτ

{
E[(Ỹ − τ(XH)W̃ )2]

}
= argminτ

{
E[W̃ 2(Ỹ /W̃ − τ(XH))2]

}
. (9)

The RHS of Eq. 9 demonstrates the so-called ’weight trick’, i.e., minimizing the R-Loss with
a nonparametric (ML) estimator τ(XH) amounts to predicting the target Ỹ /W̃ using sampling
weights W̃ 2. For the practical implementation of Eq. 9, Chernozhukov, Chetverikov, et al. (2018)

show that it is important to estimate the first-stage nuisance functions m̂, f̂ via cross-fitting.
In that case, a Neyman Orthogonality condition exists to ensure that the estimate τ̂(XH) from

minimizing the R-Loss is insensitive to biases (e.g., regularization bias) in m̂, f̂ .16 The final stage
estimate τ̂(XH) should also be cross-validated to ensure credible out-of-sample CAPE predictions.

Once τ̂(XH) is obtained, further quantities such as the Average Partial Effect (APE) or
Group Average Partial Effects (GAPE) can be obtained by doubly-robust methods analogous to
Augmented Inverse Probability Weighting (AIPW) (Robins et al., 1994) in the binary treatment
case. Following Chernozhukov et al. (2022), Athey & Wager (2021), and using notation from the
grf R package (Tibshirani et al., 2023), the general form of such an AIPW estimator is

τ̄ =
1

n

n∑
i=1

Γi, Γi = τi(XHi) + hi(Xi,Wi)(Ỹi − τi(XHi)W̃i). (10)

In the binary W case, the debiasing weight h(X,W ) amounts to the so-called Horvitz-Thompson

transformation.17 In the continuous W case, Tibshirani et al. (2023) propose h(X,W ) = W̃/ ˆ̃W 2,

where ˆ̃W 2 denotes a cross-fitted estimate of W̃ 2 from X, which Tibshirani et al. (2023) obtain via
a honest RF (Athey & Imbens, 2016; Breiman, 2001) Out-of-Bag (OOB) predictions. To assess
treatment heterogeneity, Athey &Wager (2019) average the doubly robust scores Γ̂i in high and low
regions of τ̂(XH) and test the difference in means. They also compute the Best Linear Prediction
(BLP) from τ̂(XH) following Chernozhukov, Demirer, et al. (2018) via Eq. 9 as a calibration test.

15This assumption is relaxed in Section 5 estimating counterfactual predictions (causal dose-response functions).
16The Neyman Orthogonality Condition states that ∂m,f (m0, f0)E[ϵW̃ ] = ∂m,f (m0, f0)E[(Ỹ −τ(XH) ·W̃ )W̃ ] =

0, where ∂m,f (m0, f0) is the (Gateaux) derivative of the moment condition w.r.t. to the nuisance parameters m, f
evaluated at their true values denoted by m0, f0. This is zero, such that the moment conditions are not sensitive to
small perturbations (biases) in the nuisance parameter estimates m̂, f̂ . Such moment conditions and the final-stage
(GMM) estimators they produce are called Neyman Orthogonal.

17The Horvitz-Thompson transformation is given by h(X,W ) = (W − e(W ))/(e(W )(1 − e(W ))) where e(W )
denotes the propensity score.
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To satisfy the unconfoundedness assumption, it is critical to choose appropriate estimators for
m(), f() and τ(), and a suitable cross-fitting strategy. Because I have no strong prior beliefs on how
infrastructure (X) affects wealth/economic activity (Y ) and other infrastructure (W ), I remain as
model-agnostic as possible about these functional forms by employing a Super Learner approach
(Van der Laan et al., 2007) to create an optimal weighted combination of several candidate learners
via cross-validation. The most commonly used functional forms in the heterogeneous treatment
effect literature are the LASSO, Random Forests, and Gradient Boosting. Recently, Friedberg et
al. (2020) have proposed Local Linear Forests (LLF) as a variant of Generalized Random Forests
(Athey et al., 2019) more accurate with smooth targets. A causal version of LLF is also available
in the grf R package. I thus create a Super Learner from the predictions of these 4 algorithms

ŜL = β0 + β1
ˆLASSO + β2R̂F + β3

ˆLLF + β4
ˆGBM, (11)

where the weights βi are determined by a relaxed Elastic Net tuned with 10-fold cross-validation.
Each algorithm is also cross-validated/fitted: LASSO is tuned with 10-fold cross-validation using
the built-in functionality of the glmnet R package (J. Friedman et al., 2010). RF and LLF are fit
using the grf package with honest trees and produce OOB predictions. For GBM, I use XGBoost
and employ a 3-fold cross-fitting approach, where an XGBoost model is trained on two folds, using
the excluded fold as a validation set for early stopping and then predicting the outcome in the
excluded fold. The ensemble estimator of the CAPE [τ()] similarly combines estimates from Causal
Forests (Athey et al., 2019) and Local-Linear Causal Forests (Friedberg et al., 2020) obtained via
grf, with cross-validated/fitted LASSO and XGBoost estimates from minimizing the R-Loss (Eq.
9). A cross-validated relaxed Elastic Net is again used as the final stage estimator and corresponds
to the BLP of the CAPE from the 4 constituent estimates. All infrastructure, population, and
travel time estimates enter the model in natural logs. This provides a natural interpretation of
τ̂(XH) as a (semi-)elasticity and improves the fit of the LASSO and LLF models.

The main threat to this DML strategy is the existence of unobserved factors, such as political,
historical, or ethnic contingencies affecting the local placement of certain infrastructures without
affecting the spatial distribution of infrastructure as a whole. Recent contributions such as Dreher
et al. (2019) and Graff (2024) provide evidence of favouritism and colonial legacy having an impact
on activity and infrastructure in Africa, but they do not investigate whether this occurs on a local
selective basis. To provide an example in the spirit of Dreher et al. (2019): if an African leader
supports his or her birth region by only building additional schools, then this may be problematic
because the ML prediction of schools from all other observable characteristics would not be able to
capture the favouritism in education. If, however, the support is more broad-based and the region
has not only more schools but also more hospitals, roads, and access to power, then these other
features increase the ML prediction of schools (and of wealth) in that region and thus favouritism
is absorbed by the ML control functions. Even if the first case holds, my nuisance models include
a spatial lag (neighbouring cell average) of the IWI to eliminate spatial autocorrelation, thus
favouritism in education alone would also have to increase wealth only in the current cell.

To provide empirical evidence, I take data on political and ethnic favouritism and colonial
railroad construction from Graff (2024). I aggregate the infrastructure data, debiased at high
resolution using the ensemble ML estimator, into his 0.5◦ grid. I then run regressions similar to
Tables 1 and 2 in Graff (2024) with both raw and debiased infrastructure quantities as outcome
variables. Appendix Table A9/A10 reports results for simple/quantile counts. The top half
considers raw infrastructure data and provide strong evidence for colonial history and favouritism
extended by leaders towards their birth regions in shaping the spatial distribution of infrastruc-
ture. With the debiased data in the bottom half, most coefficients become zero and insignificant.
A multiple testing adjustment following Clarke et al. (2020) renders all debiased coefficients
insignificant. Thus, I argue that favouritism is an aggregate phenomenon and not a threat to
high-resolution causal ML estimates controlling for other infrastructure and spatial autocorrelation.

Another caveat is that infrastructure also enters high-resolution outcome measures such as
the IWI (through complex ML models learning from OSM and satellite imagery) or nightlights.
However, the Super Learner can likely recover these ’unobserved nuisance functions’, such that the
effect of the treatment infrastructure can still be measured, even though the signal-to-noise ratio
in the debiased data may be higher than with direct ground-truth measurements.
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To test this, I also estimate (C)APEs using IWI estimates from DHS surveys conducted in
SSA since 2010. I obtain 17,396 cells with more than 5 households and 10 persons/km2, for
which I compute the average household IWI, vs. 89,044 cells with IWI predictions by Lee &
Braithwaite (2022). Both estimates are correlated but not perfectly (r = 0.814), reflecting slight
methodological differences and Lee & Braithwaite (2022)’s substantially higher resolution and use
of DHS surveys only from 2017.18 Appendix Table A11 shows the Median CAPE prediction (for all
103,922 populated cells) obtained from both IWI measures, and Appendix Table A12 shows doubly
robust APE estimates computed using only cells where the respective measure is available. Both
tables signify quite similar estimates, especially for important predictors such as roads, communi-
cations, travel time, accommodation, health, and automotive facilities. Curiously, education has
no effect on the DHS-based IWI. The DHS-derived median absolute coefficient size is also slightly
larger. This is likely due to the use of standard mean squared error loss functions for the predicted
IWI, which Ratledge et al. (2022) show generate a narrower distribution of model-predicted values
than the true distribution. It may also be due to the reduced cell sample for the DHS-based
IWI, or differences in methodology or timing, as elucidated above. Notwithstanding, the estimates
are highly correlated across feature categories (r ≥ 0.86 for the APE). Tables A11 and A12 thus
suggest that using the predicted IWI doesn’t significantly alter the results.

A final obstacle is reverse causality between infrastructure and wealth/activity. This is impossible
to rule out in a pure cross-section. However, controlling for the spatial lags of the IWI and of control
infrastructure is likely to mitigate its effects, as similar wealth levels may be present in adjacent
cells and wealthy inhabitants of cell i may also build infrastructure in neighbouring cells.

In summary, I argue that the causal ML strategy accounts for most significant spatial planning
decisions, and the first stage residuals from the Super Learners are likely to represent some noisy
local idiosyncracies that can be used to estimate at least a partial equilibrium APE for different
types of infrastructure. Notwithstanding, as I cannot formally establish causality or identification,
the estimates should be interpreted with caution. I now proceed to report the estimates.

4.1 Average Partial Effects

Table 5 reports the APE of the natural log of infrastructure on the IWI. The LHS shows results
when features are simply counted in each category and cell, whereas the RHS shows results with
quantile counts applied during aggregation, as detailed in Section 2.5. The estimates can be
interpreted as the change in IWI points [0, 100] induced by a 100% increase in the corresponding
feature intensity. Following Athey & Wager (2019), I also calculate APEs for cells above and below
the median CAPE estimate and test for the difference between them as evidence for heterogeneity.19

Table 5 suggests that, controlling for all other features, including automotive and public
transport facilities and travel time to major cities and ports, paved roads have a moderate partial
effect on wealth amounting to a 0.22-point IWI increase to a doubling of the paved road quantity.
The effect of power is even smaller at only 0.07. On the other hand, education, health, communica-
tions, automotive facilities, financial services and accommodation (hotels) have rather large effects
around 0.56-0.87. Public services and public transport have smaller effects around 0.33. Travel
time to major cities and ports, proxying for exogeneous/extra-cell changes in market access, have
the expected negative effect of around -0.5 for major cities and -0.3 for ports. Residential areas also
have a slight negative effect around -0.07. This must be understood ceteris paribus: in the first-
stage models I control for GPW4 population, but this is only available at the smallest administrative
units. Thus, residential buildings may proxy for the remaining uncontrolled variation in population.
The negative coefficient thus suggests that when all other infrastructure is held fixed, adding people
does not increase individual wealth, e.g., ’urbanization without growth’ à la Fay & Opal (2000).20

18I use DHS surveys from 2010 for this exercise to have more data.
19Since the reported CATE is already a BLP across multiple CATE estimators, the BLP cannot be used as an

additional test for effect heterogeneity.
20For reference, I also estimated APEs using the log of nightlights as outcome measures. The results, reported

in Appendix Table A15, are broadly consistent with Table 5, but emphasize light-generating activities such as
automotive facilities (traffic), industrial facilities, and financial services (CBDs), and yield smaller effects for roads,
communications, health, and education. Surprisingly, power infrastructure does not have large effects either.
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Table 5: Average Partial Effects on IWI

Simple Counts Quantile Counts
Feature ATE High Low Diff. ATE High Low Diff.

roads paved 0.218*** 0.283*** 0.153*** 0.131*** 0.216*** 0.28*** 0.151*** 0.128***
power 0.0683*** 0.0849*** 0.0517*** 0.0332 0.0675*** 0.0758*** 0.0592*** 0.0166
education 0.563*** 0.958*** 0.168*** 0.79*** 0.436*** 0.774*** 0.0973*** 0.677***
health 0.803*** 1.25*** 0.359*** 0.887*** 0.772*** 1.15*** 0.389*** 0.765***
communications 0.689*** 0.951*** 0.427*** 0.525*** 0.689*** 1.01*** 0.371*** 0.635***
public service utility 0.327*** 0.452*** 0.203 0.248 0.331*** 0.482*** 0.179*** 0.303*
automotive 0.873*** 0.721*** 1.02* -0.299 0.444** 0.668** 0.22 0.447
transport other 0.332*** 0.395*** 0.27*** 0.125 0.305*** 0.402*** 0.207*** 0.194**
financial 0.626*** 0.884*** 0.369** 0.515** 0.543*** 0.791*** 0.295 0.496**
services 1.38 − 1.38 − 0.748* 1.27* 0.222 1.05
ttime city 1m -0.513*** -0.335*** -0.691*** 0.356*** -0.502*** -0.192*** -0.812*** 0.62***
ttime port any -0.293*** − -0.293*** − -0.295*** -0.141** -0.448*** 0.307***
residential -0.0679*** 0.0271 -0.163*** 0.19*** -0.0519*** 0.0391** -0.143*** 0.182***
accommodation 0.807*** 0.778** 0.835*** -0.0568 0.771*** 0.725*** 0.817*** -0.0925
tourism recreation 0.184** 0.472*** 0.147* 0.325* 0.309*** 0.509*** 0.108 0.401**
mining industrial 0.541*** 0.878*** 0.204*** 0.674*** 0.46*** 0.698*** 0.221*** 0.477***

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1. A ’−’ indicates missing estimates (signifying underidentification).

Notes: Table shows doubly-robust APE estimates of the log feature intensity (simple counts or quantile counts in each cell, see Section 2.5) on
the International Wealth Index [0, 100] by Lee & Braithwaite (2022) (covering 42 SSA countries). The ”High” and ”Low” estimates report the
APE above and below the median CAPE estimate. The ”Diff.” column indicates their difference to test for heterogeneity. All terms are tested
using a two-sided t-test with standard errors derived from the doubly robust scores following Athey & Wager (2019).

4.2 Effect Heterogeneity

Cell-level CAPE estimates are arguably more policy-relevant than an all-Africa infrastructure APE.
This subsection investigates their distribution and correlates before the next subsection analyzes
their spatial patterns. Figure 7 plots kernel density estimates from the IWI CAPEs, indicating
that for most infrastructure categories, there is considerable spatial heterogeneity in the partial
effect. Only paved roads and power appear to yield no negative CAPEs and have very narrow
distributions. Most other features, except for residential buildings and travel times, have largely
positive but very heterogeneous effects. For education and financial services there are some negative
CAPEs. In theory these shouldn’t exist, but ML models are unrestricted. Negative values thus
indicate that the partial effects can be zero or close to zero in some locations.

To compactly summarize important determinants of effect heterogeneity, I compute Pearson’s
correlations between the CAPEs and all variables in logs. I report the top heterogeneity variables
across infrastructure categories based on their average squared correlation with the CAPEs. Figure
8 visualizes the results, where the columns are the CAPEs, and the rows are covariates in decreasing
order of average squared correlations. Rows and columns are clustered with complete linkage.21

At first sight, Figure 8 exhibits rather simple heterogeneity patterns: most CAPEs are either
increasing or decreasing in the level of infrastructure/agglomeration. In particular, the CAPEs
of paved roads, travel time to cities (market access), communications, and, to a lesser extent,
power and financial services are increasing in the level of agglomeration.22 For other types of
infrastructure the opposite appears to be the case. In particular education, public services and
utilities, and mining/industrial facilities have stronger marginal effects on household welfare if
found in structurally weak/rural areas. Interestingly, this is also the case for travel time to ports,
whose negative APE implies that access to a port is more important inside urban agglomerations.
Overall, the results suggest infrastructure substitution effects governed by agglomeration forces,
e.g., in rural areas, the proximity to cities as well as the presence of a school or mine/industrial
plant as employer has larger wealth effects than in cities with diverse employment opportunities.23

21The number reported in Figure 8 is the average correlation across the simple and quantile counts datasets (both
are very similar permitting such averaging).

22Since the CAPE of travel time to major cities is negative, the positive correlation with spatial features implies
that it is smaller inside agglomerations. Intuitively, travel time to the city center (on a log-scale) is less important
for wealth generation inside cities than it is in rural areas which may be near or far from major cities.

23As a further robustness exercise, Appendix Figures A16 and A17 show analogous CAPE estimates from direct
DHS wealth estimates, and Tables A13-A14 show correlations among CAPEs from both IWI measures. On average,
the CAPEs are similar, particularly for important features with a robust effect, such as paved roads, communications,
and mining/industrial facilities. The median CAPE correlation is only around 0.13, and 0.25-0.3 if spillover variables
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Figure 7: DML CAPE Kernel Density Estimates for IWI
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Notes: Figure shows Gaussian kernel density estimates of the Conditional Average Partial Effect (CAPE) of log features’
on the International Wealth Index (IWI) [0, 100] by Lee & Braithwaite (2022) (covering 42 SSA countries). Data are
aggregated in each cell using either simple counts or quantile counts (see Section 2.5) before taking the natural log.

There is also interesting spatial variation in the CAPE estimates not fully conveyed by the
correlations with infrastructure variables. Therefore, I now proceed with a visual/spatial examination
of the IWI CAPE estimates.

4.3 Spatial Examination of Effect Heterogeneity

Figure 9 visualizes the geometric mean CAPE across simple and quantile count-based estimates for
important features−to smooth outliers, both estimates are highly correlated at r > 0.8. Overall,
there is considerable and complex spatial heterogeneity in the CAPEs. The top panel shows
the CAPEs for roads, power, and communications. Exempting power,24 the effects are higher in
urban areas, particularly for paved roads. The higher effects of communications in urban areas
is consistent with Masaki et al. (2020)’s study of broad-band expansion in Senegal and explicable
by higher shares of young skilled workers in cities. Since the IWI estimate by Lee & Braithwaite
(2022) is only available for SSA, CAPEs for North Africa are pure predictions from the SSA-trained
model. This is problematic for paved roads given their much greater density in North Africa.

are omitted. Appendix Figures A18 and A19 further show the densities and main correlates of nightlights CAPEs.
While the densities are broadly similar, the correlation are almost all negative. This may be due to the unavailability
of data in low-lit areas (zero observations are not considered for training).

24In previous versions of this paper, the CAPEs of power was concentrated in cities as well, see Appendix Figure
A15. That version only used power infrastructure as reported in OSM. The present version incorporates some higher-
resolution (sometimes household-level) grid data from the EU’s Joint Research Centre, and yields quite different
results. Thus, the coverage and definition of infrastructures can significantly affect the outcomes.
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Figure 8: Correlates of IWI CAPE Estimates (XH): Average Across Datasets
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Notes: Figure shows average Pearson’s correlations across the simple counts and quantile counts datasets of CAPEs
(columns) with the features in logs (rows). A positive correlation implies that the CAPE is increasing in feature intensity.

The middle panel of Figure 9 shows the CAPEs for education, health, and public services and
utilities (excl. power). Excempting health,25 these broadly follow the opposite spatial pattern,
being highest in underdeveloped regions such as the Sahel region, Congo, and rural areas in
Ethiopia, (South-)Sudan and Somalia. The bottom panel shows CAPEs for financial services,
travel time to large cities, and mining and industrial facilities. The financial services CAPEs
suggest that some countries like Burundi or Lesotho are financially underdeveloped. Travel time
to cities CAPEs are probably the better estimates for what regional connectivity improvements
through new roads could yield in terms of welfare. They are large in many areas outside of
urban centers, consistent with Nakamura et al. (2019)’s study of rural road expansion in Ethiopia
finding that remote areas benefitted the most. Dorosh et al. (2012) find sizeable increases in local
crop production from reduced travel times to nearby towns/cities in SSA. Kebede (2024) also
finds sizeable agricultural income increases attributable to increased production of comparative
advantage crops, and suggests a tradeoff between rural roads benefiting agriculture and highways
and railroads benefitting urban populations and manufacturing. Regarding the latter, Duranton &
Turner (2012) find that a 10% increase in a US city’s stock of highways causes a 1.5% increase in
its employment. This tradeoff also seems evident in these CAPE estimates for the stock of paved
roads and travel time to major cities. Lastly, the mining and industrial facilities CAPEs are also
high in many structurally weak areas, presumably due to their role as major employers.

25In a previous version of this paper (available on the authors website as ’Version 2’), the CAPE of health also
very much resembled the one of public services and utilities, see Appendix Figure A15, but that version did not
include significant data on public health facilities in SSA by Maina et al. (2019). This indicates that comprehensive
and uniform geospatial data is important for robust and policy-amenable causal ML estimates.
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Figure 9: Spatial CAPE Estimates: Geometric Mean

Notes: Figure shows the Conditional Average Partial Effect (CAPE) of log features’ on the International Wealth Index
(IWI) [0, 100] by Lee & Braithwaite (2022) (covering 42 SSA countries). A geometric mean across estimates derived from
simple and quantile counts data (Section 2.5) is reported to limit outliers. Both are correlated (r > 0.8 for all features).
For travel time to major (1M) cities, the CAPE was negated, i.e., dark spots indicate large negative CAPEs.

In summary, CAPE estimates indicate complex associations between distinct infrastructure
classes and the spatial distribution of welfare. The estimates for roads and communications
generally suggest stronger marginal effects inside urban spaces, whereas education, public services,
and market access show stronger effects in rural areas. These findings are broadly consistent
with the literature on urbanization summarized by J. V. Henderson & Turner (2020) identifying
poor access to services in rural areas as a key driver of rural-to-urban migration. While data
limitations preclude their policy use, the results allow for a hopeful outlook that comprehensive
spatial datasets,26 and a refined spatial ML methodology,27 could generate policy-relevant CAPEs.

Apart from their highly partial nature,28 another limitation of CAPEs from a policy point
of view is that marginal effects, and semi-elasticities in particular, are difficult to interpret.

26Quite comprehensive location intelligence data is already available in the commercial realm, e.g., by Google
Maps or Dataplor. The Overture Maps Foundation aims to create comprehensive open maps data for developers.

27Such as Graph Neural Networks or Convolutional Neural Networks which are better suited to spatial datasets.
28As pointed out before CAPEs don’t consider general equilibrium effects, such as the relocation of populations

and economic activities following infrastructure investments. They also hold fixed potentially useful spatial variation,
e.g., the partial effect of roads holding fixed market access and automotive facilities.
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Policymakers are often more interested in counterfactual predictions (CPs), such as the simulated
effects of different levels of infrastructure in the same locations. It is possible to generate CPs with
causal ML, as demonstrated below, but the properties of such estimates still need to be established.

5 Counterfactual Predictions

Counterfactual predictions (CPs) can be obtained by increasing infrastructure quantities in the data
and comparing causal ML model predictions from this altered dataset to the baseline prediction.
This approach is similar to the single-model or ’S-learner’ in the context of CATE estimation with
binary treatments - applied by Hill (2011) with Bayesian Additive Regression Trees (BART) and
discussed in Jacob (2021). I follow Facure & Germano (2021) in using debiased data to avoid
confounding influences in the model. Concretely, I estimate

Ỹ = θ(W̃ ,XH), (12)

where θ() is again an ensemble ML estimator (Eq. 11) and Ỹ , W̃ are debiased. In contrast to
CAPE estimation, this formulation allows for the effect to be non-linear, i.e., to change with the
level of W̃ . After estimating θ() in a cross-fitting manner, I evaluate it at different levels of W̃ . I
compute the 10%, 25%, 50%, 75%, and 90% quantiles of the positive distribution of W across cells,
alternatingly add them to W̃ , and obtain a prediction. Table 6 reports these quantile increases.

Table 6: Counterfactual Increase in Feature Quantity/Cell for Selected Features

Feature 10% 25% 50% 75% 90%

roads paved (m) 2111 6295 10371 14493 24119
power 59 168 314 570 980
education 1 1 3 9 24
health 1 1 2 3 8
communications 1 2 6 23 85
public service utility 1 1 2 4 10
automotive 1 1 2 7 23
transport other 1 1 2 7 20
financial 1 1 2 6 21
services 1 1 2 6 24
ttime city 1m (min) 104 203 363 602 930
ttime port any (min) 130 289 564 951 1520
residential 1 3 8 24 84
accommodation 1 1 2 7 24
mining industrial 1 1 3 8 19
tourism recreation 1 1 3 8 30

Notes: Table shows sample quantiles on simple-counts data, computed across
cells with positive infrastructure for each feature category, respectively. The
quantiles are rounded to the full number. They are used for counterfactual
predictions, i.e., increasing the infrastructure quantity in all cells by this
amount and making a prediction using the causal single-learner (Eq. 12).

As Table 6 indicates, a 10% increase amounts to one additional facility in most categories, 59
additional power-related items (transformers, generators), or a 2111m increase in the length of
paved roads in each cell. Higher quantiles imply more substantive increases per cell.29

Figure 10 shows average CP (ACP) curves with the IWI as outcome measure, and Appendix
Figure A20 with the log of nightlights. Excempting residential buildings which have a positive effect
with nightlights, the results from both outcomes are very similar. The relative magnitudes across
features are also broadly consistent with the APEs. Appendix Tables A16 and A17-A18 show ACP

29Only the respective treatment infrastructure, W̃ , is increased; all other infrastructures XH are unaltered.
Due to debiasing, the OOB R2 for the IWI residuals is only 2-5%, but in-sample fits are considerably higher and
model-based simulation results appear meaningful and very consistent with (C)APE estimates.
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curves derived from the DHS-based IWI, which are also similar, instilling some confidence in the
methodology. Since for many sparse features, both the 10% and 25% treatment levels imply one
additional feature, some ACP curves in Figure 10 have flat segments.

The ACP curves generally suggest decreasing returns. This is particularly pronounced for paved
roads and power, where the 10% increase has a large initial effect, and further increases add much
lower wealth gains. The main reason is that most cells are scarcely populated, without paved roads
or power supply, and do not have many types of features at all. Thus, the existence of any paved
roads or power suggests to the model that more diverse activity takes place in the cell, implying an
increase in wealth. However, further increases in roads/power make these rural cells very different
from any cells the model has learned, and thus don’t yield proportional wealth responses.30

Figure 10: Average Counterfactual Predictions for IWI
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Notes: Figure shows average counterfactual predictions (across all cells) derived from simple and quantile counts data.

5.1 Spatial Examination of 50% Counterfactual Predictions

It remains to examine the spatial distribution of these counterfactual predictions. Since predictions
from simple and quantile count data are very similar, I again report a geometric mean across the
two which slightly downweights outliers. Since an appraisal of all different treatment levels in the
spatial dimension would be overwhelming, I only plot the 50% level in Figure 11.

Evidently, CPs are more similar across different infrastructure types than CAPEs, indicating
that generally the household wealth returns to building a fixed quantity of infrastructure is higher
in rural areas than in cities. A notable exception is travel time to major cities, which the CPs
suggest should be reduced in the vicinity of such cities. Building infrastructure in rural areas as
suggested by most of these maps is, however, not aggregate welfare maximizing since most of these
areas are scarcely populated. It likely is more sensible to build infrastructure in populated places
even though per-household welfare gains are considerably lower.

30Because cells have heterogeneous populations, Appendix Figure A21 also provides average total wealth effects
obtained by multiplying the cell-level predictions with the WorldPop 2020 population estimate and computing the
average across cells. The relative magnitudes are broadly similar.
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Figure 11: Spatial 50% Counterfactual Predictions: Geometric Mean

Notes: Figure shows 50% counterfactual predictions of the International Wealth Index (IWI) [0, 100] by Lee &
Braithwaite (2022), i.e, the predicted wealth increase (Eq. 12) from an increase in each cell amounting to the median of
the non-negative feature density, summarized in Table 6. A geometric mean across estimates derived from simple and
quantile counts data (Section 2.5) is reported to limit outliers. Both are correlated (r > 0.8 for all features).

To provide at least a heuristic, partial equilibrium appraisal of how a social planner seeking to
maximize aggregate welfare might allocate investments, I multiply the 50% CFPRs of Figure 11
by the WorldPop 2020 population measure in each cell. Appendix Figure A23 shows the outcome.
As expected, investments in populated areas generally yield higher aggregate welfare returns, but
there remains considerable heterogeneity across different infrastructures; for example power and
education investments are primarily directed to populated rural areas and less to city centers.

Overall CPs emphasize the benefits of investments in rural areas for poverty alleviation. But
policymakers also consider population, inequality, and other social and political objectives in
determining infrastructure allocations. With more careful efforts at monetizing them, considering
not only the beneficiaries and policy objectives but also heterogeneous construction costs, CPs
appear able to provide useful guidance for spatial planning. They are easier to interpret than
CAPEs, allow simulating different treatment levels, and do not require a restrictive additive
separability assumption. On the other hand, the single-learner approach needs to be better
studied and has significant shortcomings. In particular, the relevance of the treatment variable is
not guaranteed in an unrestricted ML model. Estimating a CAPE using multiple estimators and
combining them via a BLP model has the advantage of at least providing well-calibrated estimates.
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6 Summary and Conclusion

This paper studies Africa’s spatial economy and the interplay of infrastructure with household
wealth and economic activity using rich geospatial data compiled from Open Street Map, Overture
Maps, and multiple recent research and data contributions. It also maps potential economic
benefits from different types of incremental infrastructure investments at high spatial resolutions
using causal machine learning methods. The investigation is fruitful in several respects.

It shows that most infrastructure in Africa is highly concentrated in cities−more than population,
and, exempting educational facilities, the sum of all features, and network infrastructures such as
roads and power, also than GDP. Populated places themselves are very heterogeneous. A case study
of 5 African capital cities reveals that some cities, such as Nairobi and Johannesburg, outperform
others, such as Lagos and Cairo, regarding infrastructure, public services, and amenities per person,
even relative to their average wealth differences. This confirms that other factors, such as city
governance and the overall business environment, also shape the economic activity and infrastruc-
ture distribution. Furthermore, in many countries, infrastructure seems inefficiently allocated,
with population, roads, power, and communications infrastructure, and economic activities often
found in disparate locations. Countries with higher levels of spatial efficiency, characterized by
the average proximity of population, infrastructure, and activities, have higher average levels of
development, a stronger business environment, and greater logistic performance.

Training tree-based ensemble ML models to predict household wealth and economic activity
from infrastructure yields that roads, communications, education, power infrastructure, and res-
idential areas are the best predictors of wealth. Other features such as accommodation (hotels),
automotive facilities, sports facilities, commercial buildings, public services and utilities, and health
facilities are also important. Models including population and travel time to major cities and ports
rank them as top predictors, indicating that market access is similarly essential to physical infra-
structure. The relative importance of these variables varies across locations. In cities, the quantity
of paved roads, communications, and, to a lesser extent, power are key for wealth prediction. In
contrast, education, health, and public service facilities are of greater relevance in rural areas.

Similar patterns are evident in marginal effects ((semi-)elasticities) of household wealth to
specific infrastructures, computed using causal ML methods that remove confounding factors using
first-stage predictive ML models trained on other infrastructures, population, market access, and
spatial lags of wealth and control-infrastructures. Results imply that investments in education,
paved roads, power, communications, industrial facilities, health, automotive facilities, transport,
public services, and hotels yield high average but spatially very heterogeneous returns. Doubly
robust estimates of the Average Partial Effect (APE) of infrastructure on wealth range between 0
and 1 point increases in the International Wealth Index (IWI) in response to the doubling of infra-
structure within a specific category. The APE of paved roads is robustly around 0.22 IWI points,
market access held fixed. The Conditional Average Partial Effect (CAPE) for paved roads is also
positive everywhere but highest in urban spaces, implying that more paved roads are always a good
idea, especially in urban agglomerations. Power has a smaller APE of 0.07. Conversely, education
has a large APE between 0.44 and 0.56, with the largest CAPEs realized in rural areas lacking
schools. Communications also has a large APE of 0.696; the CAPEs are generally higher in urban
areas. Public services have an APE of around 0.33, with higher CAPEs in less developed areas.
Mining and industrial facilities have an APE of around 0.5, with, surprisingly, higher CAPEs in
rural areas, presumably because they are not major income generators in African cities. Market
access also has a sizeable impact, with a doubling of travel time to major cities (> 1 million inhab-
itants) decreasing the IWI by -0.5 points and a doubling of travel time to ports having a similar
effect of -0.3 IWI points. Access to cities is more important in rural areas, whereas access to ports
is more critical inside cities. Residential buildings have a small negative APE between -0.05 and
-0.07, suggesting that all other infrastructure held fixed, individual wealth is an inverse function of
the number of people (proxied for by buildings). Readers should keep in mind that these marginal
partial equilibrium effects are long-term and static, i.e, they do not consider the dynamic spatial
relocation of economic activity and populations following infrastructure investments.
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Counterfactual predictions, obtained by applying a spatially uniform increase in infrastructure
to the data (e.g., one additional school in all cells) and predicting the outcome (e.g., wealth)
using a debiased ML model, yield greater effects in rural areas compared to the semi-elasticity
CAPE estimates. However, the number of beneficiaries in such areas is smaller. Factoring in the
differences in population generally emphasizes investments in more populated locations, especially
those lacking the respective infrastructure. The correct use of counterfactual predictions, even if
perfectly causal, thus critically depends on the objective of policymakers: welfare maximization,
poverty alleviation, and inequality aversion objectives imply different spatial policies derived
from the same set of predictions. Apart from these policy challenges, the less robust estimation
methodology and lack of theoretical literature on counterfactual predictions are clear disadvantages
despite their more natural interpretation and less restrictive theoretical assumptions.

In conclusion, despite the advantages of the approach taken in this paper, the findings need
to be treated with caution. Infrastructure spending should not be allocated directly based on
the empirical results without improving the data and methodology further. However, given the
elusiveness of comprehensive causal empirical evidence at great spatial detail and scale, they offer
a significant advance toward data-driven evidence on the local and global returns to infrastructure
and public/private services regarding wealth/activity generation and poverty alleviation. Many
methodological improvements are conceivable, such as using more sophisticated spatial weighting
matrices or ML methods explicitly capable of learning spatial dependencies (such as Graph Neural
Networks or Convolutional Neural Networks). A refined methodology and comprehensive geospatial
data may generate infrastructure potential maps that provide helpful guidance for spatial planning
and gauging the returns to small public infrastructure investments across different locations. As
geospatial data is becoming increasingly rich and the measurement of wealth and activity across
space continues to improve, the pioneering results presented in this paper allow for a hopeful outlook
on causal machine learning’s potential to enhance spatial economic and development planning.
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Appendix

Constructing the Africa Infrastructure Database

The basis for the database is the Open Street Map (OSM) of Africa from April 2024, downloaded
from Geofabrik.de. OSM has three basic data structures (nodes, ways, and relations) labeled
through tags. A tag consists of a key and a value. Under the free tagging system, an object
can have unlimited tags. However, the community agrees on certain key-value combinations for
the most commonly used tags, which act as informal standards. In particular, the OSM Feature
Documentation lists 29 primary tags, such as amenity, building, highway, water, landuse, shop,
craft, etc. These primary tags are used with specified values to classify certain features, for example,
amenity = school, shop = bakery, or building = hotel, and often accompanied by supplementary
tags providing more precise information about a feature, e.g., name, description, denomination, etc.

There are three main obstacles to reconciling this tagging system with the economic significance
of map features: (1) a feature can be classified according to multiple primary tags, e.g., amenity =
school, building = education, landuse = education or amenity = hospital, healthcare = laboratory,
emergency = yes; (2) sometimes classifications based on primary tags can conflict, e.g., for a
religious school amenity = school and religion = christian, or for a hotel with restaurant building =
hotel and amenity = restaurant; (3) the proximity of the object to the economic activity concerned
may not be very clear, e.g., amenity = school and landuse = education both signify the primary
use of an object for educational purposes, but the ’school’ tag is a lot more specific. The tagging
system of OSM is also subject to changes, and due to the crowdsourced nature of the map, some
features are not classified according to current standards.

Constructing a functional classification of OSM is thus more an art than a science. One needs
to devise a system of economic categories and lay out all tags according to which an economic
category is to be assigned and the order in which these tags and categories are to be matched.
This needs to be informed by both the OSM tagging standards and empirical accounts of current
mapping practice. Once a classification scheme has been specified and applied to the map, features
assigned to multiple categories need to be investigated, and the classification needs to be iteratively
refined to minimize overlap and misclassification.

Following this process, I have developed a classification scheme to classify point and polygon
(closed ways) map features into 33 economic categories based on 33 (mostly primary) tags and
341 values to be matched, including matching on any value for specific tags like ’sport’ or ’power.’
Within each category, tags providing precise information about the nature of the feature are
matched first, and more general tags like ’building’ or ’landuse’ are matched last. The classification
excludes natural features like mountains or lakes, natural or administrative boundaries, and minor
features with little economic significance, such as traffic signs or flag poles. Minor infrastructure
related to power, telecommunications, and military purposes is, however, included.

The osmclass R package developed for this purpose helps apply such classifications - defined as
nested lists of categories, tags, and values - to OSM PBF files imported as spatial data frames. It
includes the classifications used in this paper. Table A1 summarizes the classification and features
extracted from the Africa OSM of April 2024, sorted by the number of features on the map.31

31This is not the order in which categories were matched, which was chosen to minimize
misclassification in Africa. A detailed view of the classification is provided in the R package at
https://github.com/SebKrantz/osmclass/blob/main/R/classifications.R.
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Table A1: Classification of Africa OSM Point and Polygon Features: April 2024

Category NTags NVals Tags and Number of Matched Values N

residential 3 11 building (8), building:use (2), landuse (1) 6,382,886
power 4 4 power (all), utility (1), building (1), tower:type (1) 1,672,204
farming 4 19 place (1), man made (1), building (9), landuse (8) 1,252,658
construction 2 2 building (1), landuse (1) 566,912
transport 12 49 amenity (21), highway (9), railway (all), aerialway

(all), waterway (6), aeroway (all), public transport
(all), bridge (all), junction (all), office (2), man made
(2), building (3)

453,510

shopping 4 9 amenity (2), shop (2), building (4), landuse (1) 358,407
education 3 7 amenity (3), building (3), landuse (1) 328,016
sports 3 13 leisure (7), sport (all), building (5) 177,134
facilities 2 19 amenity (18), building (1) 161,083
religion 6 21 amenity (6), building (11), office (1), landuse (1),

religion (all), denomination (all)
118,861

food 1 7 amenity (7) 115,087
health 3 11 amenity (9), healthcare (all), building (1) 106,353
utilities other 5 18 man made (12), water (1), office (1), building (3),

landuse (1)
95,801

commerical 2 2 building (1), landuse (1) 90,549
industrial 4 7 industrial (all), man made (2), building (1), landuse

(3)
84,928

recreation 4 20 amenity (5), leisure (13), landuse (1), building (1) 79,447
historic 1 1 historic (1) 75,332
accommodation 2 8 tourism (7), building (1) 67,054
craft 1 1 craft (all) 59,246
tourism 3 4 tourism (1), shop (1), office (2) 47,617
financial 2 11 amenity (6), office (5) 46,040
institutional 3 7 office (5), building (1), landuse (1) 42,775
public service 2 12 amenity (10), building (2) 36,658
mining 2 5 man made (4), landuse (1) 29,711
communications 7 17 amenity (2), telecom (all), communication (all),

utility (1), man made (6), office (1), tower:type (5)
28,740

storage 3 6 man made (2), building (3), landuse (1) 28,308
office other 2 2 office (all), building (1) 26,158
waste 4 8 amenity (5), water (1), man made (1), landuse (1) 21,313
education alt 3 9 amenity (6), office (2), building (1) 13,852
military 3 5 military (all), building (3), landuse (1) 12,696
entertainment 2 17 amenity (13), leisure (4) 6,028
emergency 1 1 emergency (1) 4,622
creativity 3 8 amenity (2), leisure (1), office (5) 2,142

SUM 33 341 12,592,128

Table A2 shows a similar classification of line-based features. Residential roads are excluded as
they are irrelevant to trade and strongly overlap with residential buildings recorded on the map.
Smaller natural water features such as streams, wadis, and ponds are also excluded.

Table A2: Classification of Africa OSM Line Features: April 2024

Category NTags NVals Tags and Number of Matched Values N Length (Km)

road 1 10 highway (10) 763,912 1,621,144
waterway 3 12 waterway (8), water (1), man made (3) 359,756 1,507,112
power 1 1 power (all) 120,052 422,504
railway 1 1 railway (all) 84,707 128,408
aeroway 1 1 aeroway (all) 27,360 11,019
pipeline 1 1 man made (1) 9,453 55,394
storage 1 2 man made (2) 8,551 389
ferry 1 1 route (1) 2,412 48,259
aerialway 1 1 aerialway (all) 171 175
telecom 2 2 telecom (all), communication (all) 87 28,682

SUM 11 32 1,376,805 3,834,579
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Harmonized Classification

I then combine the point/polygon data from OSM with the 824 thousand POIs from the Overture
Places layer to create a uniform classification. This involves creating 47 detailed categories and
matching features to them based on OSM tags or primary POI categories in Overture maps, of
which there are more than 1000. To simplify the dataset again for most analytical use cases and
ensure that each category has sufficient features, I combined some of the 47 categories, yielding a
simplified classification of 26 categories. The other POI data, e.g., from All The Places, is more
limited and easier to classify (e.g., mostly shops, restaurants, and hotels clearly tagged) and can
seamlessly be assigned to the 47 categories.

Deduplication

Having classified POIs from 11 different sources (Table 1) into 47 categories, it remains to sort
out duplicates across sources. The order of precedence is to favour curated data (such as Global
Integrated Power Tracker or health facilities by Maina et al. (2019)) above OSM, which in turn
takes precedence over Overture places (which various online appraisals found less accurate). POIs
are then deduplicated within each category and 10m square. This resolution is motivated by
considering a dense shopping mall where stores may be only 10m apart. POIs are resolved to grid
cells by dividing their coordinates by the degree-equivalent of 10m at the equator [10/(40075017/360) ≈
9e-5], subtracting the modulus of this division from the coordinates and using them to group
and deduplicate features. To ensure equal distance representation across Africa, longitudes are
multiplied beforehand by cos(lat× π/180), where lat is the latitude. After a deduplication round,
the coordinates are incremented by 1m degree-equivalent (≈ 9e-6), and the process is repeated. A
sequence of such 1m nudges to the lon and lat coordinates is used to ’shift the grid’ across space
in a structured way until no more duplicates can be found. Since which POIs are first compared
depends on the initial position of the ’grid,’ there is some path dependence in this process. However,
the clear hierarchy across sources ensures that curated datasets are generally fully retained.

Table A3 summarizes the finally classified and deduplicated POI data, including the corresponding
number of POIs and the share of OSM and OSM polygons (tagged buildings).

Linestring (network) data is mainly taken from OSM, which is a reliable data source for roads,
waterways, and railways. However, its coverage of power lines is limited to major lines in most
regions. To increase granularity, I add Africa electricity grid maps from the EU’s Joint Research
Center (Kakoulaki & Moner-Girona, 2020) and the World Bank, which more than doubles the
total length of power lines observed from 423 thousand km in OSM to 967 thousand km (Table
2) following harmonization. To combine/harmonize the linestrings, I compute a geometric union
between all three data sources. This obscures definitions of individual power lines from different
datasets and breaks up the linestrings into smaller segments, but for the purposes of this research,
only the total length of lines per cell matters. Table 2 summarizes the final lines dataset.
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Table A3: Africa Infrastructure Database: Places Dataset by Category

detailed (47) simplified (26) count perc polygons poly perc osm osm perc src cat

residential residential 6,276,302 41.42 6,256,643 99.69 6,267,969 99.87 12
communications network communications 1,914,448 12.64 502 0.03 20,092 1.05 31
communications other communications 14,245 0.09 826 5.80 8,239 57.84 31
power power 1,654,373 10.92 1,711 0.10 1,651,175 99.81 92
farming farming 1,228,969 8.11 1,219,018 99.19 1,223,781 99.58 28
construction construction 585,168 3.86 565,752 96.68 574,167 98.12 90
transport other transport 303,186 2.00 21,166 6.98 293,233 96.72 188
automotive transport 164,845 1.09 61,571 37.35 118,311 71.77 84
education essential education 392,361 2.59 216,007 55.05 326,848 83.30 27
education other education 27,943 0.18 2,520 9.02 10,811 38.69 36
shopping essential shopping 227,820 1.50 43,393 19.05 173,233 76.04 42
shopping other shopping 176,718 1.17 5,459 3.09 106,535 60.29 1,239
wholesale shopping 9,994 0.07 5,094 50.97 6,185 61.89 18
facilities public service utility 173,669 1.15 50,344 28.99 170,252 98.03 37
utilities other public service utility 109,465 0.72 18,261 16.68 108,419 99.04 48
public service public service utility 58,369 0.39 18,571 31.82 40,192 68.86 32
health essential health 247,386 1.63 33,318 13.47 95,917 38.77 233
health specialized health 8,295 0.05 38 0.46 538 6.49 51
health other health 5,722 0.04 125 2.18 1,037 18.12 68
sport sport 181,758 1.20 123,156 67.76 158,453 87.18 242
industrial mining industrial 138,407 0.91 62,032 44.82 121,246 87.60 156
mining mining industrial 30,209 0.20 22,378 74.08 29,824 98.73 10
SEZ mining industrial 387 0.00 0 0.00 0 0.00 6
religion religion 161,716 1.07 59,682 36.91 116,015 71.74 84
food food 160,645 1.06 7,602 4.73 74,966 46.67 141
financial financial 151,493 1.00 3,289 2.17 42,018 27.74 37
accommodation accommodation 123,248 0.81 19,853 16.11 61,228 49.68 34
parks and nature tourism recreation 66,925 0.44 43,918 65.62 57,798 86.36 32
tours and sightseeing tourism recreation 40,796 0.27 1,698 4.16 26,200 64.22 42
museums tourism recreation 5,096 0.03 812 15.93 1,805 35.42 28
beaches and resorts tourism recreation 4,856 0.03 171 3.52 312 6.43 8
outdoor activities tourism recreation 3,110 0.02 157 5.05 1,033 33.22 53
commercial commercial 109,580 0.72 97,251 88.75 108,351 98.88 11
historic historic 100,738 0.66 27,458 27.26 72,683 72.15 94
beauty beauty 65,711 0.43 769 1.17 27,305 41.55 29
professional services services 30,948 0.20 413 1.33 2,427 7.84 65
home services services 27,575 0.18 391 1.42 5,466 19.82 78
business services services 6,168 0.04 56 0.91 382 6.19 31
institutional institutional 62,313 0.41 9,974 16.01 44,450 71.33 65
drinking entertainment 35,314 0.23 2,256 6.39 23,858 67.56 18
performing arts entertainment 11,584 0.08 1,415 12.22 2,785 24.04 19
nightlife entertainment 7,865 0.05 302 3.84 2,011 25.57 14
gaming entertainment 1,425 0.01 65 4.56 250 17.54 13
storage storage 28,077 0.19 22,761 81.07 27,757 98.86 17
military military emergency 13,104 0.09 9,953 75.95 12,441 94.94 41
emergency military emergency 3,348 0.02 75 2.24 3,200 95.58 39
port port 244 0.00 0 0.00 0 0.00 9

total total 15,151,918 100.00 9,038,206 59.65 12,221,198 80.66 35

Notes: Table summarizes places of interest (POIs) data collected from different sources (Table 1), classified into 47 economic categories and
deduplicated by category and location (as described above). Column ’count’ records the number of POIs, ’perc’ the percentage in total
POIs, ’polygons’ the number of tagged OSM polygons (buildings) interpreted as POIs, ’poly perc’ the percentage of POIs that are polygons,
’osm’ the number of POIs taken from OSM, ’osm perc’ the feaction of POIs from OSM, and ’src cat’ the number of primary categories
(across sources) mapping to a specific detailed category (e.g., there are 1,239 different kinds of small/specialized shops mapping to the
’shopping other’ category).

35



Descriptive Statistics

Table A4: Dataset of Spatial Predictors (Simplified Categories) over 96km2 Grid, N = 160,499

# Variable Ndist Mean SD Min 25% 50% 75% Max

POIs: simple counts combined across detailed categories
1 accommodation 224 0.8 9.8 0.0 0.0 0.0 0.0 1399.0
2 automotive 307 1.0 17.7 0.0 0.0 0.0 0.0 2114.0
3 beauty 207 0.4 10.3 0.0 0.0 0.0 0.0 1382.0
4 commercial 205 0.7 34.7 0.0 0.0 0.0 0.0 8264.0
5 construction 536 3.6 86.6 0.0 0.0 0.0 0.0 13209.0
6 farming 770 7.7 49.8 0.0 0.0 0.0 1.0 2581.0
7 financial 276 0.9 18.1 0.0 0.0 0.0 0.0 2208.0
8 food 316 1.0 19.0 0.0 0.0 0.0 0.0 1696.0
9 historic 183 0.6 15.6 0.0 0.0 0.0 0.0 5580.0
10 institutional 169 0.4 6.6 0.0 0.0 0.0 0.0 794.0
11 port 4 0.0 0.0 0.0 0.0 0.0 0.0 3.0
12 power 2435 115.9 319.9 0.0 0.0 0.0 20.0 14536.0
13 religion 248 1.0 11.0 0.0 0.0 0.0 0.0 1079.0
14 residential 1739 39.1 488.8 0.0 0.0 2.0 10.0 65378.0
15 sport 280 1.1 31.9 0.0 0.0 0.0 0.0 5112.0
16 storage 133 0.2 5.9 0.0 0.0 0.0 0.0 765.0
17 transport other 383 1.9 32.3 0.0 0.0 0.0 0.0 2999.0
18 communications 1194 14.9 198.7 0.0 0.0 0.0 0.0 22867.0
19 education 363 2.6 20.9 0.0 0.0 0.0 0.0 2414.0
20 health 332 1.9 22.9 0.0 0.0 0.0 1.0 3521.0
21 entertainment 420 1.7 32.4 0.0 0.0 0.0 0.0 3944.0
22 services 197 0.4 9.4 0.0 0.0 0.0 0.0 1573.0
23 shopping 698 5.5 126.8 0.0 0.0 0.0 0.0 21543.0
24 public service utility 140 0.4 5.7 0.0 0.0 0.0 0.0 952.0
25 mining industrial 272 1.2 11.5 0.0 0.0 0.0 0.0 1027.0
26 military emergency 75 0.1 1.7 0.0 0.0 0.0 0.0 249.0
27 tourism recreation 288 1.0 15.8 0.0 0.0 0.0 0.0 2441.0

Lines: total length in km in each cell
28 dam len 1868 29.5 431.6 0.0 0.0 0.0 0.0 79889.0
29 aeroway len 2607 66.6 805.7 0.0 0.0 0.0 0.0 68671.0
30 ferry len 1362 57.4 958.9 0.0 0.0 0.0 0.0 95065.0
31 pipeline len 4031 281.0 2675.5 0.0 0.0 0.0 0.0 331527.0
32 railway len 7707 776.7 4975.3 0.0 0.0 0.0 0.0 706405.0
33 roads paved 18393 2825.1 9028.5 0.0 0.0 0.0 0.0 465351.0
34 roads unpaved 27757 6361.4 10741.4 0.0 0.0 0.0 10768.0 625255.0
35 waterway len 36356 23069.8 150937.0 0.0 0.0 0.0 13141.5 11753756.0

Raster Layers: sum of population and mean of travel time and internet speed (bytes/s) in each cell
36 internet speed 53324 20800.5 22664.3 151.0 6209.0 12031.0 27115.0 278876.0
37 pop gpw4 ages 0 14 14147 2323.1 9063.3 0.0 192.0 716.0 2013.0 729958.0
38 pop gpw4 ages 15 49 15038 2786.9 14553.7 0.0 207.0 726.0 2071.0 1503562.0
39 ttime city 50k 3380 281.8 457.2 0.0 76.0 156.0 312.0 9303.0
40 ttime city 1m 4333 610.5 631.5 0.0 245.0 451.0 779.0 9868.0
41 ttime port any 4723 811.5 758.8 0.0 316.0 602.0 1054.0 10065.0
42 ttime port ml 5229 1093.5 909.3 1.0 453.0 849.0 1472.0 10216.0
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Figure A1: Spatial Measures of Wealth and Economic Activity

Gridded GDP PPP in 2015 NASA Black Marble Nightlights 2022
(Kummu et al., 2018) (Román et al., 2018)

International Wealth Index (2017+) Relative Wealth Index (2000+)
(Lee & Braithwaite, 2022) (Chi et al., 2022)

Notes: Figure shows different measures of wealth and economic activity at their original resolution, with blank missing or
zero values. The IWI is the main outcome measure, but all measures assist data aggregation (Section 2.5, Table A6).
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Figure A2: Histogram of Wealth/Activity Measures in 96km2 Grid, Avg. Obs.: 101,417
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Table A5: Pearson’s Correlations of Wealth/Activity Measures in 96km2 Grid

log GDP PPP log avg rad IWI RWI

Pooled log GDP PPP 1 (126123)
Across log avg rad .453* (33293) 1 (36656)
Countries IWI .397* (98948) .576* (25608) 1 (105924)

RWI .449* (95295) .577* (31858) .550* (88101) 1 (101456)

Scaled log GDP PPP 1 (126123)
and log avg rad .436* (33293) 1 (36656)
Centered IWI .363* (98948) .578* (25608) 1 (105924)
by Country RWI .349* (95295) .560* (31858) .533* (88101) 1 (101456)

Notes: N. obs in parentheses, a ’*’ denotes significance at the 5% level.
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Figure A3: Raster Covariate Layers: GPW4 Population (2020) and Market Access (2015)

Notes: Figure shows accessibility maps from Nelson et al. (2019); Nelson (2022), and GPW4 population (CIESIN, 2016).
The population layer has some missing data. These gaps are imputed in the final dataset following aggregation over a
96kkm2 grid (in Section 2.4) using the ’missForest’ algorithm by Stekhoven & Bühlmann (2012), yielding a 97% OOB-R2.
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Figure A4: Spatial Distribution of Selected Infrastructures: Length/Count (Log10 Scale)

Notes: Figure shows total length in m (of paved roads and power lines) or count in 96km2 ISEA3H cells for 9 key
infrastructures on a log10 scale.

Table A7: Correlations of Total Infrastructure with Wealth/Activity and Population

IWI RWI GDP PPP avg rad pop gpw4 pop wpop

Cell-level, N = 88,961 populated cells (>10 persons/km2)
Total PP Feature Count 0.302 0.401 0.481 0.484 0.546 0.562
Total PP Features ERFPC 0.249 0.351 0.586 0.590 0.603 0.617
Total Line Length 0.519 0.578 0.477 0.623 0.491 0.515
Total Line Length EW 0.558 0.588 0.482 0.640 0.490 0.515

Country-level, N = 55
Total PP Feature Count -0.009 -0.263 0.538 -0.055 0.800 0.799
Total PP Features ERFPC -0.010 -0.265 0.535 -0.057 0.799 0.799
Total Line Length 0.412 -0.040 0.730 0.265 0.719 0.721
Total Line Length EW 0.530 0.049 0.769 0.332 0.671 0.667

ERFPC = excluding residential buildings, farmland, power and construction

EW = excluding waterways
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Table A6: Detailed Category Combination Weights (βjp) for 3 Categories

communications communications network communications other telecom len
IWI 1.00 5.70 0.24
RWI 1.00 13.65 0.10

GDP PPP 1.00 8.86 0.02
avg rad 1.00 18.65 0.03

Average 1.00 11.72 0.098

mining industrial industrial mining SEZ
IWI 1.00 3.43 89.13
RWI 1.00 0.93 66.93

GDP PPP 1.00 0.00 52.49
avg rad 1.00 0.86 23.97

Average 1.00 1.31 58.13

shopping shopping essential shopping other wholesale
IWI 1.00 1.46 15.41
RWI 1.00 1.46 14.73

GDP PPP 1.00 3.82 52.37
avg rad 1.00 2.57 18.71

Average 1.00 2.33 25.31

Notes: The weights are normalized, then averaged across outcomes.

Table A8: POIs in ISEA3H Grids of Different Resolutions

Res. Area Spacing N. Cells N. Features Mean[Feat./Cat.] Corr. LM
(km2) (km) (N) Mean Median Mean Median (r) R2

8 7774.21 87.08 4,091 3,703.720 509 116.978 33.235 0.347 0.592
9 2591.40 50.28 11,243 1,347.676 144 58.674 16.200 0.336 0.552
10 863.80 29.03 29,247 518.067 48 33.677 9.250 0.317 0.504
11 287.93 16.76 71,192 212.832 20 21.489 6.000 0.290 0.425
12 95.98 9.68 160,719 94.276 10 14.657 4.000 0.255 0.358
13 31.99 5.59 336,587 45.016 6 10.154 3.000 0.224 0.321
14 10.66 3.23 646,959 23.420 4 7.121 2.000 0.195 0.278

Notes: Res. is the grid resolution, also given in terms of cell area and spacing between the centroids of adjacent cells.
N. Cells is the number of grid cells containing any POI in Africa. N. Features is average/median number of POIs in
a cell. Mean[Feat./Cat.] is the average number of POIs per detailed category (47) in Table A3, computed for each
cell and aggregated across cells using the mean or median. Corr. gives the average Pearson’s correlation of the feature
count within each category with each of the 4 spatial wealth/activity measures in Figure A1. Thus, it is an average of
47×4 = 188 correlation coefficients. LM gives the average R2 of a linear model of the same 4 outcome measures against
the features counted in 47 categories, thus it is the average of 4 R2 estimates. The chosen resolution is highlighted.
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Figure A5: Clustered Correlations of Variables
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Figure A7: Empirical CDF’s of Residuals from ML Models Predicting the IWI [0, 100]
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Notes: Dataset has 42 predictors, not including spatial spillover variables. The training set has 86,354 observations, the
test set 28,782. Training set R2 is 96.0% for XGB and 93.9% for RF. Test set R2 is 78.8% for XGB and 73.3% for RF.

Figure A8: Empirical CDF’s of Residuals from ML Models Predicting the Log of Nightlights 2022
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Notes: Dataset includes 42 predictors, excluding spillover variables. The training set has 28,976 observations, the test set
9,655. The training set R2 is 91.8% for XGB and 92.7% for RF. The test set R2 is 68.4% for XGB and 63.6% for RF.
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SHAP Values for Other Outcomes

Figure A9: SHAP Variable Importance: Log Nightlights 2022
With Population and Travel Time No Population and Travel Time

0.0 0.1 0.2 0.3 0.4 0.5 0.6
mean(|SHAP value|)

pop_gpw4_ages_15_49
pop_gpw4_ages_0_14

ttime_port_ml
automotive

communications
ttime_city_50k

religion
mining_industrial

roads_paved
sport

power
ttime_city_1m

ttime_port_any
financial

residential
roads_unpaved

waterway_len
education

internet_speed
services

food
transport_other

farming
public_service_utility

Sum of 18 other features

pop_gpw4_ages_15_49
pop_gpw4_ages_0_14

ttime_port_ml
automotive

communications
ttime_city_50k

religion
mining_industrial

roads_paved
sport

power
ttime_city_1m

ttime_port_any
financial

residential
roads_unpaved

waterway_len
education

internet_speed
services

food
transport_other

farming
public_service_utility

Sum of 18 other features

+0.62
+0.51

+0.28
+0.25
+0.24

+0.2
+0.15
+0.15
+0.14
+0.13
+0.13
+0.12

+0.11
+0.11

+0.09
+0.08
+0.08
+0.07

+0.06
+0.05
+0.05
+0.05
+0.05
+0.05

+0.33

XGB: log_avg_rad

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
mean(|SHAP value|)

communications
automotive

roads_paved
religion

sport
mining_industrial

power
residential

roads_unpaved
financial

internet_speed
waterway_len

health
education

services
accommodation

food
historic
farming

pipeline_len
transport_other

public_service_utility
shopping

construction
Sum of 12 other features

communications
automotive

roads_paved
religion

sport
mining_industrial

power
residential

roads_unpaved
financial

internet_speed
waterway_len

health
education

services
accommodation

food
historic
farming

pipeline_len
transport_other

public_service_utility
shopping

construction
Sum of 12 other features

+0.35
+0.25

+0.24
+0.23

+0.18
+0.18

+0.17
+0.15

+0.13
+0.12
+0.12
+0.12
+0.12

+0.11
+0.1

+0.08
+0.07

+0.07
+0.06
+0.06
+0.06

+0.05
+0.03
+0.03

+0.24

XGB: log_avg_rad

Figure A10: SHAP Effect Distribution: Log Nightlights 2022
With Population and Travel Time No Population and Travel Time
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SHAP Values from Feature Counts

Figure A11: SHAP Variable Importance: Simple Feature Counts
IWI, no POPTT Log Nightlights, no POPTT
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Figure A12: SHAP Effect Distribution: Simple Feature Counts
IWI, no POPTT Log Nightlights, no POPTT
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SHAP Values Scatter (ALE) Plots

Figure A13: IWI: SHAP Values and Feature Levels - Top 12 Predictors

With Population and Travel Time

No Population and Travel Time
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Figure A14: Log Nightlights 2022: SHAP Values and Feature Levels - Top 12 Predictors

With Population and Travel Time

No Population and Travel Time
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Robustness Checks and Additional Results

Figure A15: CAPE Estimates for Power and Health using Only OSM Data (February 2024
Version)

Power Health

Table A9: ML Debiased Infrastructure and Favouritism: Simple Feature Counts

Colonial Railroads Political Favouritism Ethnic Favouritism
Ln Kilometers Ln Years in Power Ever in Power Discriminated Excl. from Gov.

feature Raw Ctrl Raw Ctrl Raw Ctrl Raw Ctrl Raw Ctrl

Raw Infrastructure Data, in Natural Logs
roads paved .517*** .29*** .521*** .02 1.506*** .355 -.164 .225 -.674*** -.061
power .374*** .287*** .417*** .066 1.024*** .224 .571** .304 -.186 .338*
education .097*** .041*** .149*** -.02 .369*** -.005 .052 .038 -.29*** .001
health .076*** .029*** .122*** -.048** .324*** -.076 .048 -.05 -.128*** .037
communications .212*** .115*** .236*** -.013 .622*** .078 .106 .118 -.229*** .133
public service utility .037*** .02*** .063*** -.016 .161*** -.018 .01 .006 -.018 .037*
automotive .062*** .036*** .08*** -.023 .203*** -.031 .045 .054 -.021 .065**
transport other .142*** .102*** .114*** -.021 .292*** -.013 .06 .071 -.031 .027
financial .057*** .025*** .067*** -.049*** .169*** -.091** .066** .031 -.002 .009
services .039*** .015*** .045*** -.034*** .104*** -.074*** .017 .03* -.003 .028*
ttime city 1m -.162*** -.088*** -.189*** .051* -.477*** .076 .098 .108 .316*** .066
ttime port any -.121*** -.069*** -.21*** -.017 -.585*** -.104* -.003 -.004 .366*** -.128***
residential .032** .052*** .167*** -.075 .444*** -.129 -.085 -.007 -.257** .019
accommodation .074*** .036*** .081*** -.013 .24*** .019 .07* .07* -.025 .008

Debiased Data via Ensemble ML Models
roads paved .015 .012 -.031 -.067 .025 -.063 -.034 .191 .006 -.186
power 0 .003 .023 .028 .021 .024 .205** .186 .048 .051
education 0 -.003 -.014 -.011 -.048 -.031 -.011 .002 0 -.007
health -.005* -.007** -.005 -.007 -.005 -.014 -.014 -.046* -.005 -.021
communications -.007* -.007 -.001 .016 -.005 .043 .018 -.011 -.032 -.039
public service utility -.003* -.001 .005 .006 .012 .015 -.003 -.009 .006 .022*
automotive -.002 0 -.002 0 -.021 -.013 .018* .019 -.005 .002
transport other .003 .003 -.004 -.001 -.02 -.012 .042*** .017 .021* -.005
financial -.002 -.001 -.012* -.016** -.024 -.034* .018* .02 .002 -.011
services .001 -.002* 0 0 .001 .003 .002 .008 .001 .008
ttime city 1m -.005 -.002 .002 .002 -.025 -.024 .011 .015 .012 .046
ttime port any -.014*** -.006* -.033** -.015 -.125*** -.081** .008 .046 .034 -.003
residential -.002 -.002 -.011 -.044 -.053 -.108 -.039 -.035 -.027 -.008
accommodation .005*** .004* 0 0 .008 .007 .007 .027 -.003 -.01

Observations 5346 5346 5346 5346 5346 5346 385 385 385 385
Country FE No Yes No Yes No Yes No Yes No Yes
Geographic Controls No Yes No Yes No Yes No Yes No Yes
Simulation Controls No Yes No Yes No Yes No Yes No Yes

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1; based on cluster-robust standard-errors
Notes: See Graff (2024) Tables 1 and 2 for further details about the variables and controls.
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Table A10: ML Debiased Infrastructure and Favouritism: Quantile Feature Counts

Colonial Railroads Political Favouritism Ethnic Favouritism
Ln Kilometers Ln Years in Power Ever in Power Discriminated Excl. from Gov.

feature Raw Ctrl Raw Ctrl Raw Ctrl Raw Ctrl Raw Ctrl

Raw Infrastructure Data, in Natural Logs
roads paved .517*** .29*** .521*** .02 1.506*** .355 -.164 .185 -.674*** -.067
power .373*** .286*** .416*** .065 1.022*** .222 .571** .273 -.186 .31*
education .111*** .046*** .186*** -.012 .465*** .025 .047 .014 -.341*** .034
health .079*** .031*** .137*** -.047* .375*** -.063 .04 -.083 -.147*** .023
communications .212*** .115*** .237*** -.012 .624*** .078 .106 .072 -.229*** .086
public service utility .045*** .026*** .079*** -.011 .213*** .01 .037 .005 -.026 .029
automotive .069*** .04*** .093*** -.022 .238*** -.022 .062* .069* -.02 .07**
transport other .146*** .105*** .119*** -.02 .306*** -.009 .075 .074 -.027 .048
financial .058*** .026*** .067*** -.049*** .171*** -.091** .064** .028 -.005 .007
services .039*** .015*** .045*** -.035*** .103*** -.075*** .017 .027 -.004 .024
ttime city 1m -.162*** -.088*** -.189*** .051* -.477*** .076 .098 .116 .316*** .089
ttime port any -.121*** -.069*** -.21*** -.017 -.585*** -.104* -.003 -.002 .366*** -.124***
residential .01 .049*** .153** -.102 .413** -.195 -.094 -.058 -.176 .021
accommodation .076*** .037*** .088*** -.01 .261*** .031 .07* .06 -.03 .012
mining industrial .073*** .045*** .096*** -.022 .219*** -.054 -.077 .009 -.151*** .17***
tourism recreation .044*** .027*** .086*** -.012 .241*** .009 0 .022 -.031 .014
construction .056*** .027*** .114*** -.012 .286*** -.004 -.056 .085 -.359*** .107

Debiased Data via Ensemble ML Models
roads paved .018 .015 -.025 -.06 .027 -.059 -.057 .161 .002 -.159
power -.005 -.002 .041 .043 .076 .07 .246*** .202 .073 .087
education .001 -.003 -.019 -.018 -.068 -.057 -.026 -.029 -.009 -.024
health -.006* -.006* -.012 -.015 -.02 -.033 -.019 -.068** .001 -.019
communications -.01*** -.009** -.004 .013 -.016 .03 .035 .012 -.033 -.053*
public service utility -.003 -.001 .011 .012 .035* .04* .007 -.001 -.004 .002
automotive -.003 -.001 .001 .004 -.016 -.008 .026** .028* -.001 .003
transport other .003 .003 -.004 0 -.023 -.015 .052*** .021 .029** .006
financial -.002 -.001 -.009 -.014** -.02 -.03* .02** .02 .003 -.009
services 0 -.002* -.001 0 -.002 .001 -.002 .004 0 .007
ttime city 1m -.006** -.004 -.002 -.003 -.033 -.034 .007 .002 .009 .053*
ttime port any -.015*** -.006* -.033** -.017 -.127*** -.082** -.002 .048 .032 .001
residential -.003 -.001 -.021 -.058 -.068 -.134 -.034 -.091 -.016 -.062
accommodation .005** .004 .002 .004 .014 .017 .004 .022 -.004 -.004
mining industrial -.003 -.002 .003 .004 -.023 -.023 -.045* -.04 .01 .031
tourism recreation -.004* -.001 0 -.002 .005 -.005 -.018 -.009 -.011 -.022
construction -.006 -.003 -.005 .006 -.023 .001 .044 .117* -.007 .126**

Observations 5346 5346 5346 5346 5346 5346 385 385 385 385
Country FE No Yes No Yes No Yes No Yes No Yes
Geographic Controls No Yes No Yes No Yes No Yes No Yes
Simulation Controls No Yes No Yes No Yes No Yes No Yes

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1; based on cluster-robust standard-errors
Notes: See Graff (2024) Tables 1 and 2 for further details about the variables and controls.
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Table A11: Median CAPE: DHS IWI vs. IWI Prediction by Lee & Braithwaite (2022)

Simple Counts Quantile Counts
Feature DHS L&B DHS L&B

roads paved 0.248 0.231 0.179 0.225
power 0.197 0.068 0.221 0.071
education 0.009 0.509 -0.032 0.347
health 0.932 0.724 1.033 0.661
communications 0.798 0.655 0.571 0.624
public service utility 0.770 0.214 0.149 0.381
automotive 0.615 0.580 0.437 0.468
transport other 0.593 0.300 0.686 0.296
financial 3.054 0.992 2.302 0.891
services 1.766 0.412 0.651 0.262
ttime city 1m -1.285 -0.566 -1.323 -0.521
ttime port any -0.965 -0.215 -1.003 -0.229
residential -0.068 -0.047 0.007 -0.025
accommodation 1.507 0.802 1.356 0.654
mining industrial 0.841 0.509 0.497 0.544
tourism recreation -0.061 0.149 -0.185 0.198
construction 0.246 0.153 0.093 0.180

Median Abs. Coef. 0.770 0.412 0.497 0.347

Corr. Spearman 0.865 0.809
Corr. Pearson 0.857 0.902

Abbreviations: DHS = IWI estimate from Demongraphic and Health
Survey; L&B = Predicted IWI estimate by Lee & Braithwaite (2022).

Notes: the DHS-based IWI estimate is computed from all DHS surveys
conducted in SSA since 2010. It is averaged across 96km2 hexagonal
grid cells just like the IWI estimate of Lee & Braithwaite (2022).
Grid cells with less than 5 households or less than 10 people per km2

population density are excluded. This yields 17,396 cells with DHS-
based IWI estimates used for training, versus 89,048 cells available with
the predicted IWI by Lee & Braithwaite (2022). After the ensemble
CAPE model is trained, a CAPE prediction is made for 103,922 cells
which have a population density above 10 persons/km2 and any POI
feature. The median of these CAPE estimates is reported in this table.
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Table A12: Average Partial Effect: DHS IWI vs. IWI Prediction by Lee & Braithwaite (2022)

Simple Counts Quantile Counts
Feature DHS L&B DHS L&B

roads paved 0.202 0.218 0.173 0.216
power 0.087 0.068 0.114 0.068
education 0.031 0.563 -0.073 0.436
health 0.585 0.803 0.645 0.772
communications 1.037 0.689 1.031 0.689
public service utility 0.842 0.327 0.470 0.331
automotive 1.482 0.873 0.952 0.444
transport other 0.382 0.332 0.324 0.305
financial 1.857 0.626 1.641 0.543
services 1.911 1.380 4.506 0.748
ttime city 1m -1.158 -0.513 -1.174 -0.502
ttime port any -1.014 -0.293 -0.937 -0.295
residential -0.097 -0.068 -0.101 -0.052
accommodation 1.518 0.807 1.073 0.771
mining industrial 0.740 0.541 0.508 0.460
tourism recreation 0.137 0.184 0.094 0.309
construction 0.211 0.161 0.154 0.186

Median Abs. Coef. 0.740 0.513 0.508 0.436

Corr. Spearman 0.863 0.870
Corr. Pearson 0.895 0.874

Abbreviations: DHS = IWI estimate from Demongraphic and Health
Survey; L&B = Predicted IWI estimate by Lee & Braithwaite (2022).

Notes: the DHS-based IWI estimate is computed from all DHS surveys
conducted in SSA since 2010. It is averaged across 96km2 hexagonal
grid cells just like the IWI estimate of Lee & Braithwaite (2022).
Grid cells with less than 5 households or less than 10 people per km2

population density are excluded. This yields 17,396 cells with DHS-
based IWI estimates used for training, versus 89,048 cells available with
the predicted IWI by Lee & Braithwaite (2022). After the ensemble
CAPE model is trained, a CAPE prediction is made for 103,922 cells
which have a population density above 10 persons/km2 and any POI
feature. The APE is obtained through augmented inverse probability
weighting following Eq. 10, and thus only considers cells where outcome
data is available. Differences in the estimates are thus expected because
with L&B much more cells are available for APE calculation.
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Table A13: CAPE Correlations: DHS IWI and IWI Prediction by Lee & Braithwaite (2022)

Feature Simple Counts Quantile Counts

roads paved 0.593 0.119
power 0.157 0.040
education 0.317 0.024
health 0.013 -0.038
communications 0.271 -0.171
public service utility 0.100 0.386
automotive 0.108 0.114
transport other 0.126 0.001
financial 0.287 0.362
services 0.000 -0.006
ttime city 1m 0.038 -0.022
ttime port any -0.118 -0.025
residential -0.000 0.383
accommodation 0.246 0.013
mining industrial 0.422 0.271
tourism recreation 0.076 0.000
construction 0.488 -0.213

Median Corr. 0.126 0.0128
Median Abs. Corr. 0.126 0.040

Notes: the DHS-based IWI estimate is computed from all DHS surveys
conducted in SSA since 2010. It is averaged across 96km2 hexagonal grid
cells just like the IWI estimate of Lee & Braithwaite (2022). Grid cells with
less than 5 households or less than 10 people per km2 population density
are excluded. This yields 17,396 cells with DHS-based IWI estimates used
for training, versus 89,048 cells available with the predicted IWI by Lee
& Braithwaite (2022). After the ensemble CAPE model is trained, a
CAPE prediction is made for 103,922 cells which have a population density
above 10 persons/km2 and any POI feature. Pearson’s correlation of these
CAPE estimates is reported in this table.

Table A14: CAPE Correlations: DHS IWI and IWI Prediction by Lee & Braithwaite (2022):
Previous Estimates without Separate Spillover Variables (One Variable Per Infrastructure)

Count Count + SS Tag Weights Weights + SS

roads paved 0.213 0.305 0.245 0.246
power -0.337 0.249 -0.001 0.078
education 0.550 0.379 0.632 -0.338
health 0.319 0.280 0.251 0.708
communications 0.559 0.271 0.399 0.305
public service utility 0.292 0.542 0.802 0.267
automotive 0.301 -0.070 0.575 0.161
transport other -0.083 0.329 -0.031 0.181
financial 0.253 0.128 0.402 0.303
services 0.231 0.003 0.025 -0.313
ttime city 1m 0.325 0.353 0.288 0.419
ttime port any 0.500 0.257 0.508 0.375
residential 0.556 0.135 0.454 -0.009
accommodation 0.305 0.481 0.325 0.260
industrial 0.132 0.196 0.727 0.510
tourism recreation 0.158 0.069 0.374 0.373
construction 0.296 -0.153 0.037 -0.000

Median Corr. 0.294 0.244 0.284 0.195
Median Abs. Corr. 0.298 0.244 0.299 0.232

Abbreviations: SS = Spatial Spillovers.
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Figure A16: DML CAPE Kernel Density Estimates for DHS-Based IWI
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Figure A17: Top 25 Correlates of DHS-Based IWI CAPE Estimates: Average Across Datasets
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Table A15: Average Partial Effects on Log Nightlights 2022

Simple Counts Quantile Counts
Feature ATE High Low Diff. ATE High Low Diff.

roads paved 0.0198*** 0.0328*** 0.00682** 0.026*** 0.0193*** 0.0351*** 0.00358 0.0315***
power 0.0235*** 0.0436*** 0.00338 0.0402*** 0.0247*** 0.0445*** 0.00497 0.0395***
education 0.0825*** 0.144*** 0.0209 0.123*** 0.0532*** 0.104*** 0.00198 0.102***
health 0.107*** 0.252*** -0.0382** 0.29*** 0.101*** 0.243*** -0.0405** 0.284***
communications 0.17*** 0.212*** 0.128*** 0.0847*** 0.168*** 0.226*** 0.111*** 0.115***
public service utility 0.112*** 0.214*** 0.00991 0.204*** 0.106*** 0.21*** 0.00209 0.208***
automotive 0.247*** 0.313*** 0.181*** 0.132** 0.201*** 0.272*** 0.131*** 0.141***
transport other 0.107*** 0.144*** 0.0696*** 0.0744** 0.111*** 0.157*** 0.0646*** 0.0928***
financial 0.246*** 0.414*** 0.0787*** 0.336*** 0.231*** 0.451*** 0.0109 0.441***
services 0.184** 0.277** 0.0908 0.186 0.133** 0.214** 0.0527 0.161
ttime city 1m -0.0285 0.0928*** -0.15*** 0.243*** -0.0119 0.129*** -0.152*** 0.281***
ttime port any -0.0795*** 0.0781*** -0.237*** 0.315*** -0.0764*** 0.0507** -0.204*** 0.254***
residential 0.0105* 0.0346*** -0.0137 0.0483*** 0.016*** 0.0444*** -0.0124 0.0568***
accommodation 0.1*** 0.197*** 0.0035 0.194*** 0.0877*** 0.206*** -0.0302 0.236***
mining industrial 0.235*** 0.372*** 0.097*** 0.275*** 0.185*** 0.282*** 0.0878*** 0.195***
tourism recreation 0.0139 0.0769** -0.0491* 0.126*** -0.000934 0.0523 -0.0542* 0.107**
construction 0.0505*** 0.0921*** 0.00898 0.0831*** 0.0515*** 0.093*** 0.0101 0.0829***

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: Table shows doubly-robust APE estimates of the log feature intensity (simple counts or quantile counts in each cell, see Section 2.5) on
the log of NASA nightlights 2022 (Román et al., 2018). The ”High” and ”Low” estimates report the APE above and below the median CAPE
estimate. The ”Diff.” column indicates their difference to test for heterogeneity. All terms are tested using a two-sided t-test with standard
errors derived from the doubly robust scores following Athey & Wager (2019).
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Figure A18: DML CAPE Kernel Density Estimates for Log Nightlights 2022
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Figure A19: Top Correlates of Nightlights CAPE Estimates: Average Across Datasets
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Figure A20: Counterfactual Predictions for Log of Nightlights
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Figure A21: Counterfactual Predictions for IWI: Average Total Wealth Effects per Cell
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Figure A22: Counterfactual Predictions for DHS-Based IWI
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Table A16: Median 50% Counterfactual Prediction: DHS IWI vs. IWI by Lee & Braithwaite
(2022)

Simple Counts Quantile Counts
Feature DHS L&B DHS L&B

roads paved 1.087 1.622 1.165 1.470
power 0.762 0.302 0.694 0.354
education 0.405 0.662 0.242 0.802
health 0.739 0.776 0.821 0.713
communications 1.710 0.996 1.871 1.112
public service utility 0.534 0.131 0.330 -0.007
automotive 0.363 0.583 0.176 0.512
transport other 0.674 0.171 0.773 0.291
financial 2.368 1.000 2.377 1.112
services 1.285 0.609 1.068 0.435
ttime city 1m -0.505 -0.481 -0.469 -0.442
ttime port any -0.365 -0.351 -0.386 -0.371
residential 0.398 -0.068 0.406 -0.044
accommodation 1.762 0.371 1.517 0.533
mining industrial 0.506 0.477 0.575 0.595
tourism recreation 0.108 -0.058 0.232 0.012

Median Abs. Coef. 0.604 0.479 0.635 0.477

Corr. Spearman 0.715 0.724
Corr. Pearson 0.700 0.715

Abbreviations: DHS = IWI estimate from Demongraphic and Health
Survey; L&B = Predicted IWI estimate by Lee & Braithwaite (2022).

Notes: the DHS-based IWI estimate is computed from all DHS surveys
conducted in SSA since 2010. It is averaged across 96km2 hexagonal
grid cells just like the IWI estimate of Lee & Braithwaite (2022).
Grid cells with less than 5 households or less than 10 people per km2

population density are excluded. This yields 17,396 cells with DHS-
based IWI estimates used for training, versus 89,048 cells available
with the predicted IWI by Lee & Braithwaite (2022). Counterfactual
predictions are made for 103,922 cells which have a population density
above 10 persons/km2 and any POI feature. The median of the 50%
increase counterfactual prediction is reported in this table.

60



Table A17: Correlations of Counterfactual Predictions: DHS IWI and IWI by Lee & Braithwaite
(2022)

Feature Simple Counts Quantile Counts

roads paved -0.045 -0.115
power -0.019 0.136
education 0.069 0.349
health 0.272 0.219
communications 0.281 0.410
public service utility 0.299 0.029
automotive -0.016 0.323
transport other 0.109 0.006
financial 0.385 0.505
services 0.177 0.058
ttime city 1m 0.345 0.540
ttime port any 0.127 0.118
residential 0.304 0.271
accommodation 0.298 0.364
mining industrial 0.145 0.208
tourism recreation 0.062 0.091

Median Abs. Corr. 0.161 0.214
Median Abs. Corr. 0.161 0.214

Notes: the DHS-based IWI estimate is computed from all DHS surveys
conducted in SSA since 2010. It is averaged across 96km2 hexagonal grid
cells just like the IWI estimate of Lee & Braithwaite (2022). Grid cells with
less than 5 households or less than 10 people per km2 population density
are excluded. This yields 17,396 cells with DHS-based IWI estimates used
for training, versus 89,048 cells available with the predicted IWI by Lee
& Braithwaite (2022). Counterfactual predictions are made for 103,922
cells which have a population density above 10 persons/km2 and any
POI feature. The average Pearson’s correlation of these counterfactual
predictions across the two IWI estimates is reported in this table.

Table A18: Correlations of Counterfactual Predictions: DHS IWI and IWI by Lee & Braithwaite
(2022): Previous Estimates without Separate Spillover Variables (One Variable Per Infrastructure)

Count Count + SS Tag Weights Weights + SS

roads paved 0.396 0.743 0.471 0.610
power 0.313 0.141 0.166 0.195
education 0.054 0.297 0.238 0.378
health 0.147 0.091 0.152 0.336
communications 0.184 0.282 0.264 0.345
public service utility 0.237 0.166 0.193 0.321
automotive 0.129 0.502 0.215 0.497
transport other 0.267 0.165 0.218 0.240
financial 0.269 0.057 0.376 0.244
services 0.206 0.302 0.325 0.368
ttime city 1m 0.216 0.131 0.257 0.125
ttime port any 0.226 0.036 0.240 0.108
residential -0.060 0.057 -0.032 0.081
accommodation 0.233 0.574 0.363 0.651
industrial 0.147 0.218 0.146 0.170
tourism recreation 0.239 0.161 0.308 0.302

Median Corr. 0.216 0.163 0.248 0.298
Median Abs. Corr. 0.216 0.163 0.248 0.298

Abbreviations: SS = Spatial Spillovers.
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Figure A23: Spatial 50% CFPRs (Geometric Mean) × WorldPop 2020 Population

Notes: Figure shows 50% counterfactual predictions of the International Wealth Index (IWI) [0, 100] by Lee &
Braithwaite (2022), i.e, the predicted wealth increase (Eq. 12) from an increase in each cell amounting to the median of
the non-negative feature density, summarized in Table 6, multiplied with the WorldPop 2020 population measure. It is
thus an estimate of the partial effect of the investment on total cell welfare.
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