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1 Introduction and Existing Literature

Interbank markets are crucial for the functioning of the economy. However,
as painfully illustrated by the global �nancial crisis (GFC) in 2007/08, cre-
ating links at the micro-level may generate systemic risk at the macro-level.
Thus, the structure of the interbank network, with the banks having con-
nections in terms of credit relationships, is important for its stability. The
economy depends on stable interbank markets, since short-term money mar-
ket rates a�ect those of longer maturities and thus the real economy. From
this viewpoint, it appears quite surprising that the economic profession has
not been concerned much with the functioning of interbank markets until
recently. The usual focus is on the overnight segment of the interbank de-
posit market, since it tends to be the largest spot segment of money markets.
In this paper, we analyze the network properties of the Italian e-MID (elec-
tronic market for interbank deposits) data based on overnight loans during
the period 1999-2010.

Most existing studies on the structure of real interbank markets have
been conducted by physicists trying to get an idea of the topology of di�er-
ent interbank markets. Examples include Boss et al. (2004) for the Austrian
interbank market, Inaoka et al. (2004) for the Japanese BOJ-Net, Soramäki
et al. (2006) for the US Fedwire network, Bech and Atalay (2010) for the US
Federal funds market, and De Masi et al. (2006) and Iori et al. (2008) for
the Italian e-MID (electronic market for interbank deposits). The most im-
portant �ndings reported in this literature are: (1) most interbank networks
are quite large (e.g. more than 5000 banks in the Fedwire network), (2)
interbank networks are sparse, meaning that only a minority of all possible
links do actually exist, (3) degree distributions appear to be scale-free (with
coe�cients between 2-3), (4) transaction volumes appear to follow scale-free
distributions as well, (5) clustering coe�cients are usually quite small, (6)
interbank networks are small worlds and (7) the networks show disassortative
mixing with respect to the bank size, so small banks tend to trade with large
banks and vice versa.

Most relevant for our study are the two papers on the e-MID. We should
stress here that the e-MID data are the only interbank data which can be
purchased freely without any restrictions. In contrast, getting access to sim-
ilar datasets for other markets is usually far more complicated. The authors
analyze daily networks from 1999-2002 and �nd intradaily and intramonthly
seasonalities. The authors conclude that the networks appear to be random
at the daily level. This �nding is in stark contrast with the �ndings of pref-
erential lending relationships in the Portuguese interbank market by Cocco
et al. (2009). In this paper, we are mostly concerned with matching these
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seemingly incompatible �ndings, by showing that the aggregation period has
an e�ect on the informational value of the underlying networks. The main
�nding is that daily networks indeed feature a substantial amount of ran-
domness and cannot be considered as being representative for the underlying
`latent' network. This is illustrated on the basis of a number of network
statistics which are compared to those of random networks. Furthermore, we
�nd a substantial amount of asymmetry in the network. Last but not least,
we �nd that the GFC can be identi�ed as a signi�cant structural break for
many network measures.1

The remainder of this paper is structured as follows: Section 2 gives a
brief introduction into (interbank) networks, Section 3 introduces the Italian
e-MID trading system and gives an overview of the data set we have access
to. Section 4 describes our �ndings and Section 5 concludes and discusses
the relevance of these �ndings for future research.

2 Networks

A network consists of a set of N nodes that are connected by M edges
(links). Taking each bank as a node and the interbank positions between
them as links, the interbank network can be represented as a square matrix
of dimension N×N (data matrix, denotedD).2 An element dij of this matrix
represents a gross interbank claim, the total value of credit extended by bank
i to bank j within a certain period. The size of dij can thus be seen as a
measure of link intensity. Row (column) i shows bank i's interbank claims
(liabilities) towards all other banks. The diagonal elements dii are zero, since
a bank will not trade with itself.3 O�-diagonal elements are positive in the
presence of a link and zero otherwise.

Interbank data usually give rise to directed, sparse and valued networks.4

However, much of the extant network research ignores the last aspect by
focusing on binary adjacency matrices only. An adjacency matrix A contains
elements aij equal to 1, if there is a directed link from bank i to j and 0

1In a companion paper, we focus explicitly on �tting the degree distribution, see Fricke
et al. (2012). The main �ndings are (1) The degree distributions are unlikely to be
scale-free, and (2) the in- and out-degrees do not follow the same distribution.

2In the following, matrices will be written in bold, capital letters. Vectors and scalars
will be written as lower-case letters.

3This is true when we think of individual banks as consolidated entities.
4Directed means that di,j 6= dj,i in general. Sparse means that at any point in time the

number of links is only a small fraction of the N(N −1) possible links. Valued means that
interbank claims are reported in monetary values as opposed to 1 or 0 in the presence or
absence of a claim, respectively.
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otherwise. Since the network is directed, both A and D are asymmetric in
general. In this paper, we also take into account valued information by using
both the raw data matrix as well as a matrix containing the number of trades
between banks, denoted as T. In some cases it is also useful to work with the
undirected version of the adjacency matrices, Au, where auij = max(aij, aji).

As usual, some data aggregation is necessary to represent the system as
a network. In the following, we use quarterly networks.

3 The Italian interbank market e-MID

The Italian electronic market for interbank deposits (e-MID) is a screen-
based platform for trading of unsecured money-market deposits in Euros, US-
Dollars, Pound Sterling, and Zloty operating in Milan through e-MID SpA.5

The market is fully centralized and very liquid; in 2006 e-MID accounted
for 17% of total turnover in the unsecured money market in the Euro area.
Average daily trading volumes were 24.2 bn Euro in 2006, 22.4 bn Euro in
2007 and only 14 bn Euro in 2008.

Available maturities range from overnight up to one year. Most of the
transactions are overnight. While the fraction was roughly 80% of all trades
in 1999, this �gure has been continuously increasing over time with a value of
more than 90% in 2010.6 As of August 2011, e-MID had 192 members from
EU countries and the US. Members were 29 central banks acting as market
observers, 1 ministry of �nance, 101 domestic banks and 61 international
banks. We will see below that the composition of the active market partici-
pants has been changing substantially over time. Trades are bilateral and are
executed within the limits of the credit lines agreed upon directly between
participants. Contracts are automatically settled through the TARGET2
system.

The trading mechanism follows a quote-driven market and is similar to a
limit-order-book in a stock market, but without consolidation. The market
is transparent in the sense that the quoting banks' IDs are visible to all other
banks. Quotes contain the market side (buy or sell money), the volume, the
interest rate and the maturity. Trades are registered when a bank (aggressor)
actively chooses a quoted order. The platform allows for credit line checking
before a transaction will be carried out, so trades have to be con�rmed by

5The vast majority of trades (roughly 95%) is conducted in Euro.
6This development is driven by the fact that the market is unsecured. The recent

�nancial crisis made unsecured loans in general less attractive, with stronger impact for
longer maturities. See below. It should be noted, that there is also a market for secured
loans called e-MIDER.

4



both counterparties. The market also allows direct bilateral trades between
counterparties.

The minimum quote size is 1.5 million Euros, whereas the minimum trade
size is only 50,000 Euros. Thus, aggressors do not have to trade the entire
amount quoted.7 Additional participant requirements, for example a certain
amount of total assets, may pose an upward bias on the size of the par-
ticipating banks. In any case, e-MID covers essentially the entire domestic
overnight deposit market in Italy.8

We have access to all registered trades in Euro in the period from Jan-
uary 1999 to December 2010. For each trade we know the two banks' ID
numbers (not the names), their relative position (aggressor and quoter), the
maturity and the transaction type (buy or sell). As mentioned above, the
majority of trades is conducted overnight and due to the global �nancial cri-
sis (GFC) markets for longer maturities essentially dried up. We will focus
on all overnight trades conducted on the platform, leaving a total number
of 1,317,679 trades. The large sample size of 12 years allows us to analyze
the network evolution over time. Here we focus on the quarterly aggregates,
leaving us with 48 snapshots of the network.

4 Results

In this section, we look at the network structures formed by interbank lend-
ing over various horizons of time aggregation of the underlying data. We
will see that comparing various network measures at di�erent levels of time
aggregation reveals interesting features suggestive of underlying behavioral
regularities. Given that most studies focus on overnight data, it has become
quite standard to focus on networks constructed from daily data. Here we
�nd, that, at least for the Italian interbank network, it may be more sensible
to focus on longer aggregation periods, namely monthly or quarterly data.
We also discuss in how far the network structure has changed (and, in how
far it has remained intact) after the default of Lehman Brothers in September
2008.

7The minimum quote size could pose an upward bias for participating banks. It would
be interesting to check who are the quoting banks and who are the aggressors. Furthermore
it would be interesting to look at quote data, as we only have access to actual trades.

8More details can be found on the e-MID website, see http://www.e-mid.it/.
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4.1 General Features

In total, 350 banks (255 Italian and 95 foreign) were active at least once
during the sample period. However the number of active banks changes
substantially over time as can be seen from the left panel of Figure 1.9 We
see a clear downward trend in the number of active Italian banks over time,
whereas the additional large drop after the onset of the GFC is mainly due
to the exit of foreign banks. The right panel shows that the decline of the
number of active Italian banks went along with a relatively constant trading
volume in this segment until 2008. This suggests that the decline of active
Italian banks was mainly due to mergers and acquisitions within the Italian
banking sector. Given the anonymity of the data set, it is impossible to shed
more light on this interesting issue. The overall upward trend of trading
volumes was due to the increase of active foreign banks until 2008, while
their activities in this market virtually faded away after the onset of the
crisis. Interestingly, the average volume per trade tends to increase over
time, as can be seen from the strong negative trend in the total number of
trades in Figure 2, at least for the Italian banks.
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Figure 1: Number of active banks (left) and traded volume (right) over
time. We also split the traded volume into money lent by Italian
and foreign banks, respectively.

An interesting question in this regard is, who trades with whom. Figure
3 illustrates this for the number of trades (top) and the transacted volume
(bottom) by country. For example, the green lines show the total number
of trades (traded volumes) of foreign banks lending money to Italian banks,
relative to all outgoing trades of foreign banks. Similarly, the blue lines
show the total number of trades (traded volumes) of money �owing between

9Similar developments are reported by Bech and Atalay (2010) for the federal funds
market.
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Figure 2: Number of trades per quarter.

Italian banks, as a fraction of all outgoing trades of Italian banks. The general
patterns are the same for both Figures: Italian banks lend most of the time
to other Italian banks (99.31% on average) and only a negligible amount
to foreign banks (0.61% on average). This pattern is remarkably stable over
time. In contrast, at the beginning of the sample period, foreign banks mostly
used the market in the absence of (many) other foreign counterparties to
lend money to Italian banks. This has changed over time and foreign banks
mostly later on used the platform to trade with other foreign banks. It is not
quite clear why this is the case, the underlying trend seems to point towards
structural changes altering the (foreign) banks' behavior. For many research
questions, one should therefore only use the subsample of Italian banks. In
most of what follows, we stick to this choice.

This leads us to a �rst glance at the network structure. Figure 4 shows
the banking network formed by the 119 active banks (89 Italian) in the last
quarter of 2010.10 The network consists mainly of two components: The very
dense part formed by the Italian banks (circles) on the right-hand side and
the far less interconnected foreign banks (triangles) on the left-hand side.
The higher activity of the Italian banks is not represented in terms of the
volume traded. We use total outgoing volume as a proxy for banks size and
group the banks into 4 classes according to which percentile (30th, 60th, 90th
or above) they belong to. This attribute is shown in the Figure as the size
and the brightness of the nodes. We should note that 3 out of 12 banks of
group 4 are foreign banks which is in line with their fraction of the total

10The Figure was produced using visone, http://www.visone.info/, by Brandes andWag-
ner (2004).
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Figure 3: Fraction of trades (top) and traded volume (bottom) between
banks from di�erent countries.

banks (30 out of 119). Hence, foreign banks trade less on average (both in
terms of volume and number of trades), however, the volume per trade is
higher.

It is also interesting to highlight some speci�c features of the trading
behavior of individual banks in this particular quarter, since not all banks use
the market in the same way:11 There are 14 banks with zero in-degree and 29
banks with zero out-degree. Surprisingly these banks are quite heterogeneous
and not, as one might expect, just small banks. As an example the highest
overall transaction volume of 58.6 bn Euro for a single bank, and therefore
roughly 9.3% of the total trading volume, was traded by a German bank
borrowing this sum in 90 trades from 8 counterparties. Another interesting
case is an Italian bank trading only with one counterparty, lending this other
bank 5.02 billion Euro in 76 trades, whereas borrowing just 0.03 billion in
3 trades. Even though these special relationships are quite interesting, the
anonymity of the data set makes it impossible for us to say more on the
particular relationships that might lead to these interesting outcomes. After
this broad overview of the market and the ongoing interactions, we turn to
the question of a sensible aggregation period. As should be clear from the

11For a detailed analysis of the trading strategies in the e-MID, see Fricke (2012).
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Figure 4: The banking network in the 4th of quarter 2010: triangles are
foreign banks. The size of the node as well as the brightness of
the red color indicate the size in terms of volume lent.
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discussion above, we will mostly focus on the (sub)network formed by Italian
banks only.

4.2 Density

The density ρ of a network is de�ned as the number of existing links (M)
relative to the maximum possible number of links. It can be calculated as

ρ =
M

N(N − 1)
. (1)

Figure 5 illustrates the evolution of the density for four di�erent aggregation
periods (day, month, quarter, year). Except for the daily networks the density
is quite stable over time and slightly increases until the GFC, which was
a signi�cant structural break for the monthly and quarterly network. We
should note that the breakpoint (quarter 39), coincides with the quarter
during which Lehman Brothers collapsed. The daily density �uctuates much
more strongly, but overall increases throughout the sample.12

Compared to the �ndings for other interbank networks, the density of the
Italian interbank network is quite high. For example, Bech and Atalay (2010)
and Soramäki et al. (2006) report an average density of below 1% in daily
interbank networks, compared to an average density of roughly 3.1% in our
case. The main reasons for the higher density are most likely the relatively
small number of participating banks in the market and the transparent mar-
ket structure which easily allows each bank to trade with any other bank in
the market. For comparison, the Fedwire network investigated by Soramäki
et al. (2006) contains 5,086 institutions.13 The means of 20.8% for quarterly
aggregated networks (13.4% monthly) reveal much higher �gures. Obviously
the network density is positively related to the aggregation period, but to
our knowledge the structure of this relation has not been investigated for
interbank networks so far.

For this reason, we compare the aggregation properties of the empirical
networks with those of random networks. Here we use Erdös-Renyi networks,
i.e. completely random networks, and random scale-free networks, where the
out-degrees follow a power-law distribution with scaling parameter 2.3.14 The

12The density for the total network, including the foreign banks, seems to steadily
decline over the sample period. This illustrates the fact that the increasing fraction of
foreign banks are less interconnected with the (smaller) Italian banks.

13Additionally, the electronic nature of the trading platform might make links between
any two institutions more likely.

14The power-law distribution with tail exponent 2.3 is a common �nding in many inter-
bank markets, see e.g. Boss et al. (2004). The resulting sequences of the out-degrees are
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Figure 5: The density for yearly (blue), quarterly (red), monthly (green)
and daily (black) aggregated networks. A Chow-test and an ad-
ditional CUSUM-test indicate a structural break for quarter 39
(month 117) at the 1% signi�cance level, but not for the yearly
or daily networks.

experiments work as follows: For each year, we aggregate the daily networks
and plot the resulting density in dependence of the aggregation period, from
one day up to one year (roughly 250 days). For the random networks, we
aggregate arti�cial Erdös-Renyi and scale-free networks for each day with
the same number of active banks and density as the observed daily network.
The results are the average values for 100 runs for the Erdös-Renyi and the
scale-free networks.15 We �nd very similar qualitative results for all 12 years.

attributed to the nodes by ranking those according to the observed out-degrees, consider-
ing only active banks during the particular day. Note that if we did not account for the
ordering of the observed degree sequences, we would end up with very similar aggregation
properties as the Erdös-Renyi case. The in-degrees are distributed in a random uniform
way, ruling out self-links and counting each link at most once. For a detailed analysis of
the degree distributions for this data set see Fricke et al. (2012).

15Note that the density of aggregated Erdös-Renyi networks can be written as

ρrT = 1−
T∏

t=1

(1− ρrt ),

where (1−ρrt ) is the probability of observing no links in the network at time t whatsoever,
but since we adjust the number of active banks on a daily basis using tese probabilities
would not constitute a completely satisfactory approach in our case.
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Figure 6: Data for 1999. Density for the aggregated Erdös-Reny (blue),
Scale-Free (red) with α = 2.3, and observed networks (green).
Aggregation period in days. Note: we do not plot standard devi-
ations, since these are negligible.

As an example, Figure 6 illustrates the results for 1999. For all three
networks, there appears to be a saturation level for the density, however at
di�erent levels. The Erdös-Renyi networks always show the highest density
(up to .851), followed by the Scale-Free networks (up to .559) and the ob-
served networks (only up to .280). Apparently, it is much more likely for the
empirical data that the same link gets activated several times than for the
randomized data of Erdös-Renyi and scale-free networks (where the overall
number of links is the same by construction). This is supported by the fact
that in the observed networks a total number of 2, 757 links are observed only
once in the year, while for the scale-free and random networks these values
are 5, 040 and 5, 746, respectively. Hence, these results indicate the existence
of lasting (preferential) lending relationships in the actual banking network.

4.3 What is a Sensible Aggregation Period?

After showing that longer than daily aggregation tends to reveal non-random
structures for the Italian banking network, we are concerned with determin-
ing the `correct' aggregation period in more detail in this section. This ques-
tion is crucial for extracting relevant information, since the banking network
cannot be observed at a given point in time, but always has to be approxi-
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mated by aggregating trades over a certain period.16 Most studies use daily
aggregates (daily networks), which seems justi�ed by the fact that the under-
lying loans are (mostly) overnight. Economically, however, overnight loans
can be seen as longer-term loans, where the lender can decide every day
whether to prolong the loan or not. Aggregating over a longer period is only
preferable, if it can reveal a non-random structure of the banking network.
The existence of preferential relationships would imply that daily transac-
tions are not determined myopically, but that a virtual network of longer
lasting relationships exists. Daily transactions would then be akin to ran-
dom draws from this underlying network with the realizations depending
on current liquidity needs and liquidity overhang. Aggregation over a su�-
ciently long time horizon might reveal more and more of the hidden links,
rather than adding up purely random draws from all possible links. The
relatively fast saturation of the empirical density that we observe in �gure
6 is consistent with this interpretation. To shed more light on this issue
we consider the consistency of yearly, quarterly, monthly and daily aggre-
gated networks. The main �nding is that we observe a much higher degree
of structural stability for monthly or quarterly networks, depending on the
application, rather than daily networks.

The use of a `sensible' aggregation period should ensure that we extract
stable features (if they exist) of the banking network rather than noisy trad-
ing patterns at di�erent points in time. In this regard, it is important to
investigate the stability of the link structure, in order to assess whether sub-
sequent occurrences of the network share many common links. In order to
do this, we rely on the Jaccard Index (JI),17 which can be used to quantify
the similarity of two sample sets in general. Here it is de�ned as

J =
S11

S01 + S10 + S11

, (2)

where Sxy counts the number of relations having status aij = x at the �rst
instance and aij = y at the second. The JI measures links which survive as
a fraction of links which are established at any of the two points in time.
Hence, it also takes into account those banks which are active in only one of
the two periods. Figure 7 shows that the JI is very stable over time for longer
aggregation periods, but not for the daily level. As expected, the JI tends to

16The literature on interbank networks is surprisingly silent about the choice of the
aggregation period. We are aware of only one paper (Kyriakopoulos et al. (2009)) inves-
tigating this issue.

17The so-called graph correlation, see e.g. Butts and Carley (2001), shows qualitatively
very similar results, but is not able to cope with banks entering or exiting market. The
correlation of both measures is always above .9 irrespective of the aggregation period.
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Figure 7: Jaccard Index for daily (black), monthly (green), quarterly (red)
and yearly (blue) networks.

be higher for longer aggregation intervals. The daily measures are much more
unstable and increase substantially until the GFC. More problematic than
the smaller average level are however the extreme outliers on the downside.
As a rule-of-thumb, in social network analysis one considers networks with
JI values above .3 as substantially stable.18

Table 1 shows the mean, minimum, 10th percentile and standard devi-
ation of the JIs for di�erent aggregation periods. Again, the most evident
observation is that the daily networks are rather special: the minimum and
the 10th percentile of the JI are signi�cantly smaller, indicating that we ob-

18See Snijders et al. (2009).

Jaccard Index Year Quarter Month Day

mean .5543 .5302 .4638 .2861
standard deviation .0535 .0368 .0333 .0740
min .4652 .4479 .3735 .0603
10th percentile .5072 .4835 .4183 .1904

Table 1: Jaccard Index for daily, monthly, quarterly and yearly networks.
Calculations were carried out for all subsequent networks at the
di�erent aggregation periods. Standard deviations based on all
observations.

14



Reciprocity Year Quarter Month Day

mean .4264 .2085 .0829 .0042
standard deviation .0580 .0423 .0244 .0060

Table 2: Reciprocity of the Italian Banking network. Calculations were car-
ried out for all networks at the di�erent aggregation periods. Stan-
dard deviations based on all observations.

serve values below .2 in at least 10% of the sample, which is not a rare event.19

These results suggest a high degree of randomness in the daily networks.

Obviously, higher values of the JI are no guarantee that we are closer
to the `real' network per se. Note that in a network with randomly drawn
connections, the index should be positively related to the length of the ag-
gregation period. Thus, it is important to show that other network measures
also take on values signi�cantly di�erent from random networks for longer
aggregation periods. In the following, we will therefore have a closer look at
the reciprocity of the network.

Reciprocity is a global concept for directed networks that measures how
many of the existing links are mutual. It can be calculated by adding up
all loops of length two, i.e. reciprocal links, and dividing them by the total
number of links.

Table 2 shows higher levels of reciprocity for longer aggregation peri-
ods.20 In the case of daily networks we observe very few mutual links, as Iori
et al. (2008) stated this is a very plausible �nding, since banks rarely bor-
row and lend money from the same bank within a particular day. However,
the values for longer aggregation periods show that the banking network is
not one-sided, supporting the evidence on the inability of daily networks to
represent the `true' underlying (directed) banking network. The left panel of
Figure 8 illustrates the results for 1999, where we perform a similar analysis
as for the density above, by comparing the observed network reciprocity to
those of Erdös-Renyi and scale-free random networks.21 The actual values
are, again, always the lowest. The right panel of Figure 8 shows that the
reciprocity (after 19 days for the real network) exceeds the density for all

19We should note that, as apparent from Figure 7, the reason for the 10th percentile to
be below the .2 threshold is not the GFC.

20A structural break (after the GFC) is detected by a Chow-test as well as an additional
CUSUM test for the 10th year, the 39th quarter and the 117th month respectively, but
not for daily networks. For the yearly networks only the Chow-test indicates a structural
break. Note that the yearly analysis involves only 12 data points.

21Again the results are qualitatively very similar for the other years as well.
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Figure 8: Data for 1999. Left: reciprocity for the Erdös-Renyi (blue), Scale-
Free (red) with α = 2.3, and observed networks (green). Right:
di�erence between reciprocity and density for the respective net-
works. Aggregation period in days.

three networks. Note that for random networks one would expect the two
measures to be almost identical. However, di�erent banks are active at dif-
ferent days and if many banks are often simultaneously active the chance
of forming a reciprocal link is higher (remember that we used the actually
active banks of each day in the Monte Carlo exercise). However, more im-
portant for our analysis is that for the real network the di�erence between
reciprocity and density increases steadily and exceeds the di�erence of the
random networks. Hence, using longer than daily aggregation is not only
capable of taking mutual credit relationships into account, but even indi-
cates a preference of banks to form them. On the other hand, the saturation
of the reciprocity indicates that banks will have mutual credit relationships
with most of their counterparties.22 Thus, the noise level of networks with
longer aggregation periods is smaller and the directed version of the networks
contains a substantial amount of information.

On the base of the Jaccard index, monthly and quarterly networks appear
most stable as they have a high index with a very low standard deviation, i.e.,
the highest degree of structural stability of lending relationships over time.
Yearly aggregation levels, in contrast, have somewhat higher variation in their

22This may of course be a�ected by the time-varying composition of active banks. See
below.
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JI and might be problematic, because the banking network (in particular
during unstable times) is likely to evolve much faster. Somewhat related is
the change in the composition of banks, i.e. banks leaving and entering the
market, since we consider a bank as active for the whole year even if it leaves
the market after the �rst trading day.23 Concerning the monthly level, Iori et
al. (2008) discovered intradaily and -monthly seasonalities which may a�ect
our results. In everything that follows, we will therefore mostly focus on the
quarterly networks.

4.4 Transitivity

Here we are interested in transitive relations between three banks. The con-
cept of transitivity states that a speci�c relationship � is transitive if from
i � j and j � k it follows that i � k holds. Equality is a transitive relation, but
inequality is not. From i = j = k follows i = k, yet i 6= j 6= k does not imply
i 6= k.

The relation we are interested in is i has a link to j or aij = 1. The
relationship is obviously not transitive, since i has a link to j and j has a
link to k does not strictly imply that k also has a link to i. However, it is
interesting to investigate how many such closed triplets occur. More generally
speaking, transitivity measures whether the existence of certain links depend
both on the relation between the two counterparties and on the existence
of links with a third party. The measure most prominently used for this

Figure 9: The two possibilities how the directed path of length two (solid
lines) between i and k can be closed. On the left hand side the
path is closed into a loop of length three (CC1). On the right
hand side the triplet is interconnected but not in the same single
direction (CC2).

purpose is the (directed) clustering coe�cient24, which, despite its name, has

23This problem occurs for each aggregation period, but is likely to become more pro-
nounced for longer frequencies.

24For more detailed de�nitions of clustering coe�cients see Zhou (2002).
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no relation to cluster identi�cation whatsoever.25 It measures the number of
(directed) paths of length two in the network and takes the fraction of these
which are closed.26 Figure 9 illustrates two ways to close the triplet i, j, k
in a directed network. First, the directed path may be closed into a loop as
shown on the left hand side of the �gure. The function of such closure is
given by the coe�cient CC1:

CC1 =

∑
j 6=i 6=k aijajkaki∑
j 6=i 6=k aijajk

(3)

Second, the link from i to k may be reversed. The function of such closure
is given by the coe�cient:

CC2 =

∑
j 6=i 6=k aijajkaik∑
j 6=i 6=k aijajk

(4)

An important distinction is that the nodes in the case of CC1, as apparent
from Figure 9, have each one in- and one outgoing link and therefore show no
hierarchical ordering. Figure 10 shows that the results for the two coe�cients
are very di�erent. The mean for CC1 is .164 and .571 for CC2. This is
further evidence for the non-random character of the banking network, since
the probability of an `average' link to exist is just equal to the density of
.208. Hence, the existence of a path of length two between i and k via j
makes it 2.75 times more likely that the link from i to k exists compared
to a random link27, but reduces the probability that there is a link from k
to i by 21%. The huge di�erence indicates that the banking network has a
hierarchical ordering on the triadic level.

Figure 11 illustrates that for the Erdös-Renyi networks the evolution of
the clustering coe�cients is almost identical (correlation above .999). The
exact numbers of the clustering coe�cients for the observed networks change
with the aggregation, but CC1 is always much smaller than CC2 for all
aggregation levels as shown by �gure. CC2 is at the beginning even higher
for the observed network than for the random networks, but saturates after
a steep increase relatively quickly on a much lower level (up to .624). CC1

on the other hand is almost zero at the beginning. Note that a loop of length
three at a single day implies that each involved bank would get back some

25See Fricke and Lux (2012) and Fricke (2012) for detailed approaches of cluster identi-
�cation in the e-MID market.

26Any connection along directed links between two nodes i and j is called a path and
the length of the path is de�ned as the number of edges crossed. There are no restrictions
on visiting a node or link more than once alongside a path.

27The probability of random link is exactly the density of .208.
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Figure 10: The two clustering coe�cients of quarterly networks: CC1

(green) is the fraction of path of length two which are closed
into a loop by a third link. CC2 charracterizes links in which
the triangle is closed in a hierarchical way.

of its own lending via an intermediate bank, which appears very unlikely.
However, CC1 increases (up to .386) for longer aggregation periods showing
that such relations do exist. Note that the daily or undirected networks are
not capable of taking this into account.

4.5 Small-World Property

Another very prominent measure in the network literature is the average
shortest path length (ASPL). Interest in this measure stems from the remark-
able �nding that in many `real world' networks the ASPL is quite small, also
known as the small-world phenomenon.28 Here we focus on the undirected
version of the network.

Watts and Strogatz (1998) show that completely random networks al-
ready have a very small ASPL, but at the same time a relatively low (undi-
rected) clustering coe�cient (CC) equal to its density. On the other hand, a
regular network, where all nodes have connections to their s nearest neigh-

28Small ASPLs have been detected for social, information, technological and biological
networks. The �rst empirical �nding dates back to the chain letter experiments conducted
by Milgram (1967). His �nding that on average only six acquaintances are needed to form
a link between two random selected persons led to the famous phrase of `six degrees of
separation'.
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Figure 11: Left: CC1 for the Erdös-Renyi (blue), Scale-free (red) with α =
2.3, and observed networks (green), while the are aggregated on
a daily basis up to one year(1999). Right: CC2.

bours, has a CC of 1, but a very high ASPL. Interestingly, already the in-
troduction of a few `random' links reduces the ASPL signi�cantly, because
these `long range' links connect di�erent clusters of the network. The authors
argue that the interesting `real world' networks are neither purely regular nor
random. Therefore Watts and Strogatz (1998) de�ne small-world networks
to additionally have a higher CC than random networks. Hence, to further
investigate if the banking network exhibits the small-world property, we cal-
culate the ASPL and the CC and compare the values to random networks.

The (symmetric) matrix G of dimension N × N contains the geodesic
distances between any two nodes, i.e. each element gij is the length of the
geodesic path between node i and j. The ASPL is calculated by dividing the
sum of all (existing) geodesic path lengths by the total number of (existing)
geodesic paths.29 The CC is calculated similar to the directed case (CC1 and
CC2), but ignores the directedness of the links.

In this case a comparison of the networks aggregated day by day is not
suitable, since the density of both random networks as visible in �gure 6 after

29It is not necessary for two nodes to have a shortest path, since there might be no link
leading from one to the other. In this case the two nodes lie in di�erent components of
the network and by convention the length of these non existing geodesic paths are set to
in�nity. The undirected banking network consists always of only one component and the
same is true for the investigated random networks, because of the high density.
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CC ASPL

Erdös-Renyi .3736 1.6470
(.0058) (.0073)

Scale-free .4131 1.6259
(.0103) (.0134)

Observed .5422 1.6486
(.0434 ) (.0373 )

Table 3: The average CC and ASPL for the observed network and for 100
Erdös-Renyi and scale-free (with α = 2.3) random networks. Stan-
dard deviations in brackets.

a quarter (around 63 days) is much higher. Therefore the simulated random
networks correspond to the aggregated quarterly networks with respect to
their density (and their out-degree distribution for scale-free networks). Ta-
ble 3 summarizes the results: The ASPL for all networks is small and almost
identical, in which the very low value is due to the high density. The CC
for the Erdös-Renyi networks is by construction close to the density, since
all links have per quarter exactly this probability to occur. The CC for the
scale-free is with .413 higher, but is exceeded by the observed network (.542).
This indicates the higher regularity in the link structure. Hence, the banking
network lies midway between regular and completely random graphs. As can
be seen from the last column of Table 3, the ASPL does not provide much
scope for distinguishing between the benchmark Erdös-Renyi and scale-free
networks and the empirical ones. The reason might be that the relatively
high density leads to relatively short path lengths anyway.30

4.6 E�ects of the Global Financial Crisis

Finally, we take a closer look at the e�ects of the GFC on the banking net-
work.31 The start of the GFC is not easy to determine, but we have seen
that the collapse of Lehman Brothers in quarter 39 (2008 Q4) was a major
shock for the global �nancial market in general and the Italian interbank
market as well.32 The e�ects of this event were twofold: �rst, the counter-

30The results are qualitatively the same if we consider the directed version of the net-
work. The ASPL for the quarterly networks is 1.912 against 1.802 for the random networks.
The CC2 (.571) is signi�cantly higher than for Erdös-Renyi networks with .208, whereas
CC1 (.164) is even smaller. However, in this case the network consists not only of one
giant component which makes the interpretation of the ASPL more di�cult.

31See also Fricke and Lux (2012).
32See Brunnermeier (2008).
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parties of Lehman Brothers realized huge loses. Second, the perception of
risks changed, since Lehman had been considered to be `too-big-too-fail' be-
fore. The resulting dramatic increase of perceived counterparty risk reduced
the willingness of banks to lend to each other, which ultimately a�ected the
real economy due to tighter lending restrictions. The monetary authorities
and governments around the world injected substantial amounts of capital
into the �nancial system to prevent interbank markets from freezing in the
following weeks. We have seen, that important network measures such as
density and reciprocity, were signi�cantly a�ected by these events as well.

Quarter 36 37 38 39 40
Banks 101 100 100 98 97
Volume 445,991 409,340 435,338 404,353 385,819
Trades 20,984 20,078 19,963 18,160 16,477
Links 2,425 2,253 2,249 2,153 1,768
Trades per Link 8.65 8.91 8.88 8.43 9.32

Quarter 41 42 43 44 45
Banks 96 96 94 94 94
Volume 234,102 267,057 197,021 227,076 196,503
Trades 14,184 13,981 12,525 11,636 11,577
Links 1,533 1,506 1,599 1,449 1,530
Trades per Link 9.25 9.28 7.83 8.03 7.57

Table 4: The table summarizes the number of Italian banks, total volume
(million Euros), number of trades, number of links and links per
trade for the quarters 36-45, while the Lehman collapse has been
in quarter 39.

Here we investigate the change in banks' behavior during and after the
breakdown of Lehman Brothers. To begin with, Table 4 contains several
basic network statistics for ten quarters around the breakpoint (quarter 39).
Interestingly, the number of active Italian banks remained relatively stable
during this period, and in fact 86 banks were active in all of the ten quarters.
The stability of this composition is important, since under these circum-
stances changes in the behavior of the banks on the aggregated or individual
level should be mainly driven by their response to this exogenous shocks.

We also see that the total trading volume, the number of trades and the
number of links are all decreasing over this period, but the exact patterns are
distinct. Surprisingly, the volume is quite stable until the 40th quarter, but
drops by 39.3 percent in the 41st quarter. In contrast, the number of trades
starts to fall in the 39th quarter and decreases further until quarter 44. The
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total number of links already starts to decrease in quarter 37, but overall
tends to develop in a very similar way to the number of trades.33 In the end,
the most immediate reaction to the crisis was that banks traded similar total
volumes but in fewer trades and with a smaller number of counterparties in
order to minimize their (perceived) counterparty risks.34

Interestingly, the trades per link are the highest for the three quarters
after the Lehman collapse. This indicates that the banks relied stronger
on their preferred counterparties. Preferred in this context might simply
means that the banks had more reliable information about these banks, which
however should coincide with former trading relationships. Eventually, we
conclude that the breakdown of Lehman Brothers signi�cantly a�ected the
behavior of individual banks and thus had a clear impact on the structure of
the network. Quite surprisingly, we �nd that the link structure of subsequent
networks remained rather stable during this period, since no structural break
is detected for the Jaccard Index. Furthermore, despite the signi�cant impact
of the GFC, we do not �nd evidence for a complete drying up of the e-MID
market, even at the daily level.35

5 Conclusions and Outlook

In this paper, we have investigated the interbank lending activity as docu-
mented in the e-MID data from 1999 until the end of 2010 from a network
perspective. Our main �nding is that daily networks feature too much ran-
domness to be considered a representative statistic of some underlying latent
network. The JI shows the higher consistency over time for longer aggre-
gation periods and the very low density compared to (aggregated) random
networks indicates the existence of preferred trading relations. In general
the evolution of all global network measures for longer aggregation periods
(month, quarter, year) is very similar in their deviation from the Erdös-Enyi
and scale-free benchmarks. Moreover, the monthly and quarterly networks
are characterized by a signi�cantly higher than random clustering coe�cient,
and thus reveal some regularity in the link structure. The (almost) zero reci-
procity and CC1 of daily networks proves the inability of this aggregation
level to reveal information on such structural elements. However, quarterly
networks consistently exhibit a non-random structure and allow us to con-

33The correlation between both is .963 for this period and .957 over the complete sample.
34Fricke and Lux (2012) show that most of these changes were in fact driven by behav-

ioral changes of core banks.
35As noted above, this is not true for loans longer than overnight. These markets

essentially collapsed completely, which is not surprising given that the loans are unsecured.
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sider the mutuality of the relations and are therefore a preferable subject of
study, especially if one is interested in the evolution of the network over time.

Essentially, these results show that it is far from trivial to map a given
data structure into a `network'. While daily records of the interbank trading
system can be arranged in an adjacency matrix and treated with all types
of network statistics, they provide probably only a very small sample of re-
alizations from a richer structure of relationships. Just like daily contacts of
humans provide very incomplete information of networks of friendship and
acquaintances, the daily interbank data might only provide a small selection
of existing, dormant established trading channels. Hence, inference based
on such high-frequency data may be misleading while a higher level of time
aggregation might provide a more complete view on the interbank market.
What level of aggregation is su�cient for certain purposes is an empirical
question depending on the research questions at hand. However, saturation
of certain measures may be a good indicator that most dormant links have
been activated at least once over a certain time horizon. At the same time,
such dependence of statistics on the time horizon serves to sort out a num-
ber of simple generating mechanisms (i.e. completely randomly determined
networks in every period) and reveal interesting dynamic structure.

Another interesting result is that the network is asymmetrical in many
respects. For the quarterly network the fraction of reciprocal links is very
similar to the density. Furthermore, the two directed clustering coe�cients
are very di�erent. The probability for path of length two to be closed into a
loop is 3.48 times smaller than the other way. Additionally, the correlation
between in- and out-degree is merely .12 for the complete sample. Therefore,
the information that a bank has a a large number of incoming links is a
surprisingly poor indicator of how many outgoing links the bank has.

Moreover, for many measures the GFC could be identi�ed as a structural
break and also the decreasing number of volume, trades and links support
that the GFC heavily a�ected the Italian interbank market. However, the
network overall remained surprisingly stable and despite the decrease of its
volume (in the beginning of 2010) the e-MID market was never close to drying
up completely.

In the future more attention should be given to the analysis of directed
banking networks using longer aggregation periods to identify structural com-
monalities. This has important consequences for the regulation of credit in-
stitutions, since at the daily level it is di�cult to detect the systemically
important institutions. For policymakers and regulators, it would be po-
tentially (dangerously) misleading to focus on the noisy daily networks, even
more since the low level of connectivity suggests a low-degree of systemic risk
at any point in time. More important, in our view, is to get a better idea on
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the wider pool of counterparties of all credit institutions, in order to detect
possible behavioral changes among the set of relatively active banks. Such
changes might then serve as an indicator for funding problems of individual
institutions.36 In the end, it would be important to extend our phenomeno-
logical analysis in order to test hypotheses about the behavior of banks at
the micro-level that drives the system's properties.
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