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A B S T R A C T

Does climate change adaptation require that investments are designed to be more robust? What
about when climate change is more uncertain? What if the climate changes faster? This decision
problem is difficult if the design of the investments is irreversible for their lifetime, for instance,
in the construction industry. We study an irreversible design decision when the investment
starts, combined with an irreversible option to abandon. The design determines the investment’s
robustness to sustain detrimental conditions. We find that for short-lived investments, optimal
robustness decreases if the climate changes faster, and increases if uncertainty is higher. For
long-lived investments, these effects reverse. This has implications for decision makers who
plan infrastructure adaptation, for instance, that adverse climate change does not require more
robust investments under the identified circumstances.

. Introduction

Suppose a real estate investor is considering the construction of a new building, but expects hydro-meteorological risk from
limate change. What would be the best design of the building when facing such a risk? It might make sense to adapt to climate
hange by choosing a more robust design, that is, one that can sustain more detrimental climatic conditions in a better way. Another
ption would be to choose a less robust design, optimized for the present climate, while anticipating that the building might have
shorter economic lifetime.

This problem structure applies to many investment decisions involving adaptation to climate change, be they private or public.
t has recently been considered, for instance, that common chattel houses in Barbados, which are vulnerable to more frequent
urricanes, should be replaced by more permanent concrete homes instead (Barbados Today, 2021). Since the precise path of climate
hange is uncertain ex ante, developers face the question: Should designs of those houses indeed be more robust to novel climate
onditions, so that they suffer less damage from more frequent hurricanes, or should they remain less robust, therefore reducing their
xpected lifetime, but being committed to possibly wrong projections of hurricane frequency only for a shorter time? More generally,
daptation investment in projects such as power plants, chemical and steel factories, buildings, airports, dams, and mega-projects
re frequently characterized by technology commitment. Adaptation by retrofitting these investments to a new climate (e.g. by
eplacing construction materials) can be quite costly, so much so that initial decisions about their design are de facto irreversible
ver the course of their economic lifetime (e.g. Turvey, 2000; Flyvbjerg, 2014; Ansar et al., 2014). Over these kinds of long time
cales, the benefit streams of the investments (partially driven by climate change) are (i) not constant and (ii) quite difficult to
redict. Our paper shows when a less robust design pays off for such decision problems.

✩ Submitted for double-blind review to the Journal of Environmental Economics and Management.
∗ Corresponding author.
E-mail addresses: klaus.eisenack@hu-berlin.de (K. Eisenack), marius.paschen@ifw-kiel.de (M. Paschen).
vailable online 19 September 2022
095-0696/© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
http://creativecommons.org/licenses/by-nc-nd/4.0/).

ttps://doi.org/10.1016/j.jeem.2022.102743
eceived 13 August 2021

http://www.elsevier.com/locate/jeem
http://www.elsevier.com/locate/jeem
mailto:klaus.eisenack@hu-berlin.de
mailto:marius.paschen@ifw-kiel.de
https://doi.org/10.1016/j.jeem.2022.102743
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jeem.2022.102743&domain=pdf
https://doi.org/10.1016/j.jeem.2022.102743
http://creativecommons.org/licenses/by-nc-nd/4.0/


Journal of Environmental Economics and Management 116 (2022) 102743K. Eisenack and M. Paschen

h
t
p
2
o
h
c
t
h

s
a
t
a
i
r

l
i
t

a
i
D
o
B
o
I
c
a

u
p
a
c
(
s

d
i
a
c
s
t

i
s
e

2

W
s

Climate dependence of benefit streams plays out, in particular, for adapting infrastructures to climate change, an issue which
as received increasing attention in recent years (e.g., OECD, 2008; UNEP, 2016; Roggero et al., 2018). It is generally beneficial
o fit technical designs (e.g., type of concrete, steel, or machinery) to climatic conditions (e.g., temperature, precipitation, wind
atterns), since maintenance will then be cheaper, durability will be increased, and service disruptions will be less likely (cf. IPCC,
022). It is thus reasonable to adapt the design of infrastructures. This may cost up to $100b annually (or even more, depending
n the estimate, Stern, 2007; OECD, 2008; UNEP, 2016), or $70b annually for coastal protection alone (Hinkel et al., 2014), with
uge variation depending on the assumed climate change scenario (Lincke and Hinkel, 2018). What do uncertainties from climate
hange imply, then, for the design of such irreversible investments? The conceptual novelty of our paper lies in jointly considering
wo effects here: the effect of the initial and irreversible design decision on the lifetime of an investment (which also depends on
ow uncertainty unfolds), and the effect of the anticipated expected lifetime on the initial design decision.

We analyze these questions by generally determining the optimal lifetime and design of an investment in the presence of a
tochastic process. The decision problem combines a real option to abandon with an irreversible decision about design parameters
t the beginning of the investment’s lifetime. The design, interpreted as robustness, makes the investment’s benefit less sensitive to
he state variable of the stochastic process (climate change). Although this seems like a common real-world decision problem, we
re not aware of solutions in the vast real options literature (cf. Trigeorgis and Tsekrekos, 2018). This might be due to a seemingly
ntuitive argument: With higher uncertainty, it seems that the marginal benefit from robustness would be larger, such that a more
obust design would pay. Paradoxically, we find that this is not necessarily the case.

There are second-order effects resulting from robustness and lifetime being interdependent. If projects are comparatively long-
ived, higher uncertainty might be so detrimental that it is not worthwhile to choose a more robust design. Our findings are thus
mportant for decision makers who plan adaptation in order to avoid inefficient expenditures. Possibly counter-intuitive to practice,
hey need to consider that climate change adaptation of long-lived-investments needs less robustness in some cases.

In the literature, technology commitment has been studied in the context of the investment-uncertainty relationship (e.g., Ramey
nd Ramey, 1995; Sarkar, 2000; Jovanovic, 2006). This literature generally takes a macro-perspective and focuses on the option to
nvest instead of the option to abandon. Although an investment’s lifetime or time to abandon has been analyzed (Farzin et al., 1998;
ahlgren and Leung, 2015), these studies do not include an irreversible design decision. Some papers have addressed adaptation
f investments to climate change in a way related to ours (e.g., Fisher and Rubio, 1997; Callaway, 2004; Hallegatte, 2009; de
ruin and Ansink, 2011; Felgenhauer and Webster, 2014; vander Pol et al., 2014), but most of them either do not explicitly focus
n irreversible design and abandonment, or take a less formal approach. There are two challenges here (cf. Hallegatte, 2009): (i)
f climate change is subject to an ongoing trend, the design of long-lived infrastructures needs to fit a broader range of climatic
onditions. (ii) Projections about the rate of climate change are prone to different kinds of uncertainty (e.g., Weitzman, 2013; Heal
nd Millner, 2014; IPCC, 2022).

There is also some literature on adjustment costs of production capacity, inventories or land development in the presence of
ncertainty (e.g., Arrow and Fisher, 1974; Abel and Eberly, 1994; Van Mieghem, 2003; Ye and Duenyas, 2007). Some of those
apers (see also Sundaresan and Wang, 2007) study irreversible investment timing problems in combination with the possibility of
later capacity expansion, or a further decision variable (e.g. another production factor) which is completely flexible. Instead, we

onsider a situation where the decision to continue or abandon the investment is the only kind of flexibility (then, Myers and Maid
2004) show that the option to abandon does not admit closed-form solutions in general; see also Lavrutich (2017) for a different
et-up). We thus study a case which contrasts previous findings in terms of flexibility.

The additional twist of our paper is, however, that the investor can anticipate the effect of her initial and irreversible design
ecisions on the own (expected) future decisions to continue or abandon, and takes these into account when designing the
nvestment. We think that this twist is quite important, since rational decision-makers will have an interest to coherently plan design
nd lifetime of an investment. Surprisingly, we are not aware that this set-up has been addressed in the literature. Our paper thus
ontributes by investigating the interdependence of two irreversible decisions: design and abandonment. We show precisely how
tronger climate change trends and higher uncertainty affect optimal investment lifetimes in different ways, and derive conditions
hat can be used to differentiate the respective outcomes.

Section 2 presents the model’s decision structure and our general results. Section 3 uses the model to investigate a particularly
nsightful optimal stochastic dynamic control problem to maximize an investment’s expected net value. Analytical comparative
tatics results for different exogenous variables, in particular uncertainty, are presented in Section 4, followed by numerical
xperiments. The proofs are relegated to Appendix. Section 6 concludes.

. General model setup and decision structure

We analyze the decision on a long-lived investment that operates within dynamic and uncertain climate conditions 𝑥, modeled
by a geometric stochastic process

𝑑𝑥 = 𝜇𝑥 𝑑𝑡 + 𝜎𝑥 𝑑𝑧, (1)

with 𝑥(0) = 𝑥0 > 0, trend parameter 𝜇 > 0, standard deviation 𝜎 > 0, and (𝑧𝑡) being a standardized Wiener Process, so that 𝑥 ≥ 0.
e will call 𝜎 uncertainty in this paper. The climate conditions influence the investment’s stream of current benefits over time 𝑡,

o that the decision’s objective is to maximize

𝐽 (𝑥0, 𝑎, 𝜇, 𝜎) = 𝐸[
𝑇⋆

𝜋(𝑥, 𝑎)𝑒−𝑟𝑡𝑑𝑡] − 𝐶(𝑎), (2)
2
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with respect to a technical design vector or parameter 𝑎 that describes the investment’s properties, and with respect to the time
𝑇 ⋆ where the investment is ultimately stopped. Here and in the following, 𝐸[⋅] is the expectation operator, and 𝜋(𝑥, 𝑎) denotes the
urrent benefits, which depend on how the design 𝑎 fits the climate conditions 𝑥 at each specific point in time. Thus, the current
enefit stream changes over time. Current benefits might represent, for instance, the benefits of using a safe building, the profits
f running a power plant, or the social gains from a reliable road or railway line. If current benefits 𝜋 are a decreasing function
n 𝑥 (the case we have in mind here), we can speak of the climate conditions being detrimental: They cause damage, being the
ifference between benefits for 𝑥 and for 𝑥0. Then, if 𝜕𝑎𝜋 ≥ 0, 𝜕𝑎,𝑥𝜋 > 0, we can interpret the design 𝑎 as robustness (here and in the
ollowing, 𝜕⋅ denotes partial derivatives). First, 𝑎 does not increase damage, second a damage-reducing effect becomes larger for a
ore detrimental climate. Note that the considered climate conditions 𝑥 can be the average temperature, but can actually be any

ppropriate climate-related metric which enters the current benefits function, e.g. precipitation, river run-off, heating degree days,
ower plant outages (see Steinhäuser and Eisenack, 2020, for instance), and so on. It is only required that it can be analyzed as a
eometric Brownian motion. A robust design can be considered, for instance, as concrete which is adapted to higher temperatures,
eservoirs which store more water, road material which sustains more frequent frost-thaw cycles, or power plant technology which
s less prone to cooling water shortage. Yet, we keep the analysis more general in the remainder of this Section by not making such
ssumptions (and interpretations). The subsequent Sections will be devoted to the case with detrimental climate change and design
s robustness.

Current benefits are discounted to present value at rate 𝑟 > 0. We assume technology commitment, that is, the technical design
s fixed over the complete investment’s lifetime. The investment costs 𝐶(𝑎) with 𝐶 ′ > 0, 𝐶 ′′ ≥ 0 depend on the design and incur at
he start. This kind of irreversibility can be justified, for example, if the costs of a retrofitting the investment to new conditions are
rohibitively costly. For instance, shifting from wooden to concrete buildings practically requires a complete re-construction. This
lso applies when the rail type used for a rail track is replaced by other types in order to reduce traffic disruptions during heat
aves. A further example are drainage pipes (e.g. Moore et al., 2016; Ngamalieu-Nengoue et al., 2019). If they are upsized to better
eal with flooding, then expensive underground construction (actually a re-building), is needed.

After the investment is constructed based on the chosen design, the remaining decision is when its lifetime should end. We thus
ssume the following two-stage decision structure:

First stage: The irreversible design 𝑎 is chosen.
Second stage: At each point in time, a decision is made whether to continue or stop the investment. Stopping at some time
𝑇 ⋆ is an irreversible decision.

his problem will be solved by backward induction, where the second stage is a standard stopping problem. At the time when
he investment starts, we do not know the stopping time yet, but we can, in principle, determine the expected stopping time
[𝑇 ⋆](𝑥0, 𝑎, 𝜇, 𝜎), which depends in particular on the design 𝑎 as chosen in the first stage. In the first stage, the design decision

egarding 𝑎 will depend, in turn, on the stopping time anticipated for the second stage. We aim at determining the optimal design
⋆, which yields the expected lifetime with optimal design 𝑇 ⋆⋆ = 𝐸[𝑇 ⋆](𝑥0, 𝑎⋆, 𝜇, 𝜎). We are interested in the comparative statics
f the optima, in particular with respect to (𝜇, 𝜎), to see whether the optimal design or lifetime will be extended or shortened if the
limate is changing with a stronger trend, or if climate change is more uncertain.

.1. Optimal stopping with arbitrary design (second stage)

First assume that 𝑎 has an arbitrary value and concentrate on optimal stopping for this given design. Some general implications
an be drawn from the decision structure without specifying the functional form of current benefits 𝜋(𝑥, 𝑎), assuming that the form
t least leads to a well-posed problem. In the second stage, stopping problems of our kind typically yield a decision rule with a
utoff value 𝑥⋆(𝑎, 𝜇, 𝜎) > 𝑥0. At the optimal stopping time 𝑇 ⋆(𝑥0, 𝑎, 𝜇, 𝜎) we have 𝑥(𝑇 ⋆) = 𝑥⋆(𝑎, 𝜇, 𝜎) (cf. Dixit and Pindyck, 1994).
ifferentiation yields:

roposition 1. If a cutoff value 𝑥⋆ > 𝑥0 exists and 𝜇 > 1
2𝜎

2, then the second stage stopping problem has the following comparative statics
properties:

𝑑𝐸[𝑇 ⋆]
𝑑𝜇

= 1
𝜇 − 1

2𝜎
2

(
𝜕𝜇𝑥⋆

𝑥⋆
− 𝐸[𝑇 ⋆]

)

, (3)

𝑑𝐸[𝑇 ⋆]
𝑑𝜎2

= 1
𝜇 − 1

2𝜎
2

( 𝜕𝜎𝑥⋆

𝑥⋆
+ 1

2
𝐸[𝑇 ∗]

)

, (4)

𝑑𝐸[𝑇 ⋆]
𝑑𝑎

= 1
𝜇 − 1

2𝜎
2

𝜕𝑎𝑥⋆

𝑥⋆
. (5)

This is straightforward to determine, since the expected stopping time of a geometric Brownian motion follows 𝐸[𝑇 ⋆] =
1

𝜇− 1
2 𝜎

2
log 𝑥⋆

𝑥0
(e.g., Wilmott et al., 1993, AppendixB.1). The inequality for 𝜇, 𝜎 is needed throughout the paper, since the problem

is not well-posed otherwise: uncertainty is so high that the investment would never be stopped because there is always a sufficient
probability that the climate conditions will become beneficial again. Eq. (5) shows that a higher design parameter 𝑎 shifts the
expected stopping time in the same direction as it shifts the cutoff value, which is quite intuitive. The effect of a stronger trend
3
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(with a given design), Eq. (3), is more complicated. One might expect that, for example, if 𝜇 is larger, the expected time at which
the investment’s design will no longer fit the climate conditions well can be expected to come earlier. This is indeed the case if the
cutoff value 𝑥⋆ decreases for a stronger trend (as will be the case in the next Section). But the latter case does not hold in general.
All we can say here is that stopping earlier in light of a stronger trend is more likely if the investment is expected to have a longer
lifetime anyway. Higher uncertainty with a given design, Eq. (4), necessarily leads to a longer expected lifetime if it also raises
the cutoff value (as will be discussed in the next section). If the cutoff value becomes smaller, this opposite effect is more likely
compensated for with particularly long-lived investments.

2.2. Optimal design (first stage)

In the first stage, however, the design 𝑎 is not fixed, but selected to maximize 𝐽 . Choosing the design implicitly determines the
cutoff value. Usually, the cutoff value can be determined from a value function ℎ(𝑥) that expresses the expected value of not stopping
the investment (yet) for given conditions 𝑥 and assuming that the investment is stopped at the optimal time in the future (cf. Dixit
and Pindyck, 1994). Thus, 𝐽 (𝑥0, 𝑎, 𝜇, 𝜎) = ℎ(𝑥0) − 𝐶(𝑎) (if the project is not immediately stopped, that is, if ℎ(𝑥0) ≤ 0), and the
first-order and second-order conditions are

𝜕𝑎𝐽 (𝑥0, 𝑎, 𝜇, 𝜎) =
𝑑
𝑑𝑎

ℎ(𝑥0) − 𝐶 ′(𝑎) = 0, (6)

𝜕𝑎𝑎𝐽 (𝑥0, 𝑎, 𝜇, 𝜎) =
𝑑2

𝑑𝑎2
ℎ(𝑥0) − 𝐶 ′′(𝑎) < 0. (7)

Now suppose that Eq. (7) holds. Solving Eq. (6) for 𝑎 yields the optimal design 𝑎⋆(𝑥0, 𝜇, 𝜎), and thus the optimally designed expected
lifetime 𝑇 ⋆⋆(𝑥0, 𝜇, 𝜎) = 𝐸[𝑇 ⋆](𝑥0, 𝑎⋆(𝑥0, 𝜇, 𝜎), 𝜇, 𝜎). By making use of Eq. (3)-Eq. (5), these functions have the following comparative
statics properties (with ≐ denoting equivalence in signs):

Proposition 2. If the investment is optimally stopped according to Proposition 1 in the second stage, and an optimal design 𝑎⋆ exists in
the first stage, the solution has the following comparative statics properties:

𝜕𝜇𝑎
⋆(𝑥0, 𝜇, 𝜎) = −

𝜕𝑎𝜇𝐽
𝜕𝑎𝑎𝐽

≐ 𝑑2

𝑑𝑎𝜇
ℎ(𝑥0), (8)

𝜕𝜎𝑎
⋆(𝑥0, 𝜇, 𝜎) = −

𝜕𝑎𝜎𝐽
𝜕𝑎𝑎𝐽

≐ 𝑑2

𝑑𝑎𝜎
ℎ(𝑥0), (9)

𝜕𝜇𝑇
⋆⋆(𝑥0, 𝜇, 𝜎) = 𝜕𝜇𝐸[𝑇 ⋆] + 𝜕𝑎𝐸[𝑇 ⋆] ⋅ 𝜕𝜇𝑎⋆ =

= 1
𝜇 − 1

2𝜎
2

(
𝜕𝜇𝑥⋆

𝑥⋆
− 𝑇 ⋆⋆ +

𝜕𝑎𝑥⋆

𝑥⋆
𝜕𝜇𝑎

⋆), (10)

𝜕𝜎2𝑇
⋆⋆(𝑥0, 𝜇, 𝜎) = 𝜕𝜎2𝐸[𝑇 ⋆] + 𝜕𝑎𝐸[𝑇 ⋆] ⋅ 𝜕𝜎2𝑎

⋆ =

= 1
𝜇 − 1

2𝜎
2
(
𝜕𝜎2𝑥⋆

𝑥⋆
+ 1

2
𝑇 ⋆⋆ +

𝜕𝑎𝑥⋆

𝑥⋆
𝜕𝜎2𝑎

⋆). (11)

The first two equations show that the effects of the trend and uncertainty depend on the marginal value of the design. If a
tronger trend or higher uncertainty enhances the marginal value of design, it is optimal to choose a larger design parameter.

The last two equations show that the effect for the optimal expected lifetime can be decomposed into two effects. The first
ummand in the shorter versions of Eq. (10), Eq. (11) is the direct effect (as already discussed for the second stage). The further
ummands refer to an indirect effect. In Eq. (10) one might expect, for example, that an investment that is more robust to climate
hange (higher 𝑎) will be stopped at a later time. If the trend is stronger, and suppose that the direct effect leads to a shorter lifetime,
ewer benefits during the expected lifetime are likely. In this case, robustness does not pay off as much, and a less robust design
ight be optimal. Then, the expected lifetime would consistently be shorter. In such a case, policy makers or investors who plan

daptation to climate change and have reasons to update their estimated 𝜇 upwards should chose more short-lived projects.
However, it is not obvious at this point whether it might also be optimal to make the investment more robust to compensate a

stronger climate change trend (𝜕𝜇𝑎⋆ > 0). If this were the case, the direct and indirect effects for 𝜕𝜇𝑇 ⋆⋆ would point in opposite
directions. What we can say for certain, from the expanded version of Eq. (10), is that the lifetime of a particularly long-lived
investment is more likely to be shortened in the presence of a stronger trend.

A similar argument can be made for higher uncertainty in Eq. (11). The direct effect describes the impact of uncertainty on the
expected stopping time (which might be expected to be positive due to a higher premium to wait with stopping). The indirect effect
𝜕𝑎𝐸[𝑇 ⋆]⋅𝜕𝜎2𝑎⋆ is driven by whether or not higher uncertainty incentivizes a more robust design. Since it cannot be generally inferred
that the direct and the indirect effect point in the same direction, results depend on the further specification of the optimization
problem. However, the expanded version of Eq. (11) shows that particularly long-lived investments more likely have an extended
lifetime in presence of higher uncertainty. If adaptation decision makers become more uncertain about how climate change enfolds,
they should plan that investments who reach quite far into the future anyway (e.g. bridges, dykes or dams1) live even longer.

1 Dykes and dams do protect investments, and could thus be considered as part of the investments’ design.
4
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3. A model with optimal stopping and robustness

As several comparative statics results above depend on the detailed problem specification, this section analyzes the model for an
deal-type case with linear current benefits function and one design parameter. This specification is an insightful case: We will see
elow that it already admits that rising uncertainty can make either more or less robust designs optimal (depending on the lifetime).
t is the most clear-cut representation of all settings where the climate conditions are detrimental for the benefit stream, while this
esign can be interpreted as robustness. For non-linear cases, our findings consequently imply that all equations in Proposition 2 can
e positive or negative as well, yet in an even more complicated way. The specification has the additional advantage that central
esults can be derived analytically, and that it can be applied in multiple ways. Many climate change damage functions, e.g. for rail
ines, bridges or electricity supply, can be well approximated by linear regression (Neumann et al., 2020). Linear aggregate damage
unctions are also common in the literature (e.g. Pavlova and de Zeeuw, 2012; Hagen and Eisenack, 2019). As another example,
conomic costs of conventional power plant outages due to heat-waves rise broadly linear in the amount of curtailed capacity and
he frequency of outages (Pechan and Eisenack, 2014; Eisenack, 2016). Note that the interpretation of 𝑥 and 𝑎 also admits some

generalization, e.g., by re-scaling the stochastic process. More complicated specifications likely require either numerical analysis or
a piecewise linear approximation with our model.

We first solve the optimal stopping problem and delegate the comparative statics to the subsequent section. The conditions 𝑥
and the design parameter 𝑎 > 0 are assumed to determine the investment’s current benefit according to 𝜋(𝑥, 𝑎) = 𝛾 − 𝑥∕𝑎 with some
𝛾 > 0. Therefore, we model detrimental climate change: A higher value for 𝜇 implies a more negative trend for current benefit. The
benefit 𝜋 is always below a maximum 𝛾, and diminishes to zero if the climate 𝑥 approaches 𝛾𝑎. Since 𝜕𝑎𝜋 ≥ 0, 𝜕𝑎,𝑥𝜋 > 0, we can
onceive the design parameter as the investment’s robustness. We further assume that robustness comes at constant unit costs 𝑐 > 0,
o that 𝐶 = 𝑐𝑎.

.1. Optimal stopping with arbitrary design (second stage)

We first study the second stage in which the design 𝑎 is fixed at some arbitrary level, that is, the decision problem Eq. (2) subject
o Eq. (1). This is an autonomous optimal stopping problem in current-value formulation. We can solve this problem by determining
he value function ℎ(𝑥) that is required to satisfy the Hamilton–Jacobi–Bellman equation

−𝑟ℎ + (𝛾 − 𝑥
𝑎
) + 𝜇𝑥 ℎ′ + 1

2
𝜎2𝑥2ℎ′′ = 0. (12)

The optimal stopping rule is to continue operation as long as 𝑥(𝑡) < 𝑥⋆, the latter being the cutoff value. At the stopping time
𝑥(𝑇 ⋆) = 𝑥⋆. The cutoff value is characterized by the standard value matching and smooth pasting conditions ℎ(𝑥⋆) = 0, ℎ′(𝑥⋆) = 0.
The Appendix shows the following solution:

Proposition 3. Define the reappearing terms 𝜔 ∶= 𝑟−𝜇
𝑟

𝛽
𝛽−1 and 𝑎0 ∶= 𝑥0

𝛾𝜔 > 0. If 𝑎 > 𝑎0, then the optimal stopping problem Eq. (1),
q. (2) with 𝜋 = 𝛾 − 𝑥∕𝑎 is solved by the value function

ℎ(𝑥) =
𝛾

𝑟(𝛽 − 1)
( 𝑥
𝑥⋆

)𝛽 − 1
𝑎(𝑟 − 𝜇)

𝑥 +
𝛾
𝑟
, (13)

where 𝛽 > 0 is the positive root of the characteristic polynomial
1
2
𝜎2𝛽2 + (𝜇 − 1

2
𝜎2)𝛽 − 𝑟 = 0. (14)

It holds that 𝜔 > 1, and the cutoff value 𝑥⋆ = 𝜔𝛾𝑎 respects
𝑥⋆

𝑥0
= 𝑎

𝑎0
. (15)

The parameter 𝑎0 characterizes an extreme design such that, if 𝑎 = 𝑎0, the initial value is ℎ(𝑥0) = 0: The robustness is so low that
he investment would be stopped immediately. A given design 𝑎 > 𝑎0 guarantees that 𝑥⋆ > 𝑥0. The inequality 𝜔 > 1 holds because
t can be verified that, although both 𝑟 ≶ 𝜇 is possible,2

the root 𝛽 is always between 1 and 𝑟∕𝜇. (16)

t follows that 𝑥⋆ > 𝛾𝑎 > 0, such that the current benefit 𝜋(𝑥⋆, 𝑎) is always negative when the investment is stopped at 𝑡 = 𝑇 ⋆. This
is due to the option value of postponing to stop the investment.

3.2. Optimal design (first stage)

We now determine the optimal design 𝑎⋆: what is the best level of robustness to choose? This is not straightforward, as the
net value 𝐽 does not has a simple shape (see Fig. 1 for an example). The first-order condition Eq. (6) can be re-arranged to 𝑐 =

2 Note that 𝑟 < 𝜇 is, in contrast to other optimal stopping problems in the literature, a reasonable case. Since 𝜋 is decreasing in 𝑥, there are no problems
with a non-existing net value 𝐽 . Both higher 𝑟 and 𝜇 lead to less benefits in the future. The cases 𝛽 ≶ 1 distinguish whether discounting or the trend dominate
5

in the long run.
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𝐽
o

Fig. 1. Numerical example for net value 𝐽 depending on design 𝑎 (with 𝑟 = 0.02, 𝜇 = 0.09, 𝜎2 = 0.02, 𝑐 = 𝛾 = 𝑥0 = 1.00, thus 𝑎0 = 0.89, �̄� = 1.67, 𝑎⋆ = 7.64).

𝑥0
𝑟−𝜇

(

𝑎−2 − ( 𝑥0𝛾𝜔 )
𝛽−1𝑎−𝛽−1

)

. Generally, this equation cannot be solved for 𝑎 with an explicit expression. Also the second-order condition
is not easy to confirm. Some other features of 𝐽 can be collected more easily. If 𝑎 = 𝑎0 the net value 𝐽 is always negative. This
follows from the value-matching condition and the definition of 𝑎0 according to 𝐽 (𝑥0, 𝑎0, 𝜇, 𝜎) = ℎ(𝑥0)− 𝑐𝑎0 = ℎ(𝑥⋆)− 𝑐𝑎0 = −𝑐𝑎0 < 0.
It further follows from the smooth pasting condition that 𝐽𝑎(𝑥0, 𝑎0, 𝜇, 𝜎) < 0. The following proposition provides sufficient conditions
for the existence of an optimum, and a general characterization of its level (see Appendix for the proof and further details). Part
of the proof is to show that 𝐽 = ℎ(𝑥0) − 𝑐𝑎 has an inflection point at 𝑎 = �̄� ∶= ( 2

𝛽+1 )
1

1−𝛽 𝑎0 > 𝑎0.

Proposition 4. There exists a unique global inner maximum of 𝐽 ,

𝑎⋆ =
(

𝛽 + 1
2

)
𝑧

𝛽−1
𝑎0, (17)

if and only if 𝑐 < 𝜙 and 𝐽 (𝑥0, 𝑎⋆, 𝜇, 𝜎) > 0. The parameters 𝑧 > 1, 𝜙 are given in the proof, the former by an implicit equation. Both
parameters depend on all model parameters 𝑟, 𝜇, 𝜎, 𝛾, 𝑐, 𝑥0 in a non-linear way.

The condition 𝑐 < 𝜙 expresses an upper limit for the unit costs of robustness. If robustness were more expensive, then the
investment would yield a negative net value even if robustness were optimally chosen (such that the investment would not be
started at all). This upper limit is actually the marginal value 𝑑

𝑑𝑎ℎ(𝑥0) at the inflection point �̄�. The proof shows that if 𝑎⋆ exists,
has exactly one minimum and one maximum. The minimum is between 𝑎0 and the inflection point �̄�, the maximum to the right

f the inflection point. While the condition 𝐽 (𝑥0, 𝑎⋆, 𝜇, 𝜎) > 0 seems obvious, it also excludes a corner solution 𝑎 = 𝑎0. Note that
Eq. (15) then automatically provides an expression for the cutoff value if robustness is optimal.

The maximum 𝑎⋆ is the optimal robustness in the presence of uncertainty and the trend, anticipating the expected stopping time
at the beginning of the investment. The investment’s net value 𝐽 (𝑎) increases in 𝑎 if robustness is low since the value of not stopping
the investment outweighs the robustness costs. If robustness becomes too large, the marginal gains of robustness become too low in
comparison to the marginal costs. More intuition will be provided through the comparative statics and numerical examples in the
following section.

3.3. Notes on the option value

The option value and the interpretation of the value function Eq. (13) in the second stage can be further studied by comparing
these with the solution that maximizes the net value in the absence of uncertainty, such that 𝑥(𝑡) = 𝑥0𝑒𝜇𝑡 (see Appendix):

Proposition 5. For 𝜎 = 0 and 𝑎 > 𝑥0
𝛾 , the second stage decision problem is solved by the value function

ℎ◦(𝑥) =
𝜇𝛾

𝑟(𝑟 − 𝜇)
( 𝑥
𝑥◦

)
𝑟
𝜇 − 1

𝑎(𝑟 − 𝜇)
𝑥 +

𝛾
𝑟

(18)

with cutoff value 𝑥◦ = 𝛾𝑎 > 0.
6
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Obviously, when the investment is stopped at 𝑥 = 𝑥◦, the current benefit 𝜋 is exactly zero. There is no gain from further operating
the investment, and also no option value. Since 𝑥◦ = 𝛾𝑎 < 𝑥⋆, uncertainty leads to stopping the investment at a later time. The role
of 𝛽 in Proposition 3 is taken over by 𝑟∕𝜇 in Proposition 5. Now consider the difference between the value functions for both cases,
that is, the option value

𝛩(𝑥) = ℎ(𝑥) − ℎ◦(𝑥) =
𝛾
𝑟

(

1
𝛽 − 1

( 𝑥
𝑥⋆

)𝛽 −
𝜇

𝑟 − 𝜇
( 𝑥
𝑥◦

)
𝑟
𝜇

)

. (19)

The only difference between the value functions ℎ, ℎ◦ is their first term. The second and third terms in both value functions represent
the value of the investment if it were never stopped, whereas the first terms represent the gain from stopping at the best time. The
option value depends on both 𝜇, 𝜎 in a non-linear way. We can conclude that 𝛩(𝑥◦) is positive due to Eq. (16). The effect of the
esign 𝑎 on the option value is completely captured by its influence on the cutoff values 𝑥◦ = 𝛾𝑎 and 𝑥⋆ = 𝜔𝛾𝑎, so that the parameter
captures the effects of uncertainty.

. Comparative statics

We want to know how the optimal expected lifetime and the optimal design depend on various parameters. In particular, do
he robustness and the lifetime increase or decrease if climate change is faster or more uncertain? We thus determine the direct
nd indirect effects in Eq. (10), Eq. (11). We focus on the comparative statics of the stopping problem (second stage) first, and then
roceed with the analysis of optimal design (first stage).

.1. Comparative statics of optimal stopping with arbitrary design (second stage)

The comparative statics of the stopping time with respect to uncertainty and robustness can be determined by using the cutoff
alue 𝑥⋆ from Proposition 3 in Proposition 1:

roposition 6. Let 𝑥⋆ and 𝐸[𝑇 ⋆] be the solution to the optimal stopping problem from Proposition 3. Then,

𝜕𝜇𝑥
⋆ < 0, 𝜕𝜎2𝑥

⋆ > 0, 𝜕𝑎𝑥⋆ = 𝛾𝜔 > 0, (20)

nd

𝜕𝜇𝐸[𝑇 ⋆] < 0, 𝜕𝜎2𝐸[𝑇 ⋆] > 0, 𝜕𝑎𝐸[𝑇 ⋆] > 0, 𝜕𝑥0𝐸[𝑇 ⋆] < 0. (21)

If the trend is stronger, the current benefits deteriorate earlier. This ultimately leads to negative current benefits, and a lower
utoff value according to Eq. (20): the gains from stopping the investment become larger, so this is expected at an earlier time due
o to Eq. (21). Higher uncertainty means that more information appears over time. As more information eases the stopping decision,
he premium for waiting to stop the investment rises. Thus, Eq. (20) shows the cutoff value becomes larger, that is, less favorable
limatic conditions are accepted, and the expected stopping time is later as shown in Eq. (21). Finally, rising robustness makes the
nvestment more beneficial in the light of climate change. Intuitively, a higher cutoff level and later stopping time result.

It helps us to interpret the interlinked effects of a stronger trend and higher uncertainty if we further inspect the option value 𝛩
nd how it depends on the design. First observe that 𝜕𝑎𝑥⋆ > 𝛾 = 𝜕𝑎𝑥◦ > 0 by Propositions 6 and 5. Thus, uncertainty increases the

positive effect of robustness on the expected stopping time in Proposition 3. The effect of robustness on the option value, however,
is ambiguous (see Appendix):

Proposition 7. Let 𝑥⋆ and 𝑥◦ be the solution to the optimal stopping problems from Propositions 3 and 5. Then, 𝜕𝑎𝛩 > 0 if and only if

𝛾𝑎 < 𝑥𝜔
𝜇(𝛽−1)
𝑟−𝜇𝛽 . (22)

Due to Eq. (16), the exponent is always positive. The inequality shows that increasing robustness raises the option value up to a
aximum. For even more robustness, the value of the stopping option is decreasing again. It also shows that robustness raises the

ption value if the climate becomes increasingly unfavorable.

.2. Comparative statics of optimal design (first stage)

Now turn to the comparative statics if the irreversible design is optimally chosen. By applying the general Eq. (8) and Eq. (9) to
ur robustness model, the results are as follows (see Appendix):

roposition 8. Assume that the conditions of Proposition 4 hold. Then, 𝜕𝑐𝑎⋆ < 0. For changing uncertainty, 𝜕𝜎2𝑎⋆ > 0 if and only if
⋆⋆ < �̄�𝜎 , with �̄�𝜎 = (𝛽(𝜇 − 1

2𝜎
2))−1. For a changing trend, 𝜕𝜇𝑎⋆ > 0 if and only if 𝑇 ⋆⋆ > �̄�𝜇 , where �̄�𝜇 > 0 is given by a unique solution

f an implicit equation in the proof. Both �̄� , �̄� only depend on 𝜇, 𝜎, 𝑟.
7
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Fig. 2. Thresholds (with 𝑟 = 0.05; solid: isolines for �̄�𝜇 , dotted: isolines for �̄�𝜎 ; for A–D, see text). The shaded area represents cases where the decision problem
is not well-posed according to Proposition 1.

This highlights that the effect of uncertainty and the trend on the optimal design is not a simple one. While a stronger trend or
higher uncertainty might intuitively imply a more robust design in some cases, it might not be worthwhile in other cases. Uncertainty
or the trend may also reduce the value of a more robust design.

In particular for long-lived investments (𝑇 ⋆⋆ > �̄�𝜇 , �̄�𝜎), lower uncertainty and faster climate change imply more robustness. For
a stronger trend, it is beneficial to increase robustness because higher benefits can be obtained for a long time, which outweighs
higher robustness costs. Higher uncertainty does not lead to increasing robustness for such investments, because the option value
does not rise sufficiently (or even decreases) to justify additional robustness costs. These comparative statics of robustness with
respect to uncertainty are thus in line with the option value decreasing once a certain threshold is crossed (cf. Proposition 7).

For comparatively short-lived investments (𝑇 ⋆⋆ < �̄�𝜇 , �̄�𝜎), robustness would be decreased if there is lower uncertainty or faster
climate change. For a stronger trend, higher robustness costs do not balance the marginal gains from robustness that are only
achieved for a relative limited time. These short-lived investments, on the other hand, benefit from increasing robustness in light
of higher uncertainty, since there are then more possibilities to gain from up-dated information during an extended lifetime.

With intermediate lifetimes between �̄�𝜇 and �̄�𝜎 , mixed cases are possible. Both thresholds give some indication about what time
scales might make the difference between the cases (see Fig. 2). For the special case where the trend in the conditions 𝜇 roughly
balances the discount rate 𝑟, the parameter 𝛽 comes close to unity. Thus, if uncertainty is low, �̄�𝜎 ≈ (𝛽𝜇)−1 ≈ 1∕𝑟. For usual discount
rates, the long-lived investments with the unconventional comparative statics are then those with economic lifetimes of more than
20 to 50 years. Even longer lifetimes are quite common, for instance, with transport infrastructure or buildings.

We can take parameters from other studies (with different objectives but parameterizing climate impacts as Brownian motion)
to have an impression of possible thresholds. Guthrie (2021) studies implications of a process for inundation costs (𝜇 = 0.048, 𝜎 =
0.03, 𝑟 = 0.07, so that �̄�𝜎 ≈ 32.6 yr, �̄�𝜇 ≈ 14.5 yr), while Gersonius et al. (2013) investigate drainage infrastructure (the process for
rainfall intensity uses 𝜇 = 1.8 ⋅ 10−4, 𝜎2 = 2.47 ⋅ 10−4, 𝑟 = 0.035, so that �̄�𝜎 ≈ 1071 yr, �̄�𝜇 ≈ 4241 yr, clearly above life-times of up to
200 years).

We computed the isolines for both thresholds in Fig. 2. Suppose the relevant process is in a neighborhood of A, and the trends
becomes stronger. Then, investments with a life-time of previously 30 years (above both thresholds) should become more robust.
With more uncertainty, they should become less robust. The same would apply to an investment with 50 years life-time. Close to
area C, the two investment’s life times are below both thresholds, so they should be less robust for a stronger trend, and more robust
for with rising uncertainty. We can also position mixed cases. Close to area B, the 30 years investment is above �̄�𝜇 but below �̄�𝜎 .
Then, both a stronger trend and more uncertainty imply more robustness. For the 50 years investment, the comparative statics are
like in A. In the neighborhood of D, the 50 years investment is above �̄�𝜇 and below �̄�𝜎 (like the 30 years investment in B). Yet, now
the 30 years investment behaves like in C.

We now assess changes of the expected lifetime if the investment’s robustness is optimally chosen in the first stage (see Appendix
for the proof). This requires that we add up the direct and indirect effects in Proposition 2 for our solution.

Proposition 9. Assume that the conditions of Proposition 4 hold. Then, 𝜕𝑐𝑇 ⋆⋆ < 0. If 𝑇 ⋆⋆ ≤ �̄�𝜎 , then 𝜕𝜎2𝑇 ⋆⋆ > 0. If 𝑇 ⋆⋆ ≤ �̄�𝜇 , then
𝜕 𝑇 ⋆⋆ < 0.
8
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Table 1
Summary of comparative statics results.

Optimal expected Changing Effect on optimal

lifetime parameters Robustness 𝑎⋆ Lifetime 𝑇 ⋆⋆

Short
𝑇 ⋆⋆ < �̄�𝜇 trend 𝜇 (–) (–)
𝑇 ⋆⋆ < �̄�𝜎 uncertainty 𝜎2 (+) (+)

Long
𝑇 ⋆⋆ > �̄�𝜇 trend 𝜇 (+) (?)
𝑇 ⋆⋆ > �̄�𝜎 uncertainty 𝜎2 (–) (?)

For 𝑇 ⋆⋆ > �̄�𝜇 , we do not obtain an analytical result for the effect of the trend, and similarly for 𝑇 ⋆⋆ > �̄�𝜎 with respect to
uncertainty. We summarize the main comparative statics results in Table 1. For comparatively long-lived investments, the effects of
trends or uncertainty are ambiguous as expected in Section 2. If the chosen lifetime is relatively short, the direct and indirect effects
on optimal lifetime (see Proposition 2), both due to trend and uncertainty, go in the same direction. Thus, the overall effect of a
stronger trend is then negative while the one of higher uncertainty is positive. If the chosen lifetime is relatively long, the direct
and indirect effects go in opposite directions. Unfortunately, we cannot prove the overall effect for the optimal expected lifetime
analytically in this case.

When there is a stronger trend, there are gains from a lower cutoff value (a negative direct effect), as well as gains from decreasing
robustness (a negative indirect effect), if the lifetime is relatively short. If the lifetime is relatively long, the gains from the now
positive indirect effect might outweigh the gains from the direct effect, such that the expected optimal lifetime might rise. When
there is higher uncertainty there are gains from a larger option value due to the positive direct and indirect effect, if the investment
is relatively short-lived. If the lifetime is relatively long, a less robust design might outweigh a larger option value, such that the
expected optimal lifetime is shortened. Our numerical experiments, however, lend to the hypothesis that the direct effect dominates:
The optimal expected lifetime of particularly long-lived investments decreases further with a stronger trend, and increases further
with higher uncertainty.

5. Numerical experiments

The analytical results show that the combined effects of the climate change trend and uncertainty on the expected lifetime of an
optimally adapted investment can be ambiguous. For some cases, we can make clear analytical predictions, while in other cases the
outcome depends on the solutions of implicit equations that do not allow for a closed-form representation. We thus explore these
cases by means of numerical solutions.

Fig. 3 shows optimal robustness and optimal expected lifetime depending on specific other parameters. In accordance with
Table 1, ranges with increasing and with decreasing robustness can be observed, separated by a trend 𝜇 where the optimal expected
lifetime equals the threshold �̄�𝜇 . Expected optimal lifetime decreases if 𝑇 ⋆⋆ < �̄�𝜇 as has been shown in Proposition 9. In the example,
the optimal lifetime is generally decreasing for a stronger trend.

If investments with a comparatively long (expected optimal) lifetime are exposed to faster climate change, the additional costs
of more robust design pay off. This is intuitive as the benefits from more robustness are obtained for a longer time. Yet, increasing
robustness is not sufficient to completely compensate for faster climate change — the investment’s lifetime becomes shorter and
shorter. So, if the trend in the climatic conditions becomes even stronger, the lifetime becomes so short that more robustness is
no longer justified. The decision rule switches to less robust designs in the presence of more severe climate change. Ultimately, a
reduced lifetime is the necessary consequence.

Fig. 4 shows the optimal expected lifetime depending on both the trend and on uncertainty. Again, the different cases according
to Table 1 can be observed. For lower uncertainty, robustness is increased such that also the optimal expected lifetime becomes
longer. Although the investment becomes less robust for higher uncertainty, the lifetime is still extended. Thus, in the example, the
optimal lifetime always rises with higher uncertainty.

If an investment is designed for relatively certain climatic conditions, the expected optimal lifetime is comparatively short. There
are only limited reasons to keep an investment with negative current benefits running since the option value is low. If uncertainty
is higher, a more robust design becomes beneficial to even out random fluctuations. In this case, the indirect effect of robustness on
lifetime adds to the increasing option value, such that the lifetime is further extended. At some point, however, higher uncertainty
leads to decreasing robustness. Although a longer (expected) lifetime might be a good reason to invest more robustly, two effects
counterbalance this. First, there are diminishing returns from robustness in any case. Second, as shown in Proposition 7, the option
value begins to decrease at some level of robustness. The overall effects on the lifetime remain positive. The (negative) indirect
effect of reduced robustness is overcompensated for by the (positive) direct effect of uncertainty on the stopping time.

Fig. 4 also illustrates how the effect of uncertainty and the trend interact in a non-linear way. The second-stage decision links
the first-stage robustness choice to the expected lifetime. The first stage can thus be conceived as choosing the optimal expected
lifetime in light of the indirect effect’s costs and benefits, adjusted by the option value.

Interestingly, we were not able to find parameter sets for a case in which faster climate change leads to longer optimal expected
lifetimes, or one in which higher uncertainty implies shorter lifetimes. On the other hand, our experiments show the cases of both
9
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Fig. 3. Example for optimal robustness (upper panel) and optimal expected lifetime (lower panel) depending on the trend 𝜇 (with 𝑟 = 0.02, 𝜎2 = 0.02, 𝑐 = 𝛾 =
𝑥0 = 1.00). The dotted curve represents �̄�𝜇 as a function of 𝜇, at the dashed vertical line 𝑇 ⋆⋆ = �̄�𝜇 .

Fig. 4. Example for optimal expected lifetime depending on uncertainty 𝜎2 and trend 𝜇 (with 𝑟 = 0.02, 𝑐 = 𝛾 = 𝑥0 = 1.00).
10
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positive and negative effects of higher uncertainty and faster climate change on optimal robustness. Optimal lifetime yet always
seems to increase with uncertainty, and decreases for stronger trends. The direct effects on lifetime seem to dominate the indirect
effects.

6. Conclusion

This paper started from the question of whether the expected lifetime of an investment with an irreversible technical design
hould become shorter or whether the investment should be designed more robustly — if affected by detrimental climate change
ith a stronger trend or with higher uncertainty. We first analyzed the problem from a general perspective, and then focused on an
pplication with geometric Brownian motion and a technical design parameter that can be interpreted as the investment’s robustness.

The effects of the trend and of uncertainty on optimal investment design and lifetime can generally be decomposed into direct
nd indirect effects. For the direct effects, a stronger trend leads to ceteris paribus shorter lifetimes — the investment becomes
nprofitable earlier. In line with real options theory, higher uncertainty ceteris paribus leads to stopping the investment at a later
ime due to an increasing premium to wait. The indirect effects are driven by the anticipated lifetime, which in turn depends on
he strength of the trend, its uncertainty, and the chosen technical design. Conditions for the occurrence of the different cases can
e identified. The case depends on whether the investment is comparatively short- or long-lived. In the short-lived cases, the direct
ffects dominate. One might say that if time does not matter much, everything is intuitive. In contrast, with comparatively long-lived
nvestments, more complex and prima facie counterintuitive designs may be optimal. Higher uncertainty then leads to less robust
esigns, while stronger trends make more robust designs optimal. Our analysis thus shows some unexpected effects. The effects
lready appear for linear current benefits. They will feature in non-linear cases in an even more complex way. The effects we find
ave, to our knowledge, not been investigated in the theoretical literature so far.

The results and the approach taken are relevant for further applications not related to climate change adaptation. The debate on
ossil stranded assets, for example, pictures a situation where investors face the decision of whether and how to continue investing in
ining or conventional power plants in the presence of strong regulatory uncertainty (e.g. Pfeiffer et al., 2016; Kalkuhl et al., 2019;
isenack et al., 2021; von Dulong et al., 2022). Retrofitting such power plants has limited value if policies, for instance, enforce a
hut-down. This problem also applies to investment in renewables (some with shorter life-time than fossil fuel power plants) or to
he expansion of electricity grids (long life-time). Also in the construction industry many design choices at the time of investment
annot be revised easily at a later point. This industry makes up a share of about 5% to 11% of GDP globally; and megaprojects might
ccount for 8% of GDP (depending on the estimate, e.g., Crosthwaite, 2000; Flyvbjerg, 2014; World Economic Forum, 2016; OECD,
016). The profitability of such investments depends on uncertain trends in demand, and might suffer from the risk of becoming
echnologically outdated. One might also consider utilities investments, new water or transport infrastructure components, in the
ight of uncertain demographic change or economic growth (cf. Chatterjee and Turnovsky, 2012). Their stream of benefits typically
epends on the size of the population or the scale of economic activity that is served. Any investment in machinery must consider
hether the design should be more specialized to efficiently meet a certain demand, or whether it should be more robust in the sense

hat its profits are less sensitive to the market conditions. Our model structure might also be motivated by considering investments
ith a shorter lifetime, such as a new computer: Does it make sense to choose a more expensive one that will have high performance

or a longer period, or a cheaper one that will become outdated sooner?
While there seem to be many applications, there are also some limitations to our analysis which lend themselves naturally to

xtensions. Applying our general comparative statics results about the optimal lifetime for a concrete functional form, particularly
or long-lived investments, turned out to be complicated. For other functional forms, the comparative statics results can likely not be
valuated analytically. Geometric Brownian motion was intentionally chosen as a case with substantial uncertainty. Further research
ould study other stochastic processes and other specifications of the current benefits. Our assumption of a completely irreversible
esign is admittedly quite polar in comparison to other irreversible investment studies which admit full flexibility in additional
ecision variables. Many applications are presumably between those extremes. We have chosen this assumption to bring the main
ffects clearly to light. In addition, it is conceptually not straightforward how to model intermediate kinds of flexibility. A more
eneral model might include something like limited flexibility by considering subsequent investment cycles. A further interesting
xtension would be to consider risk aversion, as this would balance the effects from uncertainty and robustness in another way.
eal-world applications and most such extensions would likely require simulation methods, as are common in the real options

iterature. Our study provides a template for doing so.
Although theoretical in nature, our results may be important for both private and public climate adaptation decisions about

ong-lived investments. Guidelines for wisely planning the design and lifetime of investments could help to avoid unnecessarily
xcessive expenditures for adaptation to the impacts of climate change. The general analysis presented in this paper offers the basis
or applied numerical computations. A general take-home message for decision makers is that climate change uncertainty does not
ecessarily require more robust infrastructure, in particular if it is quite long-lived: Flexibility in terms of less robust investments
an pay off.
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ppendix. Mathematical appendix

roof of Proposition 3 (Optimal Stopping with Arbitrary Design). First show that the function Eq. (13) satisfies the Hamilton–Jacobi–
Bellman (HJB) equation by differentiation. Note that

𝜇𝑥ℎ′ =
𝜇𝛾
𝑟

𝛽
𝛽 − 1

( 𝑥
𝑥⋆

)𝛽
−

𝜇𝑥
𝑎(𝑟 − 𝜇)

, (A.1)

1
2
𝜎2𝑥2ℎ′′ = 1

2
𝜎2

𝛾
𝑟
𝛽
( 𝑥
𝑥⋆

)𝛽
, (A.2)

so that the HJB equation evaluates to 𝜎2𝛽2 + (2𝜇 − 𝜎2)𝛽 − 2𝑟, which vanishes according to the definition of 𝛽. The positive root 𝛽
can be explicitly written as 𝛽 = 1

𝜎2

(

((𝜇 − 1
2𝜎

2)2 + 2𝑟𝜎2)1∕2 − (𝜇 − 1
2𝜎

2)
)

> 0. Also the value matching and smooth pasting conditions
(𝑥⋆) = ℎ′(𝑥⋆) = 0 with 𝑥⋆ = 𝜔𝛾𝑎 are straightforward to verify. Now let 𝑎 > 𝑎0, which implies that 𝑥⋆ > 𝑥0, so that ℎ(𝑥0) > 0.
ogether with Eq. (A.2) implying that ℎ′′ > 0, this shows that 𝑥⋆ is the global minimum of the value function.

If 𝑎 ≤ 𝑎0, we would obtain ℎ(𝑥0) ≤ 0. Then the investment would be immediately be stopped (with 𝑥⋆ = 𝑥0). ■

roof of Proposition 4 (Optimal Design). As first main step, we show the existence of an inner maximum of 𝐽 (𝑥0, 𝑎) = ℎ(𝑥0) − 𝑐𝑎
ith respect to 𝑎. By using Eq. (15) and some re-arranging, the first-order condition can be written as

𝜕𝑎𝐽 = −
𝛾𝛽

𝑟(𝛽 − 1)
𝑎𝛽0𝑎

−(1+𝛽) +
𝑥0

𝑎2(𝑟 − 𝜇)
− 𝑐 = 0. (A.3)

The second-order condition requires

𝜕𝑎𝑎𝐽 =
𝛾𝛽(𝛽 + 1)
𝑟(𝛽 − 1)

𝑎𝛽0𝑎
−(2+𝛽) −

2𝑥0
𝑎3(𝑟 − 𝜇)

< 0. (A.4)

Yet, the second derivative 𝜕𝑎𝑎𝐽 vanishes at 𝑎 = �̄� (exactly once), since 𝜕𝑎𝑎𝐽 becomes negative if 𝑎 exceeds �̄�. For 𝑎 < �̄�, Eq. (A.4)
cannot be satisfied.

We now show that the first and second-order condition will be satisfied at some point 𝑎⋆ > �̄� if the condition

𝑐 < 𝜙 ∶=
𝛾2𝜔2

(𝑟 − 𝜇)𝑥0

(

( 2
𝛽 + 1

)
2

𝛽−1 − ( 2
𝛽 + 1

)
𝛽+1
𝛽−1

)

,

holds: Note that, by definition of 𝑎0, the expected net value 𝐽 (𝑥0, 𝑎0) = ℎ(𝑥0) − 𝑐𝑎0 = ℎ(𝑥⋆) − 𝑐𝑎0 < 0. Further, it can easily be seen
rom Eq. (A.3) that lim𝑎→∞ 𝐽 (𝑥0, 𝑎) → −∞. Thus, since 𝐽 is continuous, there must be a global inner maximum if 𝐽 increases at least
t one point 𝑎 > 𝑎0. This is indeed the case, since rearranging and using 𝑐 < 𝜙 yields 𝜕𝑎𝐽 (𝑥0, �̄�) > 0.

This implies, beyond existence, that the inner maximum 𝑎⋆ > �̄�, since 𝑎⋆ has to be to the right of the inflection point, where
(𝑎) is concave. Moreover, 𝑎⋆ > 𝑎0, since �̄� = 𝑎0(

2
𝛽+1 )

1
1−𝛽 > 𝑎0 because ( 2

𝛽+1 )
1

1−𝛽 > 1.
The assumption 𝑐 < 𝜙 is also necessary. Suppose that 𝜕𝑎𝐽 (𝑥0, �̄�) < 0. Then 𝐽 will remain decreasing above �̄� since there is no

urther inflection point. Since 𝐽 is also monotonically decreasing for 𝑎 < �̄�, we would only obtain a corner solution 𝑎 = 0 < 𝑎0,
i.e. the investment would be stopped immediately.

As second main step, we show that the optimum is global and unique. Let 𝑎⋆ > �̄� > 𝑎0 be an inner maximum of 𝐽 (𝑎, 𝑥0). We
now that 𝑥⋆ > 𝑥0 and 𝐽 (𝑥0, 𝑎0) < 0 holds. Since 𝐽 (𝑥0, 𝑎⋆) > 0 by assumption, 𝐽 (𝑥0, 𝑎⋆) > 𝐽 (𝑥0, 𝑎0), so that 𝑎⋆ is a global maximum.

Furthermore, 𝑎⋆ is the only maximum, since 𝐽 (𝑥0, 𝑎) has only one inflection point with respect to 𝑎.
As last main step, we show that Eq. (17) characterizes the optimal design. Implicitly define 𝑧 as the solution of

(

2
𝛽 + 1

)
𝑧(1+𝛽)
𝛽−1

−
(

2
𝛽 + 1

)
2𝑧
𝛽−1

= 𝑐
𝛾
𝜇 − 𝑟
𝜔

𝑎0. (A.5)

We first show that Eq. (17) yields the optimum, if some solution 𝑧 > 1 exists. Afterwards, existence of 𝑧 is shown. We know
that a global maximum 𝑎⋆ > �̄� exists, and that it satisfies the first-order condition Eq. (A.3). Substitute 𝑎⋆ from Eq. (17) into
Eq. (A.3) to obtain 𝛽𝛾

𝑎0𝑟(𝛽−1)
( 2
𝛽+1 )

𝑧(− 1+𝛽
1−𝛽 ) + 𝑥0

(𝑟−𝜇)𝑎20
( 2
𝛽+1 )

𝑧(− 2
1−𝛽 ) − 𝑐 = 0. Rearranging gives Eq. (A.5). Moreover, since 𝑧 > 1, we have

2
𝛽+1 )

𝑧
1−𝛽 > ( 2

𝛽+1 )
1

1−𝛽 , so that 𝑎⋆ > �̄�.
Now turn to existence and uniqueness of 𝑧. If there would be no 𝑧 > 1 solving Eq. (A.5), then there would be no 𝑎 > �̄� solving

Eq. (A.3), which would contradict the existence of the optimal 𝑎⋆. If there would be more than one 𝑧 > 1 solving Eq. (A.5), then
⋆

12

there would also be more than one 𝑎 > �̄� solving Eq. (A.3). This would then contradict the uniqueness of the optimal 𝑎 . ■
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Proof of Proposition 5 (Decision Without Uncertainty). First show that the function Eq. (18) satisfies the HJB equation when 𝜎 = 0
by differentiation and substitution. Note that

𝜇𝑥ℎ◦
′
=

𝛾𝜇
𝑟 − 𝜇

( 𝑥
𝑥◦

)
𝑟
𝜇 −

𝜇
𝑎(𝑟 − 𝜇)

𝑥, (A.6)

−𝑟ℎ◦ = −
𝛾𝜇

𝑟 − 𝜇
( 𝑥
𝑥◦

)
𝑟
𝜇 + 𝑟

𝑎(𝑟 − 𝜇)
𝑥 − 𝛾, (A.7)

so that the HJB equation is satisfied. The value matching and smooth pasting conditions ℎ(𝑥◦) = ℎ′(𝑥◦) = 0 are straightforward to
verify. Note also that

ℎ◦
′′
=

𝛾
𝑟 − 𝜇

( 𝑟
𝜇
− 1)( 𝑥

𝑥◦
)
𝑟
𝜇 𝑥−2 > 0. (A.8)

Furthermore 𝑎 > 𝑥0∕𝛾 guarantees that ℎ◦(𝑥0) > 0, so that 𝑥◦ is the global minimum of ℎ◦. If 𝑎 ≤ 𝑥0∕𝛾, the investment would
immediately be stopped with 𝑥◦ = 𝑥0. ■

Proof of Proposition 6 (Comparative Statics of Optimal Stopping with Arbitrary Design). First turn to the derivatives of the cutoff
value 𝑥⋆ = 𝜔𝛾𝑎, where 𝜔 > 1 (according to Proposition 3). Thus, 𝜕𝑎𝑥⋆ = 𝛾𝜔 > 0. It will be helpful to recall that 𝜕𝜇𝛽 < 0 (see
standard literature, e.g. Dixit and Pindyck, 1994, which is extended here to 𝜇 > 𝑟). Furthermore, 𝜕𝜎2𝛽 > 0 iff 𝜇 > 𝑟, so that always
(𝑟 − 𝜇)𝜕𝜎2𝛽 < 0. We thus obtain

𝜕𝜎2𝑥
⋆ = −𝛾𝑎

𝑟 − 𝜇
𝑟(𝛽 − 1)2

𝜕𝜎2𝛽 > 0,

and

𝜕𝜇𝑥
⋆ = 𝛾𝑎 𝛼

𝑟(𝛽 − 1)2
,

ith 𝛼 = −𝜕𝜇𝛽(𝑟 − 𝜇) − 𝛽(𝛽 − 1). The sign of 𝛼 is thus the same as the sign of 𝜕𝜇𝑥⋆.
We show in the following that 𝛼 < 0. Substituting the explicit expressions for the root 𝛽 and its partial derivative yields

𝛼 =
2𝜎2𝛽(−4𝑟𝜎2 − 𝜎4 − 4𝜇2 + (𝜎2 + 2𝜇)

√

(𝜎2 − 2𝜇)2 + 8𝑟𝜎2)

4𝜎4
√

(𝜎2 − 2𝜇)2 + 8𝑟𝜎2
. (A.9)

The denominator is always positive, and the outer bracket of the numerator can be rearranged to

(𝜎2 + 2𝜇)(
√

(𝜎2 − 2𝜇)2 + 8𝑟𝜎2 − (𝜎2 + 2𝜇)) + 4𝜎2(𝜇 − 𝑟).

f can be verified by some equivalence transformations that this expression is negative iff 16𝜎4(𝜇−𝑟)2

(𝜎2+2𝜇)2 > 0. The latter obviously holds.
Thus, 𝛼 and consequently 𝜕𝜇𝑥⋆ are negative.

Finally, turn to the comparative statics for 𝐸[𝑇 ⋆]. With respect to 𝜎2, 𝜇, 𝑎, the signs of the derivatives can be determined from
using the general results in Eq. (3), Eq. (4), Eq. (5), and recalling that 𝐸[𝑇 ⋆] = 1

𝜇− 1
2 𝜎

2
log 𝑥⋆

𝑥0
. The latter also yields 𝜕𝑥0𝐸[𝑇 ⋆] =

− 1
(𝜇− 1

2 𝜎
2)𝑥0𝑥⋆

< 0. ■

roof of Proposition 7 (Comparative Statics of Option Value). The derivative

𝜕𝑎𝛩(𝑥) =
𝛾

𝑎(𝑟 − 𝜇)
( 𝑥
𝑥◦

)
𝑟
𝜇

(

1 − (
(𝑟 − 𝜇)𝛽
𝑟(𝛽 − 1)

)1−𝛽 ( 𝑥
𝑥◦

)𝛽−
𝑟
𝜇

)

, (A.10)

can be written as 𝜕𝑎𝛩(𝑥) = 𝛼1𝛼2 with 𝛼1 ∶= − 𝛾
𝑟−𝜇 (

𝑥
𝑥◦ )

𝑟
𝜇 1
𝑎 , and 𝛼2 ∶= 𝜔1−𝛽 ( 𝑥

𝑥◦ )
𝛽− 𝑟

𝜇 −1. If 𝑟 < 𝜇, then 𝛼1 > 0. Due to Eq. (16), 𝛽 − 𝑟
𝜇 > 0,

o that 𝛼2 > 0 is equivalent to the expression 𝜔
𝜇(1−𝛽)
𝑟−𝜇𝛽 < 𝑥

𝑥◦ . If 𝑟 > 𝜇, then 𝛼1 < 0. Due to Eq. (16), 𝛽 − 𝑟
𝜇 < 0, so that 𝛼2 < 0 is also

equivalent to the same expression. Finally, since 𝑥◦ = 𝛾𝑎, the inequality yields Eq. (22). ■

Proof of Proposition 8 (Comparative Statics of Robustness with Optimal Design). We know from Eq. (8) and Eq. (9) that 𝜕𝜇𝑎⋆ ≐
𝜕𝑎𝜇𝐽 (𝑥0, 𝑎⋆, 𝜇, 𝜎2) and 𝜕𝜎2𝑎⋆ ≐ 𝜕𝑎𝜎2𝐽 (𝑥0, 𝑎⋆, 𝜇, 𝜎2). In addition,

𝜕𝑐𝑎
⋆ ≐ 𝜕𝑎𝑐𝐽 (𝑥0, 𝑎⋆, 𝜇, 𝜎2, 𝑐) = −1 < 0.

Considering the first-order condition for optimal design and the definition of 𝑎0 in Proposition 3, the following holds:

𝜕𝑎𝜎2𝐽 = 𝜕𝑎𝜎2ℎ(𝑥0) = −
𝛾

𝑟(𝛽 − 1)
𝑎−𝛽−1𝑎0

𝛽𝜕𝜎2𝛽(1 − 𝛽 ln( 𝑎
𝑎0

)),

𝜕𝑎𝜇𝐽 =
𝛾

𝑟(𝛽 − 1)
𝑎−𝛽−1𝑎0

𝛽 (𝛽𝜕𝜇𝛽 ln(
𝑎
𝑎0

) −
𝛽2

𝑟 − 𝜇
− 𝜕𝜇𝛽) +

𝑥0
𝑎2(𝑟 − 𝜇)2

=
𝛾𝜔

(𝑟 − 𝜇)2
1
𝑎

(

𝑎0
𝑎

− (𝑟 − 𝜇)(
𝑎0
𝑎
)𝛽𝜕𝜇𝛽 ln(

𝑎0
𝑎
) − 𝛽(

𝑎0
𝑎
)𝛽 −

𝑟 − 𝜇
𝛽

(
𝑎0
𝑎
)𝛽𝜕𝜇𝛽

)

≐ ( 𝑎 )𝛽−1 + (𝑟 − 𝜇)𝜕𝜇𝛽 ln(
𝑎 ) − 𝛽 −

𝑟 − 𝜇
𝜕𝜇𝛽
13

𝑎0 𝑎0 𝛽
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Recall from the proof of Proposition 6 that (𝑟 − 𝜇)𝜕𝜎2𝛽 < 0, so that Eq. (16) implies 𝜕𝜎2 𝛽
𝛽−1 < 0. Thus, 𝜕𝑎𝜎2𝐽 ≐ 1 − 𝛽 ln( 𝑎

𝑎0
).

In order to further determine the signs of the derivatives, we introduce the following change of variables: By recalling Eq. (15)
nd 𝑇 ⋆⋆ = 𝐸[𝑇 ⋆] = 1

𝜇− 1
2 𝜎

2
log 𝑥⋆

𝑥0
= 1

𝜇− 1
2 𝜎

2
log 𝑎⋆

𝑎0
, we obtain ln( 𝑎

⋆

𝑎0
) = (𝜇 − 1

2𝜎
2)𝑇 ⋆⋆ and 𝑎⋆

𝑎0
= exp (𝜇 − 1

2𝜎
2)𝑇 ⋆⋆. Then, if evaluated at

𝑎 = 𝑎⋆, we obtain 𝜕𝑎𝜎2𝐽 ≐ 1 − 𝛽(𝜇 − 1
2𝜎

2)𝑇 ⋆⋆. The right-hand side is decreasing in 𝑇 ⋆⋆ with the zero at 𝑇 ⋆⋆ = �̄�𝜎 . Thus, 𝜕𝑎𝜎2𝐽 is
positive at 𝑎 = 𝑎⋆ iff 𝑇 ⋆⋆ < �̄�𝜎 .

Now, apply the change of variables again and re-arrange to obtain

𝜕𝑎𝜇𝐽 (𝑎⋆) ≐ (𝑟 − 𝜇)𝜕𝜇𝛽
(

(𝜇 − 1
2
𝜎2)𝑇 ⋆⋆ − 1

𝛽

)

+ 𝑒(𝜇−
1
2 𝜎

2)(𝛽−1)𝑇⋆⋆
− 𝛽. (A.11)

We now show that this expression has exactly one positive root for 𝑇 ⋆⋆, denoted by �̄�𝜇 . If it is shown that �̄�𝜇 > 0 is well-defined,
and that Eq. (A.11) is negative iff 𝑇 ⋆⋆ < �̄�𝜇 , we can conclude that 𝜕𝑎𝜇𝐽 (𝑎⋆) > 0 iff 𝑇 ⋆⋆ > �̄�𝜇 , and the proof is finished.

For this last step, use that Eq. (A.11) is continuous in 𝑇 ⋆⋆. Observe that the second derivative of Eq. (A.11) with respect to 𝑇 ⋆⋆

is

(𝜇 − 1
2
𝜎2)2(𝛽 − 1)2𝑒(𝜇−

1
2 𝜎

2)(𝛽−1)𝜏 > 0,

i.e. Eq. (A.11) is strictly convex in 𝑇 ⋆⋆. Furthermore, evaluate Eq. (A.11) at 𝑇 ⋆⋆ = 0 to obtain

−
𝑟 − 𝜇
𝛽

𝜕𝜇𝛽 + 1 − 𝛽.

By substituting the explicit expressions for 𝜕𝜇𝛽, 𝛽, this is equivalent to

(𝜎2 + 2𝜇)(
√

(𝜎2 − 2𝜇)2 + 8𝑟𝜎2 − (𝜎2 + 2𝜇)) + 4𝜎2(𝜇 − 𝑟)

2𝜎2
√

(𝜎2 − 2𝜇)2 + 8𝑟𝜎2
,

which is, in turn, equivalent to 𝛼 from Eq. (A.9). It has been shown in the proof of Proposition 6 that 𝛼 < 0, so that Eq. (A.11) is
lways negative at 𝑇 ⋆⋆ = 0. We can thus summarize that Eq. (A.11) is convexly increasing from some negative value, so it needs
o vanish exactly once, and becomes positive for higher values of 𝑇 ⋆⋆. ■

roof of Proposition 9 (Comparative Statics of Expected Life-time with Optimal Design). Consider Eq. (10) - Eq. (11) and the
comparative statics results from Proposition 6 and Proposition 8. If 𝑇 ⋆⋆ ≤ �̄�𝜎 , then

𝜕𝜎2𝑇
⋆⋆(𝑥0, 𝜇, 𝜎2) = 𝜕𝜎2𝐸[𝑇 ⋆] + 𝜕𝑎𝐸[𝑇 ⋆] ⋅ 𝜕𝜎2𝑎

⋆ > 0, (A.12)

and if 𝑇 ⋆⋆ ≤ �̄�𝜇 , then

𝜕𝜇𝑇
⋆⋆(𝑥0, 𝜇, 𝜎2) = 𝜕𝜇𝐸[𝑇 ⋆] + 𝜕𝑎𝐸[𝑇 ⋆] ⋅ 𝜕𝜇𝑎⋆ < 0. (A.13)

Finally, 𝜕𝑐𝑇 ⋆⋆(𝑥0, 𝜇, 𝜎2, 𝑐) = 𝜕𝑎𝐸[𝑇 ⋆] ⋅ 𝜕𝑐𝑎⋆ < 0. ■
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