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1 Introduction

Empirical research has shown that expected utility theory (EU) fails to provide a good

description of individual behavior in situations of uncertainty. Examples are the famous

paradoxes of Allais (1953) and Ellsberg (1961). This evidence has motivated the develop-

ment of alternative theories (the so-called non-expected utility theories), which allow for

the exhibition of “paradoxical behavior.” Building upon its predecessor prospect theory

(Kahneman and Tversky, 1979), cumulative prospect theory (CPT) has nowadays become

one of the most prominent of these alternatives (Starmer 2000).

Recently, a new criticism of EU has been put forward by Rabin (2000) and Rabin

and Thaler (2001). Following earlier work by Hansson (1988), these authors show that

reasonable degrees of risk aversion over small and modest stakes imply unreasonable high

degrees of risk aversion over large stakes in the EU framework. For instance an EU-

maximizer, who initially rejects a 50-50 bet of loosing $10 and winning $11 at any wealth

level, would also reject any 50-50 bet of losing $100 and winning $x for an arbitrarily large

value of x. Since this high degree of risk aversion seems to be irrational, Rabin (2000)

concluded that EU is only a good representation of risk neutral behavior, which means

that utility has to be linear. Neilson (2001) has shown that this criticism on EU carries

over to rank-dependent utility (RDU), a further alternative to EU and a precursor of

CPT. More precisely, in the rank-dependent utility framework the utility function should

also be linear because a concave utility implies, as for EU, unreasonable high degrees of

risk aversion over large stakes.

What drives these two results is the possibility to represent choice behavior by a math-

ematical functional where attitudes towards uncertainty can entirely be separated from
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attitudes towards outcomes. Indeed, under EU, the decision weight by which the utility

of an outcome is multiplied, equals the probability of occurrence of the corresponding

outcome or associated event. Obviously, this probability is unrelated to the magnitude of

the outcome. Under RDU the decision weight reveals information about the probability

and further about the rank of an outcome compared to other possible payoffs. Again no

dependence of the decision weight and the magnitude of outcomes exists. For CPT, in

addition to the rank of an outcome, the sign of the outcome relative to the status quo

is influencing the decision weights, but beyond that no dependence on the magnitude of

outcomes holds.

It appears therefore that in order to avoid the Rabin paradoxical behavior, but at the

same time maintain the independence of decision weights and the magnitude of outcomes,

utility in the above described models has to be linear. Considering this strong implication,

the goal of the present paper is to investigate linear utility for decision under uncertainty

by providing an axiomatic analysis of CPT.

Because CPT combines three desirable features (rank-dependence, reference-dependence,

and sign-dependence) with theoretical tractability, it is currently seen as the most promis-

ing decision model (see Starmer 2000, page 370). The model was first proposed by Starmer

and Sugden (1989). Later, axiomatizations of CPT have been provided by Luce and Fish-

burn (1991), Tversky and Kahneman (1992), Wakker and Tversky (1993), Chateauneuf

and Wakker (1999), and Schmidt (2003). This paper provides a new axiomatization of

CPT with a piecewise linear utility function. More precisely, utility is linear for gains and

linear for losses with a possible kink at the status quo. If loss aversion is satisfied, utility

is steeper on the domain of losses than it is on the domain of gains.

Linear utility has a long tradition in theoretical and empirical research. An axiomatic

3



foundation of subjective expected utility with linear utility was provided by de Finetti

(1931). Preston and Baratta (1948) used a linear utility model in order to estimate prob-

ability distortions. Edwards (1955) reports about a series of experiments which support

our model. He finds evidence for sign-dependent probability distortions and also for lin-

ear utility. Many other studies observed linear utility for losses (Hershey and Schoemaker

1980, Schneider and Lopes 1986, Cohen, Jaffray, and Said 1987, Weber and Bottom 1989,

Lopes and Oden 1999). Generally, for small stakes the evidence suggests that utility is

linear (Lopes 1995, Fox, Rogers, and Tversky 1996, Kilka and Weber 2001).

Handa (1977) axiomatized a model of subjective expected value, which was implicitly

used by Preston and Baratta (1948) and already discussed in Edwards (1955). A model

for decision under risk that combines linear utility and distorted probabilities is the dual

theory (DT) of Yaari (1987). Such a model has been analyzed in Safra and Segal (1998)

for a restricted class of weighting functions. For decision under uncertainty the model of

Chateauneuf (1991) provides a Choquet expected utility form with linear utility. A similar

model is presented in de Waegenaere and Wakker (2001). A further study by Diecidue

and Wakker (2002) provides an axiomatization of linear utility and decision weights in

the framework of de Finetti. In all of these studies, reference-dependence and therefore

also loss aversion is excluded.

Also, linear utility has often been employed in economic applications. Some examples

are firm behavior under risk (Demers and Demers 1990), insurance demand (Doherty and

Eeckhoudt 1995, Schmidt 1996), insurance pricing (Wang 1995, 1996, Wang, Young and

Panjer 1997), agency theory (Schmidt 1999a), the equity premium puzzle (Epstein and Zin

1990) and efficient risk-sharing (Schmidt 1999b). We are convinced that CPT with linear

utility may generate new insights in such theoretical applications. Interestingly some
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applications of our model to investment behavior have already been conducted (Barberis,

Huang, and Santos 2001, Barberis and Huang 2001, Roger 2001). Also, van der Hoek

and Sherris (2001) propose a risk measure for portfolio choice and insurance decisions

based on DT and choose different weighting functions for gains and losses. Therefore,

our model can serve as a theoretical basis for their risk measure through the additional

freedom gained by reference- and sign-dependence.

Our paper is organized as follows. Some preliminary notation is introduced in the

next section. Then, in Section 3, a first representation theorem is presented for the case

of a finite state space. These results are then extended to more general state spaces in

Sections 4 and 5. Concluding remarks are presented in Section 6. The appendix contains

proofs of the main theorems.

2 Notation

Let S be a (finite or infinite) set of states of the world. Subsets of S will be denoted by

A,B, . . . ; the complement of A (with respect to S) is denoted by Ac. The state space

is endowed with an algebra A of subsets of S. Therefore, (i) S ∈ A, (ii) if A ∈ A then

Ac ∈ A, and (iii) if A,B ∈ A then A∪B ∈ A. Subsets of S which are contained in A are

called events. A (finite) partition {A1, . . . , An} of S is a collection of disjoint events, the

union of which equals S.

The set of outcomes is IR, indicating money. Members of the outcome set are denoted

by x, y, z, . . . . An act f : S → IR, s 7→ f(s) assigns to each state an outcome. We

assume throughout that acts are bounded (i.e., for any act f there exists z ∈ IR such that

|f(s)| 6 z for all states s) and measurable (i.e., the inverse of each interval is an event).
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The set of all acts is denoted by F . An important subset of F is the set of simple acts, Fs.

Simple acts take only finitely many values. Therefore, for f ∈ Fs there exists a partition

{A1, . . . , An} such that f =
Pn

i=1 xi1Ai , where 1Ai is the indicator function of event Ai.

It is understood that the act f assigns outcome xi for states s ∈ Ai, i = 1, . . . , n.

We use the notation fAg for an act that agrees with act f on event A and with act g on

the complement Ac. Also we use hif instead of h{si}f for some state si ∈ S. Sometimes

we identify constant acts with the corresponding outcome. We may thus write fAx for an

act agreeing with f on A and giving outcome x for states s ∈ Ac; similarly we use xAf .

We assume a preference relation < on the set of acts. As usually, the statement

f < g means that act f is weakly preferred to act g. The symbols Â and ∼ denote strict

preference and indifference, respectively. Sometimes we write f 4 g (f ≺ g) instead of

g < f (g Â f). The preference relation < is a weak order if it is complete (f < g or g < f

for any acts f, g) and transitive (f < g and g < h implies f < h). A functional V : F → IR

represents the preference relation < if for all f, g ∈ F we have f < g ⇔ V (f) > V (g).

Obviously, if a representing functional exists, then the preference relation is a weak order.

A classical example of a representing functional is Savage’s (1954) subjective expected

utility (SEU). Subjective expected utility holds if a preference relation can be represented

by the functional

SEU(f) =

Z
S

U(f(s))dP (s),

where U : IR → IR is the utility function and P is an (additive) probability measure

on A. Utility is cardinal (i.e., it is unique up to scale and location) and the probability

measure is unique. For a simple act f =
Pn

i=1 xi1Ai the above integral reduces to

SEU(f) =
nX
i=1

U(xi)P (Ai).
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Since its introduction by Savage, many preference conditions describing SEU have been

offered (e.g. Anscombe & Aumann, 1963; Wakker, 1984, 1989; d ’Aspremont & Gevers,

1990; Gul, 1992). Savage’s framework in which SEU has been derived is now accepted as

the natural way of modelling decision under uncertainty, and we have adopted that setup

here.

A further example of a representing functional is Choquet expected utility (CEU). This

functional has been introduced by Schmeidler (1989, first version 1982) and generalized

by Gilboa (1987). It extends SEU by allowing the probability measure to be non-additive.

This so-called capacity v satisfies v(S) = 1, v(∅) = 0, and v(A) > v(B) if A ⊃ B and

A,B ∈ A. A capacity v is strictly monotonic if v(A) > v(B) for A % B and A,B ∈ A.

Choquet expected utility holds if the preference relation can be represented by the

functional

CEU(f) =

Z
IR+

v({s ∈ S|U(f(s)) > τ})dτ +
Z
IR−
[v({s ∈ S|U(f(s)) > τ})− 1]dτ.

For a simple act f =
Pn

i=1 xi1Ai , such that U(xi) > U(xi+1) for i = 1, . . . , n − 1, CEU

can be written as

CEU(f) =
nX
i=1

U(xi)[v(∪ij=1Aj)− v(∪i−1j=1Aj)].

Derivations of CEU have further been provided by Wakker (1989), Nakamura (1990),

and Chew & Karni (1994). CEU-forms with linear utility are presented in Chateauneuf

(1991), de Waegenaere and Wakker (2001), and Diecidue and Wakker (2002).

In terms of the underlying preference conditions the difference between these two

representing functionals, SEU and CEU, is captured in the strength of the sure-thing-

principle: fAh < gAh ⇔ fAh
0 < gAh

0 for all involved acts. For SEU the full force of

this principle is required, whereas for CEU the principle should hold only for acts which
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are pairwise comonotonic (f, g are comonotonic if there exists no states s, s0 such that

f(s) > f(s0) and g(s) < g(s0)). The weakened version of the sure thing principle has

been called comonotonic independence in Chew & Wakker (1996). We will use the term

comonotonic sure thing principle here.

The central model in this paper is cumulative prospect theory (CPT). Under CPT

a key role is assigned to the status quo outcome, which for simplicity of exposition is

assumed to be the zero outcome. Outcomes are then perceived as deviations from the

status quo, hence as gains or losses. For a given act f we define the gain-part f+ as the

act “f with all losses f(s) < 0 replaced by the status quo” and the loss part f− as the

act “f with all gains f(s) > 0 replaced by the status quo.” The act f can then be viewed

as the statewise sum of f+ and f−. Cumulative Prospect Theory holds if the representing

functional for < has the form

CPT (f) = CEU+(f+) + CEU−(f−),

where CEU+ is a CEU-form depending on a capacity v+, and CEU− is a CEU-form

depending on a capacity v−. The capacities are uniquely determined under CPT, and the

utility is a ratio scale as it is fixed at the status quo: U(0) = 0. If in the above equation

we use instead of the capacity v−, the dual capacity v̂−(·) := 1 − v−(S\·), then we can

write

CPT (f) =

Z
IR+

v+({s ∈ S|U(f(s)) > τ})dτ +
Z
IR−
[v̂−({s ∈ S|U(f(s)) 6 τ})]dτ.

For a simple act f =
Pn

i=1 xi1Ai , such that U(xi) > U(xi+1) for i = 1, . . . , n − 1,

and for some k ∈ {0, . . . , n} indicating the number of gain outcomes of the act f (i.e.,
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U(xk) > 0 > U(xk+1)), CPT can be written as

CPT (f) =
kX
i=1

U(xi)[v
+(∪ij=1Aj)− v+(∪i−1j=1Aj)]

+
nX

i=k+1

U(xi)[v
−(∪ij=1Aj)− v−(∪i−1j=1Aj)].

The latter functional has been introduced by Starmer and Sugden (1989). Axiomati-

zations with general utility have appeared in Luce and Fishburn (1991), Luce (1991),

Tversky and Kahneman (1992), and Wakker and Tversky (1993). Derivations of CPT

with specific forms for the utility function (linear/exponential, power, and variants of

multiattribute utility) have been provided in Zank (2001) generalizing Wakker and Zank

(2002). All these functional forms, including SEU and CEU, are special cases of the

cumulative utility functional presented in Chew and Wakker (1996).

In the remainder of the paper we concentrate on a special case of CPT, where utility

is linear. More precisely, the utility function will have the form

U(x) =

⎧⎪⎪⎨⎪⎪⎩
x, if x > 0,

λx, if x 6 0,

where the loss aversion parameter λ is positive.

Preference conditions are proposed to characterize CPT with linear utility, which

we refer to as LCPT. The new condition, called independence of common increments,

entails sign-dependence and the comonotonic sure thing principle, and moreover it implies

linearity of utility on the gain domain and separately on the loss domain. The preference

conditions are introduced in the next section for the finite states case. These results are

then extended in Section 4 to simple acts on general state spaces, and finally in Section

5 some technical conditions are employed for the case of general acts. Possible extensions

are presented in Section 6.
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3 Finite State Spaces

Assume that the state space S is finite. That is S = {s1, . . . , sn} for a natural number

n > 3. Acts f = (f(s1), . . . .f(sn)) can be identified with the Cartesian product space IRn.

Hence, in this section we refer to acts as vectors (f1, . . . , fn) (fi is short notation for f(si)).

An act f is rank-ordered if its outcomes are ordered from best to worst: f1 > · · · > fn.

For each act f there exists a permutation ρ of {1, . . . , n} such that fρ(1) > · · · > fρ(n),

i.e. such that the outcomes are rank-ordered with respect to ρ. For each permutation ρ

of {1, . . . , n} the set IRn
ρ consists of those acts which are rank-ordered with respect to ρ.

For example, if ρ = id (i.e. ρ(i) = i for all i), then IRn
id is the set of rank-ordered acts.

Acts from a rank-ordered set IRn
ρ are obviously comonotonic.

The preference relation < on IRn satisfies monotonicity if f Â g whenever fi > gi for

all states si with a strict inequality for at least one state. By employing this condition we

exclude null states, that is, states where the preference is independent of the magnitude

of outcomes. Formally, a state si is null if xif ∼ yif for all acts f and all outcomes x, y.

The continuity condition defined here is continuity with respect to the Euclidean

topology on IRn: < satisfies continuity if for any act f the sets {g ∈ IRn|g < f} and {g ∈

IRn|g 4 f} are closed subsets of IRn.

We now introduce the main condition in the paper. Independence of common incre-

ments holds if for any two acts (f1, . . . , fn) and (g1, . . . , gn) and x ∈ IR we have

(f1, . . . , fi, . . . , fn) < (g1, . . . , gi, . . . , gn)⇒

(f1, . . . , fi + x, . . . , fn) < (g1, . . . , gi + x, . . . , gn),

whenever fi, fi+x, gi, gi+x are of the same sign (that is, either they are all gains or they

are all losses), and all involved acts are pairwise comonotonic (that is, they are all from
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the same set of rank-ordered acts IRn
ρ ).

Independence of common increments says that a common absolute change of an out-

come of the same rank does not reverse the preference between two acts as long as this

change is not large enough to affect the rank or the sign of the outcomes. For x small

enough, repeated application of this principle on acts containing only gains (or only losses)

yields (f1 + x, . . . , fn + x) < (g1 + x, . . . , gn + x), indicating that it implies a weakened

variant of the concept of constant absolute risk aversion (CARA), which could be called

sign-dependent CARA. The restrictions on x mentioned above are crucial for the differ-

ence to traditional CARA. The principle, however, is stronger as sign-dependent CARA

used in Zank (2001) for the derivation of CPT with linear/exponential utility, as the

exponential form is excluded.

One can show that repeated application of independence of common increments implies

local additivity on sets of pairwise comonotonic acts having the same number of gain

outcomes. Therefore, there exist outcomes x1, . . . , xn such that

(f1, . . . , fi, . . . , fn) < (g1, . . . , gi, . . . , gn)⇒

(f1 + x1, . . . , fn + xn) < (g1 + x1, . . . , gn + xn)

if fk, gk > 0 > fk+1, gk+1 and all acts are pairwise comonotonic. This shows that the

property comes close to additivity on rank ordered sets. Such a condition has been used

by Weymark (1981) to derive the generalized Gini welfare functions. The condition has

been termed comonotonic additivity in de Waegenaere and Wakker (2001) and Diecidue

and Wakker (2002). Our condition here is weaker because of its reference- and sign-

dependent nature. If we would drop the sign- and the rank-dependence restrictions we

would get additivity on general sets. That and monotonicity are equivalent to the non-
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existence of a Dutch book, a condition used by de Finetti (1931) to derive subjective

expected utility with linear utility. This demonstrates that the only features we have

added to additivity are rank-dependence, reference-dependence, and sign-dependence, the

basic characteristics of CPT.

In the following we show that independence of common increments is a necessary

condition for CPT with linear utility, and that it implies the comonotonic sure thing

principle. We present the results and corresponding proofs in the main text to further

clarify the nature of this principle.

Lemma 1 If LCPT holds for < on IRn then independence of common increments is sat-

isfied.

Proof: We prove the lemma for the case that acts are rank-ordered. The remaining

cases are similar. Hence, suppose that (f1, . . . , fi, . . . , fn) < (g1, . . . , gi, . . . , gn) with f, g ∈

IRn
id. Assume that there exists x such that (f1, . . . , fi+x, . . . , fn), (g1, . . . , gi+x, . . . , gn) ∈

IRn
id and that fi, fi+x, gi, gi+x have the same sign, say they are gains . Then, substituting

LCPT we get

kX
j=1

fj[v
+({s1, . . . , sj})− v+({s1, . . . , sj−1})]

+
nX

j=k+1

λfj[v
−({s1, . . . , sj})− v−({s1, . . . , sj−1})]

>
k0X
j=1

gj[v
+({s1, . . . , sj})− v+({s1, . . . , sj−1})]

+
nX

j=k0+1

λgj[v
−({s1, . . . , sj})− v−({s1, . . . , sj−1})].

Adding on both sides of the inequality above x[v+({s1, . . . , si})−v+({s1, . . . , si−1})] gives

the desired result. Note that in the above summands k and k0 may differ, showing that

act f may contain a different number of outcomes which are gains than act g. In the case
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that fi, fi + x, gi, gi + x are all losses we add λx[v−({s1, . . . , si})− v−({s1, . . . , si−1})] on

both sides of the inequality. Hence, independence of common increments holds. ¤

In earlier derivations of CPT complex independence condition have been used. In

Tversky and Kahneman (1992), and Wakker and Tversky (1993) the conditions is termed

sign-comonotonic tradeoff consistency. Luce and Fishburn (1991) and Luce (1991) use a

condition called compound gamble and joint receipt. Our principle does not immediately

imply these conditions, however, it does this in the presence of the remaining preference

conditions as is shown in Theorem 3 below. In the following lemma we show that the

comonotonic sure thing principle is implied by independence of common increments.

Lemma 2 Assume that < on IRn is a weak order satisfying continuity. Then indepen-

dence of common increments implies the comonotonic sure thing principle.

Proof: We prove the lemma assuming that all acts are from IRn
id. For acts from IRn

ρ ,

where ρ is an arbitrary permutation of {1, . . . , n}, the proof is complicated only by the

tedious indexing of outcomes, otherwise results are derived in a similar fashion. Suppose

f, g ∈ IRn
id, such that fi = gi = hi, and

hif < hig(⇔ f < g).

Clearly, min{fi−1, gi−1} > hi if i ∈ {2, . . . , n} and hi > max{fi+1, gi+1} if i ∈ {1, . . . , n−

1}. We show that the outcome hi can be replaced with any h0i satisfying min{fi−1, gi−1} >

h0i if i ∈ {2, . . . , n} and h0i > max{fi+1, gi+1} if i ∈ {1, . . . , n − 1} without changing the

above preference. Suppose, that i ∈ {2, . . . , n} and that 0 > min{fi−1, gi−1} (> h0i). Then

applying independence of common increments with x = h0i − hi gives

hif < hig ⇔ h0if < h0ig.
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Similarly, if i ∈ {1, . . . , n − 1} and we have (h0i >) max{fi+1, gi+1} > 0, then applying

independence of common increments with x = h0i − hi gives

hif < hig ⇔ h0if < h0ig.

Suppose now that for i ∈ {2, . . . , n−1} we have min{fi−1, gi−1} > 0 > max{fi+1, gi+1} (or

for i = 1 we have 0 > max{fi+1, gi+1}, or for i = n we have min{fi−1, gi−1} > 0). Then,

using continuity we find that independence of common increments can first be applied

with x = −hi implying

hif < hig ⇔ 0if < 0ig,

and a second application of the principle with x0 = h0i gives

0if < 0ig ⇔ h0if < h0ig.

This shows, that “state-wise” the comonotonic sure thing principle holds (also called

comonotonic coordinate independence in Wakker, 1989), and by appropriate successive

application of it one can show that the comonotonic sure thing principle holds for general

events A as opposed to single states {si}. ¤

We can now present the main result of this section.

Theorem 3 Suppose that < is a preference relation on IRn, for n > 3. Then the following
two statements are equivalent:

(i) LCPT holds with strictly monotonic capacities v+, v−.

(ii) The preference relation < is a monotonic continuous weak order satisfying indepen-
dence of common increments. ¤

The proof of this theorem is presented in the appendix. Further remarks on how the

preference conditions can be weakened are postponed until Section 6.

14



4 Simple Acts

In the previous section we have introduced preference conditions characterizing LCPT in

the case that the state space is finite. These results can easily be extended for more general

state spaces, and this is the purpose of the present section. As a first step we reformulate

our preference conditions to accommodate general state spaces. In this section S, the set

of states of the world, can be finite or infinite. We focus on acts f ∈ Fs of the form

f =
Pn

i=1 xi1Ai
, for a partition {A1, . . . , An}. When there is no confusion we avoid the

explicit mentioning of the particular partition.

The preference relation < on Fs satisfies monotonicity if fAx Â fAy whenever x > y

and the event A is non-null. The definition of a null event is the natural extension of the

definition of a null state: an event B is null if xBf ∼ yBf for all acts f and all outcomes

x, y.

In this section continuity is also defined with respect to the Euclidean topology: <

satisfies simple-continuity if for any simple act f =
Pn

i=1 xi1Ai the sets {(y1, . . . , yn) ∈

IRn|Pn
i=1 yi1Ai < f} and {(y1, . . . , yn) ∈ IRn|Pn

i=1 yi1Ai 4 f} are closed subsets of IRn.

Independence of common increments holds if for any two simple acts f and g which can

be represented using the same partition {A1, . . . , An}, any event Ai from this partition,

and any outcome x ∈ IR we have

fAiy < gAiz ⇒

fAi(y + x) < gAi
(z + x),

whenever y, z, y + x, z + x are of the same sign (that is either they are all gains or they

are all losses), and all involved acts are pairwise comonotonic.

We can now formulate the main result of this section:
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Theorem 4 Suppose there exists three disjoint non-null events. Then, the following two

statements are equivalent for a preference relation < on the set of simple acts Fs:

(i) LCPT holds,

(ii) the preference relation < is a simple-continuous monotonic weak order that satisfies
independence of common increments. ¤

The proof of Theorem 4 is presented in the Appendix.

5 General Result

In the previous section we have introduced the axioms describing LCPT for a preference

relation on the set of simple acts. In this section we extend the functional derived in

Theorem 4 to the set of all acts, F . To do this it is not necessary to extend all properties

of < on Fs to hold on the entire set of acts F . It turns out that independence of common

increments and monotonicity need to hold only for < on Fs if we employ an appropriate

continuity condition. The idea behind this is to exploit the specific structure of the set of

acts F .

The distance between two acts f, g, measured in the supnorm is defined as sups∈S |f(s)−

g(s)|. We say that < is supnorm-continuous if for each act f the sets {g ∈ F|g < f} and

{g ∈ F|g 4 f} are closed sets under the supnorm. That supnorm-continuity is not very

restrictive follows from the fact that it equivalent to Euclidean continuity on IRn, and

further by the fact that it is equivalent to continuity of the utility function under SEU,

CEU, and general CPT.

The next lemma shows that weak ordering and supnorm-continuity ensures the exis-

tence of a certainty equivalent for each act, i.e., a constant act x(f) such that x(f) ∼ f .

Then we exploit the well-known fact that Fs is a supnorm-dense subspace of F : the
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existence of a certainty equivalent x(f) to each act f allows us to define LCPT (f) as

the value of LCPT (x(f)) established in Theorem 4, and therefore the extension of LCPT

from Fs to F is established.

Lemma 5 Suppose there exists three disjoint non-null events. Further, assume that < on
F is a weak order that satisfies supnorm-continuity, and that LCPT holds on Fs. Then

each act f has a certainty equivalent x(f). ¤

The proof of the lemma is given in the appendix.

Take now any act f . Recall that f is bounded, such that there exist x, y ∈ IR with

x > f(s) > y for all states s ∈ S. It is now easy to generate simple acts f l, gl (bounded by

x, y from above and below, respectively) which converge in the supnorm, respectively, from

above and below to f . This holds similarly for the corresponding certainty equivalents, so

that the definition LCPT (f) = LCPT (x(f)) makes sense. Actually this argument would

hold true on any subset F 0 of acts containing all simple acts, i.e., F ⊇ F 0 ⊇ Fs. The

theorem below summarizes the previous analysis in the main result of this section:

Theorem 6 Suppose there exists three disjoint non-null events. Then, the following two

statements are equivalent for a preference relation < on the set of acts F :

(i) LCPT holds,

(ii) the preference relation < is a supnorm-continuous weak order on F that satisfies

monotonicity and independence of common increments on Fs. ¤

6 Concluding Remarks

The extensions described in this section are focusing on the results in Section 3. In The-

orem 3 the continuity condition can be dropped if the existence of a certainty equivalent
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for each act is ensured. The technique to prove the result would be similar to the one used

in Diecidue and Wakker (2002) by employing results of Aczel (1966). We have indicated

that independence of common increments implies locally the comonotonic additivity used

in Diecidue and Wakker. The proof here would be more complicated as one has to deal

with the sign dependent nature of the independence principle, which initially implies local

comonotonic additivity on rank-ordered subsets of IRn in which precisely k states have

gain outcomes (k = 0, . . . , n). On these subsets LCPT would hold and one needs to fit

together the different LCPT-functionals in order to derive LCPT on all of IRn. Once the

result for finite spaces is established, the results for simple acts and those for general acts

can similarly be derived without any continuity assumption. Again the existence of a

certainty equivalent to each act is required.

Instead of dropping continuity one could, from a technical point of view, dispense of

monotonicity. As stated in Section 3 the role of monotonicity was to ensure that all states

are essential. A general consequence of monotonicity is that utility is increasing, hence

representing LCPT functionals that agree on IRn
id,+ with a functional

(f1, f2, . . . , fn) 7→ 1

2
f1 − 1

3
f2 +

1

6
f3,

where in a state (here s2) an increase in an outcome leads to a decrease in utility, are

avoided. Also, recall that we have introduced capacities as nonadditive but monotonic

extensions of probability measures. Therefore, the marginal impact of an event for a

capacity is nonnegative. By dispensing of monotonicity the marginal impact of an event

may be negative, and this feature is unreasonable from an economic point of view.

Let us now focus on the principle of independence of common increments, which can

be formulated more appealing from an empirical point of view. Many studies suggest that
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individuals pay comparably more attention to extreme outcomes (e.g. Lopes 1987, Gilboa

1988, Jaffray 1988, Cohen 1992), hence to worst and best outcomes. Suppose that S is a

finite state space. For act f , outcome x, and event A denote (f + x)Af the act assigning

fi + x for si ∈ A and fi for si /∈ A. Independence of common increments implies that for

any two acts f and g and x ∈ IR we have

f < g ⇒

(f + x)Af < (g + x)Ag,

whenever fi, fi+ x, gi, gi+ x are of the same sign (that is either they are all gains or they

are all losses) for si ∈ A, all involved acts are from the same set of rank-ordered acts IRn
ρ ,

and, moreover, A = {sρ(1), . . . , sρ(m)} or A = {sρ(l), . . . , sρ(n)} for some m, l ∈ {1, . . . , n}.

This version of the principle, which could be called independence of common incre-

ments at extreme outcomes, says that a preference between two acts remains unchanged

if the best outcomes or the worst outcomes are increased or decreased by the same com-

mon outcome, if the original and the modified outcomes are all of the same sign, and all

involved acts are pairwise comonotonic. To relate this condition to the earlier version in

Section 3 note that the new condition actually is equivalent to independence of common

increments, as the next lemma shows.

Lemma 7 Suppose < is a preference relation on IRn. Then independence of common

increments is equivalent to independence of common increments at extreme outcomes. ¤

Given the result in this lemma, Theorem 3 holds if we replace independence of common

increments by independence of common increments at extreme outcomes.

A final comment refers to our assumption that acts are bounded. We have restricted

our analysis throughout the paper to such acts. Our result in Section 5 can be extended to
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unbounded acts by using a technique similar to the definition of integrals. Such techniques

are discussed for example in Wakker (1993).

7 Appendix

Proof of Theorem 3: First, statement (i) is assumed, and statement (ii) is concluded.

Suppose LCPT holds for < on IRn with strictly monotonic capacities. Weak ordering is

immediate from the existence of the representing functional for <. Monotonicity holds

because utility is increasing and the capacities are strictly monotonic. Continuity of utility

implies continuity of <. Independence of common increments holds by Lemma 1. This

completes the proof of statement (ii).

Next, statement (ii) is assumed and statement (i) is derived. The proof consists of

several intermediate results. First, it is shown that on the set of rank-ordered acts IRn
id the

preference relation is represented by the additive function described in Lemma 8 below.

Then (Lemma 9), it is shown that the additive function in Lemma 8 is a restriction of a

LCPT functional. Lemma 10 indicates that similar results can be derived for < on IRn
ρ , for

any permutation ρ of {1, . . . , n}. Then, it is shown that the different LCPT restrictions

fit together into a general functional, such that LCPT holds for < on IRn .

Lemma 8 The preference relation < on IRn
id is represented by the additive functional:

(f1, . . . , fn) 7→
nX
i=1

Vi(fi),

with continuous strictly increasing functions V1, . . . , Vn : IR → IR, which are uniquely

determined satisfying Vi(0) = 0 for all i and
Pn

i=1 Vi(1) = 1.

Proof: The proof follows by combining different existing results. First note that

by Lemma 2 the comonotonic sure thing principle holds. Then the result follows from
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Corollary 3.5 in Wakker (1993). There, an additive functional representation is derived

with cardinal functions Vi. By fixing Vi(0) = 0 for all i and
Pn

i=1 Vi(1) = 1, the statement

in our lemma is derived. 4

Let now k ∈ {0, . . . , n} be arbitrarily fixed. We concentrate on acts f ∈ IRn
id, having

k gain outcomes, i.e., fk > 0 > fk+1. Independence of common increments is satisfied, so

that for x ∈ IR

f ∼ g ⇒ (fi + x)if ∼ (gi + x)ig,

whenever fi, fi + x, gi, gi + x are of the same sign. Substitution of the additive functional

derived in Lemma 8 gives

Vi(fi)− Vi(gi) = Vi(fi + x)− Vi(gi + x),

which implies, first locally and then by continuity globally, linearity of Vi on IR+ if i 6 k

and on IR− if i > k+1. As k was chosen arbitrarily we conclude that the functions Vi are

linear for gains and linear for losses. Continuity, monotonicity, and the fact that Vi(0) = 0

implies that the Vi’s are of the form

Vi(x) =

⎧⎪⎪⎨⎪⎪⎩
α+i x, if x > 0,

βix, if x 6 0,

with α+i > 0, βi > 0 for all i = 1, . . . , n. Moreover,
Pn

i=1 Vi(1) = 1 implies
Pn

i=1 α
+
i =

1, so that we can refer to the α+i ’s as decision weights for gain outcomes. Let nowPn
i=1 Vi(−1) = −λ with λ positive. Then we can define α−i := βi/λ as the decision

weights corresponding to loss outcomes (they are nonnegative and their sum equals 1).

Let us summarize:
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Lemma 9 There exist positive decision weights α+i and positive decision weights α
−
i such

that the preference relation < on IRn
id is represented by the additive functional:

(f1, . . . , fn) 7→
nX
i=1

Vi(fi),

with functions Vi of the form

Vi(x) =

⎧⎨⎩ α+i x, if x > 0,
λα−i x, if x 6 0,

for a positive λ. 4

In the preceding analysis we have restricted attention to acts f ∈ IRn
id. It is easy to

show that for acts f ∈ IRn
ρ , where ρ is an arbitrary permutation of {1, . . . , n}, similar

results can be derived. The proof is complicated only by the more complex indexing of

outcomes. We can conclude the following statement:

Lemma 10 There exist positive decision weights α+i,ρ and positive decision weights α
−
i,ρ

such that the preference relation < on IRn
ρ is represented by the additive functional:

LCPTρ(f1, . . . , fn) 7→
nX
i=1

Vi,ρ(fρ(i)),

with functions Vi,ρ of the form

Vi(x) =

⎧⎨⎩ α+i,ρx, if x > 0,
λρα

−
i,ρx, if x 6 0,

for a positive λρ. 4

It remains to show that the decision weights α+i,ρ and α−i,ρ, and the loss aversion para-

meters λρ are all independent of the permutation ρ.

First we show that λρ is independent of ρ. If for a permutation ρ of {1, . . . , n} the

set IRn
ρ

T
IRn

id contains nonconstant acts, then LCPTρ and LCPTid jointly represent the

preference relation < on the intersection IRn
ρ

T
IRn

id. If for a permutation ρ of {1, . . . , n}
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the set IRn
ρ

T
IRn

id contains only constant acts, then, as n > 3, it follows that there exists

a permutation σ of {1, . . . , n} such that the set IRn
ρ

T
IRn

σ contains nonconstant acts and

also IRn
σ

T
IRn

id contains nonconstant acts. As the LCPT-representations are uniquely

determined, it follows that the loss aversion parameters λρ are independent of ρ, hence

equal to λ. Obviously, the different LCPT-representations agree on the subset of constant

acts which are commonly contained in each set IRn
ρ . Using continuity one can show that

each act f has a certainty equivalent, i.e., a constant act x(f) ∼ f . It then follows for

acts f ∈ IRn
ρ , g ∈ IRn

σ that

f < g ⇔ x(f) < x(g)

implying

LCPTρ(f) = LCPT (x(f)) > LCPT (x(g)) = LCPTσ(g).

This shows that the different functionals LCPTρ, agree on common domain and are

restrictions of one general LCPT functional representing < on IRn.

Next we determine the capacities v+ and v−. Let A be any event. We consider the act

1A0 assigning outcome 1 for state s ∈ A and 0 for s /∈ A. By setting v+(A) := LCPT (1A0)

we define a capacity on S for gains, satisfying

α+i,ρ = v+({sρ(1), . . . , sρ(i)})− v+({sρ(1), . . . , sρ(i−1)})

for i = 1, . . . , n and any permutation ρ. This definition makes sense because for different

premutations ρ, σ, the respective LCPT representations agree on common domain, hence

the corresponding decision weights are equal. Because the decision weights are unique the

same is true for the capacity v+. Moreover, as all decision weights are positive, it follows

that the capacity is strictly monotonic.
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By setting v−(A) := LCPT (−1A0)/λ we define a second capacity on S now for losses,

satisfying

α−i,ρ = v−({sρ(1), . . . , sρ(i)})− v−({sρ(1), . . . , sρ(i−1)})

for i = 1, . . . , n and any permutation ρ. The capacity for losses v− is also unique, and

strictly monotonic.

We can now conclude that < on IRn is represented by an LCPT functional with

unique capacities v+, v−, and unique loss aversion parameter λ. This concludes the proof

of Theorem 3. ¤

Proof of Theorem 4: That statement (i) implies statement (ii) is immediate from

the definition of LCPT. We assume statement (ii) and prove statement (i). Suppose that

a partition {A1, . . . , An} is given. Let Fs
{A1,...,An} denote the set of simple acts of the formPn

i=1 xi1Ai , for outcomes xi. Obviously, the set Fs
{A1,...,An} can be identified with IRn (or

IRm if precisely m > 3 events in the partition {A1, . . . , An} are non-null), and further the

restriction of < to Fs
{A1,...,An} is a weak order that satisfies monotonicity, continuity, and

independence of common increments. Hence, statement (ii) of Theorem 3 holds and we

conclude that LCPT holds on Fs
{A1,...,An} with capacities v

+
{A1,...,An}, v

−
{A1,...,An}. Note that

these — in fact restrictions of — capacities may not be strictly monotonic if some events in

the partition {A1, . . . , An} are null.

The above arguments can be repeated for any fixed partition of S, and it remains to

show that these different LCPT-functionals are restrictions of a general LCPT functional

representing < on Fs.

It is well known that given two simple acts f =
Pn

i=1 xi1Ai , and g =
Pm

j=1 yj1Bj , there

exists a partition {Ci,j}n,mi=1,j=1, which is a common refinement of both {A1, . . . , An}, and
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{B1, . . . , Bm}, such that f, g can be represented as simple acts with respect to the same

partition. One can for example define Ci,j as the intersection of the events Ai and Bj.

Then, f =
Pn

i=1

Pm
j=1 xi1Ci,j , and g =

Pn
i=1

Pm
j=1 yj1Ci,j . Suppose that LCPT{A1,...,An}

represents < on Fs
{A1,...,An} and LCPT{B1,...,Bm} represents < on Fs

{B1,...,Bm}. Let fur-

ther LCPT{Ci,j}n,mi=1,j=1
represent < on Fs

{Ci,j}n,mi=1,j=1
. As Fs

{A1,...,An},Fs
{B1,...,Bm} are both

included in Fs
{Ci,j}n,mi=1,j=1

it follows that LCPT{Ci,j}n,mi=1,j=1
represents < on Fs

{A1,...,An} and

on Fs
{B1,...,Bm}. We conclude that the different LCPT-functionals are restrictions of a gen-

eral LCPT-functional representing < on Fs. Hence statement (i) of the theorem follows.

¤

Proof of Lemma 5: Let f ∈ F . Because all acts are bounded there exist x, y ∈ IR

such that x > f(s) > y for all states s. We can construct (similar to the classical

derivation of the Lebesgue integral) two sequences of simple acts f l, gl converging in the

supnorm from above and below, respectively, to f . These sequences can be chosen such

that

x > f l(s) > f l+1(s) > f(s) > gl+1(s) > gl(s) > y

holds for each state s. As LCPT holds on Fs it follows that

LCPT (x) > LCPT (f l) > LCPT (gl) > LCPT (y)

and hence

x < f l < gl < y

for all l. By supnorm-continuity and the fact that the two sequences converge to f it

follows that x < f < y. In particular it follows that the sets {z ∈ IR|z < f} and

{z ∈ IR|z 4 f} are closed and have a nonempty intersection. They contain at least one
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element x(f) ∼ f with

LCPT (x(f)) =

⎧⎪⎪⎨⎪⎪⎩
x(f), if x(f) > 0,

λx(f), if x(f) 6 0.

Therefore, we can also conclude that in the intersection of these two sets there exists a

unique element x(f) ∼ f , the certainty equivalent of f . ¤

Proof of Lemma 7: First we assume that independence of common increments holds.

Let f, g ∈ IRn
ρ , such that f < g. Suppose that A = {sρ(1), . . . , sρ(m)} for some 1 6

m 6 min{k, k0}, where k, k0 denote the number of gain outcomes of f, g, respectively. We

have to show that for any x ∈ IR such that (f + x)Af, (g + x)Ag ∈ IRn
ρ it follows that

(f + x)Af < (g + x)Ag. For x = 0 there is nothing to show. If x > 0, then independence

of common increments can repeatedly be applied to sρ(1), then to sρ(2), etc., until sρ(m),

such that, by induction, we get:

f < g ⇒ (f + x)Af < (g + x)Ag.

If x < 0, independence of common extremes can repeatedly be applied starting with sρ(m)

then to sρ(m−1), etc., until sρ(1), such that, by induction, we get f < g ⇒ (f+x)Af < (g+

x)Ag. Note here, that fρ(m)+x, gρ(m)+x must be positive in order to apply independence

of common increments.

The proof follows similarly for A = {sρ(l), . . . , sρ(n)} for some max{k, k0} < l. There-

fore, independence of common increments at extreme outcomes holds.

For the reversed implication, assume that independence of common increments at

extreme outcomes holds. Let i ∈ {1, . . . , n}. We have to show that for any x ∈ IR such

that f, g, (f + x)ρ(i)f, (g + x)ρ(i)g ∈ IRn
ρ and fρ(i), fρ(i) + x, gρ(i), gρ(i) + x are of the same
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sign it follows that

f < g ⇒ (f + x)ρ(i)f < (g + x)ρ(i)g.

If fρ(i), gρ(i) are gains then we apply independence of common increments at extreme out-

comes first with x and A = {sρ(1), . . . , sρ(i)} and then with −x and A0 = {sρ(1), . . . , sρ(i−1)}

and get

f < g ⇒ (f + x)Af < (g + x)Ag

⇒ (f − x)A0(f + x)Af < (g − x)A0(g + x)Ag

⇔ (f + x)ρ(i)f < (g + x)ρ(i)g.

Note that in order to maintain comonotonicity of f, g, (f+x)ρ(i)f, (g+x)ρ(i)g, the outcome

xmust be chosen such that fρ(i−1) > fρ(i)+x and gρ(i−1) > gρ(i)+x. Under these conditions

the above applications of independence of common increments at extreme outcomes are

well defined.

If fρ(i), gρ(i) are losses then we apply independence of common increments at ex-

treme outcomes first with x and A = {sρ(i), . . . , sρ(n)} and then with −x and A0 =

{sρ(i+1), . . . , sρ(n)}. It follows that independence of common increments holds, as i, and ρ

were arbitrary. This completes the proof of the lemma. ¤
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