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Abstract

The efficiency wage theory developed by Akerlof (1982) assumes observ-
ability of effort and the ability of firm and worker to commit on their
effort/wage decisions. We show that, from a game theoretical point of
view, we have to understand the firm/worker relationship as a repeated
Prisoner’s dilemma. Therefore, cooperation is per se not a (subgame per-
fect) Nash equilibrium and hence the Akerlof (1982) theory is based upon
an implicit assumption of cooperation, which can not be implemented
w.l.o.g.. In addition, we find that this approach is a special case of the
Shapiro and Stiglitz (1984) approach and hence unify the two approaches.
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1 Introduction

In order to explain equilibrium unemployment, nobel laureate George A. Akerlof
developed the fair wage theory based on the sociological partial gift exchange
approach (see Akerlof (1982)). This theory explains equilibrium unemployment
by the fact that the wage is above the market clearing wage. The reason for
this non-neoclassical phenomenon is the fact that firms tend to pay a higher
wage in order to ensure that workers provide a desired amount of effort. In con-
trast to Akerlof’s idea, Shapiro and Stiglitz (1984) suggested a different type of
efficiency wage model. While in Akerlof’s model effort is observable and com-
mitable, Shapiro and Stiglitz assume that effort is not observable. Consistently,
a worker has an incentive to shirk, viz. the worker might not provide effort.
Under equilibrium full employment, this would urge the firm to pay a wage
that is above the market clearing wage, in order to create some punishment for
shirking. As a consequence, equilibrium full employment is not feasible. We
infer that both theories work along the same dimension, namely increasing the
wage above the market clearing wage. However, there are several challenges
afflicted with Akerlof’s idea in a dynamic context. Especially, the assumption
of commitable effort is crucial.1 Let us consider a dynamic version based upon
the Akerlof approach.2 After the firm and the worker have somehow matched,
the firm maximizes its profits and determines the optimal wage/effort decision.
The worker receives the wage and provides the desired amount of effort. Ak-
erlof motivates this i.a. with the sociological gift exchange, i.e. workers have
”sentiments” for the firm. However, the other side of the coin is that whenever
there is sentiment, there is also the possibility of being discouraged by firm’s
decisions.
We find that the implicit assumption of Akerlof (1982) of cooperation being a
(subgame perfect) Nash equilibrium of the corresponding game does not hold
w.l.o.g.. Furthermore, we establish conditions for the (subgame) perfectness
of the cooperation strategy for the entire time path of the game. In addition,
we find that this approach is a special case of the Shapiro and Stiglitz (1984)
approach and hence unify the two approaches and provide a game theoretical
foundation of efficiency wages.

2 The Repeated Prisoner’s Dilemma

We consider an infinitely repeated Prisoner‘s dilemma, i.e. the horizon of the
game T is unknown to both players and they both expect the game to be played
for a long period of time. Let us call our game B expressed by a simultaneous-
move matrix. Furthermore, we assume that our game is time-independent and
hence stationary. Let P be the set of players containing the finite set {1, 2, ..., n}.
Our game starts in period t = 0 and is played every period. We assume that

1The observation of each worker is - in addition - hardly imaginable due to monitoring costs
and negative psychological effects on the workers motivation.

2See e.g. Danthine and Donaldson (1990) or Danthine and Kurmann (2004).

2



every player has full information and that actions are revealed to all players
before the next round. With this assumption, we enable players to condition
their actions on the history of events up to point t. In order to avoid the problem
of infiniteness of player’s payoffs, we introduce discounting of future payoffs. We
understand this discounting as a measure of time preference.3 In the following,
we will discuss the general mathematical background for later purpose. Let Ut,i

denote the utility function of player i over the outcomes of B in period t. In
addition, let φ ∈ (0, 1) be the time-independent discount rate. Consistently, if
the payoffs are constant over B and t, we can write the stream of payoffs of
player i as

∞∑
t=0

φtU t,i. (1)

The average discounted value of the payoff stream is then given by

(1− φ)
∞∑

t=0

φtΓt
i = (1− φt)Γ̂i + φtΓ̌i, (2)

where Γt
i is the constant payoff of player i for t periods and let Γ̂i denote the

constant payoff for the first t periods, while Γ̌i is the different payoff for the
next t periods.4 Furthermore, let st

i = (s0i , s
1
i , ...) denote the history-dependent

strategies. The strategy profile s is the n-tuple of indiviual strategies such that
s = (s1, ..., sn). Now, let us consider a repeated-game between players (i, j) with
the two strategies C and N . A strategy for player i that ensures cooperation
is: play C in the first period and in every consecutive period, iff player j always
cooperated. However, play N , iff player j played N in the precedent period. Let
player i′s repeated game strategy be s̃i = (s̃0i , s̃

1
i , ...). Consistently, in period t

after history ht5

s̃t
i(h

t) =

{
C, iff ht = (C,C)t,
N, otherwise.

As an illustrative example, consider the following game presented in Table 1.

Table 1: A Prisoner’s Dilemma Example

i, j C N
C 1,1 -1,2
N 2,-1 0,0

If both players stick to their cooperation strategy, the payoff computation is
straightforward, resulting 1. Now, let player i deviate from C in period t. For

3We introduce discounting, because worker and firm can not be sure how long the game will
continue.

4(1−φ)
∑∞
t=0 φ

tΓti = (1− φ)
(∑j−1

t=0 φ
tΓti +

∑∞
t=j φ

tΓti

)
= (1− φ)

(
Γ̂i(1−φt)

1−φ + Γ̌iφ
t

1−φ

)
= (1− φt)Γ̂i + φtΓ̌i,

see Ratliff (1997).
5We assume that for any profile a it holds h0 = (a)0, such that ht = (C,C)t.
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the first t periods, she receives 1 and for period t̄, she receives 2, i.e. the payoff
from (C,N). In any consecutive period t > t̄, both players choose N , i.e. to not
cooperate, and receive 0.6 Using equation (2) yields that,

(1− φ)
∞∑

t=0

φtΓt
i = (1− φt)Γ̂i + φt

(
(1− φ)Γ̌i + φΓ̃i

)
, (3)

if player i receives Γ̌i only for period t. Consistently, player i′s payoff from
deviating is given by 1 − φt(2φ − 1). Some algebra yields that this cheating
strategy is not profitable, as long as φ ≥ 1

2 . We have shown that cooperation
is a Nash equilibrium of the game, if the time preference parameter is above a
certain endogenously determined threshold.
As a final step, we show that cooperation is a subgame perfect Nash equilibrium.
For this purpose, consider a subgame that starts in period t̂ with history ht̂.
The restriction ŝ to the subgame ht̂ defines the strategy in this subgame. The
restriction to this subgame is given by

ŝt
i(h

t̂) =

{
C, iff ht̂ = (C,C)t̂,
N, otherwise.

Now, we can identify two classes of histories (i) both players have choosen to
cooperate for the entire game, and (ii) at least one player cheated in at least
one of the previous periods. Then, for class (i) subgames the restriction reduces
to the game strategy derived in (3), because the history up to this subgame has
to read as ht = ht̂ = (C,C)t = (C,C)t̂. Since in (3) s̃t

i is a Nash equilibrium,
the restriction ŝt

i is a Nash equilibrium strategy profile in (i), iff the condition
for the discount factor holds.
In the second class, and by assumption, because one player has choosen to non-
cooperate, both players choose to non-cooperate in the ongoing subgame. It
can be shown, that such a strategy is also a subgame perfect equilibrium and
consistently, that for any subgame the restriction of s̃t

i is a Nash equilibrium
for that subgame, iff φ ≥ 1

2 . Therefore, s̃t
i is also a subgame perfect Nash

equilibrium of the repeated game.

3 The Efficiency Wage Pendant

We have shown that in a repeated Prisoner’s dilemma cooperation is a (subgame
perfect) Nash equilibrium, iff the discount rate is above a certain threshold. In
the following, we have to show that the efficiency wage theory - from a game
theoretic viewpoint - yields such a Prisoner’s dilemma. Which variables do we
have to consider? The payoffs contain the worker’s effort e > 0, since the utility

6Here, we assume that the punishment for deviating is playing N for any consecutive period.
One might assume different punishment strategies, but since we consider a firm/worker rela-
tionship cheating should result in separation and hence there should be no way back to rebuild
the relationship.
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function in Akerlof (1982) has the form u(en, e, w, ε), where ε represents the
worker’s taste and en are the norms of effort. Moreover, effort is a decision
variable for the worker and disregarding effort would lead to a distortion of our
results. In addition, we consider the wage w > 0 - also present in the worker’s
utility function - to be some additional payment in case of the achievement of
predetermined goals.7 For the firm, only output y is considered. We assume
that w > e, i.e. that the effort - given in terms of its share of the wage -
is always smaller than the wage. Similarly, we assume y > w, such that the
production process generates profits. Using these variables yields the following
game-matrix presented in Table 2.

Table 2: The Efficiency Wage Game

F/W C N
C (y-w),w-e -w,w
N y,-e 0,0

If firm and worker cooperate, the firm receives the output and has to pay
the ”extra” wage, while the worker receives the wage and provides effort (which
can not be used for leisure). If the firm cooperates, but the worker chooses
to non-cooperate, the firm has to pay the wage (since it committed on paying
the wage) but receives no output.8 The same considerations hold vice versa for
the case (N,C). If both players choose to non-cooperate, the firm receives no
output and the worker can spend this effort for leisure, hence generating some
amount of utility.
If we now apply the methodology introduced in the precedent section, we infer
that this is indeed a Prisoner’s dilemma, since the static (subgame perfect)
Nash equilibrium is (N,N), while 0 < (y − w) and 0 < w − e.
Therefore, we can set up two propositions, such that cooperation is a (subgame
perfect) Nash equilibrium in the infinitely repeated game, i.e. that firm and
worker choose to cooperate over the entire game.
Proposition 1
The firm will cooperate, iff

y ≥ w

φ
. (4)

Proof
See the Appendix.
Proposition 2
The worker will cooperate, iff

w ≥ e

φ
. (5)

7Those goals are written down in the contract between firm and worker and can be considered
as performance pay (see Lemieux et al. (2007)).

8For the sake of simplicity, we assume an extreme case. However, this assumption leaves our
qualitative results unaffected.
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Proof
See the Appendix.
We have shown that the efficiency wage theory - from a game theoretic view - is
in fact a Prisoner’s dilemma and, consistently, we established conditions, such
that cooperation is a (subgame perfect) Nash equilibrium.

4 Final Remarks

We have shown that from a game theoretic viewpoint, the Akerlof approach is
based upon an implicit assumption of commitability of effort. However, since
the game between firm and worker is a Prisoner’s dilemma, cooperation is per
se no (subgame perfect) Nash equilibrium. We develop conditions for which
cooperation is in fact a Nash equilibrium and consistently show that the Akerlof
(1982) efficiency wage theory is nested within the Shapiro and Stiglitz (1984)
theory. Moreover, we can understand the former approach as a special case of the
general game between firm and worker, i.e. the latter. With this game theoretic
approach, we are able to unify these two ideas, often viewed as disparate.
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Appendix

Proof of Proposition 1

The firm will cooperate, iff
y ≥ w

φ
. (6)

Consider the game presented in Table 2. If we apply (3) to this problem, we
initially obtain

(1− φt)(y − w) + φt ((1− φ)y) . (7)

Consistently, the profit of cheating is given by

y − w + φt(w − φy). (8)

However, if cheating should not be profitable, the stream of profits has to be
smaller than the profit from cooperation, i.e.

y − w + φt(w − φy) ≤ y − w. (9)

Applying some algebra yields the condition

y ≥ w

φ
, (10)

q.e.d.

Proof of Proposition 2

The worker will cooperate, iff
w ≥ e

φ
. (11)

The problem for the worker is solved analogously to the firms problem. There-
fore, the initial condition looks as follows

(1− φt)(w − e) + φt ((1− φ)w) . (12)

Some rearranging gives
w − e+ φte− φt+1w. (13)

The condition for non-profitability of cheating is given by

w − e+ φte− φt+1w ≤ w − e, (14)
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such that
w ≥ e

φ
. (15)

q.e.d.
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