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To investigate the link between rising global temperature and global energy use, we estimate an 
energy demand model that is driven by temperature changes, prices and income. The estimation is 
based on an unbalanced panel of 157 countries over three decades. We limit the analysis to the 
residential sector and distinguish four different fuel types (oil, natural gas, coal and electricity). 
Compared to previous papers, we have a better geographical coverage and consider non-linearities in 
the impact of temperature on energy demand as well as temperature-income interactions. We find that 
oil, gas and electricity use are driven by a non-linear heating effect: Energy use not only decreases 
with rising temperatures due to a reduced demand for energy for heating purposes, but the speed of 
that decrease declines with rising temperature levels. Furthermore we find evidence that the 
temperature elasticity of energy use is affected by the level of temperature as well as the level of 
income.  
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1. Introduction and existing work 
 
During the last century, the global average temperature rose by about one degree 
Celsius, and may easily rise by another 1.8 to 4.0 degrees over the next century, 
depending on the scenario (IPCC 2007). Among the various economic 
consequences of a global temperature rise, the impact on energy consumption is 
of particular importance and may well represent a large part of the total economic 
impact of climate change (Tol 2009). Furthermore, greenhouse gases emitted by 
the energy sector are themselves a main driver of climate change and responsible 
for a good quarter of global greenhouse gas emissions (IPCC 2007). Energy 
consumption thus affects and is affected by both climate change and climate 
policy. This paper aims to disentangle the impact of temperature changes on 
energy consumption. 
 
So far, most contributions addressed the topic on a micro-level, concentrating on 
specific countries (e.g. Quayle and Diaz 1979; Li and Sailor 1995; Rosenthal and 
Gruenspecht 1995; Al-Zayer and Al-Ibrahim 1996; Henley and Peirson 1997, 
1998; Florides et al. 2000; Vaage 2000, Hunt et al. 2003; Zarnikau 2003; 
Mirasgedis et al. 2004; Amato et al. 2005; Giannakopoulos et al. 2005; Mansur et 
al. 2005; Pezzulli et al. 2006; Asadoorian et al. 2007; Mansur et al. 2007). 
However, studies that focus on a single country are necessarily limited in scope, 
since they consider only the range of climates experienced and the variety of 
technologies used in that country. It is therefore useful to look at all countries 
simultaneously – although we acknowledge that the broader insights may well 
come at the expense of detail and depth. 
 
Studies on many countries are few. Bigano et al. (2006) investigate the energy 
consumption of the residential, industrial and service sectors of up to 26 OECD 
countries, distinguishing between five different fuel types. They find significant 
impacts of temperature only for residential energy demand. Energy use of the 
industrial and service sectors are not significantly influenced by temperature 
changes. Bessec and Fouquau (2008) focus on total electricity use in the EU-15 
and do not differentiate between specific sectors. By applying a smooth threshold 
regression model they account for non-linearities in the link between energy use 
and temperature. Furthermore, they find that the non-linear pattern is more 
pronounced in warm countries. The only study with a global scope – in the sense 
that it covers a heterogeneous group of countries all over the world – is by De 
Cian et al. (2007). They restrict their analysis to the residential sector but include 
31 OECD and five non-OECD countries, covering a wider variety of development 
levels and climate zones than previous studies. They conclude that demand for 
heating and cooling and its response to changes in temperature depend on region, 
season and fuel type. 
 
In this paper, we further extend the analysis of De Cian et al. (2007). First, we add 
more countries to the sample. This should increase confidence in the estimated 
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relationships, not only because we have more observations, but also because we 
measure the effects over a wider range of income and temperature levels. Second, 
we allow for non-linear responses. Winter heating is one example. One would 
expect less demand for winter heating in warmer countries, but heating demand 
goes to zero if winters are warm enough. Regarding cooling, air conditioning 
varies from an extravagance to a necessity depending on summer heat. Energy is a 
luxury good for households with little income, a necessary good for richer people, 
and maybe even a saturated good for those with the highest incomes. Furthermore, 
solid fuels are often inferior goods, and richer households tend to use more 
energy-efficient equipment. There is, therefore, no reason to assume a simple, 
linear relationship between energy use on the one hand and climate and income on 
the other. 
 
The paper is build up as follows: Section 2 provides an overview over the 
determinants of residential energy consumption including income, fuel prices as 
well as temperature and how they affect it. This is followed by considerations 
regarding the econometric estimation. We present the data in section 3. The 
results of the econometric analysis are discussed in section 4. Section 5 concludes.  
 

2. Modelling determinants of residential energy consumption  
 
Our study covers information on the use of different fuel types in the residential 
sector, namely light fuel oil, natural gas, solid fuels (excluding biomass, so mainly 
coal) and electricity. We include only the residential sector because previous 
studies confirmed that energy use in the services and manufacturing sectors reacts 
only minimally to temperature variations; see Bigano et al. (2006) for a discussion 
on that point. In our model, households adapt their use of energy to changes in 
income, fuel prices and temperature. The role of income, the price of the fuel, and 
the price of other fuels is clear from microeconomic theory: for the time being, we 
assume that energy fuels are normal and ordinary goods with positive income 
elasticities, negative price elasticities and zero or positive cross price elasticities 
towards other energy fuels.  
 
In our analysis we account for differences in temperature as well. With rising 
temperatures, households will heat less, whereas the demand for cooling will rise 
– while the heating effect reduces energy consumption, the cooling effect 
increases it in the course of a rise in temperature. A vital question is the nature of 
the interdependence between temperature changes and adjustments in the 
consumption of energy. Assuming a linear relationship seems rather 
counterintuitive.1 One would expect that the impact of a changed temperature 
differs substantially depending on the original temperature level. Presumably, if 

                                                 
1 See for example Bigano et al. (2006), who identify the use of a linear model as a major drawback 
of their analysis. 
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temperature rises, the reduced heating demand would be smaller for warmer 
countries than for colder ones; while increased cooling demand would be larger.2  
 
The use of heating (HDD) and cooling degree days (CDD),3 as for example in Al-
Zayer and Al-Ibrahim (1996) or Amato et al. (2005), already presents a 
transformation of temperature data that is intended to cover this non-linearity. 
However, degree days do not provide a smooth adaptation of the temperature 
elasticities to the respective prevailing temperature, but simply introduce a 
discontinuous jump at a threshold value. The choice of the heating or cooling 
threshold is usually more or less arbitrary, and the assumption of an identical 
threshold value for all countries might be vulnerable to criticism if enough 
countries are included. An alternative approach is presented in De Cian et al. 
(2007). Instead of using degree days, they cluster their sample of countries into 
three groups (hot, mild and cold countries), for each of which a separate (linear) 
energy demand equation is estimated.  
 
In this paper we follow a different approach to assess the non-linearities in the 
response to temperature changes by estimating one non-linear demand equation 
per fuel for the whole sample. We use linearizable functions to avoid unnecessary 
complexity and to facilitate the estimation as well as the interpretation of results. 
We consider different functional forms including quadratic polynomials as well as 
logarithmic and inverse functions.4 Linear equations are estimated as a benchmark 
and for comparison to previous papers. To distinguish between the heating and 
cooling period, we use the average temperatures of the hottest and coldest months 
unlike Bigano et al. (2006) who use annual averages only. We refrain from using 
HDD or CDD (as in Al-Zayer and Al-Ibrahim 1996 or Amato et al. 2005) because 
of the difficulties to define the (globally representative) heating and cooling 
thresholds. Furthermore, data availability would reduce geographical and 
temporal coverage significantly. 
 

                                                 
2 Since the specific process of the adaptation of energy use in the course of changes in temperature 
depends on local conditions like insulation, heating and cooling equipment, local conventions etc., 
the link between temperature and energy use may of course be linear on a small scale, e.g. for a 
country that is located in only one climate zone. Here, variation in yearly average temperatures is 
limited. On a global scale however, where average temperatures varies more, a non-linear 
relationship is much more likely. The question concerning the interpretation of the results derived 
for the global scale is of course, whether patterns derived from comparisons between countries 
also hold within a country, given that temperatures rise significantly in the future.  
3 Heating degree days are usually defined as the difference between the average temperature of a 
period and an arbitrary threshold temperature (the heating threshold), multiplied with the number 
of days within that period if the average temperature is below the heating threshold and zero if the 
average temperature is above (e.g. EUROSTAT 2008). Cooling degree days are the difference 
between an arbitrary cooling threshold and the average temperature of the period, also multiplied 
with the number of days if the average temperature is above the threshold and zero if it is below. 
4 For most specifications, cubic polynomials were tested as well but generally inferior to the 
functional forms mentioned here.  
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The impact of changes in temperature on energy demand does not only depend on 
the level of temperature itself, as implemented by including non-linearities, but 
probably also on other variables, especially income. Households with higher 
income have more options to adapt to temperature changes than low-income 
households (e.g. by improving insulation or heating systems); the same rationale 
holds for high and low income countries. If temperatures rise, the decrease in 
energy consumption should be steeper, if a country is comparably richer. In this 
case, the level of income has an effect on the temperature elasticity of energy 
demand – the elasticity will increase (in absolute value) with rising income. We 
allow for this effect by including an interaction term into the regression. 
 
In the short run, the speed of adjustment of energy use to changes in the 
explanatory variables is limited as it is largely restricted to behavioural changes. 
Extensive adjustment is only possible in the long run and implies changes, e.g. in 
the prevailing and available technical equipment and government policy. 
Furthermore, transient (or so perceived) shocks of the explanatory variables will 
have a smaller impact on energy demand than sustained changes. To account for 
this inertia, we include the energy use of the preceding period into the equation. 
Thereby we implicitly take into account the whole history of the exogenous 
variables.5  
 
The whole model can be summarized as 
 
(1)  ititii,ti,tti δepspeytmaxtminfe ,,,,,, 1-ti,,ti,,,  ,  

 
where ei,t is county i’s per-capita consumption of fuel e in year t, tmini,t is the daily 
mean temperature of the coldest, tmaxi,t the daily mean temperature of the hottest 
month in one year, yi,t denotes per-capita income, pei,t is fuel e’s price, psi,t is the 
cross price (possibly a price vector) of substitutable fuels and δi are a set of 
country specific effects. At this stage, the functional form is not yet specified. In 
the following, we will compare different functional forms, namely linear and 
quadratic polynomials as well as logarithmic and inverse functions. The different 
functional forms for heating demand are summarized in Table 1. To estimate the 
cooling effect, tmin is replaced by tmax. To estimate both effects jointly, both 
tmin and tmax were included in the same equation. 

                                                 
5 If a geometrically decreasing (i.e. decreasing by a constant proportion) impact of past lags of an 
exogenous variable is assumed, including all past lags of this variable can be transformed into 
including a lagged endogenous variable (lagged by one period) by the Koyck-transformation (cf. 
Koyck 1954, pp. 19 ff.). The parameter of the lagged dependent variable then represents the 
adjustment speed implied in the geometric relation between the lagged exogenous variables. 
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Table 1: Different functional forms of the regression equation (heating effect) 

 Linear: itititii,ti,tti δeγpsγpeγyγytminβtminβe  1-ti,4,3ti,2,1,31,  

 Quadratic: tii,ti,ti,tti ytminβtminβtminβe ,3
2

21,   

   ititi δeγpsγpeγyγ  1-ti,4,3ti,2,1  

 Logarithmic:   itititii,ti,tti δeγpsγpeγyγytminβtminβe  1-ti,4,3ti,2,1,31, log a 

 Inverse: itititii,ti,tti δeγpsγpeγyγytminβtminβe  
1-ti,4,3ti,2,1,3

1
1,

a 

a: For the logarithmic specification, tmin was added to 25 to prevent loss of observations when taking 
logarithm of negative temperatures. The same is true for the inverse specification to force the discontinuous 
jump outside the observed domain. 
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3. The data  
 
We use data on annual average temperature derived from monthly data taken from 
the High Resolution Gridded Dataset of the Climatic Research Unit of the 
University of East Anglia (CRU 2008, Mitchell and Jones 2005) available at a 0.5 
degree grid and converted to country averages. This procedure does not take into 
account to what extent particular areas of a country are populated. This might be 
especially important for large and diverse countries, like Canada, the United 
States of America, or Russia. The majority of Canadians live close to the US 
border and not in the Arctic Circle. We, therefore, calculated population-weighted 
country averages to test for robustness. Population data was retrieved from the 
HYDE database (before 1990, Klein Goldewijk 1995) and the GPWv3 database 
(from 1990 onwards, CIESIN and CIAT 2005). The population weights used are 
available only on a 10 year (until 1990) and 5 year (from 1990 onwards) 
frequency; the bias thus introduced for other years is unclear so we use the area-
weighted temperatures as our main variable. Temperature data are available for all 
countries and periods of interest. 
 
Data on energy consumption, prices and real GDP are retrieved from 
ENERDATA (2005) for the period 1970 to 2002. We distinguish between four 
major fuel types, viz. oil, gas, solid fuels (i.e. coal) and electricity. Sample sizes 
differ considerably with respect to the different fuel types – both regarding 
consumption and price data, see Table 2 for details. Data on the consumption of 
gas and coal are available for about 70 countries; for oil and electricity there are 
time series for almost every country in the world. In comparison, data on prices 
are rare. Reliable price data are available mostly for developed countries and only 
from 1978 onwards (for information about the geographical coverage of the data, 
cf. Figures A1-A4 in the appendix). This limits the estimation sample to 25 years 
at most. Regarding geographic coverage, coal is again the fuel type with the 
lowest coverage: the price of coal for residential consumption is available for only 
22 countries. Even though the share of coal in residential energy demand is 
usually of minor (and diminishing) importance, both from a global and from 
national perspectives, this constitutes a shortcoming of the analysis. It was 
however impossible to approximate the price of residential coal by other prices, 
e.g. coal prices from other sectors. Data availability is better for the prices of other 
fuel types. For natural gas and light fuel oil, more than 30 countries are covered. 
Electricity prices are available for 63 countries. Nonetheless, also for those fuel 
types, limited availability of price data impose a drawback of the analysis in terms 
of representativeness, reliability and quality of the estimation results. We solve 
this drawback by testing the robustness through auxiliary regressions (see Section 
4). As a proxy for household income we use per-capita GDP in purchasing power 
parities (converted to 1995 international dollars). Compared to energy price and 
consumption variables, data availability is good. 
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Table 2: Descriptive statistics 

Included Observations 
Variable Mean Std. Dev. Min Max 

N n T 
Fuel use (tonnes of oil equivalent per person per year) 

    Light fuel oil 65.88 127.73 0.03 1 170.27 4 351 174 25 
    Gas 90.29 140.66 0.00 806.86 1 580 72 22 
    Solid fuels (coal) 44.25 87.33 0.00 632.49 1 346 69 20 
    Electricity 56.93 98.02 0.15 692.71 4 290 176 24 

Fuel price (PPP(95USD) per toe)      
    Light fuel oil 412.79 189.57 112.36 1 352.68 662 33 20 
    Gas 429.12 233.04 5.10 1 300.17 614 38 16 
    Coal 163.53 65.03 13.38 305.23 308 22 14 
    Electricity 1 329.18 1 014.09 40.45 8 835.40 1 029 63 16 
Income (1000 PPP(95USD) per 
person per year) 

6.68 6.82 0.42 43.94 4 265 162 26 

Daily average temperature in the 
coldest month (°F) 

54.64 22.22 -23.36 81.86 6 771 183 37 

Daily average temperature in the 
hottest month (°F) 

77.41 9.09 50.39 101.23 6 771 183 37 

N: Total number of observations; n: Number of countries with at least one observation; T: Average 
number of periods per country. 
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4. Results 
 
To estimate the four fuel demand models, we use the two-step GMM estimation 
procedure for dynamic panels proposed by Arellano and Bond (1991) with 
Windmeijer’s (2005) robust standard errors and forward orthogonal deviations 
instead of first differences (Arellano and Bover 1995) to avoid loss of observa-
tions. As recent debates indicate, a large instrument collection, which easily 
evolves with panels with sufficiently large time dimension, overfits the model and 
leads to invalid estimates for the standard errors (cf. e.g. Roodman 2009 on this 
issue). To confine this problem, we limited the number of instruments used in our 
estimations by “collapsing” the instrument matrix and restricting instrumentation 
to a certain lag level (depending on the model between three and five lags).6 
 

4.1 The heating effect 
 
For each fuel type, we estimate the linear and the three non-linear equations for a 
number of specifications that differ with respect to price variables included and 
the treatment of income-temperature interaction. We first evaluate which of the 
fuel prices has a significant influence on the consumption of which fuel. It turns 
out that only the price of oil is significant for other fuels. Oil and gas consumption 
furthermore depend on their own prices. The price for neither coal nor electricity 
have any significant effect on the use of any fuel type. 
 
Having determined the set of meaningful price variables, we contrast the four 
equations with and without an interaction term for income and temperature. Based 
on parameter significance, sign of the temperature and income variables, the size 
of the autoregressive parameter and on the Akaike Information Criterion, we 
choose one equation for each fuel type that best explains the use of this fuel. Our 
choices are presented in Table 3, the alternative specifications can be found in the 
appendix (Tables A1-A4).  
 
The results are robust to replacing area-weighted temperature data by population-
weighted data – only the size of the effects increases in some cases if population 
weighted-temperature data is used, significance remains unchanged. Detailed 
results for population weighted-temperature data can be found in the appendix 
(Table A5). 
 
We find a significant heating effect for all four fuel types (cf. Figure 1). Non-
linearity of the heating effect can be confirmed for oil, gas and electricity. For 
coal the linear model is superior. Oil and electricity consumption exhibit quadratic 
patterns, while the logarithmic specification was most appropriate for natural gas. 

                                                 
6 “Collapsing” instruments means that one instrument for each variable and lag distance is used, 
rather than one for each time period, variable and lag distance. See Roodman (2009) and the 
references given there for details.  
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The property of allowing for a positive slope in the case of the quadratic functions 
if temperatures become sufficiently high takes effect only for temperatures outside 
our sample (warmer than 80°F/26°C in the case of oil and 140°F/60°C in the case 
of electricity). 
 
In the following we discuss the results presented in Table 3 for each fuel type 
individually before we make comparisons. 
 
In the short run, oil has the highest temperature semi-elasticity of the four fuel 
types – if temperature increases by one degree Fahrenheit, per-capita oil 
consumption decreases by 1% for the average level of per-capita income and 
temperature (cf. Figure 2).7, This corresponds to 2.5 toe per capita. However, the 
picture is quite different for some countries. For a relatively warm and poor 
country like India the semi-elasticity is -8% and the marginal effect is only -0.97 
toe per capita for a one degree Fahrenheit temperature change. In contrast, for a 
relatively cold and rich country like Norway the semi-elasticity is -3%, 
corresponding to a marginal effect of -3.29 toe per capita.8 This illustrates the 
effects of non-linearity and income-temperature interaction – the absolute effect 
of a temperature change is higher if a country is relatively cold and rich. Although 
in a warmer and poorer country the absolute effect is accordingly smaller, the 
change in relative terms can easily be higher, since the initial level of per-capita 
consumption of energy is lower in the first place. Figure 1shows how, for average 
income, energy use depends on the temperature level. Figure 3 shows how, for the 
average temperature, long-run temperature semi-elasticities depend on the income 
level. 
 
The same reasoning holds true for natural gas, the other fuel that features both 
non-linearity and temperature-income interaction. However, with -0.6% the short-
run average semi-elasticity is much smaller than in the case of oil. In fact, the 
response to temperature changes is smallest for natural gas among the four fuel 
types. Also, because of the logarithmic specification, the non-linearity is less 
pronounced over the whole temperature domain than in the case of oil. It is 
limited mainly to very cold winters, which in our sample were frequent only in 
Canada, Russia and Central Asia. For average winter temperatures, the curve 
resembles an almost linear pattern. Also income seems slightly less important in 
explaining differences in energy consumption compared to oil, as can be seen 
from the shallower slope of the natural gas line in Figure 3. 
 
In all countries except China, residential coal use has remained constant or 
declined over the last decades, per capita but also in absolute terms. Nowadays 

                                                 
7 The use of semi-elasticities is necessary since we arbitrarily measure temperature in degrees 
Fahrenheit.  
8 Of course the calculated effects for single countries suit illustrative purposes only, since the 
underlying parameters were estimated for the whole panel and thus represent a global mean. The 
same parameters will probably evolve differently from a single country estimation. 
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Table 3: Energy demand models for oil, gas, coal and electricity 

 oil gas coal electricity 
 (quadratic) (logarithmic) (linear) (quadratic) 
fuel use in (t-1) 0.897*** 0.858*** 0.970*** 0.939*** 
  (0.021) (0.044) (0.036) (0.014) 
tmin -2.134***  -0.449*** -0.575*** 
 (0.702)  (0.170) (0.154) 
tmin² 0.017*   0.004* 
 (0.009)   (0.002) 
log(tmin)  -11.351*   
  (6.073)   
GDP-interaction -0.064* -0.053*   
 (0.038) (0.032)   
GDP per capita (PPP) 2.643** 2.606*** 0.133 0.411*** 
 (1.101) (0.965) (0.244) (0.141) 
gas price  -0.049**   
  (0.024)   
oil price -0.104*** 0.042*** 0.041*  
  (0.034) (0.013) (0.023)   

N 627 466 540 3455 
No. of countries 33 29 30 157 
AIC 6255 4200.3 4049.4 22244.2 
Wald chi² 6332.3*** 1092.3*** 1250.4*** 7535.4*** 
No. of instruments 30 18 20 115 
Hansen J-statistic 24.2 14.3 22.5 126.9 
P-value of Hansen J-stat. 0.45 0.28 0.13 0.14 
*** significant at 1%, ** significant at 5%, * significant at 10%. Standard errors in 
parentheses. Arellano/Bond autocorrelation tests were computed up to order 6 and 
generally rejected the null hypothesis for autocorrelation of second or higher order at the 
ten percent level of significance. 
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coal plays a significant role for residential space heating only in a limited number 
of countries, namely in the CIS countries and China. In the rest of the world, it 
competes on a very low level with oil and gas on the one hand and with firewood 
on the other. Coal is usually regarded as an inferior good. It is the only fuel type 
that does not exhibit a non-linear heating effect, and the income-temperature 
interaction is not significant either. Despite responding linearly, the semi-
elasticity for coal is quite high in the short run and with -0.9% only slightly 
smaller than for oil.  
 
However, the explanatory power of the coal model is limited. Coal is the only 
case in which the autoregressive parameter, which models the inertia of reaction, 
is for some specifications larger than one, and also in our specification of choice 
not significantly different from one (p-value: 0.2, one-sided test).9 This suggests 
an extremely sluggish response of residential coal consumption. Consumption 
does not change significantly from one year to the other, temperature and price 
effects cancel out while income changes do not matter. Graphical inspection 
confirms invariance of residential coal consumption for a considerable number of 
countries (graphs not shown).  
 
Electricity is the only fuel type that is used both for heating and for cooling.10 
While we focus on the heating effect in this section, the cooling effect is discussed 
below. The short-run average temperature semi-elasticity of residential electricity 
consumption being only -0.6%, electricity use is among the least temperature-
sensitive fuels. This does not come as a surprise since electricity is used for a 
range of services, including not only heating and cooling but also services that are 
less responsive to climate and weather, such as lighting and home appliances. The 
response of electricity consumption on temperature changes nevertheless follows 
a non-linear (quadratic) pattern, but interactions between temperature and income 
are not present. 
 
As explained before, households’ adaptation to temperature changes is inert, 
mainly because of habits and technological constraints. Including an 
autoregressive parameter into the regressions enables us to differentiate between 
short-run and long-run effects, the latter giving the overall impact in the year in 
which the initial shock faded out. The more inert a model is, i.e. the larger the 
autoregressive parameter is, the higher will be the final impact of the initial (short-
run) shock. In the case of our four fuel demand models the long run elasticities are 
probably more relevant than the short-run elasticities and present a slightly 
different picture. Still oil consumption reacts more to temperature changes than 

                                                 
9 For all other fuels, the autoregressive parameter is significantly smaller than one. 
10 Of course it is in principle possible that households use their own generator to produce 
electricity from oil products themselves. The cooling effect could then also affect the consumption 
of oil. Apart from the fact that this effect is supposedly only of minor importance, most of it is 
statistically covered by the transport sector and not by the household sector anyway, which leaves 
it beyond the scope of this study. 
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Figure 1: Fuel use as a function of temperature (for average income) 

 
One scale division is 50 toe, the axis intercept depends on each countries fixed effect and the income and 
possibly price levels. 
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Figure 2: Temperature semi-elasticities of fuel use (for average temperature and income) 
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Figure 3: Long-run temperature semi-elasticities (for the average temperature) as a function of 
income. 
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natural gas – one degree Fahrenheit warmer leads ceteris paribus and on average 
to a ten percent decrease in oil consumption in the long run compared to a four 
percent decrease in consumption of natural gas (cf. Figure 2). But in the long run 
electricity use reacts to a great extent, too, and decreases by ten percent. This 
reflects the slower speed of adjustment of electricity use compared to other fuels. 
Accordingly, the median lag for electricity is 11.2 years, compared to 6.6 and 4.6 
years for oil and gas.11 For coal, the high autoregressive term results in a long-run 
average semi-elasticity of 31%, implying a median lag of 22.8 years. As indicated 
above, the results for coal need to be treated with care. 
 
Turning to the economic variables, the impact of income and price changes on 
energy use is as expected. See Figures 4 and 5. Natural gas is the most superior 
fuel; its average income elasticity is highest (0.11) in the short run, followed by 
oil (0.06) and electricity (0.05). The coefficient for coal is insignificant. Two 
effects might cancel out here: On the one hand the income effect leads to an 
expansion of coal use, while simultaneously the substitution effect diminishes 
coal use as oil or gas are substituted for coal due to its inferior character. In the 
long run, the picture changes accordingly to the autoregressive terms – the 
average income elasticity of electricity is highest, followed by gas and oil.  
 
The oil price is the most influential price variable – it enters into the oil demand 
equation and as a cross price also into the gas and coal demand equations. Gas 
consumption depends also on the gas price and the direct price effect is higher 
than the oil price effect. Neither coal nor electricity use is influenced by the price 
of coal or electricity respectively. Both in the short and in the long run, price 
dependence is highest in the case of coal, followed by oil and gas. Electricity is 
the only fuel that is not price-dependent at all. Note that all prices are household 
sector prices. 
 
A comparison with results from previous studies is difficult, since methodology as 
well as data differ significantly. In general, the average temperature semi-
elasticities resulting from our study are significantly smaller in absolute values 
than those of Bigano et al. (2006) and De Cian et al. (2007).12 The same is true for 
income and, with few exceptions, price elasticities.  
 

4.2 The cooling effect 
 
An increase in cooling demand is one of the predicted effects of climate change. 
Although quantifying the cooling effect was one of our declared goals, the 
existence of a cooling effect had to be rejected irrespective of the functional form 
on a global scale and irrespective of whether we estimated the cooling effect 
                                                 
11 The median lag is the time that is needed for half of the impact of an initial shock to materialize. 
12 This is not true for coal, where Bigano et al. (2006) find a positive temperature elasticity. Since 
Bigano et al. (2006) and De Cian et al. (2007) present only elasticities and no semi-elasticities, we 
had to convert their elasticities using the relevant average temperatures from our data base.  
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jointly with the heating effect or separately. This does not necessarily mean that 
there is no cooling effect. The geographical scope of our data set is broad, it 
includes developed as well as many developing countries. So far on the macro 
scale, the cooling effect has been derived mainly for developed countries (De 
Cian et al. 2007 for example cover the OECD countries and in addition South 
Africa, India, Thailand and Venezuela; Bessec and Fouquau 2008 cover the EU-
15 countries). However, households in developing countries might respond 
differently to temperature changes. Although most developing countries are 
located in warm climates, the endowment with air conditioning and other cooling 
devices is supposedly below average, since the households’ incomes are so low. 
Also, including only per-capita GDP might not be sufficient for capturing these 
structural differences. Furthermore our sample covers a rather long time period, 
starting in the 1970s. Since cooling is a rather new phenomenon in the private 
household sector, the cooling effect might be obscured by the long time span. 
Then again, estimations restricted to all and also to especially warm OECD 
countries from 1995 onwards did not yield a significant cooling effect either. 
However, the estimation of an error correction model based only on data for the 
USA suggested a significant cooling effect.13 We conclude that within our 
observation period cooling is still only a regional issue, if not an US-issue – 
although this conclusion is likely to be rectified for the future.14  
 
While Bigano et al. (2006) do not test for a cooling effect, De Cian et al. (2007) 
find a significant positive influence of summer temperature on electricity demand 
for a subsample of mild and hot countries. We cannot confirm their result with our 
data. 
 

4.3 Sensitivity analysis 
 
Including price variables into the model cuts the number of observations and 
countries quite considerably, since price data is available only from 1978 onwards 
and for a limited number of countries (details can be found in the appendix, cf. 
Figures A1 to A4). To accommodate that trade-off, we estimated the models for 
oil, gas and coal not only on a small sample with price variables and on a large 
sample without price variables, but also without price variables for the small 
sample that is limited by the availability of price data. We postulate that if the two 
estimations without price variables come to approximately the same results, we 
can conclude that deviations between the outcomes from the small sample 
(including prices) and the large sample (excluding prices) are only due to 
including or excluding price variables and not to including or excluding certain 
countries. We find that in most cases and at least with respect to significance or 
non-significance the two estimations without price variables come to 
                                                 
13 For the USA, the cooling effect turned out to be linear. Interdependencies between temperature 
and income were not present. It has to be kept in mind, that this single-country estimation is based 
on only 27 observations (the time period from 1976 to 2002). 
14 Recall that our observation period ends already 2002. 
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Figure 4: Short-run income and price elasticities of fuel use (for average temperature, income and price) 
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Figure 5: Long-run income and price elasticities of fuel use (for average income, price and temperature) 
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Table 4: Regression results with and without information on prices for different sample sizes 

 oil  gas  coal 
 small sample large sample  small sample large sample  small sample large sample 
fuel use (t-1) 0.90*** 0.90*** 0.91***   0.86*** 0.91*** 0.80***   0.97*** 0.98*** 1.02*** 
tmin -2.13*** -1.92*** -1.18*      -0.45*** -0.62** -0.44* 
tmin² 0.02* 0.02** 0.01**         
log(tmin)     -11.35* -18.44*** -13.35**     
GDP-interaction -0.06* -0.07 -0.03  -0.05* -0.06* -0.03**     
GDP per capita (PPP) 2.64** 3.12** 1.7   2.61*** 2.85** 2.98***   0.13 0.20** 0.26** 
oil price -0.10***    -0.05**    0.04*   
gas price         0.04***             
N 627 627 3482  466 466 1351  540 540 1100 
No. of groups 33 33 155  29 29 67  30 30 65 
AIC 6255.0 6823.3 29168.8  4200.3 4467.5 11768.3  4049.4 4734.4 8667.2 
Wald chi² 6332.3*** 12028.2*** 5481.2***  1092.3*** 2360.5*** 968.3***  1250.4*** 3176.1*** 15331.6*** 
No. of instruments 30 30 141  18 18 20  20 20 18 
Hansen J-statistic 24.20 24.72 140.66  14.29 18.13 21.95  22.4951 16.8748 21.3686 
P-value of Hansen J-stat. 0.45 0.48 0.37  0.28 0.20 0.14  0.1279 0.4629 0.1255 
*** significant at 1%, ** significant at 5%, * significant at 10%. Arellano/Bond autocorrelation tests were computed up to order 6 and generally rejected the null hypothesis 
for autocorrelation of second or higher order and the ten percent level of significance. 
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approximately the same result (cf. Table 4 for details). Only the significance of 
the effect of income on oil use seems to depend to some extent on the small 
sample size and our results should be interpreted with care in that respect. 
 

5. Discussion and conclusion 
 
In this paper, we examine the impact of temperature changes on residential energy 
consumption, emphasizing the evaluation of different functional forms of that 
impact and the interaction between household income and responsiveness to 
temperature changes. Despite differences among different fuel types, energy use is 
in general non-linear in temperature: Energy use drops as the temperature rises 
(because of a reduced demand for heating), but the rate of that drop declines with 
rising temperature levels (as heating demand approaches zero). Furthermore we 
find evidence that the size of the heating effect is not only affected by the 
temperature level, but also by the level of income: Households in richer countries 
respond more strongly to a temperature change.  
 
The geographical scope of our paper is considerably larger than in previous 
studies, and covers both developed and developing countries. This allows us to 
form conclusions of general validity. However, this generality necessarily 
involves a loss of provision for specific circumstances: For example, we are not 
able to identify a cooling demand of worldwide impact, a result that is due to the 
fact that cooling is not a global issue yet – however it certainly is a regional issue 
and as such it has already been analyzed and will hopefully going to be analyzed 
in the future. Whether a global cooling demand develops in the future remains to 
be seen. 
 
What are the implications of our findings for economic impacts of climate 
change? Private households would benefit from the reduced spending on heating 
energy. Energy suppliers would be hit as their markets shrink. This effect is 
largest in the relatively cold and rich North. 
 
The reduction in heating energy demand could be partly or even completely offset 
by two developments: Firstly, an increased use of cooling devices, though not of 
effect in our observation period, could in the future increase energy use, not only 
on a regional, but also on a global scale. Secondly, if the international community 
succeeds in fighting poverty in the comparably warm developing countries, this 
will not only by means of an income effect increase energy use, it will also 
amplify the global demand for cooling. 
 
Considering different economic sectors, especially industry and services, would 
be a natural extension of this study. Even if the residential sector is the one with 
the highest sensitivity towards temperature changes with respect to energy 
demand, other sectors may feature similar effects as well. Furthermore, 
broadening the analysis to include other fuel types could be a sensible extension.  
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Especially the consideration of (traditional) biomass would lead to a more 
complete picture of the interrelations in developing countries, since a considerable 
fraction of residential energy consumption falls upon fire wood and other 
biomass-based fuels. Availability of data prevents progress in that respect at the 
moment. A more methodological extension would be the use of explicitly non-
linear estimators instead of linearizable non-linear functions. This is left for 
further research. 
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Appendix 
 

Table A1: Estimation results for residential consumption of oil products 

 including oil prices  excluding oil prices 
 linear quadratic logarithmic inverse  linear quadratic logarithmic inverse 
oil use in (t-1) 0.89*** 0.90*** 0.90*** 0.89***   0.91*** 0.91*** 0.92*** 0.92*** 
  (0.03) (0.02) (0.03) (0.03)   (0.02) (0.02) (0.02) (0.02) 
tmin -1.82** -2.13***    -0.56 -1.18*   
 (0.79) (0.7)    (0.61) (0.72)   
tmin²  0.02*     0.01**   
  (-0.01)     (0.00)   
log(tmin)   -20.89**     -18.3  
   (9.12)     (13.25)  

tmin-1    138.37***     69.86 
    (26.29)     (70.51) 
GDP-interaction -0.05 -0.06* -0.12*** -0.17***  -0.04 -0.03 -0.06 -0.09*** 
 (0.04) (0.04) (0.04) (0.04)  (0.05) (0.04) (0.04) (0.03) 
GDP per capita (PPP) 1.64 2.64** 4.48*** 5.59***   1.97 1.7 2.66** 3.77*** 
 (1.14) (1.1) (1.19) (1.22)  (1.69) (1.62) (1.33) (1.11) 
oil price -0.11*** -0.10*** -0.11*** -0.16***      
  (0.04) (0.03) (0.04) (0.06)           

N 627 627 627 627  3482 3482 3482 3482 
No. of countries 33 33 33 33  155 155 155 155 
AIC 6327.9 6255.0 6337.9 6 501.4  29674.2 29168.8 29476.6 29 626.2 
Wald chi² 5324.9*** 6332.3*** 4155.5*** 3303.0***  4635.6*** 5481.2*** 4283.8*** 3204.5*** 
No. of instruments 25 30 25 25  109 141 109 109 
Hansen J-statistic 24.4 24.2 26.4 23.26  138.9** 140.7 125.8* 120.2 
P-value of Hansen J-stat. 0.22 0.45 0.15 0.28  0.02 0.37 0.08 0.15 

*** significant at 1%, ** significant at 5%, * significant at 10%. Standard errors in parentheses. Arellano/Bond autocorrelation tests were computed up to 
order 6 and generally rejected the null hypothesis for autocorrelation of second or higher order and the ten percent level of significance. 
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Table A2: Estimation results for residential consumption of natural gas 

 including gas and oil prices  excluding prices 
 linear quadratic logarithmic inverse  linear quadratic logarithmic inverse 
gas use in (t-1) 0.87*** 0.85*** 0.86*** 0.86***   0.77*** 0.87*** 0.80*** 0.80*** 
  (0.04) (0.04) (0.04) (0.05)   (0.10) (0.04) (0.11) (0.13) 
tmin -1.13 -0.41    -0.60** -0.59   
 (0.69) (0.96)    (0.30) (0.39)   
tmin²  -0.02     0   
  (0.02)     (0.01)   
log(tmin)   -11.35*     -13.35**  
   (6.07)     (5.82)  
tmin-1    83.42***     18.33 
    (17.89)     (37.53) 
GDP-interaction -0.03 0 -0.05* -0.07**  -0.02 -0.02 -0.03** -0.06** 
 (0.03) (0.03) (0.03) (0.03)  (0.02) (0.01) (0.02) (0.02) 
GDP per capita (PPP) 1.90** 1.38* 2.61*** 3.28***   2.82* 1.85** 2.98*** 3.96*** 
 (0.87) (0.79) (0.96) (1.00)  (1.47) (0.72) (1.11) (1.34) 
gas price -0.04** -0.04* -0.05** -0.05**      
 (0.02) (0.02) (0.02) (0.03)      
oil price 0.04*** 0.04*** 0.04*** 0.04**      
  (0.01) (0.01) (0.01) (0.02)           

N 466 466 466 466  1351 1351 1351 1351 
No. of countries 29 29 29 29  67 67 67 67 
AIC 4232.5 4254 4200.3 4226.1  12121.3 11419.3 11768.3 11855.3 
Wald chi² 1249.6*** 1033.7*** 1092.3*** 2251.7***  1029.9*** 1869.9*** 968.3*** 682.8*** 
No. of instruments 18 21 18 18  20 25 20 20 
Hansen J-statistic 16.6 15.7 14.3 15.3  19.7 25.1 22 23.1 
P-value of Hansen J-stat. 0.17 0.33 0.28 0.22  0.23 0.20 0.14 0.11 

*** significant at 1%, ** significant at 5%, * significant at 10%. Standard errors in parentheses. Arellano/Bond autocorrelation tests were computed up to 
order 6 and generally rejected the null hypothesis for autocorrelation of second or higher order and the ten percent level of significance. 
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Table A3: Estimation results for residential consumption of coal 

 including oil prices  excluding oil prices 
 linear quadratic logarithmic inverse  linear quadratic logarithmic inverse 
coal use in (t-1) 1.02*** 1.02*** 1.02*** 1.02***   0.97*** 0.96*** 0.97*** 0.97*** 
  (0.01) (0.01) (0.01) (0.01)   (0.04) (0.04) (0.04) (0.04) 
tmin -0.44* -0.18    -0.45*** -0.26   
 (0.23) (0.43)    (0.17) (0.17)   
tmin²  -0.01     0   
  (0.01)     (0.01)   
log(tmin)   2.98     -10  
   (6.17)     (7.42)  
tmin-1    31.04     27.64 
    (33.97)     (26.35) 
GDP per capita (PPP) 0.26** 0.29** 0.20** 0.21**   0.13 0.06 0.09 -0.04 
 (0.11) (0.12) (0.08) (0.09)  (0.24) (0.27) (0.22) (0.17) 
oil price      0.04* 0.04* 0.04* 0.03 
            (0.02) (0.02) (0.02) (0.02) 

N 1100 1100 1100 1100  540 540 540 540 
No. of countries 65 65 65 65  30 30 30 30 
AIC 8667.2 8945.7 8270.9 8270.9  4049.4 4102.7 3987.1 3928.0 
Wald chi² 15331.6*** 18217.1*** 17881.9*** 20894.3***  1250.4*** 1363.9*** 1238*** 1302.5*** 
No. of instruments 18 24 18 18  20 25 20 20 
Hansen J-statistic 21.4 24.6 17.7 20.7  22.5 24.4 21.2 17.2 
P-value of Hansen J-stat. 0.13 0.22 0.28 0.15  0.13 0.23 0.17 0.37 
*** significant at 1%, ** significant at 5%, * significant at 10%. Standard errors in parentheses. Arellano/Bond autocorrelation tests were computed up to 
order 6 and generally rejected the null hypothesis for autocorrelation of second or higher order and the ten percent level of significance. 
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Table A4: Estimation results for residential electricity consumption for heating purposes 

 linear quadratic logarithmic inverse 
electricity use in (t-1) 0.92*** 0.94*** 0.91*** 0.91*** 
  (0.01) (0.01) (0.01) (0.01) 
tmin -0.43*** -0.57***   
 (0.13) (0.15)   
tmin²  0.00*   
  (0.00)   
log(tmin)   -11.60*  
   (6.41)  
tmin-1    3.87 
    (18.86) 
GDP per capita (PPP) 0.58*** 0.41*** 0.61*** 0.57*** 
 (0.11) (0.14) (0.11) (0.12) 

N 3455 3455 3455 3455 
No. of countries 157 157 157 157 
AIC 23918.9 22244.2 22711.3 23122.0 
Wald chi² 8995.5 7535.4 7669.2 6088.8*** 
No. of instruments 149 115 149 149 
Hansen J-statistic 154.6 126.9 148.2 143.5 
P-value of Hansen J-stat. 0.30 0.14 0.43 0.54 
*** significant at 1%, ** significant at 5%, * significant at 10%. Standard errors in 
parentheses. Arellano/Bond autocorrelation tests were computed up to order 6 and generally 
rejected the null hypothesis for autocorrelation of second or higher order and the ten percent 
level of significance. 
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Table A5: Estimation results using population-weighted temperature data 

 oil gas coal electricity 
 (quadratic) (logarithmic) (linear) (quadratic) 
gas use in (t-1) 0.93*** 0.84*** 0.97*** 0.94*** 
  (0.02) (0.08) (0.04) (0.01) 
tmin -1.87*  -0.47*** -0.57*** 
 (1.10)  (0.17) (0.15) 
tmin² 0.03**   0.00** 
 (0.01)   (0.00) 
log(tmin)  29.81   
  (31.84)   
GDP-interaction -0.13** -0.13**   
 (0.06) (0.05)   
GDP per capita (PPP) 6.21*** 6.13*** 0.2 0.45*** 
 (2.15) (1.61) (0.25) (0.14) 
gas price  -0.05**   
  (0.02)   
oil price -0.09** 0.04*** 0.04*  
  (0.04) (0.01) (0.02)   

N 627 466 540 3455 
No. of countries 33 29 30 157 
AIC 5952 4237.3 4037.3 22275.4 
Wald chi² 3556.9*** 617*** 1313.2*** 7603.2*** 
No. of instruments 24 24 20 115 
Hansen J-statistic 16.6 19.9 22.5 120.8 
P-value of Hansen J-stat. 0.55 0.34 0.13 0.25 
*** significant at 1%, ** significant at 5%, * significant at 10%. Standard errors in parentheses. 
Arellano/Bond autocorrelation tests were computed up to order 6 and generally rejected the null 
hypothesis for autocorrelation of second or higher order and the ten percent level of significance. 
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Figure A1: Geographical coverage of oil data 

 
: Consumption data available; : Consumption and price data available; blank: no data. 
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Figure A2: Geographical coverage of natural gas data 

 
: Consumption data available; : Consumption and price data available; blank: no data. 
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Figure A3: Geographical coverage of coal data 

 
: Consumption data available; : Consumption and price data available; blank: no data. 
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Figure A4: Geographical coverage of electricity data 

 
: Consumption data available; : Consumption and price data available; blank: no data. 
 
 


