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Can the standard search-and-matching labor market model repli-
cate the business cycle fluctuations of the job finding rate and the un-
employment rate? In the model, fluctuations are prominently driven
by productivity shocks which are commonly interpreted as technology
shocks. I estimate different types of technology shocks from structural
VARs and reassess the empirical performance of the standard model
based on second moments that are conditional on technology shocks.
Most prominently, the model replicates the conditional volatility of job
finding and unemployment, so that the Shimer critique does not apply.
Instead the model lacks non-technological disturbances to replicate the
overall sample volatility. In addition, positive technology shocks lead
to a fall in job finding and an increase in unemployment thereby oppos-
ing the dynamics in the standard model similar to the “hours puzzle”
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1 INTRODUCTION 2

1 Introduction

U.S. business cycles are characterized by large movements into and out of
employment. The standard framework commonly used to study these move-
ments comprises search-and-matching in the labor market as first presented
by Mortensen and Pissarides (1994). In the dynamic version of this model,
business-cycle fluctuations of labor market variables originate in fluctuations
of labor productivity. These dynamics can be characterized by gross worker
flows, i.e. the flow of unemployed workers filling an open job vacancy and
employed workers separating from an existing employment relationship. The
question whether the standard model is able to replicate the business-cycle
fluctuations in U.S. time series data has been one of the most controversially
discussed issues in the recent macro-labor literature.

Shimer (2005a) has fuelled the debate by criticizing the standard model with
respect to its empirical performance. His criticism was based on comparing
second moments generated from the model to second moments in worker
flow data calculated from the U.S. Current Population Survey (CPS). He
showed that the model did not mirror the high volatility of the job finding
rate and unemployment that is observed in the data. In addition, the corre-
lation between the job finding rate and the unemployment rate with labor
productivity is much too high in the model.

While the dynamics in the standard frictional labor market model stem from
fluctuations in labor productivity, “a change in labor productivity is most
easily interpreted as a technology or supply shock” (Shimer (2005a), p. 25).
Hence, labor market dynamics can be represented within a real-business-
cycle (RBC) and growth model as in Merz (1995), or Andolfatto (1996). In
these models technology shocks are the main driving forces of labor produc-
tivity. However, other disturbances such as demand shocks may affect labor
productivity as well. Within this context, Gaĺı (1999) demonstrated how
to separately identify technology and non-technology shocks in time series
data via restricting their long-run effects in structural vector-autoregressions
(SVARs).

Against this background, this paper re-addresses the empirical performance
of the standard search-and-matching model of the labor market in which
fluctuations are driven by technology shocks. The empirical performance
of the model is assessed based on second moments that are conditional on
technology shocks rather than on overall unconditional moments.1 Since
conditional and unconditional moments substantially differ in this case, the

1I am not the first to address conditional moments with respect to labor market dy-
namics. Michelacci and Lopez-Salido (2007), Ravn and Simonelli (2006), Fujita (2009)
and many others all have also used SVARs in order to investigate the effect of different
shocks on worker and job flows. I will refer to differences in the focus as well as methods
and results below.
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judgement of the model that is based on unconditional moments may be very
misleading. The results provide answers to various issues of importance to
the standard labor market model. First, one can gain important insights
into the failure of the model to generate sufficient volatility on the uncondi-
tional level as documented by Shimer. Second, in addition to the moments
conditional on technology shocks, this analysis provides information about
the importance of non-technology shocks and the dynamics induced by these
shocks. Put differently, unconditional dynamics may encompass various dif-
ferent dynamics on the conditional level. Since the identified shocks are
structural, the results deliver a meaningful guidance for the formal mod-
elling of the labor market dynamics. Third, if the identified shocks are in
fact shocks to the business cycle, their effect on the rate of job separations
sheds light on the validity of assuming a constant job separation rate in a
business-cycle model.

Two main findings emerge. With respect to volatility, the standard devia-
tions of the job finding rate and the unemployment rate that are conditional
on technology shocks are much lower than the unconditional ones. In addi-
tion, these standard deviations are, in fact, close to the standard deviations
that are generated within a commonly calibrated version of the standard
model that is driven by technology shocks. Consequently, the Shimer cri-
tique of the model with respect to its lack of volatility does not apply when
the empirical performance is based on conditional moments. Since the tech-
nology shocks generate only a part of the overall volatility in the data, non-
technology shocks play a substantial role for this volatility as well. In order
to replicate the unconditional moments in the data, the standard model
should therefore be augmented by additional non-technological sources of
fluctuations rather than with respect to a better propagation of technology
shocks as suggested in the literature. I show that shocks to the marginal
rate of substitution between consumption and leisure, so-called preference
shocks, may work in this respect. Further, job separations significantly move
after both types of estimated shocks. This means that it is not reasonable
to assume the job separation rate to be constant over the cycle.

With respect to the conditional correlations, the co-movement of the job
finding rate with labor productivity that is conditional on technology shocks
is negative, while the conditional correlation of unemployment with produc-
tivity is positive. Put differently, job finding falls after a positive technologi-
cal innovation while unemployment increases. In the standard labor market
model, a positive technology shock of the same size leads to an increase in
labor productivity and, hence, to an increase in the job finding rate and a
fall in unemployment. This result constitutes a “job finding puzzle” from
the viewpoint of the standard model that is comparable to the so-called
“hours puzzle” documented in Gaĺı (1999). Since technology shocks play
a considerable role for the business cycle variance of the job finding rate
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and unemployment, this result is a much more serious challenge to the em-
pirical performance of the standard model than the Shimer volatility in
unemployment puzzle. Hence, this result supports models which are able to
incorporate these effects. Since the correlations of these two variables with
productivity that are conditional on technology shocks are of opposite sign as
the respective unconditional moments, non-technology shocks are necessary
again to fully describe the overall dynamics in the data. However, I show
that preference shocks are not suitable to explain the remaining variation in
the data.

This paper presents results for different types of technology shocks and dif-
ferent types of measures for the labor market dynamics. Based on Gaĺı
(1999), technology shocks are the only shocks that have a long-run effect on
labor productivity. This assumption holds in the RBC framework with fric-
tional labor markets that is presented in section 2. The identification of these
standard Gaĺı technology shocks within a structural VAR as well as their
conditional moments that are estimated including the Shimer worker flow
data are presented in section 3. In addition, Fisher (2006) has motivated the
separate identification of factor-neutral and investment-specific (or capital-
embodied) technology shocks from the data. In the model, both of these
shocks positively affect labor productivity in the long-run, while investment-
specific technology shocks have a negative long-run effect on price of invest-
ment goods relative to consumption goods in addition. Section 4 presents
the identification of these two shocks based on assumptions derived from
the model and documents the results. Note that the identification employed
uses an additional assumption on the effect of investment-specific technology
shocks on labor productivity that goes back to Fisher. This assumption has
an important effect on the results and has been neglected by many other
authors in similar studies (such as Canova et al. (2007) and Ravn and Si-
monelli (2006)). Here, even though investment-specific technology shocks
provide an additional source of volatility in job finding and unemployment,
they are not large enough to explain the high volatility in the data. Further,
investment-specific and neutral technology shocks generate very similar dy-
namics in the worker flow data and hence support the findings from the Gaĺı
identification.

Moments conditional on neutral and investment-specific shocks from the
Fisher identification are presented for job flow data in section 5. Data on
job flows are generally viewed as an alternative to worker flows in order to
assess the empirical performance of a model with a frictional labor mar-
ket. Using recent data collected by Davis et al. (2006), the volatility result
outlined above prevails. The job finding puzzle vanished however when in-
corporating job flows rather than worker flows in the estimation. Again,
non-technological disturbances are necessary in order to fully understand
the overall dynamics in the data.
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Complementary to the Gaĺı and Fisher identification, section 6 proposes
a new and alternative identification strategy for technology shocks which
attempts to shed light on a few issues that arise from the estimation of
technology shocks and their potential impact on the results. First, I doc-
ument that the identified standard Gaĺı technology shocks have a positive
and significant effect on the relative price of investment. This means that
the Gaĺı technology shocks are neither truly neutral technology shocks nor
are they investment-specific technology shocks. Rather, these shocks are
negatively biased towards new investment. Neither the Gaĺı nor the Fisher
identification accommodates this variation in the data. Second, the Fisher
identification of technology shocks employs an assumption which fixes the
effect of the investment-specific technology shock on labor productivity and
consequently the correlation between this shock and the neutral technology
shock.

I propose a mixture of long-run zero and sign restrictions to distinguish
positive productivity shocks with positive from positive productivity shocks
with negative effects on the investment price. On the one hand, this provides
an identification of investment-specific technology shocks alternative to the
Fisher identification. Thereby I can test the critical Fisher restriction for
its validity. On the other hand, I identify a new kind of technology shocks,
namely positive technology shocks that are negatively biased towards invest-
ment. These shocks have so far not been taken into account in the literature
as it is not clear how to interpret them. However, they are shown to play
a significant role for the dynamics of the labor market variables. For both
types of technology shocks following from this identification, the general re-
sults with respect to the empirical performance of the standard model based
on moments conditional on these shocks continue to hold.

2 A Standard Labor Market Model

2.1 The Model

The standard labor market framework referred to in the following nests
search-and-matching on the labor market within a real-business-cycle (RBC)
and growth model as in Merz (1995). The model comprises the subsequent
equations:

max
{Ct,Nt+1,Vt,Kt+1}∞t=0

E0

∞
∑

t=0

βt

(

χ ln(Ct) −
N

1+φ
t

1 + φ

)
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subject to

AtK
α
t N1−α

t ≥ Ct + Xt + aVtZt

Kt+1 ≤ (1 − δ)Kt + ItXt

Nt+1 = (1 − ψ)Nt + µV
1−η
t (1 − Nt)

η

At = exp(γ + εat)At−1

It = exp(ν + εit)It−1.

The posting of vacancies Vt creates a cost a and thereby search frictions.
Employment next period is determined by those jobs that remain after ex-
ogenous separation ψ and the new job matches that are formed in this period
via a commonly used Cobb-Douglas matching function with matching elas-
ticity η. The labor force is assumed to be constant, so that unemployment
in period t can be measured by 1 − Nt. Job finding per period can be de-
scribed by Ft = µ( Vt

1−Nt
)1−η and thus co-moves with labor market tightness,

defined as the ratio of vacancies to unemployment. The social planner rep-
resentation can be derived from a decentralized problem in which workers
and firms bargain over the wage. In order to meet the Hosios condition, the
bargaining weight is implicitly set equal to the matching elasticity in this
setup.

As in Fisher (2006), growth is exogenously generated by two types of techno-
logical progress. At represents general purpose technology in the production
function and will be called neutral technology in the following. It is referred
to as investment-specific technology as makes new investment goods rela-
tively cheaper than consumption goods and hence drives the real price of
new investments down.2 Through the capital accumulation equation it fa-
vors new investments, leads to new capital formation and hence positively
affects output and labor productivity. As in Fisher, output, consumption,
investment and labor productivity grow with the rate αν+γ

1−α
along a bal-

anced growth path, while the capital stock grows at rate ν+γ
1−α

. Employment,

unemployment and vacancies are stationary3. Shocks to these two types
of technology generate business cycle fluctuations in the model. Note that
each one of these technology shocks also constitutes a labor productivity
shock. Through its positive effect on labor productivity, job finding rises
after a positive technology shock, while unemployment falls. Following from
the two laws of motion for technology, the investment-specific technology
shock has a permanent effect on the relative price of investment, and both

2This can also be described as 1
Pt

. Greenwood et al. (2000) derive this one-sector rep-
resentation of the model from a two-sector version with a consumption and an investment
sector. Empirically, investment-specific technological progress is believed to be responsi-
ble for the persistent fall in the real price of equipment goods from 1955 until 2000 as
measured by Cummins and Violante (2002) among others.

3Hence, vacancies are multiplied by Zt = A
1

1−α

t I
α

1−α

t in the budget constraint.
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technology shocks have permanent effects on labor productivity. These two
properties will serve as identifying restrictions in the estimation and hence,
this framework serves as the suitable setup for the subsequent empirical
investigation.4

The labor market model outlined above differs in many respects from the
standard Mortensen and Pissarides (1994) model that provides the basis for
the Shimer model. Utility is not linear, but follows the standard assumptions
in the RBC literature. In addition, due to the explicit modelling of capital
and capital accumulation (i.e. savings) as well as output fluctuations, the
RBC setting aims much more at imitating real fluctuations outside the labor
market. This will be important for potential extensions in order to augment
the performance of the model with respect to other variables and to other
shocks. However, as in Shimer, this study focusses on the second moments of
the central variables that this model wants to explain, that is the dynamics
in the job finding, job separation and unemployment rate.

Both the Shimer model and the model outlined above lack many features
that have been shown to be important to replicate overall dynamics in the
data such as nominal or real rigidities outside the labor market. The stan-
dard labor market model serves as a baseline model in order to contrast
its empirical performance based on unconditional moments with moments
conditional on labor productivity shocks, that is, technology shocks. It is
straightforward to add any other non-technological source of variation on
productivity, e.g. demand shocks. As long as extensions of the model do
not affect the validity of the identification, the empirical results documented
below remain equally valid. In section 3, I will consider preference shocks
which move the marginal rate of substitution between consumption and
leisure. In the model, this means that the parameter χ will be replaced by
a stochastic process of the form ln(xt) = ρx ln(xt−1) + εxt.

2.2 Empirical Performance Based on Neutral Shocks

Due to the difference to the Shimer model, I re-consider the empirical per-
formance of the model outlined above. To keep the framework as simple as
possible, I start with considering neutral shocks as the only source of vari-
ation in the model. For this, I calibrate the model and generate artificial
time series from the model, compute the respective second moments and
compare them to the unconditional ones in the data. I choose a set of stan-
dard parameters for the calibration: a capital share in production of α = 1

3 ,

4Note that DeBock (2006) also presents a search-and-matching model with investment-
specific technology shocks. However, the shocks are transitory in his framework and
therefore not in line with our identification of technology shocks applied later. Michelacci
and Lopez-Salido (2007) describe a search-and-matching model with permanent neutral
and investment-specific technology shocks. Their model is much more complicated than
the standard model here and aims at describing different results in the data.
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the time discount factor of β = 0.99 and capital depreciation of δ = 0.02.
The Frisch labor supply elasticity is pinned down by φ = 1 and χ = 1.
In line with Mortensen and Nagypal (2007), the elasticity of the matching
function with respect to unemployment is set to η = 0.46. The constant of
the matching function (µ = 1.5) and the cost of posting vacancies (a = 0.02)
are calibrated such that the steady state labor market tightness is equal to
one and the respective job finding rate equals the mean quarterly job finding
rate of 1.5 in the worker flow data used later in the estimation. The same
data delivers the mean quarterly job separation rate of ψ = 0.09.5

The first and second column of Table 1 compare the second moments in the
data to those that are generated from the model driven by neutral shocks
only. Hence, εit = 0. The growth rate and standard deviation of the neutral
technology shock εat are then calibrated to match the standard deviation
of labor productivity which results in γ = 0.0035. Both the artificial and
the data series are detrended with a very smooth HP-filter (λ = 105) as
in Shimer in order to relate my results directly to his. In the actual data,
the job finding rate and unemployment are a lot more volatile than the job
separation rate. From this, Shimer concludes that unemployment fluctua-
tions are mainly driven by fluctuations in the job finding rather than the
job separation rate. Furthermore, the standard deviation of the job finding
rate and unemployment are about ten times as large as the one in labor
productivity. All series are highly autocorrelated in the first lag.

The comparison with the model moments mirrors the Shimer volatility in
unemployment puzzle. First, the standard deviations of job finding and un-
employment generated in the model are very small compared to the ones in
the data. Second, the correlation of unemployment and job finding with pro-
ductivity is too high in the model compared to the data.6 Shimer concludes
that there exists no internal propagation mechanism of labor productivity
shocks in the model, since the real wage strongly reacts to labor productivity
shocks and hence weakens the incentives for firms to post vacancies. In or-
der to improve its empirical performance, Shimer and also Hall (2005) have
therefore proposed to introduce rigid wages into the standard framework.

Hagedorn and Manovskii (2008) and many other authors have argued that
Shimer’s volatility in unemployment puzzle disappears for a different cali-
bration of the model, more precisely for a different calibration of the outside
option of the workers in the wage bargaining. This parameter is not con-
sidered here. Within the framework used above, the parameters are chosen
such that the volatility in the job finding rate and unemployment is as high
as possible7. Put differently, the aim of this study is not to find a calibration

5For more details on the data and the sample, see section 3.1.
6Table 7 shows that these result do not depend on the choice of the smoothing para-

meter in the HP-Filter.
7Investigating sensitivity of this result to the choice of parameter values, it is possible,
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such that the model driven by technology shocks matches the unconditional
moments in the data. Rather, the output from this model in the standard
calibration is to be compared to the moments that are conditional on tech-
nology shocks.

3 Moments Conditional on Technology Shocks

In the model, business cycle fluctuations of labor productivity, job finding
and unemployment originate in movements of technological progress. It
is therefore straightforward to evaluate the empirical performance of the
model based on second moments conditional on technology shocks rather
than on unconditional moments. In the data, shocks other than technology
shocks play a role for the overall fluctuations as well. Thus disentangling
the technology shocks from other shocks potentially serves three purposes.
First, I can investigate the dynamic relationships (correlations and impulse
responses) between the variables of interest that are conditional on tech-
nology shocks. Second, since these may be different from the unconditional
ones it may therefore be possible explain the failure of the model on the un-
conditional level. Third, it is possible to assess the importance of technology
shocks for the unconditional data dynamics.

3.1 Identification and Estimation

The effects of technology shocks on labor market variables can be investi-
gated within a structural VAR framework with long-run restrictions based
on Blanchard and Quah (1989). The main idea is to find a mapping that
transforms the residuals from a reduced form VAR into structural residuals
such that the latter can be interpreted as certain types of shocks such as
technology shocks. These mappings typically involve assumptions on the
variance-covariance matrix of the structural shocks as well as restrictions on
the effects of these shocks on the variables in the VAR.

Based on Gaĺı (1999), technology shocks are identified via the central as-
sumption that they are the only shocks that positively affect labor produc-
tivity in the long-run. In addition, the technology shocks are orthogonal to
each of the non-technology shocks estimated. These assumptions are imple-
mented by including labor productivity in first differences and ordered first
in the VAR and then applying a Cholesky decomposition to the long-run
horizon forecast revision variance8. It has to be noted that many structural
disturbances other than technological innovations can affect labor produc-

for example, to increase the matching elasticity with respect to unemployment to the value
proposed by Shimer of λ = 0.72 which clearly decreases the volatility of job finding and
unemployment.

8See the Technical Appendix for further details.
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Table 1: Historical Decomposition of Gaĺı Identification

Uncond. Model Conditional Moments

Sample I II Technology Residual

A: Standard Deviations

JFinding 0.1542 0.0536 0.0417 0.0548 0.1229

(0.04,0.08) (0.10,0.14)

JSeparation 0.062 0.0503 0.056

(0.04,0.06) (0.05,0.06)

Unemployment 0.1786 0.0519 0.0404 0.0881 0.1409

(0.06,0.12) (0.12,0.16)

Productivity 0.0156 0.0156 0.0116 0.0116 0.0166

(0.01,0.02) (0.01,0.02)

B: Autocorrelations

JFinding 0.9128 0.9071 0.9061 0.9189 0.8869

(0.86,0.95) (0.86,0.90)

JSeparation 0.6336 0.9256 0.6158

(0.89,0.95) (0.59,0.66)

Unemployment 0.9218 0.845 0.8443 0.9131 0.9109

(0.88,0.93) (0.90,0.92)

Productivity 0.8507 0.8701 0.868 0.8927 0.9206

(0.86,0.92) (0.90,0.94)

C: Cross-Correlations

JFind.,Prod. 0.0567 0.8625 0.8522 -0.436 0.6739

(-0.66,-0.10) (0.52,0.77)

JSep.,Prod. -0.4392 0.3544 -0.6703

(0.11,0.48) (-0.74,-0.59)

Unemp.,Prod. -0.1858 -0.7776 -0.7668 0.4613 -0.8014

(0.17,0.63) (-0.88,-0.70)

JFind.,Unemp. -0.9558 -0.9272 -0.9266 -0.9041 -0.9359

(-0.96,-0.75) (-0.95,-0.91)

JSep.,Unemp. 0.6845 0.885 0.6302

(0.80,0.92) (0.56,0.69)

JFind.,JSep. -0.4404 -0.596 -0.3167

(-0.76,-0.19) (-0.40,-0.19)

Notes: All series are detrended with the smooth HP-filter as in Shimer (2005a). For the
conditional moments, the series are simulated with the respective shock operating only.
The point estimate is the median, the confidence intervals are 68% Bayesian bands from
the posterior distribution. Calibration I of the model matches the unconditional standard
deviation of labor productivity, calibration II matches the same moment, conditional on
technology shocks.
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tivity in the short and medium run, but that technology shocks can be dis-
tinguished from non-technology shocks with respect to their long-run effects
on this variable. With this approach, I do not exactly estimate the model
outlined above. Rather the conditional moments obtained should hold for
a broad class of different model specifications that fulfill the identifying as-
sumptions. The long-run assumption about the nature of technology shocks
holds in the model presented as well as in many other models, such as the
neoclassical growth model or the New Keynesian model9.

All identification alternatives presented in the following are based on the
same reduced-form VAR which contains labor productivity, the job finding
and separation rate. For later comparison with alternative identification
schemes, the relative price of investment is added to the VAR. The reduced-
form VAR is estimated within a Bayesian framework with a Minnesota prior,
similar to Canova et al. (2007). The Minnesota prior incorporates a unit
root in the levels of the variables included in the VAR and a fixed residual
variance which determines the tightness on own lags, other lags and poten-
tial exogenous variables as well as the decay of the lags. Using the latter
parameter, this prior allows us to generate sensible results for a large number
of lags, as Canova et al. outline. This addresses an often cited criticism on
the VAR approach (e.g. by Chari et al. (2008)) which states that in theory
one should employ a VAR with an infinite number of lags (here eight lags
will be employed) in order to correctly identify technology shocks using long
run restrictions. Except for the decay, I will use a relatively loose prior in
the estimation10. Further, the VAR is estimated with a trend as suggested
by Canova et al. (2006). Here, the trend is a dummy that is determinis-
tically broken at 1973:2 and 1997:1. These dates have been considered as
break points in the growth literature and replicate the turning points in the
job separation rate and unemployment series.11

The baseline specification is estimated using quarterly time series data for
the U.S. over the sample 1955:1-2004:4. The job finding and separation rates
are taken from the worker flow data produced by Robert Shimer12. Labor
productivity (output per hours of all persons) is the standard non-farm
business measure provided by the U.S. Bureau of Labor Statistics. The real
price of investment consists of a price index for equipment and software and

9It does not hold in endogenous growth frameworks.
10The prior variance of the coefficients depends on three hyper-parameters φ1 = 0.2,

φ2 = 0.5 and φ3 = 105, that determine the tightness and decay on own lags, other lags
and exogenous variables. The decay parameter is set to d = 7.

11See Fernald (2007) for empirical evidence on the trend breaks. Appendix A presents
robustness checks to this specification along various dimensions including different priors,
different break points for the trend and no trend as well as different lag lengths in the
VAR.

12This is the worker flow data officially posted on the website of Robert
Shimer and documented in Shimer (2005b). For additional details, see
http://home.uchicago.edu/∼shimer/data/flows.
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a consumption price deflator that is chain weighted from nondurable, service
and government consumption. The standard data from the National Income
and Product Accounts (NIPA) have been criticized not to take into account
the price-per-quality change in the investment goods of interest (see Gordon
(1990)). I use the quarterly series generated by Fisher (2006) that is based
on the measure of Cummins and Violante (2002) and that takes these flaws
into account13. Labor productivity and the relative price of investment are
included in growth rates in growth rates in the VAR, while the job finding
and separation rates are included in levels.

Under the assumption of homogenous workers and a constant labor force,
the unemployment rate can be approximated by the steady state unemploy-
ment rate ũ = js

js+jf
. Linearizing this relationship, one can also deduct

the impulse-response of unemployment from the responses of the job finding
and the job separation rates. Shimer’s assumption that the job separation
rate does not move over the cycle and, therefore, does not play a role for
the fluctuations of unemployment has been criticized by Fujita and Ramey
(forthcoming) among others. In fact, the job separation rate is more strongly
correlated with labor productivity than the job finding rate as can be seen
from the first column in Table 1. I include the job separation rate in the
VAR in order to test this criticism.

3.2 Results

3.2.1 The Shimer puzzle

Table 1 depicts the historical decomposition of the actual time series into the
technology and non-technology (or residual) components. These component
series are generated assuming the exclusive presence of the respective shock
and using information on the first lags in the sample. Detrending the result-
ing series with the smooth HP-filter as in Shimer then delivers the business
cycle components of interest. The historical decomposition documents the
ability of the single shocks to replicate exactly those moments in the data
that have been used for judging the empirical performance of the model.14

Volatility is measured by the standard deviation in panel A. The standard
deviations of the component series of the job finding rate and unemployment
that are driven by technology shocks are less than half of the overall sample
volatility. In fact, if the model is calibrated to match the standard deviation
of labor productivity that is conditional on technology shocks (calibration
II in column 3 of Table 1), the standard deviation of the job finding rate

13The series by Jonas Fisher was extended by Ricardo DiCecio. I thank both for making
their data available to me.

14Note that the second moments resulting from these series do not add up to the un-
conditional moment. Note also that all results discussed also hold for HP-filtered data
using the standard parameter of λ = 1600 as can be seen in Table 7 in the Appendix.
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generated in the model is close to and lies within the confidence bands of
the standard deviation that is conditional on technology shocks.

The model assumes a constant job separation rate over the business cycle.
The estimated standard deviation of the job separation rate that is condi-
tional on both technology shocks and non-technology shocks is, however,
significantly positive. If business cycles are driven by technology shocks,
this result undermines the assumption of a constant separation rate over
the cycle. Instead, this result favors a theoretical context with endogenous
rather than exogenously fixed job separation as in denHaan et al. (2000).

Addressing the empirical performance of the model with constant job sep-
aration nevertheless, one should therefore consider the volatility of unem-
ployment that is driven by the job finding rate only, setting the job finding
rate to its mean value throughout the sample period. The unconditional
standard deviation of 0.1525 is then contrasted with the 0.0548 conditional
on technology shocks and 0.1237 conditional on non-technology shocks (see
first row in Table 2). The standard deviation in unemployment that is gen-
erated by the model therefore lies within the confidence bands conditional
on technology shocks. As a result, conditional on technology shocks, the
model works well to replicate the volatility in the job finding rate and un-
employment. As a consequence, the Shimer critique does not apply.

While the model works well to generate the volatility that is conditional
on technology shocks, it, however, still fails to explain the overall volatil-
ity in the sample. In fact, a large part of the volatility still remains to be
unexplained in the “residual” disturbances as depicted in the last column
of Table 115. In order to replicate the dynamics in the overall data, the
standard search-and-matching model should consequently be augmented by
additional non-technology sources of volatility, generally referred to as de-
mand shocks. Hall (1997) has proposed a candidate for these residual shocks,
namely preference shocks or shocks to the marginal rate of substitution be-
tween consumption and leisure.16 As mentioned in section 2, it is easy to
incorporate these kinds of shocks into the model. After a positive prefer-
ence shock, agents in the economy want to consume and work more, hence
they are willing to accept a lower wage in order to become employed which
increases the incentive for firms to post vacancies and decreases unemploy-
ment. Panel A and B of Table 2 depict the unconditional and conditional
moments in the data (assuming a constant job separation rate) as well as

15In a parallel developed paper, Barnichon (2008) also shows the importance of non-
technology shocks for worker flows. He argues that these remaining shocks are monetary
policy shocks.

16Hall decomposes macroeconomic variables into fluctuations that originate in technol-
ogy, government spending and preference shocks. He bases his decomposition on equations
derived from a standard RBC-model, he does not use structural VAR techniques for his
analysis. He shows that preference shocks account for most of the fluctuations in hours
worked. His results are therefore similar to the results documented here.
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Table 2: The Role of Job Separation and Preference Shocks

Unconditional Model Conditional Moments

Sample Pref. Shocks Technology Residual

A: Standard Deviations

JFind. and Unemp. 0.1526 0.1314 0.0548 0.1238

(0.04,0.08) (0.10,0.14)

Productivity 0.0156 0.0165 0.0116 0.0165

(0.01,0.02) (0.01,0.02)

B: Autocorrelations

JFind. and Unemp. 0.9128 0.832 0.9207 0.8873

(0.85,0.95) (0.86,0.90)

Productivity 0.8507 0.9184 0.8902 0.9208

(0.86,0.92) (0.90,0.94)

C: Cross-Correlations

JFind.,Prod. 0.0489 -0.7702 -0.4347 0.662

(-0.64,-0.07) (0.53,0.76)

Unemp.,Prod. -0.0489 0.892 0.4332 -0.6626

(0.07,0.64) (-0.76,-0.53)

Notes: All series are detrended with the smooth HP-filter as in Shimer (2005a). Unem-
ployment is calculated with a job separation rate that is constant and set equal to its
mean value over the sample. For the conditional moments, the series are simulated with
the respective shock operating only. The point estimate is the median, the confidence
intervals are 68% Bayesian bands from the posterior distribution. The model is driven
by preference shocks only and is calibrated such that it matches the conditional standard
deviation of labor productivity.

the moments from the model that is driven by preference shocks only. The
model is calibrated to match the standard deviation of labor productivity
that is conditional on the non-technology shocks which involves ρx = 0.5
and σx = 0.2. Preference shocks are suitable to generate high volatility in
these two variables as suggested by Hall.

3.2.2 The “job finding puzzle”

The autocorrelations conditional on technology shocks are close to the un-
conditional ones. The model lacks some persistence with respect to the job
finding rate as the autocorrelation is a bit too low compared to the one in
the data. Generally however, the model performs well in replicating the con-
ditional and unconditional autocorrelations. The conditional co-movement
of the variables is depicted in panel C of Table 1 and also in the impulse-
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Figure 1: Impulse-Responses to Gaĺı Technology Shocks
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responses to a one-standard deviation technology shock in Figure 117. Most
prominently, job finding falls after a positive technology shock and the condi-
tional correlation between job finding and productivity is negative. Regard-
less of the job separation rate, unemployment increases after the fall in job
finding and the correlation of unemployment and productivity is positive.
These two effects are opposite to those in the overall sample and the exact
contrary to what the standard model proposes. Hence, this result challenges
the conventional dynamics in the standard search-and-matching model in a
similar fashion as the results in Gaĺı (1999), known as the “hours puzzle”,
have challenged the RBC paradigm with frictionless labor markets.18

A variance decomposition adds up the impulse-response coefficients from the
estimation to a certain conventional business cycle horizon. This statistic
reports the respective contribution of each shock to the overall variance and
therefore also highlights the importance of the shocks relative to each other.
Decomposing the business cycle variance of the Gaĺı identification into the
contribution of technology and non-technology shocks, technology shocks
explain up to 17% of the business cycle variance of job finding and over 20%
of the variance of unemployment. Hence, an appropriate model should take
these dynamics into account.

Gaĺı has explained the drop in hours worked within a sticky price New Key-
nesian framework. Can the natural extension of this framework including
search-and-matching on the labor market equally explain the drop in the job

17The response of unemployment is calculated from the linearized relationship between
the approximated unemployment rate and the responses of the job finding and separation
rates according to ût = f

(s+f)2
ŝt −

s

(s+f)2
f̂t, where s and f are the mean values of the two

rates respectively.
18Researchers have questioned that the identified shocks can in fact be interpreted as

technology shocks. Appendix A shows robustness for this finding using an alternative
measure of technology derived by Basu et al. (2006).



3 MOMENTS CONDITIONAL ON TECHNOLOGY SHOCKS 16

finding rate? In the case of hours, fixed demand in the short run leads firms
to adjust hours worked after a positive technology shock. Since it is much
more costly to adjust employment rather than hours worked, it is not clear
that the same mechanism works equally well in this context. In their spec-
ification with real rigid wages, Blanchard and Gaĺı (2006) document that
unemployment increases after a positive productivity shock. Here, labor
market tightness and hence the job finding rate move together with unem-
ployment replicating the dynamics documented above. Barnichon (2008)
uses a similar reasoning to generate the fall in labor market tightness which
he documents in a similar SVAR-framework as the one presented here. How-
ever, as conjectured, his model is not able to generate the large fall in labor
market tightness and strong increase in unemployment that we see in the
data.19

There exist explanations for this empirical finding different from a New Key-
nesian setup. Balleer and van Rens (2008) document that the shocks that
have been identified as neutral technology shocks in the Gaĺı identification
are in fact positively biased towards new skills (as they have a positive effect
on the wage premium of high to low skilled workers). Consider a framework
in which two types of workers are used in production and are to some degree
substitutable. After a positive skill-biased technology shock, high-skilled
workers become more productive than low-skilled workers and overall labor
productivity increases. Low-skilled workers will then be substituted out of
employment. The job finding rate for low-skilled workers will drop, while
it will potentially increase for high-skilled workers. If the negative effect
on low-skilled is larger than the positive effect on high-skilled workers, the
overall job finding rate drops and unemployment increases.

Regardless of the mechanism, a model driven by technology shocks is again
not suitable to explain the overall dynamics in the data. Rather, non-
technology shocks are needed in order to model the unconditional dynamics
in the data. Reconsidering the preference shocks from above, these kinds
of shocks have been popular in the RBC-literature in order to explain the
empirical correlation of labor productivity with hours20. Table 2 documents
that the correlations of the job finding rate and unemployment with produc-
tivity that are generated by preference shocks in the model are opposed to
the ones conditional on non-technology shocks in the data, however. After a
positive preference shock, agents want to consume more and hence decrease
investments. Capital falls and, after an initial increase, output falls as a
consequence. Due to the increase in employment, labor productivity falls

19In contrast, Krause and Lubik (2007) present a framework in which job finding falls
after a positive productivity shock mentioning that the resulting dynamics are counter-
factual. This is no longer true based on conditional moments. In Christoffel et al. (2006),
vacancies fall and unemployment increases after a positive productivity shock, resulting
in an fall of labor market tightness and the job finding rate.

20See for example Bencivenga (1992) on the Dunlop-Tarshis observation.
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which induces a negative correlation of this variable with the job finding
rate and a positive one with unemployment. Hence, preference shocks are
not suitable to explain the conditional correlations within this setup. It has
to be noted that in a New Keynesian setup, the induced correlations are
different and preference shocks could replicate the empirical dynamics. A
distinction between skill-biased and skill-neutral shocks could also provide
two shocks that match the conditional correlations in the data.

As exhibited in Figure 1, job separation significantly increases after a posi-
tive technology shock contributing to an even larger increase in unemploy-
ment. A rise in job separation after a positive innovation in technology
might be due to the fact that not all of the existing job matches can freely
use this new technology. Hence, technological innovation is embodied in new
jobs, or specific to existing vintages. Canova et al. (2007) employ a vintage
human capital in order to model the “Schumpeterian creative destruction”
after a neutral technology shock. As is documented in greater detail in Ap-
pendix A, the effect of job separation is not robust neither when considering
different sub-samples nor to the in- or exclusion of a trend in the estimation.

4 Different Shocks: Fisher Identification

Fisher (2006) based on Greenwood et al. (1997) has addressed the issue that
fluctuations in labor productivity might be generated not only by factor-
neutral technological progress, but also by investment-specific technological
innovations. Consequently, investment-specific technological progress sat-
isfies the identifying assumption for the Gaĺı technology shocks and hence
invalidates the interpretation of these shocks to be factor-neutral. Fisher
proposes a strategy to separately estimate neutral and investment-specific
technology shocks and documents that the two shocks might have different
effects on macroeconomic variables. Further, investment-specific technologi-
cal progress contributes to a larger extend to growth and cyclical fluctuations
of macroeconomic variables (in particular of output and hours worked) than
neutral technology. Investment-specific technological progress thus provides
a potential additional source of variation in the job finding rate and unem-
ployment.

In the original Shimer framework, it is not possible to distinguish between
these two sources of variation in labor productivity, while the model in
section 2 does differentiate between these two shocks. As mentioned before,
the labor market dynamics that are induced by the two technology shocks
are actually very similar, i.e., job finding increases and unemployment falls
after both technology shocks. However, since the formation of capital takes
time, productivity increases with a lag in response to investment-specific
technological progress. This increases the overall standard deviation of the
job finding rate and unemployment in the model in which both types of
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technology shocks operate (see second column of Table 8 in the Appendix).
Further, the correlation between the job finding rate and productivity is
smaller than in the model with neutral shocks only. However, these effects
are not large enough to replicate the unconditional data moments, hence
the Shimer critique still holds.21

4.1 Identification

In order to identify the two types of technology shocks, Fisher imposes the
assumption that investment-specific technology shocks are the only shocks
that (negatively) affect the relative price of investment in the long-run and
that are additionally allowed to affect labor productivity in the long-run.
(Investment-)neutral technology shocks are then the only remaining shocks
that affect labor productivity in the long run. Note that this assumption is
true in the model outlined in section 2.1.

It is easy to implement these two assumptions ordering the first differences of
the relative investment price and labor productivity first in the reduced-form
VAR and applying a Cholesky decomposition to the long-run forecast revi-
sion variance. However, the effect of the investment-specific shocks on labor
productivity is estimated to be negative in our baseline specification. This
means that all or at least a part of the identified investment-specific shocks
are not technology shocks according to the Gaĺı definition and more impor-
tantly not positive shocks to labor productivity as the ones in the model and
referred to by Shimer. Fisher addresses this problem by introducing the ad-
ditional assumption that positive investment-specific shocks increase labor
productivity by a fixed proportion to their effect on the investment price.
Derived from the production function in the model this proportion is set to

α
(1−α) . This additional assumption comes at a cost as it not only strongly
restricts the long-run productivity effect of investment-specific shocks to a
certain value but also implies a positive and fixed correlation between the
investment-specific and neutral technology shocks.22

There exist several a few studies that consider the responses of worker flows
to both neutral and investment-specific technology shocks based on the
Fisher identification. The work by Canova et al. (2006) is closely related
to the analysis in this section of the paper. The estimation of the reduced
form VAR in a Bayesian framework with a Minnesota prior is taken directly
from them. However, Canova et al. employ the Fisher identification without

21In this simulation of the model, the growth rates and standard deviations of the two
types of technology shocks are calibrated to match the moments of labor productivity and
the investment price which results in γ = 0.0074 and ν = −0.0117 for our sample. The
mean growth rate of labor productivity then equals 1

1−α
γ + α

1−α
ν.

22See Figure 6 for a comparison of the responses of the restricted and the unrestricted
Fisher identification. See the Technical Appendix for more details and the implementation
of this identification scheme. Parallel to the model calibration I use α = 1

3
.
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the additional third restriction. Equally, Ravn and Simonelli (2006) identify
technology shocks without the third restriction in a framework which also
incorporates fiscal and monetary policy shocks. Adding the third restriction
delivers quite different dynamics induced by the investment-specific technol-
ogy shock. I will discuss this issue further in section 6 in which I also propose
a test for the third restriction. Complementary to these studies, there exist
many contributions in the literature that estimate medium or large scale
DSGE models which incorporate search-and-matching in the labor market.
Here, technology shocks are usually identified based on a combination of
short-run sign restrictions as in Fujita (2009) or Braun et al. (2006). While
these shocks should generally depict the same dynamics as the technology
shocks identified in this paper, this is not always the case and depends on
the fact that the co-movement between labor input and productivity in the
short run is explicitly used for identification.

4.2 Results

The historical decomposition of the standard deviation supplements the re-
sults from the Gaĺı identification, see Table 8 in the Appendix. Both types
of technology shocks, as well as both technology shocks taken together, gen-
erate standard deviations in the job finding rate and unemployment that are
much smaller than the unconditional standard deviations, but quite close to
the ones produced from the model. Again, sources other than technology
are necessary to understand the unconditional volatility in the data.23

With respect to the conditional dynamics, Figure 2 depicts the responses of
the job finding and separation rate as well as unemployment to positive one
standard deviation technology shocks from the Fisher identification. Note
that the responses to the neutral shock are very similar to the responses
derived from the Gaĺı identification. Job finding drops after both types of
technology. This effect is stronger and more persistent after a neutral tech-
nology shock than after an investment-specific shock. The job separation
rate does not significantly react to an investment-specific technology shock.
The falling job finding rate positively affects the unemployment rate, but
the effect is again not as strong as for the neutral technology shock. Conse-
quently, the contrast between the conditional dynamics in the data versus
the ones in the model still exists, but is weaker in case of the investment-
specific shocks. This is also reflected in the conditional correlations in panel
C in Table 8. The conditional correlation of job finding and productivity is
much lower than the one conditional on a neutral shock, the correlation of
unemployment with productivity has the same sign as the unconditional one,

23Note that here, the two technology shocks are not orthogonal. Hence, the historical
decomposition is not truly a decomposition. Technology shocks and the residual distur-
bances are orthogonal, however.
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Figure 2: Impulse-Responses to Fisher Technology Shocks
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Confidence intervals are 68% Bayesian bands.

both of these figures are insignificant. The investment-specific technology
shock therefore moderates the effect of the neutral shock. Both technology
shocks taken together however still generate dynamics that are opposite to
the unconditional dynamics and that are not replicated in the model.

Table 6 in the Appendix exhibits the contribution of the shocks to the fore-
cast error variance of the variables in this small VAR. The neutral shock
is much more important for the variances of the labor market variables
than the investment-specific shock. This highlights again the importance to
replicate the dynamics of this shock in an appropriate model. Together, the
technology shocks explain between 45% to 60% of the variance of job finding
and unemployment.24

5 Alternative Variables: Job Flows

Instead of worker flows, so-called job flow data have often been used to as-
sess the empirical validity of the standard labor market model (similar to
Cole and Rogerson (1999) and Davis et al. (1998)). Note that from the
perspective of the standard model job flows and worker flows are indistin-
guishable, i.e., when a worker moves into or out of a job, the job match is

24This result is similar to Canova et al. (2007) who, in spite of an alternative identi-
fication of investment-specific technology shocks, document that employment effects can
mainly be attributed to neutral technology shocks.
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automatically created or destroyed. In the data, these two concepts show
quite different unconditional business-cycle moments however, and hence it
is interesting to consider conditional moments in job flows complementary
to the above.

Here, I use data from Faberman (2006) which encompasses the fluctuations
of jobs defined as small size units (“plants”) that are created and destroyed
within the U.S. manufacturing sector25. The resulting rates are usually re-
ferred to as job creation and destruction rates and both are measured in
percent of employment. Unemployment dynamics are approximated by un-
employment growth which results from taking the difference between the job
destruction and creation rate. In the following, the same exercise as in the
Fisher identification in section 4 is repeated by using job flows rather than
worker flows. Table 3 presents the conditional and unconditional moments
from this set of data together with the familiar moments from the model.

Note that in this sample, that job destruction is about twice as volatile as
job creation. Both series are less persistent than the worker flows, while the
cross-correlations between the variables are qualitatively similar, but quite
different in value from the ones in the worker flow series. With regard to the
empirical performance of the standard model based on unconditional second
moments, this means that while the model now replicates the standard de-
viation of job creation (in fact the standard deviation is a little too high in
the model), it does not mirror the volatility of the job destruction rate and
hence unemployment. A natural extension of this model would include en-
dogenous job destruction as in Mortensen and Pissarides (1998) or denHaan
et al. (2000) in order to account for fluctuations in this variable. The model
does not aim at explaining the positive correlation between productivity and
job creation with unemployment.

Conditional on investment-specific and neutral technology shocks, the stan-
dard deviation in job creation is even smaller than the unconditional one.
More importantly, the two technology shocks generate a standard deviation
of job destruction and unemployment that is only about a third of the one
in the data. Hence, job destruction does move after technology shocks, but
most of its volatility stems from non-technological disturbances. This means
that endogenous job destruction alone cannot realign the moments from the
model with the unconditional moments. Complementary to this result, tech-
nology shocks explain only up to 17% of the business cycle variance of job
creation and destruction as is exhibited in Table 9 in the Appendix. My
result supports the findings from the previous sections that an additional
non-technological disturbance is needed in order to explain the fluctuations
observed unconditionally.

25The data is also described in Davis et al. (2006). I thank Jason Faberman for making
the data available to me.
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Table 3: Historical Decomposition from Fisher Identification - Job Flows

Uncond. Model Conditional Moments

Sample Inv. Tech. Neu. Tech. All Tech. Residual

A: Standard Deviations

Creat. 0.0765 0.0775 0.0455 0.0336 0.041 0.0732

(0.0717) (0.04,0.06) (0.03,0.04) (0.03,0.05) (0.07,0.08)

Dest. 0.1311 0.0547 0.0473 0.0583 0.1214

(0.04,0.08) (0.03,0.07) (0.04,0.07) (0.11,0.13)

Unemp. 1.0612 0.0708 0.3921 0.2604 1.7027 3.9574

(0.0657) (0.25,0.57) (0.17,0.40) (1.27,2.17) (3.78,4.16)

Prod. 0.0156 0.0156 0.0174 0.0191 0.013 0.01

(0.0129) (0.01,0.02) (0.02,0.02) (0.01,0.01) (0.01,0.01)

B: Autocorrelations

Creat. 0.6177 0.8655 0.8254 0.9051 0.8226 0.6383

(0.8671) (0.75,0.90) (0.81,0.96) (0.76,0.89) (0.60,0.67)

Dest. 0.7222 0.8247 0.6189 0.7751 0.7146

(0.63,0.88) (0.45,0.82) (0.65,0.86) (0.70,0.74)

Unemp. 0.6683 0.8607 0.8133 0.5611 0.9457 0.9455

(0.8632) (0.69,0.86) (0.33,0.77) (0.93,0.96) (0.94,0.95)

Prod. 0.8507 0.8482 0.8563 0.8141 0.864 0.8514

(0.855) (0.80,0.90) (0.77,0.85) (0.85,0.88) (0.79,0.90)

C: Cross-Correlations

JC,P 0.1545 0.5141 0.4224 0.2328 0.2206 0.0636

(0.4087) (0.21,0.57) (-0.12,0.46) (0.08,0.34) (-0.08,0.24)

JD,P -0.4733 -0.4225 0.2207 -0.0073 -0.6159

(-0.65,-0.02) (-0.31,0.43) (-0.22,0.23) (-0.76,-0.45)

U,P -0.4449 -0.4427 -0.5901 0.0538 0.1561 -0.0678

(-0.3506) (-0.72,-0.35) (-0.47,0.37) (-0.13,0.40) (-0.14,0.02)

JC,U -0.7176 -0.8718 -0.6134 -0.3034 0.2599 0.114

(-0.8749) (-0.79,-0.31) (-0.56,-0.05) (0.11,0.43) (0.04,0.19)

JD,U 0.9242 0.7912 0.782 0.3496 0.1383

(0.59,0.90) (0.58,0.89) (0.25,0.45) (0.10,0.18)

JC,JD -0.4187 0.0523 0.4158 -0.0813 -0.3764

(-0.33,0.49) (0.07,0.65) (-0.32,0.22) (-0.42,-0.34)

Notes: All series are detrended with the smooth HP-filter as in Shimer (2005a). The point
estimate is the median, the confidence intervals are 68% Bayesian bands from the posterior
distribution. The model is calibrated to match the unconditional standard deviation of
labor productivity and the same figure that is conditional on both technology shocks (in
brackets).
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Panel C of Table 3 depicts the conditional cross-correlations of the labor
market variables with each other and productivity. Figure 7 in the Ap-
pendix also visualizes the dynamics induced by the two technology shocks.
Most importantly, job creation and labor productivity are positively cor-
related after both technology shocks. As a consequence, the “job finding
puzzle” after a neutral technology innovation from before disappears. Un-
employment still increases after a positive neutral shock, due to the strong
increase in job destruction (This is also reflected in the positive co-movement
of these variables with productivity). Even though insignificant, in a model
with endogenous job destruction and vintage technologies, job destruction
may increase after a positive shock to technology if it can only be used
in newly formed jobs rendering many existing job matches technologically
obsolete. Then, these effects provide a valid and easy explanation to the
rise in unemployment or parallel the fall in hours after a technology shocks
and, hence, to the hours puzzle documented by Gaĺı (1999). Strikingly,
investment-specific technology shocks induce dynamics that are different
from the ones generated by neutral technology shocks and that are similar
to those expected from the standard model: Job creation goes up and job
destruction falls after a positive innovation in investment-specific technol-
ogy. As a consequence, unemployment decreases before converging back to
zero. The responses after the investment-specific shocks exhibit greater per-
sistence than the ones after a neutral shock.26 However, investment-specific
technology shocks are not important enough to explain the unconditional
moments. Again, an additional source of fluctuations is necessary here.

Are the results from the Fisher identification with worker and with job
flows are truly comparable? Plotting the structural shocks from the two
estimations and calculating their correlation, it is possible to see that the
investment-specific shocks are almost identical in both specifications. The
neutral shocks from both estimations are positively correlated (the correla-
tion coefficient is about 0.6), but not identical. Alternatively, both job and
worker flow data can be included into one common specification. This is
also important in the light of the joint dynamics of these two data concepts
which has been an issue in the literature. The results show that the effects
of the neutral shock on job creation and job destruction hardly change27.
To summarize, since the two data concepts not only generate quite different
unconditional statistics, but also react differently to the estimated shocks,
it seems reasonable to try to distinguish the different concepts and model
the empirical dynamics of these two sets of data in a theoretical framework
as well.

26Michelacci and Lopez-Salido (2007) do a similar empirical exercise with job flow data.
They document similar responses after a neutral technology shock, but different responses
after an investment-specific technology shock due a different identification.

27Job creation drops on impact after a positive neutral technology shock, but then rises
with a hump-shape above zero.
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6 Alternative Identification

6.1 Motivation and Identification

This section investigates to which extend the results outlined above in sec-
tions 3.2 and 4.2 strongly rely on the imposed identification assumption for
the technology shocks, or whether they are robust to an alternative iden-
tification scheme as well. To motivate, let us briefly return to the Gaĺı
identification of technology shocks. In fact, the identified Gaĺı shocks have
a significant and positive effect on the relative price of investment. These
shocks are therefore negatively biased towards new investment and mistak-
enly labelled factor-neutral, see Figure 8 in the Appendix28.

The Fisher identification separates technology shocks that have an effect on
the relative price of investment from technology shocks that do not have an
effect on the relative price of investment and hence are truly investment-
neutral. However, the Fisher identification disregards those shocks that
have a positive effect on both productivity and the price. When estimated
without the third restriction on the productivity effect of investment-specific
shocks, these shocks are incorporated into the investment-specific technology
shocks in the Fisher identification. The difference between the results from
the Fisher identification with and without the third restriction documents
that these shocks may play an important role in the overall dynamics of these
two variables. More precisely, labor productivity falls in response to these
unrestricted investment-specific technology shocks (see discussion in section
4). Additionally, these unrestricted shocks produce labor market dynamics
that are quite different from the ones generated by the restricted shocks.
Namely, job finding increases in a hump-shape after a positive investment-
specific technology shock and job separation falls. As a result, unemploy-
ment decreases.29 The unrestricted shocks also play a much larger role for
the business cycle variance of the labor market variables than the restricted
shocks.

Against this background, I propose an alternative identification of technol-
ogy shocks which separates investment-specific technology shocks from those
other shocks. The identification strategy imposes the following assumptions:

1. Technology shocks are assumed to be the only shocks that affect the
relative price of investment and labor productivity in the long run.

2. Out of these shocks, investment-specific technology shocks are those
shocks that affect labor productivity positively and the relative price
of investment negatively in the long run.

28Balleer and van Rens (2008) document that these shocks are not only biased negatively
towards investment, but also towards skilled labor.

29See Figure 9 in the Appendix.
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3. Out of these shocks, the remaining shocks may affect labor produc-
tivity positively and the relative price of investment positively in the
long run.

These assumptions are implemented with a mixture of long-run zero and sign
restrictions similar to the Gaĺı and Fisher identifications. I order the relative
price of investment and labor productivity first in the VAR and impose zero
restrictions on the long-run effects of all but the first two shocks on these
variables. Sign restrictions similar as in Peersman (2005) are then applied to
the upper left 2-by-2 system of the long-run horizon forecast revision matrix
according to the restrictions outlined above. The remaining elements of the
long-run effects can then be calculated subsequently.30.

Figure 10 in the Appendix visualizes the assumed responses of price and
productivity to the two newly identified shocks. Not surprisingly, the new
shocks turn out to be negatively biased towards investment and may conse-
quently called investment-unspecific technology shocks. Note that the Gaĺı,
Fisher and the alternative identification strategies all offer an alternative
decomposition of the long-run variance of the investment price and pro-
ductivity31. The Fisher and Gaĺı identification each impose an extra zero
restriction on this system. This means that by construction the Fisher iden-
tification does not deliver shocks that induce the same effect on the price
and productivity as the Gaĺı identification. Thus, the Fisher identification
does not provide a decomposition of the Gaĺı technology shocks. My alter-
native identification is more closely related to the Gaĺı identification as this
scheme decomposes Gaĺı’s productivity shocks into investment-specific and -
unspecific shocks. I can now test Fisher’s third identifying assumption based
on the effect of the first shock in a more general context in which all shocks
are in fact orthogonal. Further, I can assess the importance of those shocks
that resulting from the unrestricted Fisher identification might have been
labelled investment-specific technology shocks by mistake and can explore
their properties. However, it is no longer possible to distinguish between
investment-specific and investment-neutral shocks in this setup.

What are technology shocks that drive the relative price of investment up?
In the model outlined in section 2, shocks that have a positive effect on
the relative price of investment negatively affect labor productivity and,
hence, are not technology shocks. As a consequence, the model outlined
above does not accommodate these shocks and it is therefore not clear how
to interpret them in this context. Balleer and van Rens (2008) suggest
to identify technology shocks which originate in the labor market. More
precisely, they document that technology shocks that are biased towards

30For further details of the implementation of the long-run sign restrictions are contained
in the Technical Appendix.

31This is true if the price is ordered second in the Gaĺı identification. The remaining
elements of the first two rows of this matrix are always zero.



6 ALTERNATIVE IDENTIFICATION 26

skilled labor have a positive effect on the relative price of investment and
could therefore capture the variation of the data documented here.32 Once
more, this points to the use of a more complex production function with
which it is possible to distinguish between low and high skilled labor in
order to replicate the empirical dynamics.

6.2 Results

Table 11 in the Appendix exhibits the historical decompositions for this
identification scheme. Regarding volatility, the standard deviations condi-
tional on investment-specific technology shocks are very close to the results
from the Fisher identification. The two identified technology shocks together
generate a conditional standard deviation that is again less than half of the
unconditional standard deviation in job finding, separation and unemploy-
ment. This is not surprising, since the alternative identification is just a
different decomposition of the technology shocks from the other identifica-
tion schemes.

More interesting in this respect are the labor market dynamics induced by
the two new shocks documented in Figure 3 and Table 11. For both types of
shocks, job finding drops and unemployment increases supporting the find-
ings of the Fisher and Gaĺı identification. There are significant differences
between the responses of the two shocks however. After an investment-
specific productivity shock job separation does not move significantly. Note
that the dynamics of this shock are very similar to the ones I have docu-
mented for the restricted Fisher investment-specific technology shocks. In-
deed, the estimated relationship between the effect of this shock on the price
and productivity is very close to the one imposed via the third restriction.
After an investment-unspecific shock job finding does not react on impact
and subsequently decreases in a hump-shape, job separation significantly
rises and the rising unemployment inherits the hump-shape from the effects
on the job finding rate33.

The variance decomposition in Table 10 in the Appendix sheds light on
the relative importance of investment-specific -unspecific technology shocks.
The investment-unspecific technology shock is more important for the busi-
ness cycle variance of labor productivity than the investment-specific tech-

32The identification of these shocks originates in the effect of technological progress
on the skill premium in a model which allows for both skilled and unskilled labor in
production. The fact that the investment price increases in responses to these shocks
provides evidence for capital-skill substitutability in the data.

33Note that the inverse of this shock is an investment-specific technology shock with
a negative effect on productivity. The resulting dynamics are strikingly close the the
ones from the unrestricted Fisher identification, see Figure 9 in the Appendix or Canova
et al. (2007). This means that the major part of the unrestricted investment-specific
technology shocks consists of shocks that do not positively affect labor productivity and
are consequently not in line with our model.
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Figure 3: Productivity Shocks from Sign Restrictions
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Notes: Responses in percentage points to a one-standard deviation shock.
Confidence intervals are 68% Bayesian bands.

nology shock. The investment-specific technology shock explains more of the
variance of the relative investment price in the first two horizons, while the
investment-unspecific shock is more important in the longer run. This means
that a substantial part of the dynamics in the unrestricted investment-
specific shocks are not driven by positive productivity shocks and this high-
lights the importance of distinguishing between the two types of shocks.
The investment-unspecific shock explains a substantial fraction of the job
finding and separation rate and consequently unemployment. This shock is
generally more important for the business cycle variation of the labor mar-
ket variables than the investment-specific technology shock. Together, both
shocks explain about 20% of the business cycle variation in job finding and
unemployment.

Investment-unspecific technology shocks have not been identified so far. The
reason clearly lies in the fact that they are difficult to interpret in the context
of a standard model as the one outlined in section 2. Here I have shown that
they carry some weight with respect to the dynamics on the labor market.
As argued above, these shocks reflect skill-biased technology shocks as iden-
tified in Balleer and van Rens (2008). Skill-biased technology shocks have a
negative effect on total hours worked and thus induce similar dynamics to
the shocks identified here.
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7 Conclusion

Starting from the recent ongoing debate on the empirical performance of
the Mortensen-Pissarides search-and-matching model, this study provides
an important contribution to the debate as it judges the empirical perfor-
mance of the model on basis of moments conditional on technology shocks
rather than on unconditional moments. My analysis breaks down the sec-
ond moments of labor productivity, the job finding, job separation and un-
employment rate into the contribution of technology and non-technology
shocks. These shocks are identified within a SVAR framework with con-
ventional long-run restrictions and a combination of long-run zero and sign
restrictions.

I find that technology shocks cannot be the source of the high volatility in
the job finding rate and unemployment present in the data. As a result,
the standard deviation of these variables that is generated from a standard
model replicates the volatility conditional on technology shocks. A large
part of the volatility remains unexplained in the residual from the structural
estimation. This residual might be called non-technology or demand shock.
In order to mirror the overall volatility in the data, the model should be
augmented with an additional non-technological source of volatility rather
than with respect to the propagation of technology shocks as proposed by
Shimer. Ravn and Simonelli (2006) identify government spending shocks in
a similar SVAR. Their shocks indeed mirror the dynamics of our “residual”
disturbances as they drive labor productivity and labor market tightness up
and unemployment down. Barnichon (2008) argues that these shocks are
shocks to monetary policy. Here, I investigate an idea by Hall (1997) that
preference shocks in the form of shocks to the marginal rate of substitution
between consumption and leisure are important for labor market dynamics.
These shocks in fact add a lot of volatility to the model.

Technology shocks induce a negative co-movement between job finding and
productivity and a positive co-movement between unemployment and pro-
ductivity, while the respective figures in the overall sample are directly the
opposite. Put differently, job finding falls and importantly contributes to
an increase in unemployment after a positive technology shock. This re-
sult contradicts the effects generated in the standard search-and-matching
model. The study by Balleer and van Rens (2008) contains evidence that
these effects may be explained through a distinction between high- and low-
skilled labor in production. Since the identified technology shocks are (pos-
sibly) biased towards the productivity of high-skilled labor, low-skilled labor
gets substituted out of production. Further results in this paper show that
the “job finding puzzle” vanishes when job flow data rather than worker
flow data are employed in the specification. In any case, additional non-
technological disturbances are needed in order to replicate the unconditional
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correlation between productivity, the job finding rate and unemployment.

In different specifications, I distinguish technology shocks that are factor-
neutral or investment-specific as in Gaĺı (1999) and Fisher (2006). I doc-
ument that the two main results are robust to these extensions. The role
of technology shocks for labor market dynamics is further assessed through
a distinction of positive productivity shocks that have either a negative
or a positive effect on the relative price of investment. The latter my be
called investment-unspecific technology shocks. First, this identification
tests and verifies a critical assumption in the Fisher identification on the
effect of investment-specific technology shocks on labor productivity. Sec-
ond, this procedure investigates the relationship between constrained and
unconstrained investment-specific technology shocks. I find that investment-
unspecific technology shocks might by mistakenly labelled investment-specific
in the unconstrained identification. In addition, these shocks play a signif-
icant role for labor market fluctuations. However, these shocks cannot be
interpreted in the context of the standard model. From Balleer and van
Rens (2008), it is reasonable to assume that these shocks are the same as
skill-biased technology shocks in their paper. Technology shocks that are
skill-biased induce similar dynamics in the investment price and the labor
market as the shocks identified here. This result again provides empiri-
cal foundation to allowing for a more sophisticated production function in
this class of model in which low- and high-skilled labor are substitutable in
production.
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Appendix

A Robustness

A.1 Are the estimated shocks really technology shocks?

Many researchers have questioned that the structural residuals that are iden-
tified from a Gaĺı-style VAR are in fact estimates of technological progress.
Supporting the findings from Gaĺı, a recent piece of evidence from Basu et
al. (2006) has documented that their measure of technological progress, de-
rived as a “sophisticated” Solow residual from a very different exercise, also
induces a contractionary effect on hours worked. Here, I use this measure
in order to support the effect of technology on the job finding and sepa-
ration rate from my estimation in two different ways. First, I incorporate
“true” total-factor-productivity (TFP) instead of labor productivity into
my SVAR with long-run restrictions. Neutral technology shocks are then
the only shocks that move TFP in the long run. As depicted in Figure 4,
the effects of these shocks on the job finding rate, the job separation rate
and unemployment are very similar to the ones from the estimation with
labor productivity. Second, as suggested by Basu et al. (2006), I regress
four lags of their technology measure (dz) on job finding and job separa-
tion. Here, I detrend the two rates as in the VAR by regressing them on a
dummy trend broken at 1973:2 and 1997:1. Table 4 shows the results, for
impulse-responses, one could simply add the estimated coefficients. Here,
TFP has a negative effect on the job finding rate. The effect on the job sep-
aration rate is also negative, but since this effect is small (and insignificant),
unemployment still increases after a shock to TFP.

Figure 4: Impulse-Responses to BFK Technology Shocks
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A.2 Specification

This section investigates the robustness of the main results from the Fisher
identification. As documented above, the neutral shocks from the Fisher
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identification and the Gaĺı identification are very similar in fact. The ro-
bustness analysis focusses on the two main results: The low standard devi-
ation conditional on neutral and invest-ment-specific technology shocks in
job finding and unemployment and the drop in the job finding rate after
positive innovations of both types of technology. Table 5 summarizes the
results.

The first set of robustness checks deals with the prior and the lag length in
the estimation of the reduced form VAR. Clearly, the baseline specification
with the Minnesota prior is different from a standard OLS specification with
2 to 4 lags in the VAR. In the Minnesotay prior, a high decay parameter is
necessary for a large number of lags to generate both significant and sensible
results. Using a smaller number of lags together with a smaller decay on
these lags, or similarly a flat prior (OLS equivalent) for the estimation of
the reduced form VAR, qualitatively supports the findings in the baseline
specification, but is not significant, however. Further, the results are robust
to relaxing the assumption of a fixed residual variance within a Normal-
Wishart prior structure. The prior suggested by Kadiyala and Karlsson
(1997) employs the same mean for the coefficients as the Minnesota prior
and generalizes the Minnesota prior in terms of a non-diagonal, unknown
residual variance. Compared to the Minnesota prior, the coefficient variance
additionally weights the effect of the exogenous variables on a variable with
its respective variance and fixes φ1 = 1.

The baseline specification includes a broken dummy-trend into the specifi-
cation which is not uncontroversial. In fact, the question of whether or not
to include a trend into the specification is closely related to the debate on
how to specify hours worked in a similar structural VAR. Here, it has been
shown that if specified in first differences or HP-filtered, hours worked fall
after a positive Gaĺı-type technology shock, while they increase after the
same type of shock if specified in levels (see Gaĺı (1999) and Christiano et
al. (2003) respectively). The fall in hours worked after a positive technology
shock contradicts the standard RBC paradigm and has become famous as
the “hours puzzle” in the literature. In fact, a trend as the one applied here

Table 4: Regression on BFK Measure

Dependent variable Regressor

dz dz(-1) dz(-2) dz(-3) dz(-4)

JFinding -0.6250* -0.3429 -0.4441* -0.5339* -0.3447

JSeparation -0.1473 0.0305 -0.0835 -0.1753 -0.1848

Notes: The star * denotes significance based on one standard error bands.
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Table 5: Robustness of the Fisher Identification

Conditional Standard Deviation Impulse Response

Job Finding Unemployment Job Finding

i-shock n-shock i-shock n-shock i-shock** n-shock

Baseline 0.0627 0.0667 0.0692 0.0972 -,sign. -,sign.

Baseline specification with Minnesota prior changed to

4 lags, decay 7 0.0651 0.071 0.0808 0.1129 -,sign. -,sign.

12 lags, decay 7 0.069 0.0702 0.847 0.1053 -,sign. -,sign.

8 lags, decay 4 0.579 0.0477 0.0745 0.0689 -;+,not sign. -,not sign.

3 lags, decay 1 0.0533 0.0567 0.0706 0.0809 -,not sign. -,not sign.

Flat prior (OLS equivalent) with

2 lags 0.0511 0.0609 0.727 0.0971 -,not sign. -,not sign.

3 lags 0.0533 0.0649 0.0737 0.0899 -;+,not sign. -,not sign.

K and K prior* 0.651 0.0738 0.689 0.1037 -,sign. -,sign.

Trend specification

no break 0.0667 0.0595 0.058 0.0494 -,sign. -,sign.

Fisher subsamples without break

1955:I-1979:II 0.0828 0.0853 0.0784 0.0895 -,sign. -,sign.

1982:III-2004:IV 0.0352 0.059 0.0777 0.0402 -;+,sign. -,sign.

Fujita and Ramey subsample without break

1976:III-2004:IV 0.0424 0.0699 0.0622 0.0528 -;+,sign. -,sign.

Notes: **Describes the effect on impact. Here, -;+ indicates initial drop, then hump-

shaped increase. *Kadiyala and Karlsson prior with Minnesota structure, same parameters

as in baseline specification.
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takes out slow-moving components from the series and is therefore related
to taking first differences of the labor market variables. Canova et al. (2006)
argue that if the variables are specified in levels, long-run restrictions may
pick up the slowly moving components of the variables, even though they
aim at explaining business cycles fluctuations.

Figure 11 shows the results for the baseline specification without the dummy
breaks. The job finding rate still decreases after positive innovations of both
technology shocks. This means that the “job finding” puzzle is is robust to
including a trend or not in the specification. Note further that job separation
now falls significantly after both shocks. In fact, it falls by such a large
extend that the unemployment rate falls in the longer horizon which reflects
the result from the hours debate. In addition, the results from the entire
sample are compared to results for subsamples suggested by Fisher (2006).
Here, no trend is incorporated into the specification, the results are robust to
an inclusion of trend breaks as in the baseline specification, however. In the
latter sample, investment-specific technology shocks induce an initial fall in
the job finding rate and a subsequent, (borderline) significant increase. Job
separation does not react to a neutral shock, but decreases significantly after
an investment-specific technology shock. Hence, these shocks do generate
dynamics different from the neutral shocks in this sample.

Figure 5: Shimer versus Fujita-Ramey
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A.3 Data

The worker flow data of Shimer and the respective business-cycle facts are
not uncontroversial in the literature. Fujita and Ramey (forthcoming) have
also calculated worker flows from the CPS. The Fujita and Ramey dataset
does not encompass the same sample as the one by Shimer; it ranges from
1976:3 to 2004:434. As stated by the authors, the standard deviation of the

34I thank Shigeru Fujita for making the data available to me.
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job separation rate is higher and the one of job finding is lower in their data
series compared to Shimer. This suggests a larger role for the first series
in the dynamics of unemployment. Job separation is also more persistent.
The correlations of the job finding and separation rates with productivity
are much lower than in the Shimer series. Figure 5 shows that the responses
in both datasets are quite similar. Note that job separation decreases after
a positive technology shock. However, this is mainly due to the subsample
rather than the difference in the measurement of the data. In fact, results
for the job separation rate are not robust to subsample choices or different
specifications.
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B Additional Tables and Graphs

Table 6: Variance Decomposition in Fisher Identification

Investment-specific Shock Neutral Shock

Quarters 1 8 16 32 1 8 16 32

Price 59.27 78.02 86.83 93.30 6.55 4.47 3.07 1.58

(31,79) (52,91) (68,95) (83,98) (1,27) (1,20) (0,14) (0,7)

Productivity 13.50 14.12 12.94 11.46 68.33 76.50 82.49 86.43

(8,19) (11,18) (11,16) (10,13) (50,78) (67,82) (77,86) (84,88)

JFinding 15.92 6.73 6.23 6.28 46.86 42.34 42.98 42.70

(8,23) (4,12) (3,11) (3,11) (28,59) (18,58) (19,58) (19,58)

JSeparation 1.87 3.02 3.46 3.62 19.27 21.26 21.15 21.59

(0,9) (1,11) (1,11) (1,11) (3,41) (4,43) (5,43) (5,43)

Unemployment 15.19 6.38 6.00 6.02 49.44 43.54 43.86 43.48

(8,22) (3,12) (3,11) (3,10) (31,61) (19,59) (20,59) (19,59)

The values for the investment-specific shock, the neutral shock and the (omitted) residual
disturbances add up to 100 for each variable at each time horizon. The point estimate is the
median, the confidence intervals are 68% Bayesian bands from the posterior distribution.
All numbers are percent.
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Table 7: Gaĺı Identification with Standard Detrending

Uncond. Model Conditional Moments

Sample I II Technology Residual

A: Standard Deviations

JFinding 0.1019 0.0407 0.0251 0.0327 0.0835

(0.02,0.05) (0.07,0.10)

JSeparation 0.0497 0.0255 0.0444

(0.02,0.03) (0.04,0.05)

Unemployment 0.1181 0.041 0.0252 0.0479 0.0928

(0.03,0.07) (0.08,0.11)

Productivity 0.0105 0.0105 0.0066 0.0066 0.009

(0.00,0.01) (0.00,0.01)

B: Autocorrelations

JFinding 0.8137 0.8008 0.8031 0.7939 0.7688

(0.68,0.87) (0.71,0.80)

JSeparation 0.4409 0.7408 0.3913

(0.66,0.83) (0.32,0.44)

Unemployment 0.8345 0.6784 0.6791 0.7325 0.8136

(0.64,0.79) (0.79,0.83)

Productivity 0.6881 0.6651 0.6651 0.7161 0.7286

(0.64,0.80) (0.70,0.76)

C: Cross-Correlations

JFind.,Prod. 0.1443 0.9522 0.9532 -0.7619 0.5986

(-0.87,-0.48) (0.45,0.72)

JSep.,Prod. -0.4826 0.4837 -0.6975

(0.22,0.63) (-0.80,-0.60)

Unemp.,Prod. -0.3051 -0.6943 -0.696 0.7441 -0.8329

(0.55,0.84) (-0.89,-0.72)

JFind.,Unemp. -0.9254 -0.8405 -0.8408 -0.908 -0.8984

(-0.96,-0.75) (-0.92,-0.86)

JSep.,Unemp. 0.6346 0.8453 0.5455

(0.68,0.91) (0.44,0.61)

JFind.,JSep. -0.2947 -0.5102 -0.1169

(-0.71,-0.04) (-0.22,0.05)

Notes: All series are detrended with the HP-Filter with λ = 1600. The point estimate is
the median, the confidence intervals are 68% Bayesian bands from the posterior distrib-
ution. Calibration I of the model matches the unconditional standard deviation of labor
productivity, calibration II matches the same moment, conditional on technology shocks.
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Table 8: Historical Decomposition of Fisher Identification

Uncond. Model Conditional Moments

Sample Inv. Tech. Neu. Tech. All Tech. Residual

A: Standard Deviations

Find. 0.1542 0.0775 0.0684 0.0741 0.0671 0.1283

(0.0717) (0.05,0.09) (0.05,0.11) (0.05,0.09) (0.11,0.15)

Sep. 0.062 0.0401 0.048 0.0512 0.0543

(0.03,0.05) (0.04,0.06) (0.04,0.06) (0.05,0.06)

Unemp. 0.1786 0.0708 0.0658 0.0996 0.088 0.1434

(0.0657) (0.05,0.09) (0.06,0.14) (0.07,0.12) (0.12,0.17)

Prod. 0.0156 0.0156 0.0185 0.0184 0.0129 0.016

(0.0129) (0.01,0.02) (0.02,0.02) (0.01,0.01) (0.01,0.02)

B: Autocorrelations

Find. 0.9128 0.8655 0.7116 0.8182 0.8771 0.9009

(0.8671) (0.62,0.82) (0.69,0.89) (0.81,0.92) (0.87,0.92)

Sep. 0.6336 0.9245 0.8984 0.8757 0.6389

(0.85,0.96) (0.83,0.95) (0.82,0.92) (0.59,0.70)

Unemp. 0.9218 0.8607 0.7692 0.8326 0.9045 0.9143

(0.8632) (0.67,0.88) (0.74,0.88) (0.87,0.93) (0.90,0.92)

Prod. 0.8507 0.8482 0.9055 0.8597 0.8909 0.9253

(0.855) (0.85,0.95) (0.80,0.91) (0.87,0.92) (0.91,0.94)

C: Cross-Correlations

JF,P 0.0567 0.5141 -0.1674 -0.5569 -0.3274 0.6979

(0.4087) (-0.38,0.11) (-0.29,-0.70) (-0.55,0.01) (0.57,0.79)

JS,P -0.4392 -0.4355 0.2757 0.2059 -0.6298

(-0.61,-0.21) (0.03,0.46) (-0.02,0.38) (-0.73,-0.53)

U,P -0.1858 -0.4427 -0.0838 0.5323 0.3431 -0.821

(-0.3506) (-0.44,0.19) (0.27,0.67) (0.03,0.55) (-0.89,-0.72)

JF,U -0.9558 -0.8718 -0.8394 -0.9147 -0.8606 -0.9409

(-0.8749) (-0.92,-0.72) (-0.79,-0.97) (-0.94,-0.75) (-0.91,-0.95)

JS,U 0.6845 0.3897 0.794 0.7584 0.5997

(0.06,0.65) (0.60,0.88) (0.58,0.85) (0.51,0.66)

JF,JS -0.4404 0.2296 -0.4877 -0.3075 -0.2893

(-0.12,0.52) (-0.17,-0.69) (-0.58,0.11) (-0.17,-0.38)

Notes: All series are detrended with the smooth HP-filter as in Shimer (2005a). The point
estimate is the median, the confidence intervals are 68% Bayesian bands from the posterior
distribution. The model is calibrated to match the unconditional standard deviation of
labor productivity and the same figure that is conditional on both technology shocks (in
brackets).
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Table 9: Variance Decomposition in Fisher Identification - Job Flows

Investment-specific Shock Neutral Shock

Quarters 1 8 16 32 1 8 16 32

Price 76.39 92.80 96.60 98.39 4.44 0.91 0.42 0.20

(54,90) (82,98) (91,99) (96,100) (0,19) (0,5) (0,2) (0,1)

Productivity 12.15 11.94 11.01 10.50 80.46 85.85 87.87 88.94

(9,15) (11,13) (10,12) (10,11) (73,85) (84,88) (87,89) (88,89)

JCreation 6.32 6.84 7.04 7.05 3.93 10.19 10.45 10.45

(1,14) (3,13) (3,12) (3,12) (0,15) (3,24) (3,24) (3,24)

JDestruction 1.37 4.60 4.66 4.66 15.77 11.79 11.81 11.81

(0,5) (2,12) (2,12) (2,12) (2,40) (4,31) (4,31) (4,31)

Unemployment 1.35 6.12 6.12 6.12 8.20 9.11 9.28 9.27

(0,6) (2,13) (2,13) (2,13) (1,26) (3,21) (3,22) (3,22)

The values for the investment-specific shock, the neutral shock and the (omitted) residual
disturbances add up to 100 for each variable at each time horizon. The point estimate is the
median, the confidence intervals are 68% Bayesian bands from the posterior distribution.
All numbers are percent.

Table 10: Variance Decomposition in Sign Identification

Investment-specific Shock Investment-unspecific Shock

Quarters 1 8 16 32 1 8 16 32

Productivity 24.66 28.25 29.67 31.68 46.85 59.75 63.89 65.10

(2,59) (3,67) (3,70) (3,74) (18,77) (23,86) (24,91) (24,93)

Price 27.75 35.71 38.80 37.82 11.45 24.53 39.06 51.75

(7,52) (10,61) (9,68) (8,74) (1,36) (4,53) (9,69) (16,82)

JFinding 16.86 6.44 6.00 5.90 3.54 9.88 12.93 13.42

(4,33) (2,18) (2,17) (2,17) (0,14) (3,28) (4,31) (4,31)

JSeparation 2.69 2.98 3.06 3.10 17.87 15.26 14.50 14.51

(0,13) (1,12) (1,12) (1,12) (6,36) (5,34) (5,33) (5,32)

Unemployment 16.38 6.35 5.91 5.83 4.09 10.62 13.61 14.00

(4,34) (2,18) (2,17) (2,17) (0,16) (3,30) (4,32) (4,32)

The values for the investment-specific shock, the investment-unspecific shock and the
(omitted) residual disturbances add up to 100 for each variable at each time horizon. The
point estimate is the median, the confidence intervals are 68% Bayesian bands from the
posterior distribution. All numbers are percent.
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Table 11: Historical Decomposition of Sign Identification

Uncond. Conditional Moments

Sample I-Specific I-Unspecific Both Shocks Residual

A: Standard Deviations

Find. 0.1542 0.0456 0.051 0.0643 0.1242

(0.04,0.07) (0.04,0.07) (0.05,0.09) (0.10,0.15)

Sep. 0.062 0.0408 0.0499 0.0527 0.0535

(0.03,0.05) (0.04,0.06) (0.04,0.06) (0.05,0.06)

Unemp. 0.1786 0.0538 0.0742 0.088 0.139

(0.04,0.08) (0.05,0.10) (0.07,0.11) (0.12,0.16)

Prod. 0.0156 0.0122 0.0109 0.0127 0.0156

(0.01,0.01) (0.01,0.01) (0.01,0.01) (0.01,0.02)

B: Autocorrelations

Find. 0.9128 0.8091 0.9436 0.8653 0.9028

(0.70,0.91) (0.90,0.96) (0.79,0.91) (0.87,0.92)

Sep. 0.6336 0.9374 0.8886 0.8634 0.6507

(0.88,0.96) (0.83,0.94) (0.80,0.92) (0.59,0.71)

Unemp. 0.9218 0.897 0.9185 0.8992 0.9137

(0.83,0.95) (0.89,0.95) (0.87,0.92) (0.90,0.92)

Prod. 0.8507 0.92 0.9381 0.8929 0.9225

(0.88,0.97) (0.89,0.98) (0.87,0.92) (0.90,0.94)

C: Cross-Correlations

JF,P 0.0567 0.003 -0.0897 -0.3597 0.7118

(-0.46,0.29) (-0.47,0.21) (-0.53,-0.04) (0.58,0.80)

JS,P -0.4392 -0.1501 -0.1297 0.235 -0.6269

(-0.58,0.33) (-0.51,0.30) (-0.02,0.40) (-0.73,-0.54)

U,P -0.1858 -0.1624 -0.0406 0.3822 -0.8218

(-0.65,0.46) (-0.48,0.44) (0.05,0.56) (-0.91,-0.76)

JF,U -0.9558 -0.7386 -0.8048 -0.8396 -0.9408

(-0.90,-0.55) (-0.92,-0.61) (-0.93,-0.70) (-0.95,-0.91)

JS,U 0.6845 0.6339 0.7937 0.7583 0.5913

(0.33,0.86) (0.64,0.88) (0.64,0.86) (0.51,0.66)

JF,JS -0.4404 0.1652 -0.2492 -0.2512 -0.2781

(-0.46,0.47) (-0.59,0.19) (-0.57,0.04) (-0.38,-0.15)

Notes: All series are detrended with the smooth HP-filter as in Shimer (2005a). The
point estimate is the median, the confidence intervals are 68% Bayesian bands from the
posterior distribution.
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Figure 6: Restricted and unrestricted Fisher Identification

0 5 10 15 20
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

un
re

s.
 is

ho
ck

s

Prod.

0 5 10 15 20
−2

−1.5

−1

−0.5

0
Price

0 5 10 15 20
0

0.2

0.4

0.6

0.8

un
re

s.
 n

sh
oc

ks

0 5 10 15 20
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

re
s.

 is
ho

ck
s

0 5 10 15 20
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0 5 10 15 20
0

0.5

1

1.5

2

re
s.

 n
sh

oc
ks

Quarters
0 5 10 15 20

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Quarters

Notes: Responses in percent to a positive one-standard-deviation shock.
Confidence intervals are 68% Bayesian bands.
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Figure 7: Job Flow Responses to Fisher Technology Shocks
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Notes: Percentage responses to a positive one-standard-deviation shock.
Confidence intervals are 68% Bayesian bands.

Figure 8: Impulse-Responses to Gaĺı Technology Shocks
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Notes: Percent responses to a positive one-standard-deviation shock.
Confidence intervals are 68% Bayesian bands.
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Figure 9: Unrestricted Fisher Technology Shocks
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Notes: Percentage responses to a positive one-standard-deviation shock.
Confidence intervals are 68% Bayesian bands.

Figure 10: Sign Identification - Price and Productivity
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Notes: Responses in percentage points to a one-standard deviation shock.
Confidence intervals are 68% Bayesian bands.
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Figure 11: Fisher Technology Shocks - No Trend
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Notes: Percentage responses to a positive one-standard-deviation shock.
Confidence intervals are 68% Bayesian bands.


