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Abstract

This paper studies a simple dynamic model of interbank credit relationships. Starting

from a given balance sheet structure of a banking system with a realistic distribution of bank

sizes, the necessity of establishing interbank credit connections emerges from idiosyncratic

liquidity shocks. Banks initially choose potential trading partners randomly, but form pref-

erential relationships via an elementary reinforcement learning algorithm. As it turns out,

the dynamic evolution of this system displays a formation of a core-periphery structure with

mainly the largest banks assuming the roles of money center banks mediating between the

liquidity needs of many smaller banks. Statistical analysis shows that this evolving interbank

market shares virtually all of the salient characteristics of interbank credit relationship that

have been put forth in recent literature. Preferential interest rates for borrowers with strong

attachment to a lender may prevent the system from becoming extortionary and guarantee

the survival of the small peripherical banks.
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1 Introduction

While it had received only scarce attention for a long time, the interbank credit market has

been in the focus of monetary policy authorities and financial economists since the outbreak of

the still continuing financial crises in 2007/08. As it appeared from the contagion effects after

the default of Lehman Brothers and the subsequent collapse of trading activity in unsecured

money markets, interbank credit is a crucial component of the financial architecture of modern

economies. Its disruption could lead to severe problems for the liquidity management of single

institutions and the sudden rapture of established funding lines could trigger an avalanche of

liquidity problems across the banking system. Macroprudential regulation and stress testing is

paying more and more attention to the risks emerging from the various connections between

financial institutions so as to make the system safer against interbank contagion effects. Un-

derstanding the structure of the existing network of credit relationships is, therefore, essential

for an assessment of its potential risk. However, very little has been known until very recently

about the topology of credit links between banks and its salient features.

In view of the events of the year 2008 and after, an increasing body of recent research has

investigated the interbank market under the perspective of network theory. Indeed, interpret-

ing the single banks as nodes and their credit relationships as links between nodes, one can

represent such data in a straightforward way as a network, with credit volumes defining the

so-called adjacency matrix of links between the underlying entities. With the surge of network

research in the natural and social sciences, interbank data have occasionally been investigated

from such a perspective even before the financial crisis, cf. Boss et al. (2004), Inaoka et al.

(2007) or Soramäki et al. (2007). The predominant objective of this early literature had been

to phenomenologically describe the data with popular network statistics such as the degree

distribution, centrality of nodes etc. and to compare their structure with well-known canonical

network models such as purely random, scale-free or small-world networks. Such a classification

(if possible) could already provide important insights on the dangers of disruptions and inherent

systemic risk as, for example, it is well-known that scale-free networks are in general robust to

random disturbances but are highly vulnerable in the presence of targeted attacks on their most

connected nodes.
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Recently, attention has been shifting towards alternative models of the network structure

that might be particular to socio-economic relationships and less so to phenomena in the nat-

ural world. A number of authors have argued that interbank relations might be akin to a

core-periphery structure, a setting first proposed in sociology for networks of acquaintanceships

(cf. Borgatti and Everett, 2000). The pioneering application of this model to interbank data

is due to Craig and von Peter (2014). Using a data set on large loans and exposures between

German banks they find a very stable set of banks forming the core of the system. They also

found that alternative random and scale-free networks cannot explain the degree of stratifica-

tion within the German banking system, and that total balance sheet size could predict how

banks position themselves in the system.

Fricke and Lux (2014) have applied the core-periphery framework to data of the electronic

platform e-MID that basically is used for short-term (overnight) liquidity provision. They also

found that the structure of the networks derived from these data can be captured in a very

robust way by a core-periphery model. Applying an asymmetric version of the CP framework

they also find that banks’ roles as borrowers and lenders in the money market can be very differ-

ent. Distinguishing between their “in-coreness” and “out-coreness” they found both measures

to be virtually uncorrelated. This asymmetry is inherited from a very asymmetric structure

of the raw data: In particular, there is a high concentration of incoming links per bank with

almost always only a small number of creditors, on which a single institute relies for liquidity

provision within an extended time span. In contrast, the distribution of outgoing links is much

more heterogeneous and broader ranging from many zero entries (no lending in the interbank

market) to large numbers of borrowers.

A core-periphery (CP) analysis of the UK interbank market is provided by Langfield et al.

(2013) who use a comprehensive data set on connections between UK banks with a detailed

breakdown into a large number of financial instruments. Identifying banks’ roles in different

segments of this multi-layered network topology, they also find some heterogeneity of their ‘core-

ness’ in different markets. Van Lelyveld and in’t Veld (2012) apply the core-periphery model

to contractual obligations among Dutch banks at a quarterly frequency of reporting and also

obtained a fit of the CP model in line with that reported in the papers discussed above. Summa-
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rizing this emergent literature, it appears that linkage structures between financial institutions

can often be captured in a compact way by a core-periphery distinction or by assigning a ‘core-

ness’ statistic to the individual banks. Such an approach has been found to describe different

data sets better than traditional network models inherited from the natural sciences and it has

some economic appeal in that the network core mostly (though not exclusively) consists of large

banks which assume the role of money center banks for the system.

A few papers have started to try and provide theoretical explanations for such a structure:

Hommes et al. (2013) look at the formation of CP networks under the perspective of game-

theoretic concepts of network stability. They find that such a structure would not be stable

in a system of homogenous banks, but could be stable under sufficient size heterogeneity. In a

somewhat different vain, Castiglionesi and Navarro (2011) show the stability of a CP network

as the equilibrium structure in a setting where banks have the choice between a safe investment

strategy and a ‘gambling’ project. The CP structure then emerges as the optimal way for pro-

viding liquidity insurance with ‘gamblers’ being positioned in the periphery.

We approach the question of how a CP structure might emerge from a different theoretical

perspective using an elementary dynamic model of the interbank market. The basic ingredients

to our model are: (i) idiosyncratic liquidity shocks that hit all banks of a (closed) financial

system in any period and that have to be evened out via the interbank market, (ii) a heteroge-

neous distribution of the balance sheet sizes of banks in accordance with empirical observations,

(iii) a simple reinforcement-learning scheme that governs banks’ decisions to contact other in-

stitutions as potential trading counterparts: If there has been a previous successful attempt at

obtaining credit from a certain bank to overcome a liquidity shortage, the borrower will have a

higher tendency of contacting this creditor again when another negative liquidity shock hits. If

credit is denied, the ’trust’ in this potential borrower will decline. Simulations show that this

system quickly self-organizes into a core-periphery structure and also displays other realistic

features found in interbank credit data. This finding suggests that the CP structure might be

a natural consequence of a banking system with heterogeneous balance sheet size as we histor-

ically find it in industrialized economies. Not too much rationality and no knowledge of the

complete structure of the system are, therefore, required on the part of liquidity managers, to
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Figure 1: Balance Sheet Structure of Banks

deliberately create such a structure. On the contrary, single decentralized decisions based on

past experiences would generically lead the overall system towards such a topology.

The present simple model is also, to the best of my knowledge, the first attempt to formulate

a dynamic process of liquidity exchange within a heterogeneous banking system with fully spec-

ified balance sheet structure. It could, thus, be used as a starting point for various extensions

studying other channels of connections between banks and could be used as a tool for dynamic

stress tests in the presence of shocks to various types of assets and funding sources.

The paper proceeds as follows: sec. 2 provides more details on the structure of the model,

while sec. 3 discusses the emergent CP structure and other properties of our simulations. Sec.

4 drops the previous restriction of zero interest rates and throws a glance on the role of interest

rates heterogeneity in a core-periphery topology of the interbank market. Sec. 5 concludes.
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2 Basic Building Blocks of the Model

We start with the stylized balance sheet structure as illustrated in Fig. 1. Bank i’s total assets,

Ai, consist of external assets ei (outside the banking system), interbank loans li and liquidity

mi (which might sum up central bank deposits and cash reserves):

Ai = ei + li +mi. (1)

Liabilities Ii are made up of deposits di, inter-bank borrowing bi and bank’s equity, ηi:

Ii = ηi + di + bi. (2)

Since we concentrate here on exchange of liquidity, not all of these positions will undergo

changes. In particular, external assets are only included for completeness of the simplified

balance sheet structure (but instead of liquidity shocks we could as well consider return shocks

to ei).

For simplicity, we will impose a certain structure as an initial condition on the balance sheets

of all banks i = 1, ..., N of our system. Namely, initially, the interbank market does not yet

exist and so at time t = 0 : li(0) = bi(0) holds for all i.

We furthermore impose at time t = 0 the following structure on the entries of the balance sheet:

ei(0) = θAi, mi(0) = (1− θ)Ai,

ηi(0) = γAi, di(0) = (1− γ)Ai.

In the course of the evolution of our system, some of these quantities will not change in

absolute value and others will. For instance, as long as no bankruptcies occur (and as long

as we disregard interest for interbank loans), equity or bank capital ηi will remain constant in

absolute value, but it might change, in fact, as a percentage of overall balance sheet size, Ai.

As concerns the distribution of the total balance sheet size Ai across banks, we mostly follow

the empirical literature in using draws from a Pareto distribution to determine the size of the

members of our banking system. That firm size distributions are highly skewed has been known
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for a long time and has recently been confirmed again, for example, by a comprehensive sample

of U.S. companies (Axtell, 2001). The banking sector is no exception to this rule (cf. Ennis,

2001; Janicki and Prescott, 2006 for recent evidence for the U.S. and Bremus et al., 2012, for

international evidence from a sample of banks in more than 70 countries). While there are

different proposals in the literature for positive, skewed distributions to characterize firm sizes,

we use here a Pareto distribution, i.e. we assume that the cumulative distribution function of

the bank size distribution follows a law of the form

f(Ai) ∼ A−τi (3)

The reason to prefer the Pareto distribution is that it is a very parsimonious specification and

that it is a generic way to capture the variability of large realizations of distributions with fat

tails.1

Empirical evidence for firm size distributions speaks for values of the decay parameter of

about 1 (Zipf’s law). For banks Bremus et al. (2012) find a coefficient of ∼ 3 for a sample

of 11,476 banks from 73 countries, with country-specific estimates ranging down to about 1.4.

In our simulations, we will consider bank size distributions within this range and for practical

comparability of simulation runs, restrict the support to a finite interval of balance sheet sizes.

Once we have “created” our banking system at time t = 0, we expose banks to liquidity

shocks. Basically, each bank is assumed to be hit by a liquidity shock σiεi,t with the size of

the shock being proportional to its balance sheet size: σi ∼ Ai, and εi,t standard Normally

distributed innovations.2 We introduce these shocks via deposits that will increase or decrease

by the pertinent increment. Since a pure random shock would make deposits non-stationary,

1Statistical extreme value theory distinguishes between three kinds of generic behavior: exponential tails,
hyperbolically decaying tails and distributions with finite endpoints. There is hardly any doubt that firm size
distributions follow the second type of extremal behavior for which (3) captures the limiting behavior of all
distributions that fall into this class, c.f. Reiss and Thomas (2007).

2There is relatively little empirical evidence on the statistical characteristics of deposits and other balance
sheet shocks of banks. While some dependency on size appears realistic, observations reported in Hester and
Pierce (1975) suggest that the size of the shock should rather increase less than proportionally with banks’ total
balance sheet size. We also implemented our model with functional specifications (e.g., a square root dependency)
in line with such behaviour, without observing qualitative changes of the outcome. The results reported in Hester
and Pierce (1975) also speak in favour of mean-reversion of liquidity shocks.
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we also add, realistically, a mean-reverting component so that deposits of each bank develop

over time as:

di,t+1 = β(di − di,t) + σiεi,t with di = θAi (4)

To make the system as a whole completely conservative in terms of aggregate deposits, the mean

across all banks is also subtracted from the ensemble of realizations of shocks at any time t so

that the sum of deposits in the system remains constant. The mean-reversion and subtraction of

the mean both help to avoid bankruptcies or illiquidity ‘by chance’ due to non-stationarity. In

fact, in all specifications of the model presented in this section, no such case did occur over very

long simulation rounds (see below). Further elaborations of this system could, nevertheless, be

used to focus on bankruptcies, illiquidity and contagion effects after external disturbances.

The last ingredient of our system is an N × N matrix Ω = [ϕij ] of ‘trust’ coefficients that

indicate the strength of the ties that have been established between banks via repeated contact

in the interbank market. We start with a random assignment of ‘trust’ coefficients within the

interval [0,1], and during the simulations increase the trust of bank i into j (ϕij) if j agreed to

extend credit to i when needed or decrease ϕij if it declined to provide credit. Our assumption

of reinforcement of existing business relationship is motivated by various findings of relationship

lending practices between banks as documented, for example, in Cocco et al. (2009), or Finger

and Lux (2014).

After setting up the balance sheet structure of the system, without any interbank connections

at time t = 0, the subsequent simulations proceed in the following way:

1. In each period t, all banks are subject to liquidity shocks as formalized in eq. (4).

2. With these emerging imbalances, banks i = 1, ..., N one after the other consider whether

there is a need to balance their liquidity via the interbank market:

2.1. If di,t < 0, bank i suffers from an outflow of liquidity. If it has sufficient own liquidity,

it will simply absorb the liquidity shock through its own funds. This will be the

case if the current liquidity position is above a lower threshold mi that guarantees
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continuance of regular business operations or is simply imposed by authorities as

a regulatory measure. If the deposit shock would push its liquidity below mi, it

will try to make up for this loss by taking up interbank credit of volume di,t. To

this end, it will contact other banks starting with the one with highest trust factor

ϕij . If this one agrees, i will have satisfied its needs, if not, it will turn to the one

with second-highest ϕij and so on. We will assume that the banks contacted will

‘normally’ agree to provide credit unless their own liquidity position would fall below

their lower threshold mj . If threatened by a too high loss of its liquidity itself, j then

would deny extension of credit to i and would suffer a loss in trust. In the presence

of a negative liquidity shock, all previous borrowing in the interbank market will

also be prolonged, and additional interbank credit will be sought. In case that no

single other bank will be able to satisfy the liquidity needs of i, the amount of credit

requested will be split up into different chunks. In particular, the bank with the

highest trust factor will provide as much credit as affordable with its own liquidity

provision and the remainder will be solicited from the next banks in i’s ranking of

trustworthiness. Our assumption of an aggregate balancing of all liquidity shocks

makes sure that all liquidity needs of single banks can be satisfied in this way.

2.2. If di,t > 0, bank i will pay back existing interbank loans. If the sum of all its interbank

liabilities is larger than di,t the reduction will be proportional to the size of the loan.

If it is able to pay back all loans in full, its balance sheet will actually increase by

the remaining part of new deposits.

Note that in our interbank credit market, all contracts are borrower-initiated. This is not

unrealistic: in the e-MID platform (the only data set that provides evidence on initiation of

such trades) about 70 percent of all quotes come from potential borrowers.

Of course, many modifications of our baseline model could be thought of and have actually

been investigated as sensitivity checks: one could change the sequence of events choosing, for

example, banks with liquidity shocks randomly and one could vary all parameters of the model

over relatively wide ranges. We have also assumed a zero interest rate for the time being so that

we do not have to account for capital gains and losses through interbank credit. This restriction
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will be dropped in sec. 4.

3 The Simulated Banking System

We now scrutinize the characteristics of an evolving banking system following the above rules

of the game: initialization with a realistic size distribution and no interbank credit, recurring

liquidity shocks over time, and rebalancing of liquidity via the interbank market. Given the

conservative properties of the system (overall deposits and liquidity being constant) one would

expect the system to display stationary behaviour along certain dimensions after an initial

transitory phase. After this initial stage, the system should reach a kind of statistical equilibrium

with remaining fluctuations of constant amplitude.

In the following we provide illustrations and statistics for Monte Carlo simulations of our

artificial banking system with the following settings: The number of banks is chosen to be either

N = 50 or N = 250. Initial balance sheet sizes are determined by draws from a truncated Pareto

distribution over the range [5, 200] with power-law parameters from the set τ = {1.2, 1.6, 2, 3}

to allow for different levels of heterogeneity (or granularity) of the banking system. Illustrations

typically are provided for the case of τ = 1.2 while in the tables we present key statistics

for a number of parameter settings and additionally consider the case of a fully homogeneous

banking system (initially identical sizes of banks). The fraction of external assets is initially

set to θ = 0.9 (hence 1 − θ = 0.1 is the ratio of liquidity reserves), and the ratio of equity to

balance sheet size is fixed at γ = 0.08 (hence 1 − γ = 0.92 is the initial ratio of deposits to

total liabilities). The lower ratio of liquid reserves at which some action is required on the part

of banks to remain solvent is m̄i = 0.04Ai. Finally, eq. (4) is implemented with parameters

β = 0.5 and σi = 0.025di(t)
3. A large number of alternative scenarios have been tried as well,

but without major qualitative changes of the statistical results.

We first depict the resulting network density which is defined by the number of existing

links over all possible credit links in a fully connected network(which would amount to N ·

(N − 1)). Fig. 2 shows this statistics for two specifications with N = 50 and N = 250

banks, respectively, and different aggregation periods for extraction of network statistics from

3This is in line with the orders of magnitude found in Hester and Pierce (1975).
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the unfolding development of the interbank market. Aggregating data is necessary, as each

unit time period (“day”) might only provide a snapshot of a random selection of links that get

activated by the liquidity shocks occurring on that day. Similarly as with empirical data (Finger

et al., 2013), longer aggregation periods might be preferable to have a better coverage of the

network of preferential lending relationships. In line with this consideration, we see a higher

density when moving from the “daily” level of activity to the longer aggregation horizons of

50, 100, and 250 periods. The plots speak of a development towards a statistical equilibrium

in which either ∼ 5 percent (N = 50) or ∼ 1 percent (N=250) of all possible links will be

active over the longest time horizons of 250 days, i.e. we observe a strong concentration of the

interbank trading activity within a few of all possible lender-borrower combinations. This agrees

with findings of actual interbank data that typically have very sparse adjacency matrices (i.e.

with few non-zero entries). The higher variability in the case N = 50 is, of course, due to the

smaller sample. Note also that the density shows an initial overshooting before converging to its

long-run level. From the initially random assignment of trust coefficients, first many different

links will be activated when the need arises while the lock-in to more stable relationships leads

to a consolidation in later stages of the simulation.

(a) (b)

Figure 2: Temporal development of the density of the interbank network for the baseline scenario
(τ = 1.2 and all other parameters as given in the text).

Now, we move to an analysis of the emerging network structure. Fig. 3 shows network plots

of the specification with N = 50 banks after t = 100, 5000, and 10000 rounds of interbank
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Figure 3: Network images constructed from interbank loans, snapshots at times t = 100(a),
5, 000 (b) and 10, 000 (c). The visualization have been prepared with the open source software
Gephi, cf. Bastian et al. (2013).

activity. The size of the nodes reflects their balance sheet size. Similarly, the size of the links

between them are proportional to their existing credit volumes in the particular period. As we

observe, the network constructed from the interbank credit relations is relatively unstructured

at the start of the simulation (t = 100), but evolves into a more hierarchical structure in which

a few banks have many links while the remaining ones only have few connections. Some banks

can easily be spotted as the presumptive ”’core” banks who serve a certain number of other,

mostly smaller banks with interbank loans. The core banks will typically be the larger ones

although there is no strict one-to-one relationship between size and core membership (statistics

are provided below). When moving from t = 5000 to t = 10, 000 we see that while many

details might have changed, the general structure is still very much the same which speaks for

convergence to a statistical equilibrium.

How can we intuitively explain this emergence of a hierarchical structure in the interbank

market? Because of their sheer size, the larger banks have more buffer liquidity and so can

serve the needs of a number of smaller banks when these are hit by negative liquidity shocks.

Over time, the more frequent availability of large banks as lenders leads to the emergence of

preferential lending relationships to a number of smaller client banks, their periphery. More

12



(a) (b)

Figure 4: Distribution of in-degrees and out-degrees across banks. This particular snapshot was
taken from the last 250 periods of a simulation running over a total of 10,000 time steps.

and more, smaller banks restrain from trading with banks of the same size class when in need

of liquidity since these more often have to turn them down if they suffer from a negative shock

as well or, generally have insufficient liquidity due to their history of past shocks. Since also

large banks do not have unlimited capacity for liquidity provision, and because of preferences

of the smaller ones being driven by historical contingency, the large banks often acquire their

own, partially overlapping and occasionally changing periphery.

The following figures and tables show that the simulations also agree with empirical data in

more details, and essentially are able to reproduce all those statistical features of the interbank

market that have been highlighted in recent literture (cf. Craig and von Peter, 2014, Finger et

al., 2013, Anand et al., 2013). Fig. 4 illustrates that there is a pronounced difference in the

distribution of incoming links (number of creditors per bank) and out-going links (number of

borrowers). While the in-degree distribution has very limited support (in our example from a

setting with N = 250 banks, the maximum is 7), the out-degree distribution is much broader and

also much more skewed: about 50 percent of all banks have zero out-degree, i.e. they do not lend

at all in the interbank market while some have up to a maximum of 27 borrowers. While these

and the following figures are computed from one realization of the interbank network (typically

the network reconstructed from the trading activity over the last 250 time steps of simulation

lasting for 10,000 periods), the statistics obtained from large number of Monte Carlo simulations
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(a)

Figure 5: Temporal development of the Jaccard index for different aggregation levels over a
typical simulation run.

confirm their representativeness. Tables 1 and 2 display means and standard deviations of the

previous and some other statistics over 100 simulation runs for different scenarios, respectively.

The tables can also be compared to those of Table 1 in Anand et al. (2013), where the authors

compare statistics of a static network formation algorithm with those of the empirical data

studied by Craig and von Peter (2014). In terms of their qualitative features, the later are

also very close to those extracted from the e-MID overnight market (Finger et al., 2013; Fricke

et al., 2013). Our Table 1 shows results for a banking system with N = 50 banks whereas

Table 2 exhibits the same set of results for a larger system with N = 250. Statistics are

computed for different parameters of the size distribution of banks’ balance sheets, eq. (3),

namely τ = 1.2, 1.6, 2 and 3 as well as for a banking system with (initially) uniform balance

sheet sizes. τ = 1.2 is closest to traditional empirical findings of a Zipf’s law of the firm size

distribution while for the size distribution of banks available results hover in the range 1 to 3,

cf. Bremus et al. (2012). Simulations with τ = 1.2 lead to a very heterogeneous banking system

composed of many small and a few large banks whose total assets may be up to 50 times larger

than those of the smallest market participants. With larger τ , this heterogeneity gets less and

less pronounced, and it is completely absent in the last case of uniform initial balance sheet

sizes.4

4Due to deposit shocks, some heterogeneity also emerges over time in this case, but it remains of very limited
magnitude.
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Both Tables 1 and 2 show the mean and standard deviation of the average in-degree (which by

definition is equal to the average out-degree) as well as the maximum in-degree and out- degree

across 100 simulations of each scenario, for aggregation horizons of 50, 100 and 250 periods.

As might be expected, the numbers typically increase slightly with the time horizon used to

compute network statistics, but their relatively moderate increase also shows that most links

are preserved over time so that higher horizons have a much smaller number of links than what

one would obtain from adding up randomly created networks.

Interestingly, the increase of the number of banks from 50 to 250 is not reflected in a similar

increase of the average and maximum in-degrees and out-degrees. Rather, these quantities

appear to be relatively little affected by the size of the system. Hence, the intrinsic logic of the

link formation based on the need for liquidity exchange seems to lead to a certain concentration

of links as well as a pronounced asymmetry between incoming and outcoming links that is

relatively insensitive to the overall size of the system. A glance at the pertinent statistics for

the case of uniform balance sheet size shows, that in this case, the pronounced asymmetry

between in-degree distribution and out-degree distribution does not emerge. While one does

not find complete symmetry, both the mean and dispersion of outgoing links are much lower

than in any of the settings with heterogeneous bank size distribution.

Also shown in the tables is the Jaccard index which is a measure of persistence of links over

time: It is defined as the number of links that survive from one period to the next divided by

all links that are observed in at least one of both periods. The numbers reported in Tables 1

and 2 for this statistics show again little sensitivity with respect to the overall size of the system

(N = 50 vs. N = 250) and the length of the period used to compute network statistics. There

is a bit of sensitivity with respect to the power-law index τ of the bank size distribution with

variation of the Jaccard index between ∼ 0.65 for τ = 1.2 and ∼ 0.5 at τ = 3.0. These numbers

are in perfect agreement with what Fricke et al. (2013) report for monthly to yearly aggregation

levels of the e-MiD overnight banking data. In both cases, at least 50 percent or more of the

existing links are maintained on average from one quarter to the next. Note that numbers are

smaller for the case of a uniform initial distribution of balance sheet sizes, but still speak of some

preferential banking relationship formation even without size-heterogeneity. Fig. 5 provides an
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illustration of the development of the Jaccard index over the course of one simulation run for the

different sampling periods (again for the case τ = 1.2). It clearly indicates that persistent links

emerge endogenously from the network formation between banks. In the unstructured setting

upon initialization of the system, the Jaccard index is close to zero, but over time bi-lateral ties

become stronger and stronger and lead to a sharp increase of the index. When it has reached

its “equilibrium” level, only fluctuations around some constant value are observed due to the

dynamics of liquidity shocks.

The next set of statistic we display only for the aggregation level of 250 periods (since there

is relatively little difference to the case of 50 and 100 periods), but record their realisation at

specific points in time of the simulation: at t = 250, t = 5, 000 and t = 10, 000. The first

of these satistics is what is called assortativity in network research. Shown in the tables is a

simple measure of assortativity: the correlation between the degrees (sum of in-degrees and

out-degrees) of the two sides connected by a link. Typical findings for interbank data point to

negative assortativity (disassortativity, cf. Finger et al., 2013) indicating that typically at one

end we find a well-connected entity while at the other end of the link its partner is an entity

with relatively few connections. We again confirm that this feature prevails in our model in the

later stages (t = 5, 000 and t = 10, 000) when it has settled down at its statistical equilibrium.

Initially (t = 250), in contrast, this feature is absent so that disassortativity can again be

classified as an emerging property of our system after the onset of the dispersed activity of

its actors. The numbers obtained at the later periods are again in good agreement with those

reported for empirical data.

Since the finding of disassortative link formation motivates application of core-periphery

models to interbank data, we next try to identify in our simulations the number of “core” banks

on the base of a dichotomic core-periphery distinction. The typical idealized pattern of a discrete

core-periphery model assumes that the core should be fully connected while there should be no

links between peripherical banks. In the simplest version, an objective function is minimized to

identify the core members that penalizes both missing links between core members and existing

links between peripherical agents while being indifferent to links between core and periphery

(of which there should be at least one per periphery bank to be connected to the network at
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all). We use the recently proposed fast algorithm by Lip (2011) to identify the number of core

members at different times during each simulation. Numbers are again relatively robust for

variations of τ and converge in the long run to a core of about 10 percent of all banks for a

system size N = 50, and about 4 percent for N = 250. While there is no clear benchmark

for this number (Anand et al., 2013, report a core fraction of 2.5 percent for their sample of

1800 German banks, while Fricke and Lux, 2014, find a stable core of about 25 to 30 percent

of the banks trading in e-MID), the constancy over time is in line with these previous findings.

Core size is, however, not a distinguishing feature between banking systems with heterogeneous

balance sheet structure against those with uniform size distribution as shown by the last block

of results in Tables 1 and 2.

Finally, we consider the average degree of dependency of single banks on their most prominent

lender and borrower, as well as the relationships between net lending positions and the size of

a bank or its centrality in the system. In all heterogeneous banking systems we find a large

difference in the dependency on the most important borrower and lender. For example, for

50 banks and τ = 1.2, a bank typically receives 85 percent of its interbank credit from the

same counterparty, but its most important borrower accounts for only 20 percent of the credit

extended. These numbers change only slightly for less heterogeneous systems (higher τ) and

larger system size (N = 250), and they are again in very good agreement with empirical numbers

(cf. Anand et al., 2013). However, the asymmetry vanishes for the case of uniform balance sheet

sizes.

We also find that the degree of centrality of a bank (simply measured by the sum of its in-

and out-connections relative to the number of all links of a fully connected system) is highly

correlated with size, and also that its net lending position is similarly highly correlated with its

size, again in close conformity with empirical data. These correlations are always in the range of

0.8 to 0.9 in heterogeneous banking systems, but vanish completely for the homogeneous banking

system. Figs. 6 and 7 provide examples from single simulation runs for the association between

size and centrality/net banking position. The later relationship is particularly interesting as

it amounts to a pronounced asymmetry of the interbank market emerging out of a completely

symmetric setting: While all banks are subject to mean-reverting shocks with mean zero, the
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smaller banks over time mostly assume the role of net borrowers, while the larger banks become

net lenders. The reason is that small banks due to their limited capacity often have no borrowers

or only few themselves, while larger ones become core banks and collect around them a periphery

of smaller ones whom they provide with credit when needed.

4 The Role of Interest Rates

So far we have abstracted from interest payments on interbank liabilities. While a full-fletched

analysis of interest rate formation is outside the scope of the present paper, there is one aspect

of the core-periphery model that we would like to have a closer look at. Namely, the formation

of a hierarchical structure of the interbank market with some emerging money center banks

and peripheral ones that are predominantly borrowers leads to a pronounced asymmetry in net

lending positions in the interbank market as illustrated in Fig. 7. It can easily be imagined,

that this leads to similarly asymmetric interest rate flows and, in the absence of countervailing

effects in other areas of activity, would drain off funds from the small borrower banks to the

larger core banks or money market centers. Introducing a constant interest rate, we indeed

immediately verify that this particular structure of the interbank market has a strong tendency

towards redistribution of capital between banks despite the perfect symmetry of their liquidity

shocks. Fig. 8a illustrates this effect by the development of the equity ratios of the 5 largest

and the 5 smallest banks of a system with a total of 250 banks. In order not to condemn

those banks who are seldomly lenders themselves to rapid extinction, we also introduce interest

revenues on liquid assets (which would, for example, be interest on overnight deposits at the

central bank). At the same time, we impose (somewhat unrealistically) outflow of funds via

dividends with the same rate of return to keep the system conservative in its overall size. If

we impose a homogeneous interest rate for interbank loans above the rate obtained for central

bank deposits, we nevertheless find a monotonic redistribution of capital from the smaller to

the large banks, cf. Fig. 8a, that will eventually end up with the bankruptcy of the smaller

ones.

However, there might be a countervailing force. Interest rates agreed on in the interbank

market are contract-specific and, among other factors, depend on the strength of the existing
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lending relationship between both parties, cf. Cocco et al. (2009). Given the empirical evidence

on relationship lending it appears reasonable to assume that a strong mutual relationship is

rewarded by below-average lending rates. In order to capture this effect, we simply let interest

rates be a negative function of the trust coefficients ϕij . Fig. 8b shows the outcome of a

simulation with this modification and otherwise identical parameters and initial conditions as

with the setting of Fig. 8a. Note also that we designed the negative dependency on ϕij in a

way to preserve the same mean value of the interbank lending rates. As it turns out, in this

case the initial divergence of equity ratios of large and small banks levels out at some point and

the overall system seems to become stationary again. This indicates that the development of

preferential lending relationships with below market rates helps to compensate to some extend

for the exploitative tendency of the emerging money center topology. While in the initial stage

of the simulation of Fig 8b no strong lending relationships have been formed and the dynamics

is close to that of Fig. 8a, after the ‘warming up phase’ of the banking system, the heterogeneity

of interbank interest rates allows equity to be preserved even by the peripherical banks.

Hence, besides the role of relationship lending to overcome monitoring and default risk

problems at the micro level, it might also play an important role as an automatic stabilizing

mechanism at the system level. The present section only points out this tendency. Since we

have simply imposed an ad-hoc relationship-dependent rule for the lending rate, no further

mechanism exists that would guarantee that the resulting degree of heterogeneity of lending

rates is sufficient in the long run to neutralise completely the asymmetric flows of interest

payments within the banking system. It would be interesting to replace the present ad hoc rule

for relationship-based interest rates by a behavioural analysis along the lines of the bargaining

approach put forward by Halaj and Kok (2013) to see whether systematic tendencies towards

tolerable levels of interest rates emerge that guarantee survival of the peripherical borrowers.

5 Conclusions

We have formalized an elementary model of interbank loans in a dynamic model where banks

have to continuously rebalance their assets and liabilities in the presence of shocks to deposits.

Keeping external assets and liabilities constant in the aggregate, we could study the evolution
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(a)

Figure 6: Size vs. centrality, last window of 250 observations of a simulation with a total of
10,000 time steps.

of the interbank model in a stochastically stable environment. We found that for heterogeneous

balance sheet sizes, a self -organization of the network of interbank loans towards an asymmetric

core-periphery structure unfolds that bears close similarity to established structural features of

interbank credit relationships as they transpire from recent literature. Not too much rationality

and information is, therefore, needed on the side of liquidity managers to enable the formation

of such a hierarchical interbank system. Rather than being formed purposefully, in our model

it emerges as a macroscopic profile that is created unintentionally by the dispersed activity

under bounded rationality at he micro level. We also find that with a dependency of lending

rates on the strength of established relationship between two banks, the asymmetry of interest

flows from the peripherical to money center banks can at least to some extend be neutralised

via heterogeneous interest rates. While extremely stylized, the model combines a dynamic

stochastic environment with permanent shocks to the balance sheet of individual banks with

a fully articulated accounting structure for an ensemble of banks with full consistency of all

stocks and flows, and could, therefore, serve as a starting point to study a variety of questions

via endogeneization of additional balance sheet items and additional links between banks.
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(a)

Figure 7: Net lending positions vs size, last window of 250 observations of a simulation with a
total of 10,000 time steps.

(a) (b)

Figure 8: Development of equity ratios of the five largest and five smallest banks in a setting
with homogeneous (a) and heterogeneous (b) interest rates. The parameters have been choosen
so to have sufficient trading activity on the interbank market to observe some discernible effect
on equity over computationally affordable simulation runs. In particular, both simulations use
the following parameter: N = 250, τ = 3, a = 50, b = 1000, θ = 0.94, γ = 0.06, β = 0.75.
Interest rates were set at 0.01/100 for liquid assets and 0.015/100 for interbank loans in the
homogeneous case, whereas in the heterogeneous case the lending rate for a credit from j to
i was assumed to be (2 − ϕij)/1000 leading to interbank interest rates between 0.01/100 and
0.02/100.
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