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In this paper we analyze transitions in the stock markets of the US, the UK, and Germany. For
all this markets we find that while the markets were focused on stocks from the IT and technology
sector around the year 2000, this focus has vanished and the markets have mostly moved towards a
focus on stocks from the financial sector. This development is paralleled by changes in the returns
distributions and the tail exponent. We show that we can extend the concept of beta values to
systematically describe a risk measure for stocks from different sectors of the economy. This slowly
varying sector specific risk measure describes ordered states in the market and identifies sectors
which show concentration of market risk.

INTRODUCTION

In this paper we analyze transition in the stock markets
of the US, the UK and Germany. For all this markets we
find that while the market was focused on stocks from the
IT and technology sector around the year 2000, this focus
has vanished and the markets have moved towards a focus
on stocks from the financial sector. This development is
paralleled by changes in the returns distributions and the
tail exponent.
The analysis of the structure of stock markets has long

been dominated by the discussion around different ver-
sions of a CAPM model [20, 27]. The original version of
the CAPM is in fact a one factor model, which postulates
that the returns ri of the stocks should be governed by
the market return rM and only differ by the an idiosyn-
cratic component βi for each stock i, such that

ri(t) = α(t) + βirM (t) + ǫi(t). (1)

In this setting α can also be interpreted as the risk free
rate of interest. Hence, stocks differ by the amount of
volatility with respect to the market. When we take the
point of view of a risk-avers investor, this also means
that stocks with a high volatility in returns should have
a greater average returns than stocks with low volatility.
Empirical tests of this model had rather mixed results

and have let to the conclusion that beta values are not
constant but time-varying, see [8]. The Fama and French
[13] model extends this approach to a three-factor model,
incorporating firm size and book-to-market ratio. Sev-
eral other extension of the original models have been
suggested, mostly building on some kind of conditional
CAPM, where the entire model follows a first-order auto-
regressive process, see [7]. The reasons for the change of
the betas are manifold. They could change due to mi-

croeconomic factors, the business environment, macroe-
conomic factors, or due to changes of expectations, see,
e.g., [6]. [1] and [14] also note that the non-normality
of stock returns and especially conditional skewness can
lead to distorted estimations of the CAPM.

An different approach to the analysis of asset returns
is to try to identify different states of stock markets, ei-
ther by an analysis of the correlation matrix like in [23],
or by the analysis of transaction volumes as in [25]. The
properties of the correlation matrix of asset returns have
been analyzed for example by [18, 21, 22, 24]. Recent
studies like [17] show that the correlation structure in
stock markets are rather volatile, and partly mirror eco-
nomic and political changes. [16] for example shows that
a structural break seems to happen in the US market
around 2001. This strand of literature is also related
to approaches from econometrics. [4] for example argue
that correlations increase in times of crisis, which has
profound implication for portfolio choice and hedging of
risks.

In the analysis of the covariance matrix of asset returns
and the determination of beta values, or, more generally
speaking, its spectral decomposition, one is faced with
the problem of noise due to finite time series length and
possibly very large N . If one assumes that the betas are
time-varying, then there is a trade-off in the selection of
the window size. Shorter time windows might capture
the dynamics of the betas, but the estimated betas will
have a high level of noise, and vice versa. Also, on the
one hand, one can limit the number of stocks in the anal-
ysis to improve the accuracy in determining (especially)
the non-leading eigenvalues. Our approach, on the other
hand, is to allow for a relatively large N , since we are
mostly interested in the eigenvector corresponding to the
leading eigenvalue. This approach also allows us to apply
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US UK Germany

S&P500 FTSE350 CDAX

period 1987–2011 1997–2013 1999–2013

T 6321 4294 3691

N 172 132 122

sector

Energy 10 5 1

Materials 14 7 8

Industrials 33 30 35

Cons. Discr. 24 26 22

Cons. Staples 22 10 7

Health 18 5 14

Financial 28 37 8

Technology/IT 20 4 21

Telecom. 3 4 3

Utilities 0 4 3

TABLE I. Summary statistics of the data sets

perturbation theory to describe the magnitude of error
in the determination of stock betas.
This paper is a continuation of the approach presented

in [26], where we showed that the US stock market shows
transitions between ordered to unordered times, which
has similarities to a phase transition. In this paper we ex-
tend the analysis to include also the UK and the German
stock market, and we relate the transitions to changes in
the return distributions.
We find that transitions took place in all three stock

markets, although the German markets seems to be less
ordered. Changes in the returns distribution hint at the
possibility that changes in the recent years are also in-
fluenced by a change in trading behavior, while earlier
changes might be more influenced by changing investor
behavior.
The paper is organized as follows. In the next sec-

tion we briefly describe the data sets, before we describe
the methodology to analyze the covariance matrix of the
stock returns. After this, we show the transitions in the
markets based on a risk measure. The last section aims
to present possible explanations for the observed changes
before we conclude.

MATERIALS AND METHODS

The data sets

For our analysis we use data from Thompson Reuters
on the closing price of stocks which were continuously
traded with sufficient volume throughout the sample pe-
riod and had a meaningful market capitalization [31]. For
the US we choose stocks which are part of the S&P 500
stock index. For the UK the stocks in our sample are

listed in the FTSE350, the German stocks are all part
of the CDAX (and are with very few exemptions also
listed in the MDAX, SDAX or DAX30). The size of the
market in the US allows us to collect a time series corre-
sponding to 25 years of data. For the European markets
it is not possible to analyze such a long time horizon,
since not enough stocks have been traded for such a time
span. Further we collected the sector classification of the
firms, we used the GICS classification for the US market
and the (for our purposes practically identical) TRBC
classification from Thompson Reuters for the European
markets. Table I summarizes the statistics and gives an
overview over the sector breakdown.

Analysis Method for Correlations

Stock markets can be analyzed by the study of the cor-
relation between the returns of the participating firms.
There are N firms indexed by i = 1, · · · , N . We use as
returns ri(τ) the log of the price ratio between consecu-
tive days τ in a range T0 in the order of 20 years. The
returns are normalized by

∑

τ=1,T0

∑

i=1,N r2i (τ) = NT0.
For the covariance matrix C we consider time windows
of size T centered at time t. C is given by

Cij(t) = 〈rirj〉T,t (2)

with the abbreviation for the time average

〈A〉T,t =
1

T

τ<t+T/2
∑

τ=t−T/2

A(τ) (3)

for any observable A. When C is derived from the re-
turns of many stocks in a long time windows T ∝ T0,
one usually observes that the matrix C has one large
eigenvalue λ0 in the order of N with a corresponding
eigenvector that we denote βi. All βi have the same
sign and can be chosen positive. They are normalized
by

∑

i β
2
i = N . The remaining eigenvalues are in the or-

der of 1, except few outliers. This first eigenvector can,
for example within the framework of a principal compo-
nent analysis, be interpreted as the market. This means
that this eigenvector can be interpreted as the weights
of the single stocks within the market factor. Hence, a
market return rM can be defined by the the projection
of r on β within a time window centered at t

rM (t) =
1

N

∑

i

βiri(τ) (4)

Due to the relation

βi =
< rirM >T0,t

< r2M >T0,t

(5)

the components of the leading eigenvector are β-
coefficients in a CAPM approach (leaving out the risk-
free interest rate). With T = T0 we would have only one
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vector βi centered at time (T0/2). A time dependence of
β can be achieved by using a moderate time window T
(in the order of years). A useful criterion for determining
the window size is to increase T until all the betas are
positive for all t. To derive meaningful betas we assume
that the return follows a stochastic volatility model (see,
e.g., [2, 28]): The returns are the product of a noise fac-
tor and a slowly varying stochastic volatility factor. The
latter should be considered as constant over the window
size T . Then eq. (2) corresponds to an average over the
noise with a statistical error depending on the properties
of ri.
As first example we consider ri(τ) = γηiτ with an i.i.d.

Gaussian noise η. For a finite T we obtain a Marcenko-
Pastur spectrum [22] spread over an interval γ21±√

q)2

(instead of the degenerate eigenvalue γ2 ). For N ∼ 400,
which would be the number of only the most important
stocks within most stock markets, a time window of only
a few years would lead to a prohibitive large uncertainty.
However, this model cannot account for the occurrence
of one large eigenvalue.
This can be reproduced by the second example with

ri(τ) = γiητ . In this model all stocks follow the market
described by Gaussian noise. For T → ∞ the covariance
matrix C has one eigenvalue λ0 =

∑

i γ
2
i with eigenvec-

tor βi ∝ γi and N − 1 zero eigenvalues. At finite T the
eigenvectors and the zero eigenvalues are unchanged. λ0

is multiplied with a χ2 distributed number with mean 1
and variance 2/T . To describe the observed spectrum of
small eigenvalues we consider a second process that leads
to an additional additive component C1ij in C. We as-
sume market dominance in the sense that γ2 is of order
N and (γ,Ck

1 γ)=Akγ
2 with constants Ak is of order 1.

Perturbation theory for large N , see the appendix, shows
that C1 does not change λ0 and βi up to 1/N contribu-
tions. The remaining eigenvalues are strongly dependent
on the noise. Only their sum is given by trace(C)-λ0.
r2A(t) =trace(C)/N also has a small error. r2A corre-
sponds to r2 averaged over i and τ in the window.

r2A(t) =
1

N

∑

i

〈

r2i
〉

T,t
(6)

λ0 determines the size of the market return < r2M > via

〈

r2M
〉

T,t
=

λ0(t)

N
(7)

Equation (5) can also be utilized for any other kind of
asset return. For example we can add the returns of the
gold price to ri in order to see whether this follows the
market.
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FIG. 1. Time dependence of βi for 356 stocks of the S&P
market. The 35 stocks with largest β in 1998-2002 are shown
in red, the 20 largest in 2007-2010 in blue.
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FIG. 2. Time dependence of βi of the british FTSE market.
The 7 stocks with largest β in 1998-2002 are shown in red,
the 7 largest in 2007-2010 in blue.
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FIG. 3. Time dependence of βi for 122 stocks of the german
DAX market.The 20 stocks with largest β in 1998-2002 are
shown in red, the 15 largest in 2007-2010 in blue.
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The shape parameter of the returns distribution

In order to analyze changes in the distribution of the
stock returns we will estimate the tail parameter of its pdf
f(r). We characterize f by a Pareto-Feller distribution
[15] with f depending only on r2 and finite f(0). The
two parameters are a scale parameter r0 and a tail index
α > 2. It is given by

f(r) ∝
(

1 +
r2

(α− 2)r20

)

−(α+1)/2

(8)

Performing fits with limited statistics α and r0 are
strongly correlated. Therefore we fix r0 by the condi-
tion r20 = E[r2].
To summarize, for the empirical analysis of C in the

next section we make the following assumptions: From
the market hypothesis we can establish the leading eigen-
vector of C as CAPM β-coefficients. By the SVM as-
sumption the time average in eq. (2) corresponds to
an average over the noise. Making the market domi-
nance assumption the error on λ0 and βi is of the order
1/N,

√

2/T .

TRANSITION OF THE MARKETS IN 2006

We apply our approach to 172 stocks from the S&P
market 132 stocks of the British FTSE market and to 122
stocks from the German market. To obtain the possible
minimum window size T we look at the large eigenvalue
λ0(t) and the corresponding eigenvector. As the criterion
we use the presence of (only) positive values of βi(t). In
this way we find for T a value of roughly 3 years for all
markets. For a better visualization of the time variation
we use overlapping windows by varying t in steps of years.

The β−coefficients derived from the first eigenvector
of C for the S&P market are shown in figure 1. Ex-
cept one case around 2001 they are all positive. Some
of the stocks exhibit a substantial time variation with a
transition around 2006. Stocks with large β during the
years 1998-2002 (this time interval is called ITB for IT
bubble hereafter) change to small β values around 2006,
their values remain low in 2007-2010 (this time interval
is called FB for the finance bubble hereafter). Vice versa
those stocks with a large β in the finance bubble exhibit
small values before 2006. A similar effect occurs also for
the FTSE market (shown in figure 2) and the German
market (shown in figure 3).
A more detailed characterization can be obtained by

considering the sector s out of the GICS/TRBS classifi-
cation for all firms. An inspection of the firms with large
β during the ITB in figure 1 shows that they dominantly
belong to the IT/technology sector. Likewise firms with
large β during the FB are mostly from the financial sec-
tor.

1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Technology       

Financials       

Market risk parameter for sectors S&P market β >1

FIG. 4. Time dependence of the risk parameter R(t, s) for
the ten sectors of the S&P market.
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0

0.1
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0.7
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0.9

Telecom

Financials

Market risk parameter for sectors FTSE  market β >1

FIG. 5. Time dependence of the risk parameter R(t, s) for
the ten sectors of the FTSE market.
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0.35

0.4
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market risk parameter all β

IT Consumer DIT Consumer DIT Consumer DIT Consumer DIT Consumer DIT Consumer DIT Consumer DIT Consumer DIT Consumer D

FIG. 6. Time dependence of the risk parameter R(t, s) for
the ten sectors of the DAX market.
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FTSE97

FIG. 7. Stock returns and the gold price: Time dependence
of r2A (blue line) for the FTSE market and the correlation βg

(red line).

Since a β > 1 signals a risky investment, we can define
a market risk measure R(t, s) for the sectors by multi-
plying β > 1 with the number V (t, i) of traded shares in
each window

R(t, s) = AS

∑

iǫs

θ(βi − 1.0)βi(t) V (t, i) (9)

The normalization constant AS is chosen to have
∑

s R(t, s) = 1. In figure 4 the risk parameters from
eq. (9) is shown as function of time. Only the technol-
ogy sector (red) before the transition in 2006 and the
financial sector (blue) after 2006 exhibit large values of
the risk measure. The value of the risk measure is small
for all other sectors. Due to the time window of 3 years
the time of the transition can be fixed only with an er-
ror of 1.5 years. A similar phenomenon is seen for the
FTSE market in figure 5 with the difference that during
the ITB the value for the telecommunication sector R is
large, and the the behavior of the financial sector during
the FB is more pronounced.
This may be due to the fact that only 3 small IT firms

and a larger number of financial firms are part of our
sample from the FTSE. The transition for the S&P ap-
pears to be somewhat sharper than for FTSE due to the
smaller number N of stocks.

POSSIBLE REASONS FOR THE TRANSITION

The transition we observed poses the following ques-
tion: Is it due to an external event or can it be explained
within a statistical model? Of course the concurrence of
one external event does not exclude the latter. There
may also be weaker transitions that we cannot resolve
within our poor time resolution and limited statistics.

1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
2

3

4

5

6

7

8

9

10

11

12

S&P

DAX

FTSE

α

year

Shape parameter α for market return

FIG. 8. Time dependence of the shape parameter α. DAX
and FTSE are plotted with an offset.

However, when one reviews the possible external events
around 2006, there seem to be no obvious drastic changes
in asset prices nor any political events.

One explanation for the transitions that we observe
could be the behavior of the investors. One approach to
examine this is to compare the stock market with the
market for gold.

In figure 7 we show the average squared return r2A as in
eq. (6). It exhibits large values during the boom times
ITB and FB. We compare this with the correlation βg

of gold price return [32] with the market obtained by
inserting rg into eq. (5). βg has minima with negative
or small values where r2A is maximal and a maximum at
the transition time 2006.

The figure suggests that the behavior of these two mar-
kets is at least weakly related, but that this relationship
depends on the state of the stock market. At times when
the stock market is risky the return for gold is decoupled
from the stock market, while at calm times, the stock
and the gold market are weak substitutes for investors.

A different approach would be to relate the changes to
the way investors trade and to a technological change.
A plausible explanation could be the increased amount
of trading and the increase of high frequency trading
(HFT), which became important in the years after 2005,
see, e.g., [9, 11, 12].

If HFT corresponds to an external reason for the tran-
sition we should see differences in the market behavior be-
fore and after 2006, which can be related to HFT. The β
coefficients are relatively constant before and after 2006.
Therefore we concentrate on the market return or the
index. Since both are very similar we prefer the former
having less fluctuations. In the left panel of figure 9 we
show (as a representative example) the response time and
the traded volume at the Eurex exchange. The small re-
sponse time of fractions of msec at the maximum of the
volume indicates a growing dominance of computerized
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FIG. 9. (a) Time dependence of response time and traded volume at the Eurex exchange, source: Eurex Exchange [12]. (b)
Normalized monthly volatility of the S&P, FTSE and DAX indices, normalized VIX index.

high-frequency trading after 2005. The peak in the trad-
ing volume corresponds roughly to the second peak in
the risk measure for the S&P and FTSE market.
It is however difficult to attribute HFT to the IT bub-

ble that shows as the first peak in our risk measure. In
the right panel of figure 9 we show some estimates of
the general market volatility. We calculate the monthly
volatility (variance of the returns) for the three market
indices and also plot the VIX volatility index [33].
If the kind in which trading is done has changed, this

could also leave traces in the distribution of returns. The
market return can be characterized by a shape parameter
α using the Pareto-Feller parametrization from eq. (8).
We obtain α by maximizing the Log-Likelihood L in

each window. Errors on α correspond to a change of L
by 0.5. In figure 8 we show the time dependence of α
for the three markets. Before 2006 one finds values α ∼
4− 5 with good χ2 probabilities. For all three markets a
drop to values below 3 appears after 2006. This implies
divergent kurtosis or skewness. The χ2 probabilities are
worse, but still acceptable on the 5% level. However, the
lower probabilities are due to systematic deviations from
(8).
In figures 10 to 12 we show some typical pdfs of mar-

ket return before and after 2006 for our markets. For the
S&P market we see a perfect description by eq. (8) at
2000.8 and 2002.3, wheras at 2008.2 and 2009.7 a sub-
stantial excess at r ∼ 0 occurs and the badly described
tail extends to much larger value as before. This behavior
is expected from HFT. Advocates of HFT [12, 30] claim
that HFT leads to a more efficient market with less price
changes. Also on a daily scale we expect smaller returns.
Critics [5, 19] assert computerized trading increases in-
stabilities. As a consequence the number of large daily
returns is increased. Obviously both might be correct.
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FIG. 10. Pdf of the DAX.
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FIG. 12. Pdf of the S&P.

The different behavior of the return cannot be seen
from the average r2A in figure 7. In the boom times ITB
and FB r2A is large and of equal size. However, during
ITB it is caused by medium returns and during FB by
a decrease of medium and an increase of large returns.
For the European markets the increase of small returns
is absent. Only the enlarged tail is observed after 2006.
These markets might be less affected by HFT and there-
fore only the instability effect is seen.

CONCLUSIONS

The literature on regularities in asset returns has for
a long time described that the beta values of stocks are
time varying. We have shown that we can extend the
concept of beta values to systematically describe a risk
measure for stocks from different sectors of the econ-
omy. These slowly varying sector specific risk measure
describes ordered states in the market and identifies sec-
tors which show concentration of market risk.
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Perturbation Theory

Assume a matrix C can be written as C = C0+C1 with
a small perturbation C1. C0 has one large eigenvalue
E0 and N − 1 degenerate zero eigenvalues. Due to the
degeneracy we can impose for the eigenvectors eµi with
µ > 0 of C0 the conditions

(eν , C1 eµ) = 0 for µ, ν > 0, ν 6= µ (10)

(a, b) denotes the scalar product. The eigenvalues λµ and
eigenvectors fµ

i of C can be expanded in a power serie in
C1/E0. For µ = 0 we get

λ0 = E0 + (e0, C1 e0) +
1

E0

[

(e0, C2
1 e0)− (e0, C1 e0)2

]

(11)

f0
i =

[

1− 1

E0
(e0, C1 e0)

]

e0i +
1

E0
(C1 e0)i (12)

The remaining eigenvectors need the solution of condition
(10)

λµ = (eµ, C1 eµ)− 1

E0
(e0, C1 eµ)2 (13)

fµ
i = eµi − 1

E0
(e0, C1 eµ)eµi (14)

Note this expansion reproduces the exact result for tr C
and for C1 proportional to a unit matrix.
With (C0)ij = γiγj we have E0 = (γ, γ) = γ2 and e0i =
γi/

√

γ2. Inserting (γ,Ck
1 γ) = Ak γ2 into eqns (11) and

(12) we get for λ0 and βi =
√
Nf0

i

λ0 = γ2 +A1 +
1

γ2
(A2 −A2

1) (15)

βi =

[

1− 1

γ2
A1

]

√

N

γ2
γi +

1

γ2
ai (16)

with a2 = (N/γ2)A2. Market dominance implies E0 =
γ2 ∝ N and the constants Ak are of order 1. Eqns (15)
and (16) show that up to corrections of order 1/N the
leading eigenvalue λ0 and its eigenvector βi do not de-
pend on C1.
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