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1 Introduction and Existing Literature

For several decades the �nancial transaction tax (FTT) has been dis-
cussed as an instrument to curb �nancial market volatility, cf. Keynes (1936),
chapter 12, and Tobin (1978). Only recently -given the surging government
de�cits from responses to the global �nancial crisis- the focus has shifted to
the FTT's large potential monetary revenues.1 In this paper we investigate
the e�ects of a FTT in an agent-based arti�cial �nancial market.

The FTT's appeal stems from its potential to limit short-term specu-
lative behavior, and thus transaction volumes, on �nancial markets. This
seems a reasonable aim given the divergence of �nancial market and `real'
activity during the last decades, when increases in �nancial market transac-
tion volumes continuously exceeded those of the real economy. The expo-
nential growth of �nancial transaction volumes was fueled by a continuous
fall in transaction costs for many assets due to the technological progress
in computer-based trading and an increased competition between stock ex-
changes. One result of this development is the increased presence of so-called
high-frequency trading (HFT), which is predominantly employed by large
hedge funds.2 Indeed, higher liquidity3 seems to have come along with higher
fragility in the sense that �nancial crises, i.e. the build-up and bursting of
speculative bubbles, became more frequent.4 In this way, a FTT that favors
longer-term investments could have the e�ect of reducing the decoupling of
�nancial markets from real activity and could additionally free resources from
the �nancial sector for more productive uses.5

Critics of the FTT, most importantly from the �nancial industry, usually
bring forward the following arguments: (1) market liquidity will dry up, (2)
volatility may thereby in fact increase, (3) banks will pass on the tax burden
to �rms and other bank customers, raising capital costs in general, and (4)

1These revenues are estimated to range between 1 and 3% of national GDPs. See, e.g.
Pollin et al. (2003).

2We should note, however, that many economists actually favor HFT, arguing that
more liquid markets should be much more resilient, cf. Brogaard (2010). This might be
justi�ed if HFT activities were largely equivalent to market making. However, insofar as
many of these strategies might have a destabilizing tendency, their `net e�ect' on market
e�ciency and volatility might be ambiguous.

3Liquidity is the ability to trade large size quickly, at low costs, see Harris (2003).
4Bordo et al. (2001) �nd that the frequency of crises since 1973 has been twice that of

the Bretton Woods and classical gold standard periods. Two important explanatory factors
are �nancial globalization and expectations of bail-outs encouraging �nancial institutions
to take on higher risks.

5The di�erent activity patterns of �nancial markets and goods markets are also em-
phasized by Aoki and Yoshikawa (2007), chapter 10.
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there is a danger of capital �ights from a taxed market towards untaxed
markets. In this paper we are concerned with the �rst two (interrelated)
points.6

High liquidity, i.e. small transaction costs, fuels excess volatility (com-
pared to `fundamentals') as it makes round-trips relatively cheap, cf. Shiller
(1981). Empirical evidence suggests that FTTs, despite applying for all mar-
ket participants, harm short-term speculators disproportionately more. For
example, it has been found that an increase of a transaction tax has increased
asset holding periods, while transaction volumes have decreased.7 However,
this does not imply that volatility will decrease as well. In theory, there could
be a U-shaped relationship: for small tax rates volatility should decrease,
since (destabilizing) short-term oriented speculation becomes unpro�table.
However, larger tax rates will a�ect (stabilizing) longer-term strategies as
well, thereby reducing liquidity and potentially increasing volatility. Empir-
ical evidence on point (2) is therefore rather mixed: some studies �nd that
volatility decreases, increases or does not react at all in response to a tax
increase.8

Given these contradicting results, simulations of arti�cial �nancial mar-
kets are a promising way to non-invasively evaluate the e�ects of regula-
tory measures in general, see Westerho� (2008) for a discussion. More de-
tailed (realistic) models are usually hard to tackle analytically, so numerical
simulations are needed. Agent-based models are such computerized simu-
lations, containing a number of components (agents) interacting with each
other through prescribed rules, thus taking all the necessary ingredients for
modelling complex systems into account, cf. Aoki (2002). Numerous agent-
based models, usually within the chartist-fundamentalist framework, are able
to replicate many of the stylized facts characterizing �nancial market data.9

When used to evaluate regulatory policies, however, using overly simpli�ed
models could a�ect the conclusions. For example, many authors assume that
a market-maker provides in�nite liquidity, in which case FTTs are poten-
tially stabilizing for small tax rates. For a single asset market, see Ehrenstein

6We are currently dealing with point (4) as well. The basic idea is to have two asset
markets where only one of them is being taxed.

7See Jackson and O'Donnell (1985) and Baltagi et al. (2006). For example Baltagi et

al. (2006) �nd that a tax increase from 0.3 to 0.5% reduced trading volume in China by
roughly 1/3.

8See, e.g. Jones and Seguin (1997), Hau (2006) and Roll (1989), respectively.
9An early example is Beja and Goldman (1980). See also LeBaron et al. (1999),

Challet and Zhang (1997), Chiarella and Iori (2002), Lux and Marchesi (1999, 2000), Lux
and Schornstein (2005), Raberto et al. (2003) and Chiarella et al. (2009). Among others,
Allen and Taylor (1990) and Menkho� (1998) provide empirical evidence on the use of
chartist and fundamentalist strategies.
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(2002) and Westerho� (2003), and Westerho� (2004a). However, Giardina
and Bouchaud (2003) �nd that only substantial trading costs will actually
stabilize the market, while a small tax (of the order of a few basis points)
would have no real e�ect.10 However, since liquidity is a major determinant
of volatility in real markets, cf. Mike and Farmer (2008), it is crucial when
discussing the e�ects of FTTs. In fact, the �ndings from both laboratory
experiments and simulation studies indicate that the e�ects of a FTT may
depend on the structure of the market, see Kirchler et al. (2012) and Pelliz-
zari and Westerho� (2009). Therefore we explicitly take the microstructure
of real markets and provision of liquidity into account by simulating an order-
driven continuous double-auction (CDA).

While the models based on the marker-maker setting typically incor-
porate important psychological factors that drive the system's properties,
e.g. through herding and imitation, CDA models work at shorter time-scales
where psychological factors are either hard to model or simply assumed to be
absent. For example, Bak et al. (1997) treat the limit order book (LOB) as a
system of particles with each particle (order) having a mass (order size) and a
price (spatial position). Price variations stem from di�usion and annihilation
of particles, well-known processes in physics, which allows to obtain analyt-
ical results. Even though many important insights can be gained from such
approaches, the usual criticism is that these models operate within a zero
intelligence framework.11 This is the exact opposite to `homo oeconomicus'
in mainstream economics, but traders are unlikely to be either fully rational
or plainly stupid. Another problem is that, by avoiding detailed behavioral
assumptions, these models typically ignore budget constraints and wealth
dynamics. Nevertheless, since these models are able to replicate certain styl-
ized facts of LOB data, the structure of the trading protocol is likely to have
a signi�cant e�ect on the data-generating process. To date, few attempts
have been made to model the LOB based on detailed strategic interactions
between many boundedly rational agents, while incorporating economic con-
straints.12 Our model aims at bridging the gap between models with short

10For two ex-ante identical markets, with one country unilaterally introducing the tax,
Westerho� and Dieci (2006) �nds that the taxed market is stabilized while volatility in the
tax haven strongly increases. Using laboratory experiments with markets of di�erent size,
Hanke et al. (2010) �nd that volatility decreases (increases), when the tax is introduced
in the large (small) market.

11See Cli� and Bruten (1997). Gode and Sunder (1993) were the �rst to introduce the
zero intelligence framework in a trading setup. The authors show that the double auction
mechanism ensures allocative e�ciency irrespective of the level of rationality of the agents.

12To our knowledge, Chiarella and Iori (2002) were the �rst to incorporate trading strate-
gies into a CDA setup. The authors state that without these strategies, it is impossible
to generate realistic time-series. See also Chiarella et al. (2009).
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and long time-scales.

To our knowledge, only few studies have been dealing with FTTs in de-
tailed order-driven markets. Two examples are Mannaro et al. (2008) and
Pellizzari and Westerho� (2009). Mannaro et al. (2008) use a zero intelli-
gence framework combined with a once-a-day supply-demand based market-
clearing rule, deleting all orders not executed during the clearing session and
thus strongly limiting their impact. In this setting the FTT is found to be
destabilizing. Pellizzari and Westerho� (2009) compare the e�ects of the
FTT in di�erent market settings. The main �nding is that the FTT destabi-
lizes a CDA market, while it stabilizes a dealership market where specialists
provide abundant liquidity. One important assumption in the dealership
setup is that the dealer (or market-maker) is exempt of the tax, which is
hardly the case for a general FTT that should apply to all market partici-
pants. Moreover, these studies su�er from the assumption that all agents act
with equal probability, i.e. they neglect the importance of heterogeneous in-
vestment horizons.13 In this way, the FTT's e�ect of more severe taxation of
short-term speculation is missed.14 Another novelty compared to the exist-
ing literature is that the limit orders in our model emerge from a rule-based
decision process, rather than from a pure zero intelligence framework.

In our model two groups of agents compete in the market: Noise traders
act as liquidity providers, by posting random orders. Informed traders use
information about past prices and the fundamental value when forming their
price expectations. As in Youssefmir et al. (1998), their price expectations
depend on three di�erent time horizons (Figure 1): the investment horizon
(denoted by Hw) basically de�nes how often a particular agent acts and how
long his planning horizon is when making investment decisions. Two di�erent
trend horizons model the trend chasing behavior of agents: the backward
trend horizon (Hb) de�nes how many past price observations are relevant
when calculating the trend. The forward trend horizon (H t) de�nes how
long the agent expects his calculated trend to last before the price will start
returning to the fundamental value. This setting is very �exible concerning
the strategies and we essentially allow for all combinations of time horizons
within a certain set. Most importantly, the relative size of forward trend and
investment horizon de�nes whether an agent is a chartist, a fundamentalist
or something in between.15

13The importance of time-scales is a relatively recent research topic. See for example
Zumbach and Lynch (2001) and Borland and Bouchaud (2005).

14See Anufriev and Bottazzi (2004) for the importance of investment horizons. In an
in�nite-liquidity model, Demary (2010) incorporates investment horizons and �nds that
investment horizons increase for small tax rates.

15Below, we will impose symmetry between the trend horizons, i.e. set Hb = Ht.
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Figure 1: Time horizons in the model. In order to reduce the complexity
of the model, we will set Hb = Ht in the following. More details
can be found below.

Our main conclusions can be summarized as follows: First, the model
is able to replicate certain stylized facts of real �nancial time-series for sev-
eral parameter combinations, e.g. the model replicates the building up and
bursting of price bubbles. Second, we �nd the usual trade-o� between mon-
etary revenues (a kind of La�er curve) and stability, as higher tax revenues
come along with higher volatility. This �nding is in line with the results
from the existing literature. However, we �nd somewhat di�erent results for
very small and large tax rates, indicating that the e�ects of the tax may not
be entirely negative. In any case, the tax allows to generate substantial tax
revenues, which could be used for a number of more productive purposes.

The remainder of this paper is structured as follows: Section 2 introduces
the structure of the model. Section 3 presents pseudo-empirical results and
Section 4 concludes.

2 Model

2.1 CDA and Information

The basic model structure is as follows: the �nancial market consists of
N heterogenous agents trading one asset (which pays no dividend and has
�xed supply) against cash. Cash earns zero interest, so there are no interest
payments (or they are spent elsewhere). In order to avoid cash being sucked
out of the system due to the FTT, tax revenues are regularly redistributed
equally among all agents. The market is order-driven and the quoted price pt
(midprice) is the average of the best ask (a1) and best bid (b1) in the limit-
order book (LOB), while a1 − b1 > 0 is the bid-ask spread. In case there
are no orders in the LOB, the quoted price is simply the last quoted price.
Prices are discrete and can only be submitted on a speci�ed grid, de�ned by
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the tick-size ∆.

We simulate a CDA market, where two types of orders exist: a market
order speci�es to buy or sell a certain amount of the asset at the best available
price. A limit order additionally speci�es a limit price at which the agent
is still willing to trade. In general, market orders are guaranteed execution
but not price, since with a market order a trader is assured that it will be
executed against the best price in the LOB within a short amount of time.
Limit orders, on the other hand, are guaranteed price but not execution
as they will only be executed at, or below (above) for buy (sell) orders,
the speci�ed price which may never happen if no matching order is found.
Each transaction involves a market order transacting against an existing
limit order. Generally speaking, patient investors are more likely to place
limit orders, while impatient investors place market orders. The price of
immediacy is simply the bid-ask spread. Thus, choosing a limit price is a
strategic decision that induces a trade-o� between patience and (expected)
pro�t, cf. Harris and Hasbrouck (1996). The price dynamics within the LOB
are therefore driven by three forces: limit order arrivals, market order arrivals
(i.e. trades) and cancellations of limit orders.16

Table 1 illustrates the structure of the CDA: Buy orders are stored on the
bid side (left), while sell orders are on the ask side (right). The two relevant
features are price-priority and time-priority. Price-priority means that the
best orders are placed on top of the book, i.e. the order with the highest bid
price (best bid) and the order with the lowest ask price (best ask). Obviously,
orders stored in the LOB cannot be executed immediately: in the example,
the best bid (100.50) is smaller than the best ask (101.50) such that currently
no trade is possible. Time-priority means that, after providing price-priority,
orders with the same limit price are sorted according to submission date.
Therefore the best bid is placed above the second best bid (with the same
limit price), since it was submitted earlier to the LOB. In the example the
quoted price would be a1+b1

2
= 101.00. Note however, that this quoted price is

just a proxy for the price of an immediate transaction: For example, assume
there arrives a new sell order with a quantity of 25 and limit price 100.00.
In this case the order is marketable, such that the o�ered 25 assets are sold
at a price of 100.00, which di�ers from the quoted price of 101.00.17

Despite disregarding dividends,18 we assume a constant and positive fun-

16There is a growing literature on the stylized facts of LOB data, see e.g. Bouchaud et

al. (2002), Farmer et al. (2004), and Mike and Farmer (2008).
17Note how time- and price-priority favor the buying agent, i.e. the trade initiator, in

the Example: He submitted a limit price of 100.50 but only pays 100.00.
18Dividend payments are negligible on a short-term basis, since they are only paid once a

year and usually only have a small e�ect on wealth. Ignoring dividend payments simpli�es
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Bid Ask
Price Quantity Time Price Quantity Time
100.50 20 12:38:39 101.50 10 12:15:01
100.50 10 12:42:08 105.00 5 12:28:40
95.60 8 12:10:52 110.50 10 09:01:05
87.90 5 10:15:23 125.50 8 12:40:18

Table 1: Example for a LOB at a certain point in time.

damental value pf of the asset.19 Only informed agents know the fundamental
value, whereas the state of the LOB and the history of the quoted prices are
public information.20 Each agent is initially endowed with Si0 = Ns assets
and Ci

0 = Nsp0 units of cash. We impose short-selling and capital constraints,
such that Sit , C

i
t ≥ 0 for all t, i.

2.2 Trader Types

Two groups of traders, di�ering in the way they form their price expecta-
tions and choose their limit prices, compete in the market: there is a fraction
θ ∈ [0, 1] of informed traders and a fraction (1 − θ) of noise traders. Hence
there are Nθ = Nθ informed and (N −Nθ) noise traders.

21

One general point worth mentioning is that all agents act strategically
in terms of their order submission. This means that all agents create two
orders, where the �rst order (with corresponding limit price p(1)) is always
being sent to the LOB, while the submission of the second order (limit price
p(2)) depends on whether the �rst order was fully executed. In real markets
the second order corresponds to a take-pro�t order. For example, an agent
buying the asset today will try to sell it again at a higher price later on.
Quite interestingly, while this `buy-low/sell-high' framework is straightfor-

the analysis, since (without the FTT and with cash earning zero interest) the total amount
of stocks and cash is constant over time.

19We model trading dynamics on very short time-scales where the fundamental value is
unlikely to change signi�cantly. Furthermore, this assumption makes it possible to ignore
adverse selection problems due to news arrival. As long as the fundamental volatility is
relatively small (compared to the volatility of noise traders expectations), this does not
a�ect many of the qualitative results.

20Of course, `true' fundamentals are unobservable in reality. Another interesting feature
would be to model costly acquisition of the fundamental value.

21Liquidity providers would be another possible label for the group of noise traders.
The term noise traders however, emphasizes the random nature of their random limit
price determination.
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ward and incorporates the aim of wealth/utility maximization, we do not
know of a single study dealing with these conditional (take-pro�t) orders
within a simulation model.

2.2.1 Noise Traders

Noise traders are typically modelled as simple-minded investors. In our
setting, their limit prices are chosen randomly around the current best prices
according to

p(k) = pt e(εkt ), (1)

with k = 1, 2 and ε denoting iiN(0, σε) random numbers. With this approach,
we directly obtain two limit prices, p(1) for the �rst (unconditional) order and
and p(2) for the second (conditional) take-pro�t order. Based on these limit
prices, we identify the market side that the trader acts upon by comparing
the limit prices, as we impose that their orders should not create a sure
loss, i.e. the agent buys �rst and sells later if p(2) > p(1), or the agent
sells �rst and buys later if p(2) < p(1). In everything that follows, we treat
market orders as limit orders with limit prices equal to the best opposite
price (marketable limit orders). For example, an agent will submit a buy limit
price at most equal to the best ask. Note that we could make the distribution
of ε explicitly dependent on other variables, for example positively related
to the historical volatility of returns. This type of volatility feedback, i.e.
having noise traders choose their limit prices from a broader distribution
when historical volatility is large, would then for example generate volatility
clustering mechanically.22 However, given that we are more interested in the
behavior of informed traders and their e�ect on the system's properties, we
are reluctant to impose this feedback and hold σε constant in the following.23

We would like to stress here that we incorporate noise traders as liquidity
providers in our model, since, as will become clear in the next section, it
is possible that many of the informed traders appear on the same market
side. Thus, noise traders provide liquidity when the informed agents are not
willing to do so or at least not su�ciently to generate trades (and hence price

22For example, the noise traders in Raberto et al. (2003) are constructed exactly in
such a way, i.e. in their model informed traders are not necessary to reproduce volatility
clustering and excess kurtosis. However, this is a very `direct' way to guarantee volatility
clustering in a model. It is not clear why agents should behave like this and there is in
fact some evidence that past price volatility tends to lead the arrival of limit orders, see
Zovko and Farmer (2002).

23Note that since the width of the distribution is �xed, noise traders are more likely to
submit market orders when the spread is small, while they are more likely to submit limit
orders when the spread is large. This is in line with empirical �ndings, e.g. Biais et al.

(1995), Bae et al.(2003), and Foucault et al. (2005).

9



changes). Given the random structure of their limit prices, noise traders tend
to lose money to the informed traders on average, in particular when there
are pronounced trends. A relatively small number of noise traders is already
su�cient for the model to work. However, with such a small number of noise
traders the generated bubbles appear relatively smooth, such that prices and
returns would be autocorrelated. Therefore, θ will not be too large during
the simulations.

2.2.2 Informed Traders: Chartists and Fundamentalists

Price Expectations. Whether an informed agent buys or sells the as-
set depends on his expectation of the asset's future price at the end of his
investment horizon. When forming price expectations, informed traders use
information about past prices and fundamental values. Expectations evolve,
following Youssefmir et al. (1998), as

dp̂it+τ
dτ

= −
p̂it+τ−1 − pf

H t,i
+

(
T it +

pt − pf

H t,i

)
e
(
− τ

H t,i

)
, (2)

where p̂it is agent i's expected price at t, T it is the calculated trend and H t,i

is the forward trend horizon over which agent i expects the trend to last.
The trend itself is an weighted average rate of price changes over a backward
horizon Hb,i of the form

T it =
1

Hb,i

∫ t

t0

dp

dτ
e

(
−t− τ
Hb,i

)
dτ, (3)

where dp is the price change between (t− τ) and t and Hb,i is the backward
trend horizon of i. As noted by Youssefmir et al. (1998), Eq. (3) can be

integrated as T it =
pt−〈pt〉Hb,i

Hb,i , where 〈pt〉Hb,i is the exponential average price
over the horizonHb,i. Thus the trend measures the deviation from the moving
average of prices, which is a popular approach among technical analysts.

The evolution of trends can be obtained by taking the time derivative of
Eq. (3) which yields

dT it
dt

=
1

Hb,i

(
dp

dt
− T it

)
. (4)

Subject to the boundary condition p̂it = pt, each agent formulates his ex-
pected price development over the next Hw,i time-steps via Eq. (2) using the
calculated trend from Eq. (4). This system incorporates, depending on the
corresponding horizons, chartist and fundamentalist components. In princi-
ple, all agents are fundamentalists in the sense that for Hw,i → ∞ (given
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H t,i) the expected price will collapse towards the fundamental value. As
agents do not have in�nite investment horizons in general, the relative mag-
nitude of H t,i to Hw,i matters: agents with a small value of H t,i/Hw,i can be
considered as fundamentalists, a large value indicates a more chartist strat-
egy, and intermediate values are a combination of both. We should stress
already here that we found heterogeneity in Hb to be of minor importance
compared to Hw and H t. Therefore, in everything that follows, we simply
take Hb,i = H t,i for all agents. Note that this substantially reduces the total
number of strategies.

Technically, the nonlinear price expectations are in�uenced by three terms:
�rst, agents expect the observed trend and the di�erence between price and
fundamental value to continue in the near term (this is the second part on the
right-hand side of Eq. (2)). However, the in�uence of this term decreases for
increasing τ (and hence for large Hw,i). Second, via the decreasing impact of
the calculated trend, the agent expects the price to eventually relax towards

the fundamental value at a rate of − p̂it−pf
Ht,i . Note that fundamentalism is de-

�ned in terms of the expected price at the end of the investment horizon, but
a fundamentalist may nevertheless try to make a pro�t based on short-term
trends.

Figure 2: Example: Development of expected price for di�erent forward
trend horizons, T it = 1, Hw,i = 500, pt = 110 and pft = 100.

In the simulations, we discretize Eqs. (2) and (4), with agents forming
their price expectations over the next Hw,i days and updating the trends at
the end of each day. We will discuss the di�erent time-scales of our model
in more detail in section 2.5. As an illustration, Figure 2 shows, for di�erent
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forward trend horizons, the expected price development of an agent with
T it = 1 and an investment horizon of 500. The current price is 110 and the
fundamental value equals 100. Obviously, for relatively small trend horizons
the agent expects the price to revert towards the fundamental value soon. For
larger trend horizons, the agent expects the trend to last in the near term but
the price to revert towards the fundamental value at the end of his planning
period. For very large trend horizons, this no longer holds. Consequently
there is a low level of speculation for small trend horizons, in which case the
dynamics are dominated by the �rst term in Eq. (2).

Note that this way of modelling informed agents implies that all of them
are trend-followers, at least to some extent. This clearly a�ects the auto-
correlation of prices and returns and makes the (in-)e�ciency of the market
a serious issue, at least when the fraction of informed traders is not too small.

Limit Prices. The limit price determination of informed agents can be
split into three parts: In the �rst part the agent uses Eqs. (2) and (4) to
forecast the evolution of the midprice between t and t + Hw,i. In case the
agent expects the price to be higher (lower) than the current price he will
submit a buy (sell) order. The limit prices of this order and the corresponding
conditional order depend on the expected development of the price between
t and t+Hw,i.

In the second step, the agent uses information about the midprice and
a proxy for the expected price volatility to form more detailed expectations
about the best bid and ask over time. As proxy for the expected price
volatility, we use the average distance between the current best and second
best prices on the two market sides.24 This is calculated as

σ̂it =
(a2 − a1) + (b1 − b2)

2
, (5)

where a2 and b2 denote the second best ask and bid prices, respectively. In
this view, the average price change due to immediate market orders wiping
out the best prices on either market side is being calculated. Note that this
is the only channel in our model where (informed) traders use higher-order
information on limit prices. We leave it to future research to model the
information usage of LOB data in more detail.

Equipped with expectations about the midprice, the corresponding price
volatility, and the decision to buy or sell from the �rst step, the agent then

24The motivation for using the average gap is based on the �nding that large price
changes are in fact due to gaps in the LOB, see e.g. Farmer et al. (2004) and Farmer and
Lillo (2004).
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chooses his limit prices as follows: De�ning

p̂imax = max{p̂t:τ :t+Hw,i}
p̂imin = min{p̂t:τ :t+Hw,i} (6)

gives the maximum and minimum of the expected midprice over the invest-
ment horizon of agent i. For an initial buy order, the agent then has to
decide between buying the asset right away using a market order with price
a1 or setting a limit order at the minimum expected ask, i.e. p̂imin + 0.5σ̂it.
Quite intuitively, he will choose the minimum of the two, in order to take
favorable future developments into account. Therefore, if he expects the best
ask to drop signi�cantly below the current value in the near future, he will
submit a limit order with a price below the current best ask. For the limit
price of the conditional sell order the agent has to decide between the maxi-
mum expected bid, i.e. p̂imax − 0.5σ̂it and the expected bid at the end of his
investment horizon, and naturally takes the maximum of the two. Similar
arguments can be used for the case of an initial sell order. More formally,
the strategies of �nding limit prices can be written as follows:

De�nition 1. Buy limit prices: p̂t+Hw,i > pt.

p(1) = bi = min(a1, p̂
i
min + 0.5σ̂it)

p(2) = ai = max(p̂imax − 0.5σ̂it, p̂t+Hw,i − 0.5σ̂it).
(7)

De�nition 2. Sell limit prices: p̂t+Hw,i < pt.

p(1) = ai = max(b1, p̂
i
max − 0.5σ̂it)

p(2) = bi = min(p̂imin + 0.5σ̂it, p̂t+Hw,i + 0.5σ̂it).
(8)

With this de�nition it may happen, in particular for large spreads, small
trends and/or small deviations from the fundamental value, that the two
limit prices are not in line with the agents' price expectations. For example,
an agent with an expected price increase might end up with limit prices
p(1) > p(2). To ensure consistency, such orders will not be submitted to the
LOB.

Figure 3 illustrates the concept for a sell order: Again the current price is
equal to 110 and the fundamental value equals 100. The investment horizon is
Hw,i = 500. The expected price at the end of the investment horizon is below
the current price, therefore the agent will �rst sell the asset and try to buy
it back at a lower price. Since the agent expects a positive trend to continue
in the near term, p̂imax exceeds the current price, while p̂imin coincides with
p̂t+Hw,i . She will, therefore, place a sell order with limit price ai = p̂imax−0.5σit
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and a conditional buy order with limit price bi = p̂t+Hw,i+0.5σit. The expected
return (after tax) of the agent equals re = | ln(p(2)/p(1))|−χ, with χ denoting
the two-sided tax rate. Thus, the tax drives a wedge between the agents' two
limit prices.

Figure 3: Example: Limit price determination for a sell order.

Price Bubbles and FTT. At this point, a brief explanation on the
building up and bursting of price bubbles, and their relation to the FTT, is in
order:25 At the beginning of the simulation, random strategies are assigned to
the informed traders. Thus, approximately half of the population is willing to
buy the asset while the other half is willing to sell, so the price will randomly
move upwards or downwards. Suppose it moves upwards, then the trend
signals of informed agents with high-frequency strategies will turn positive.
This can be the beginning of the bubble, where exactly those traders induce
additional positive price changes through their positive demand, which in
turn a�ects the calculated trend variables of lower-frequency traders. Thus,
the buy pressure increases even more, where the sellers of the asset are in-
formed agents using more fundamentalist strategies or noise traders. The
larger the distortion between price and fundamental value, the more fragile
the bubble becomes: �rst, the buying power of potential buyers decreases
due to the higher price and lower amount of cash available. This implies

25See Giardina and Bouchaud (2003) for a similar explanation.
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that the trend signals of high-frequency traders become smaller, possibly
even turning negative. A random negative shock, induced by a fundamen-
talist trader or a noise trader, raises the possibility of a sudden downturn,
where again the trend signals of lower-frequency traders follow those of the
high-frequency traders. In this case a negative bubble may appear and the
described process starts again, however now with negative signs.

This description of a bubble process also clari�es the arguments favoring
a FTT: High-frequency oriented chartists have an incentive to create bubbles,
since trend-following strategies are only pro�table when there is some trend
to follow. These traders are also the �rst to leave the sinking ship when the
bubble bursts, again amplifying the negative trend. This is particularly true
for high-frequency strategies which would be very costly when the buy/sell
signal is constantly wrong. Thus, with a large proportion of fundamental
traders in the population, the initial bubble might not even build up. The
FTT should be one way to increase the proportion of fundamentalists, as
it reduces the pro�tability of marginally pro�table trades in the �rst place.
In this way, it should lower the frequency of `false' signals appearing in the
system. In Section 3 we will discuss the e�ects of such a tax within our
model.

2.3 Asset Demand

Any (limit) order is a commitment to trade (at most) a certain quantity
at the speci�ed limit price. In this part, we focus on the determination of
the order sizes. While de�ning a strategy that maps price expectations into
order sizes appears to be a trivial task, our imposed short-selling and budget
constraints complicate things considerably.26 In our setting all agents are
initially endowed with the same level and composition of wealth. The wealth
of agent i at time t is simply W i

t = ptS
i
t +Ci

t and his wealth at the next date
is W i

t+1 = pt+1S
i
t +Ci

t = W i
t + dptS

i
t . Therefore, given the price expectations

of the agent, the trading behavior reduces to an optimization problem with
respect to the asset holdings Sit .

As future price developments are uncertain, we assume agents to be risk-
averse. To some extent, this risk-aversion is re�ected in the determination
of the informed agents' limit prices in Eqs. (7-8), but should also be present
in the choice of the order sizes. The usual approach in the literature is to
either use some form of utility maximization (often CARA or CRRA utility
functions, see e.g. Chiarella et al., 2009, and Bottazzi et al., 2005), to use ran-
dom order sizes (see e.g. Mannaro et al., 2008), or use rules-of-thumb, most

26See Franke and Asada (2008).
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importantly unit orders with constant size equal to one (see e.g. Pellizzari
and Westerho�, 2009). There are problems with all these approaches: First,
much of the literature favors the CARA approach, mainly due to the fact
that under this approach the desired asset holdings are independent of wealth
(for Gaussian returns). However, when taking accumulated asset positions
into account, the actual order size (desired minus actual holdings) is by def-
inition not independent of wealth, cf. Franke (2008). Imposing short-selling
and credit constraints will then yield order sizes that are not in line with
economic principles. From an economic viewpoint, random and unit order
sizes are not very appealing as well, as they imply that order sizes are in-
dependent of current wealth and behavioral parameters. We overcome these
problems by combining economic variables with rule-of thumb behavior.27

The order size depends on three crucial variables: the agent's aggressive-
ness, his available resources, and, in case of a market order, the liquidity
available at the best opposite price. We specify the demand function as

dit =

{[
αi(·) Ci

t

(1+χ/2)bi

]
if buy order,

[αi(·)Sit ] if sell order,
(9)

where [x] denotes rounding towards minus in�nity and αi(·) ∈ (0, 1] is an
aggressiveness parameter determining the proportion of cash/assets an agent
actually wants to use for investment. Note that only half the tax rate is
taken into account since buyer and seller will share the tax burden equally.

In principle, αi(·) could take any functional form, which is why we left
the arguments unspeci�ed. Following Giardina and Bouchaud (2003) and
Martinez-Jaramillo (2007), we simply set

αi(·) = ᾱ, (10)

i.e. a �xed parameter identical for all agents.28 Note that, by construction,
the agent's budget constraint is never binding since he willingly only uses a
fraction of his wealth to invest in the risky asset.29 Thus, agents are reluctant
to submit very large orders which are likely to have strong market impact.30

27Note that rule-of-thumb behavior, although having the weakness of being `ad-hoc', is
more realistic in terms of how actual people make decisions, see Gigerenzer (2008).

28As an alternative, we could make agents' aggressiveness explicitly dependent on eco-
nomic variables (such as volatility) or on the relative weight of chartism and fundamental-
ism. In such a setting, the aggressiveness of chartists would be higher, since chartists are
usually found to be less risk-averse than fundamentalists, see e.g. Menkho� and Schmidt
(2005). In order to reduce the complexity of the current model, we leave that for future
research.

29This ensures that agents do not run out of assets/cash.
30See Harris (2003), Ch. 15.
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Additionally, when submitting market orders, agents will at most trade
the amount available at the opposite best price, denoted as d1, i.e.

d̄it = min(d1, d
i
t). (11)

This takes into account the empirical fact that orders removing more than
the volume available at the opposite best quote are rare.31

A brief note on the e�ects of the FTT is in order here. The tax a�ects
transaction volumes negatively in two ways: �rst via Eq. (9) single order sizes
necessarily become smaller due to the negative impact of the tax. Second,
agents will only post orders with an expected return larger than the tax
rate. Without the tax, the only requirement to post an order is that the two
limit prices di�er by at least one tick. Depending on the tax rate, orders
with rather small expected returns will not be posted anymore. In this way,
possible liquidity reductions for higher tax rates may be both due to noise
and informed traders. Thus, the tax drives a wedge between the agents' two
limit prices. Note that for larger tax rates, price changes should become less
frequent, but larger on average. For example, in case of an initial market
order, the limit price of the second order needs to be substantially far away
from the current price in order to have a positive expected return. The
probability of this second order to be executed is quite small, but if so the
resulting price change will be quite large.

2.4 Cancellation

The price dynamics of the LOB are driven by the non-trivial interplay
between liquidity takers and liquidity providers.32 Prices may change due to
the arrival of market and limit orders, and the cancellation of existing limit
orders. Limit orders can disappear from the LOB in four di�erent ways: 1) a
newly arriving market order is executed against an existing limit order, 2) a
limit order can remain at most Hw time-steps (days) in the LOB, afterwards
it will be deleted automatically, 3) an agent being chosen to act again will
cancel any outstanding orders, 4) an agent cancels his outstanding orders
autonomously (possibly even at random), thus the order `evaporates'.

While the �rst three channels are obvious, the fourth channel has usually
attracted not as much attention in agent-based modelling. However, Farmer

31Farmer and Lillo (2004) have shown that roughly 87% of the market orders creating
an immediate price change have a volume equal to the volume at the opposite best, while
97% of the market orders creating an immediate price change have a volume at most of
the sum of volumes available at the two best opposite prices.

32See Bouchaud et al. (2003), Bouchaud et al. (2004) and Toth et al. (2011).
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et al. (2004) �nd that cancellation occurs roughly 32% of the time at the
best price and 68% of the time inside the book. Challet and Stinchcombe
(2001) �nd that typically 80% (20%) of all orders are cancelled (executed).
The main argument for this large number is that placing and cancelling limit
orders is usually free of charge and therefore a strategic opportunity for all
types of traders.33 Thus, when modelling the LOB, cancellation of orders
cannot be neglected.34

There may well be an important link between investment horizons and the
average order lifetime: It is widely believed that a power-law in the distribu-
tion of investment horizons may be the driving force behind the power-law
tail of price changes.35 However, when investment horizons are indeed fat
tailed, the same should be true for order lifetimes. And indeed, the lifetime
of an order increases as one moves away from the best bid/ask. Patient in-
vestors are therefore less likely to cancel their orders, as found in Potters and
Bouchaud (2003).

For the sake of simplicity, we assume a Poisson process of order cancella-
tion for the noise traders as in Daniels et al. (2001). At the beginning of each
time-step, each noise trader cancels his outstanding orders with probability
πcanc. For informed traders, we neglect this channel of order cancellation,
since this would inject a signi�cant amount of (additional) randomness to
their strategies.

2.5 Trading Process and Time

This section contains more details on the trading process and the issue of
timing. While we model the LOB at the highest possible frequency, our basic
analysis is concerned with the daily frequency. The agents' time horizons are
therefore measured in terms of days, such that, for example, each agent
approaches the market every Hw,i days on average (Poisson waiting times).36

At the beginning of each day t, we randomly reshu�e the list of agents willing

33See e.g. Cao et al. (2008). Note that fundamental traders will post limit orders with
prices far away from the best quotes. If the agent is not patient enough, he will cancel his
order prematurely.

34See also Challet and Stinchcombe (2001).
35There is some indirect evidence of a power-law distribution in time-scales, see e.g.

Lynch and Zumbach (2003). For a theoretical argument, see Lillo (2007). There, hetero-
geneity in the time horizons is identi�ed as the most likely explanation of the fat-tailed
distribution of limit-order prices.

36Thus the probability of a particular agent being chosen equals (Hw,i)−1. Agents with
relatively small investment horizons are thus acting more frequently than those with longer
horizons.
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to approach the market on this given day (active agents).37 Within the day,
each active agent approaches the market and potentially submits new orders.
Informed traders calculate their price expectations over the next Hw,i days,
using the most recent input variables in Eq. (2) and the last observation
for the trend in Eq. (4), which is being updated only at the end of the day.
Orders will remain in the LOB for at most Hw,i days. In everything that
follows, we restrict ourselves to analyzing daily data only.

As a summary, the algorithm does the following on each day:

1. Start of the day: Construct the list of active agents and randomly reshu�e it.
Agents then sequentially approach the market.

2. Intradaily activity:

• The active agent i deletes his outstanding orders and (possibly) generates his
two orders. The �rst order is submitted to the LOB.

• Execute all possible trades (sequentially) taking into account price-time pri-
ority and send conditional orders to the LOB. Repeat until no trades possible
anymore. Update wealth continuously.

3. End of the day: Save the closing midprice. Update trends and wealth accordingly.
Update outstanding orders (reduce order lifetime) and deleted expired ones. Cancel
outstanding orders of noise traders with probability πcanc. At times, redistribute
the tax revenues equally across all agents. Go back to step 1 until the desired
number of time-steps (days) has been reached.

At the start of the simulations, we need to choose values for the di�er-
ent time horizons. For simplicity, we �x H t for all informed traders using
the same value (equal to the average value in the admissible range) and
only incorporate heterogeneity in Hw.38 In the following, we de�ne the ad-
missible range of Hw as all values between 20 and 640, in steps of 20, i.e.
Hw ∈ {20, 40, 60, · · · , 640}. By default, investment horizons are uniformly
chosen from this set and kept constant throughout the simulation. Some-
what surprisingly, we found learning to have no discernable e�ect within our
model. We will brie�y comment on this issue in section 3.2.2.

3 Pseudo-Empirical Results

In this section we present pseudo-empirical results from the model sim-
ulations. If not stated otherwise, the reported results are the outcome of
Monte-Carlo simulations of 22, 500 days, disregarding an initial period of

37Hence, we ignore strategic considerations on behalf of the agents on the exact (intra-
day) time of approaching the market.

38Recall that we also replaced the backward trend horizon by the forward trend horizon.
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Parameter Value Description
Hw ∈ {20, 40, 60, · · · , 640} Admissible range, Hw

N = 500 Total number of agents
Ns = 100 Parameter for initial endowment
p0, p

f = 100 Starting value: price/fundamental value
ᾱ = 0.10 Order aggressiveness
∆ = 10−3 Tick size for the price
θ = 0.20 Fraction of informed traders
πcanc = 0.01 Cancellation probability (noise traders)
σε = 10−3 Volatility for noise traders' expectations
χ = 0 Tax rate

Table 2: Baseline parameter setting for the simulations.

2,500 days, each of which are repeated 20 times with di�erent random seeds.39

In order to get a feeling for the model's properties, we will �rst present time-
series of single simulation runs. For such single runs, we will always present
time-series for the most interesting variables (e.g. price and log-returns) and
comment on certain statistical properties. Afterwards, we will investigate the
e�ects of a FTT based on the Monte-Carlo approach. The basic parameter
values used in our simulations and brief descriptions for all parameters are
given in Table 2.

At this point, we should mention one of the main drawbacks of agent-
based modelling, namely the large number of degrees of freedom in the choice
of the parameter values. This holds even more, when modelling very complex
decision-making of agents, as in our case. While one should employ empirical
estimates whenever possible, in case there is no (and perhaps never will be)
empirical estimate, the modeler has to decide about this value. This is often
denoted as `calibration', which is a neat description for something which can
be dangerously misleading. Obviously, a model cannot be robust to changes
in all parameters, but should be considered relevant only if (1) it is able to
produce realistic dynamics for (economically) plausible parameters values,
and (2) is robust with respect to changing certain parameters.

To stress this point, consider for example the parameter θ: What would
be a reasonable value for the fraction of informed traders? A priori we
should expect a relatively large number of agents to use information about
past prices and the fundamental value when forming price expectations in real
markets. If so, how may of those agents will be chartists and fundamentalists,
respectively? Within our model, we found θ to be a very important parameter

39We will see below that the variablitiy across simulations is typically quite small, so
this small number of runs is indeed already su�cient.
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for the time-series properties. Consequently, while there is always scope for
�ne-tuning of the parameters in order to obtain more `realistic' time-series we
found the qualitative results to be rather robust with respect to parameter
changes as compared to our baseline scenario in Table 2.40 For the e�ects of
the FTT, we found the results to be quite robust as well.

3.1 Baseline Scenario and Dependence on θ

One obvious question is whether our model is able to replicate some
of the stylized facts of empirical �nancial time-series. Without going into
the details, the most basic stylized facts of asset prices and returns can be
summarized as follows:41

• Martingale property (unit root) of prices: Price dynamics close to a random walk.
Zero expected return, with only the very �rst lags positively autocorrelated (at least
for high-frequency data).

• Fat-tailed return distribution: Positive excess kurtosis and power-law tails both
imply more probability mass in the center and the tails of the return distribution
(compared to Gaussian). Tail exponent around 3.

• Volatility clustering: Autoregressive dependence with very slow (hyperbolic) decay
in various measures of volatility.

Recently, many more stylized facts of order-book data have been identi�ed
which we will not comment on in the following.42

Here, we do not aim to test quantitatively whether all of these stylized
facts are present in the model. Rather we present several basic properties,
which are illustrated by individual representative time-series from the model.
For the sake of brevity, we restrict ourselves to explaining the baseline sce-
nario in detail. Since we found that the parameter θ plays an important
role for the model properties, we brie�y illustrate the e�ects of changing this
parameter. Additionally, we investigated the model properties with respect
to certain parameter variations in more detail (unreported results, available
upon request from the authors). In the next section we then move on to the
introduction of a FTT. Again, we should stress that agents' strategies are
kept constant throughout the simulations, see section 3.2.2 below.

40In principle, we would be happy to use an approach similar to Franke and Westerho�
(2012), where the `optimal' parameters (with respect to the stylized facts) are estimated
via moment-matching criteria. However, given the complexity of our model, and the
related high-number of degrees-of-freedom, parameter estimation would be prohibitive.

41See e.g. Lux (2008).
42See Bouchaud et al. (2008) for an extensive overview.
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Figure 4: Simulation results: Single run, θ = 0.2, baseline scenario. Top
left: price (blue) and fundamental value (green). Top right: log-
returns. Center left: rank-frequency plot (ccdf, log-log-scale) of
log-returns. Center right: Autocorrelation of raw (blue), abso-
lute returns (green), and 95% con�dence interval for absence of
autocorrelations. Bottom left: bid-ask spread (in ticks). Bottom
right: transaction volumes.
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Figure 5: Simulation results: Single run, baseline scenario. Dynamics of rel-
ative wealth of average informed trader vs. average noise trader.
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Figure 6 shows the results for a single simulation run of the baseline sce-
nario. The top left panel shows the price and the fundamental value. We see
that the price �uctuates around the fundamental value over time, and there
is a continuous building up and bursting of bubbles. On the top right panel
we see the corresponding log-returns, with kurtosis and skewness being 12.28
and -.04, respectively. Thus, the return distribution is highly non-normal but
roughly symmetric around zero. In this regard, the center left panel further
quanti�es the fat tail of the return distribution by means of the comple-
mentary cumulative distribution (ccdf) of the return time-series on a log-log
scale. The tail region shows a somewhat linear decay, with an estimated tail
exponent of 3.50.43 This value lies within the range observed in real mar-
kets. The center right panel shows the autocorrelation function (ACF) of
the raw and absolute returns. For the raw returns (blue), the bid-ask bounce
is the major source for the �rst few negative lags. However, due to the
trend-chasing behavior of informed traders, larger values of θ lead to more
autocorrelated prices and returns (see below), which wash-out the bid-ask
bounce. For higher lags, the autocorrelations are marginally insigni�cant.
For the absolute returns, the �rst lags are signi�cantly positively autocorre-
lated, i.e. there is a small level of volatility clustering. However, the decay of
the autocorrelation function is much faster than empirically observed. As we
will see below, the trend-chasing behavior of informed traders tends to induce
a somewhat larger level of autocorrelation in the raw returns, as compared
to the absolute returns. The bottom left panel shows the bid-ask spread (in
ticks). We should �rst note that the average spread is rather large, here
with an average value of 6.09 ticks. We see some persistence in the spread,
so large (small) spreads tend to be followed by large (small) spreads. The
bottom right panel shows the transaction volumes, i.e. the number of stocks
traded per time step. Quite interestingly, the Figure shows a smaller (if any)
level of persistence in the transaction volumes, such that large price changes
appear to be more or less unrelated to large volumes traded.

We checked that large price changes are in fact driven by gaps in the LOB
(unreported), as argued by Farmer and Lillo (2004). Furthermore we checked
that, as long as there are some trends to follow, informed traders tend to gain,
while noise traders tend to lose on average. Figure 5 illustrates this for the
simulation run in Figure 4, where we show the average wealth di�erence
between informed and noise traders over time, which steadily increases over
time. Even though the interpretation is di�erent, this �nding is consistent

43For the estimation of the tail parameter, we used the usual Hill (1975) estimator based
on the top 15% observations of the absolute returns, i.e. ignoring signs. The values are
not a�ected by focusing on positive or negative returns only.
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Figure 6: Simulation results: Single run, θ = 0. Top left: price (blue) and
fundamental value (green). Top right: log-returns. Center left:
rank-frequency plot (ccdf, log-log-scale) of log-returns. Center
right: Autocorrelation of raw (blue), absolute returns (green), and
95% con�dence interval for absence of autocorrelations. Bottom
left: bid-ask spread (in ticks). Bottom right: transaction volumes.

with the results of Kyle (1985), where more informed traders tend to gain
from noise traders. However, we should stress that these are only average
values. There are also informed traders that lose substantial amounts of
their wealth, in part to other informed traders, but also to some of the noise
traders. In section 3.2.1 below we look at this issue in more detail, with a
particular focus on the e�ects of the FTT on di�erent subsets (in terms of
trading strategies) of the population of informed traders.

As a next step, we brie�y compare the �ndings for di�erent values of θ.
Figures 6 and 7 show the results for a single simulation run for θ = 0 and .5,
respectively. For θ = 0, the price is completely unrelated to the fundamental
value: here it continuously exceeds the fundamental value. Without informed
traders there is no force that would push the price towards the fundamental
value. Quite interestingly, the return distribution has a fat tail already in
the case with noise traders only (kurtosis 8.29, tail parameter 3.24) and the
�rst lags of the ACFs are again signi�cant. In contrast, there is no funda-
mental persistence in the returns, the bid-ask spread, and the transaction
volumes, whatsoever. Also the bid-ask spread is substantially larger (19.88
ticks on average), while transaction volumes are smaller. This changes for
large values of θ, where we see very smooth bubbles, which translate into
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Figure 7: Simulation results: Single run, θ = 0.5. Top left: price (blue) and
fundamental value (green). Top right: log-returns. Center left:
rank-frequency plot (ccdf, log-log-scale) of log-returns. Center
right: Autocorrelation of raw (blue), absolute returns (green), and
95% con�dence interval for absence of autocorrelations. Bottom
left: bid-ask spread (in ticks). Bottom right: transaction volumes.

highly autocorrelated raw and absolute returns, with the raw returns having
a substantially larger positive autocorrelation at all lags, as compared to the
absolute returns.44 Choosing θ such that the ACF of the absolute returns
decays hyperbolically results in a very ine�cient market, with the ACF of
the raw returns decaying similarly slowly. In part, we already saw this for
the simulation of the baseline scenario. Still, our choice of θ in the baseline
scenario takes this trade-o� into account.

An important reason for the small level of volatility clustering is probably
the absence of the leverage e�ect in our model.45 The basic idea is that
leverage would increase the necessity of portfolio adjustments after large
negative price changes, i.e. large downward spirals.46 We leave this model
extension for future research.

44The simulated prices are qualitatively very similar to the results for the unstable case
in Youssefmir et al. (1998). There, the analysis is based on a much simpler version of the
model, solved based on a mean-�eld approximation.

45In simple terms, the leverage e�ect corresponds to a negative correlation between past
returns and future volatility, see e.g. Bouchaud et al. (2001).

46See e.g. Thurner et al. (2012).
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3.2 E�ects of the FTT

Now we turn to the e�ects of a (two-sided) FTT. We will present aggre-
gate results from Monte-Carlo simulations for 18 di�erent tax rates.47 The
parameters used are summarized in Table 2.

Figure 8 summarizes the most important results from Monte-Carlo sim-
ulations for varying tax rates. The top left panel shows the tax revenues in
dependence on the tax rate. We �nd the usual La�er curve relationship, i.e.
the tax revenues tend to increase for small tax rates until they start decreas-
ing again for larger ones. The top right panel shows that the tails become
fatter for larger tax rates. This indicates that the variance of the most ex-
treme observations becomes substantially larger. Note that the tail exponent
is usually larger than 2, except for very large tax rates where we might end
up in the Levy-stable regime. The center left panel shows that the tax leads
to a signi�cant increase of the bid-ask spread. Thus, as expected, the liquid-
ity is signi�cantly reduced.48 The center right panel shows that transaction
volumes tend to decrease in the tax rate, which is not surprising given that
all trades become less pro�table. Most interestingly, the bottom panels show
the distortion (left) and volatility (right), respectively. Quite surprisingly,
the distortion tends to decrease for very small tax rates, increases later on
and reaches the initial level without tax only for relatively large tax rates.
In contrast, the volatility tends to increase for very small to intermediate
tax rates, but decreases later on.49 We will comment on the `kinks', i.e. the
strong changes in some of the variables for very small tax rates in section
3.2.1. The �ndings for the distortion and volatility can be explained by the
wedge that the tax drives between agents' two limit prices. Only those limit
prices corresponding to a positive expected return (post-tax) are submitted
to the LOB. However, these orders are unlikely to be executed. For exam-
ple, in case of an initial market order, the limit price of the second order
needs to be substantially far away from the current price. However, this

47We used the following tax rates (in percent): 0 (baseline scenario), 0.01, 0.02, 0.03,
· · · , 0.18%. We use 0.18% as the maximum value, since the LOB may be empty at times
for larger tax rates and we require at least one order to be on each side of the book to be
existent at any point in time.

48Note the relatively large change for very small tax rates (also present in the transaction
volumes and the distortion). This e�ect is mostly driven by liquidity reductions from very
short-term oriented informed traders, whose trades become unpro�table even for these
very small tax rates. For larger tax rates, also longer-term oriented strategies are a�ected
and the distortion increases again.

49For larger tax rates, the volatility increases substantially. We do not show the results,
since the LOB might become very sparse, with only few or no orders present at certain
points in time.
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Figure 8: Simulation results: Monte-Carlo simulations. Dependence on χ.
Top left: tax revenues. Top right: tail exponent (top 15% obser-
vations). Center left: bid-ask spread. Center right: transaction
volumes. Bottom left: distortion (| ln(p/pf )|). Bottom right:
volatility (absolute price change). Plotted are mean values (solid
lines), plus and minus one standard deviation (dashed lines).

second order will probably never be executed. In this way, price �uctuations
are relatively rare (volatility decreases), but if the price changes it does so
substantially (tail index smaller). Additionally, the informed traders make
sure that prices do not depart too much from the fundamental value. We
should also note that the tax rate with the maximum volatility level is close
to the tax rate that maximizes tax revenues, representing the usual trade-o�
between stability and tax revenues.

Summing up, the results for small tax rates are roughly in line with those
from the literature, except for the strong decrease in distortion for very small
tax rates.50 This suggests that a small tax rate should reduce liquidity and
transaction volumes, but might actually bring prices closer to the fundamen-
tal values and would only marginally increase volatility. Additionally, our
�ndings also show that larger tax rates may not create entirely negative ef-
fects. In this case, comparable values for distortion and volatility as in the
no-tax case come along with substantial tax revenues.

To some extent, our �ndings might be driven by the high level of stability
in the baseline scenario. As one of the referees of this paper rightly pointed
out, the stabilizing potential of the FTT is limited in our setting since the

50See Mannaro et al. (2008) and Pellizzari and Westerho� (2009) for the CDA case.
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average levels of both distortion and volatility are arguably quite small com-
pared to real markets in the baseline scenario. Thus, it might not be too
surprising that the attempt to stabilize an already relatively stable �nancial
market may not yield the desired outcome. Nevertheless, it seems even more
remarkable that the average level of distortion is being reduced for small tax
rates in our setup. We would expect similar e�ect for the distortion in real
markets, whereas the negative impact on volatility might be less severe.

3.2.1 Investment Horizons, Performance, and FTT

In the previous section, we analyzed the e�ects of the FTT in terms of
aggregate system properties. Here, given that we expect the tax to a�ect
the behavior of certain groups of traders in di�erent ways, we take a closer
look at di�erent subgroups of the population of the informed traders. In
everything that follows, we use the parameters from the baseline scenario
and a set of rather small tax rates compared to the previous sections.51 The
main reason for using these smaller rates is the relatively high sensitivity of
informed traders' trading decisions, in particular for very small investment
horizons, to minor changes in the tax rate. Here we mainly aim at explaining
the `kinks', for example in distortion, in Figure 8 for very small tax rates,
but focusing on the behavior of certain groups of informed traders. Here we
do not randomly assign investment horizons to the informed traders within
the admissible range, but rather divide them into three discrete groups: All
agents in group 1 use the same small investment horizon, those in group 2
an intermediate value, and those in group 3 a large value. To be precise, for
the three groups Hw corresponds to the minimum, the midpoint, and the
maximum investment horizons in the admissible range, respectively. Thus,
group 1 uses more of a chartist strategy, group 3 more of a fundamentalist
strategy, and group 2 something in between.

We see that informed traders tend to gain, while noise traders tend to
lose on average (cf. Figure 5). In the following, by analyzing the wealth
dynamics of the three groups (relative to the performance of noise traders),
we will show that the distribution of gains and losses of informed traders is
far from uniform. Most importantly, we �nd that the increase in investment
horizons shown before is mainly due to the very poor performance of group
1, i.e. the chartists. This can be seen from Figures 9-11, where we plot the
average wealth di�erence (in absolute terms) between the three groups and
the group of noise traders over time for single simulation runs and di�erent
tax rates.

51The maximum tax rate used here is only 0.0035%.

28



������a�	

�����m
�
�
��
�

�

���

���

���

���

���

�	��

����� ����� ����� 	���� ������ ������ ������ ������ �	���� ������

a�����a2a a�����a3a a�����apa

Figure 9: Single run, baseline scenario with three groups of informed traders
with small, intermediate, and large Hw. Average wealth dif-
ferences between the three groups and noise traders over time.
Group 1 (3) are the chartists (fundamentalists), while group 2
uses an intermediate strategy.
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Figure 10: Single run, baseline scenario with small tax rate and three
groups of informed traders with small, intermediate, and large
Hw. Average wealth di�erences between the three groups and
noise traders over time. Group 1 (3) are the chartists (funda-
mentalists), while group 2 uses an intermediate strategy.
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Figure 11: Single run, baseline scenario with larger tax rate and three
groups of informed traders with small, intermediate, and large
Hw. Average wealth di�erences between the three groups and
noise traders over time. Group 1 (3) are the chartists (funda-
mentalists), while group 2 uses an intermediate strategy.

Figure 9 shows that, without a tax group 2 (green line) performs best, i.e.
the intermediate strategy is the most pro�table one, as it tends to strongly
gain in wealth over time. Similarly, group 3 tends to gain as well, but on a
smaller scale, so the fundamental strategy is also pro�table. Somewhat sur-
prisingly, the worst performers are in group 1, whose average wealth tends
to be comparable to the wealth of noise traders (at times even smaller as
the wealth di�erence may be negative and highly cyclical). Thus, chartists
tend to perform very poorly on average. An explanation for the good perfor-
mance of group 2 is that group 1 is the major source of predictable bubbles
(high-frequency traders), while group 3 tries to drive prices back towards the
fundamental level (low-frequency traders). The intermediate strategy works
on a higher frequency than the fundamental traders, thereby leading them
to follow the trend at times or expecting reversal towards the fundamental
value at other times.

Figure 10 shows the wealth dynamics for a very small tax rate. We
see that the ordering is conserved, since group 2 still performs better on
average than the other groups. As before, chartists tend to perform very
poorly, in this example even losing money over time, while fundamentalists
and those with an intermediate strategy tend to gain. Thus, for very small
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Figure 12: Simulation results: Monte-Carlo simulations. Fraction of order
submissions relative to the activity frequency for noise traders
(black), and group 1-3 in dependence of the tax rate.

tax rates, chartists continue posting very unpro�table orders. This changes
for very large tax rates, as we can see from Figure 11: here the average
wealth of chartists now exceeds that of the noise traders. Large tax rates
reduce the amount of strong chartist orders, so chartists post fewer orders (i.e.
e�ectively work on lower frequencies) and perform better. Also we see that
their wealth dynamics are signi�cantly less cyclical, so reducing their posting
of high-frequency orders tends to reduce the occurrence of bubbles and bursts.
Interestingly, we see that the fundamental strategy becomes most pro�table
for larger tax rates. Note that in this case there are practically no cyclical
�uctuations, so the calculated trends (necessary for calculating the expected
prices) tend to be very small. This implies that the trending component for
all strategies becomes negligible, so practically all traders tend to expect the
price to revert towards the fundamental value. From this viewpoint, it is
clear that fundamental traders tend to be the most successful, since their
orders have the longest lifetime, i.e. the highest probability that their two
limit prices are being hit by the noise traders. The longer investment horizon
also implies that the di�erence between the current price and the expected
price can be larger, such that the majority of orders with expected pro�ts
(after tax) are posted by the group of fundamental traders.

Figure 12 illustrates the e�ects of di�erent tax rates on the order sub-
mission process of the three groups. There we show the average fraction of
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Figure 13: Simulation results: Monte-Carlo simulations. Dependence on
χ for relatively small tax rates with three groups of informed
traders. Top left: tax revenues. Top right: tail exponent
(top 15% observations). Center left: bid-ask spread. Center
right: transaction volumes. Bottom left: distortion (| ln(p/pf )|).
Bottom right: volatility (absolute price change). Plotted are
mean values (solid lines), plus and minus one standard devia-
tion (dashed lines).

order submissions relative to the frequency of being active for all groups.
First, we see that noise traders (black) are practically una�ected by these
relatively small tax rates, as they post orders practically every time when
they become active (i.e. the fraction of order submissions is close to 1). In
contrast, we see that group 1 posts orders roughly 60% of the time without
a tax, but this fraction approaches zero relatively quickly. We see a step-
wise relationship, which is due to the fact that prices (and thus the taxes
to be paid) are not continuous, but depend on the tick size. For groups 2
and 3 we observe similar relationships, but the values are on a signi�cantly
higher level for these relatively small tax rates. Quite interestingly, at the
highest tax rate in this analysis, group 3 continues posting orders 80% of
the time. The kinks in the previous section are therefore mainly driven by
the inactivity of chartists already for relatively small tax rates (cf. Figure
13). As expected, the tax a�ects strategies with higher trading frequency
signi�cantly more. Note that for such small tax rates, the other groups con-
tinue posting orders, so the absence of strong speculative bubbles reduces
the average distortion. The fraction of order submissions for group 2 and 3
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also tend to approach zero for larger tax rates, with group 3 being active also
for larger tax rates (unreported). For very large tax rates, i.e. those used in
the previous sections, even the fundamental traders act rarely, such that the
average distortion starts increasing again.

3.2.2 FTT and Learning

An important drawback of our analysis is the absence of learning. Since
the FTT is actually meant to harm short-term oriented strategies more than
proportionally, we would expect adjustments in trading strategies in real
markets. In our setting, agents can only respond to the FTT by deciding
not to trade, but, as usual in most related models, we keep their underlying
strategies �xed throughout the simulation. Hence, adjustments in trading
strategies in response to the FTT might a�ect our results.

Quite surprisingly, our �ndings are quite robust with respect to the pres-
ence of learning, cf. Fricke (2013) for details. This strengthens our con�dence
in the results presented here, but we should stress that the performance of
the learning algorithms is typically quite poor.52 Our simulation experiments
indicate that the market development is apparently too complex and erratic
to warrant systematic learning at least over the time horizons that we have
considered. Moreover, we found that de�ning an adequate �tness function
for our setting is not as straightforward as it seems. Based on the results
from the previous section, one might want to use relative changes in wealth
(over some past horizon) as an indicator of agents' trading performances.
However, this �tness function comes with certain problems as it is di�cult
to distinguish pro�ts coming from trading actively and those due to changes
in the book value of assets.

4 Conclusions

In this paper we have presented a detailed arti�cial �nancial market,
where agents compete against each other within a CDA mechanism. While
incorporating the usual chartist/fundamentalist/noise trader framework, our
model has the advantage of explicitly accounting for the importance of time
horizons in �nancial markets. We showed evidence that the model is able to
replicate certain well-known stylized fact of �nancial time-series, among them
the martingale property, fat-tailed return distributions, and, albeit to a lesser
extent, volatility clustering. Moreover, for certain parameter combinations

52We tested a variety of (social) learning algorithms, using genetic algorithms, where
successful strategies tend to replicate and spread through the population.
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the model is able to generate the building-up and bursting of asset price
bubbles.

The main focus of this paper was on the e�ects of a FTT in the arti�cial
�nancial market. In this regard, we �nd the usual trade-o� between mone-
tary revenues (La�er curve) and stability, as higher tax revenues come along
with higher volatility. The results for small tax rates are roughly in line with
those from the literature, except for the strong decrease in distortion for very
small tax rates.53 This suggests that a small tax rate should reduce liquidity
and transaction volumes, but might actually bring prices closer to the fun-
damental values and would only marginally increase volatility. Additionally,
we also show that larger tax rates may not create entirely negative e�ects. In
this case, comparable values for distortion and volatility as in the no-tax case
come along with substantial tax revenues. These revenues could be used for
a number of productive purposes. Additionally, the reduced market activity
also frees-up resources, both in terms of �nancial and human capital, that
could be directed to other parts of the economy.

We have also discussed a major drawback of our approach, namely the
absence of learning. Moreover, in reality we would need to weigh the di�erent
e�ects in order to come up with a welfare-optimizing solution. For example,
here we simply redistributed the tax revenues among the traders to keep
total wealth constant. In political discussions it has often been proposed
to use these revenues for investment in developing countries; more recently
the motivation has been to compensate for the costs of the �nancial crisis.
Given the extraordinary high transaction volumes in real markets, partly
driven by the arrival of HFTs, it appears promising to introduce a small tax
to reduce the possibly distorting e�ects of their activities and generate large
tax revenues at the same time. In part, our results suggest that imposing
a very small tax would make HFT strategies highly unpro�table. However,
since their trading algorithms are usually not meant to follow trends or drive
prices towards some fundamental value, their e�ects on the macro-properties
of the system are still under debate. In the end, even a tiny FTT would lead
to a shrinking of the �nancial sector, allowing to extract highly productive
resources (e.g. human capital) for other purposes.

The presented model is very �exible and serves as an illustration of the
complexity of the optimization task in real markets. The self-referential na-
ture of this task makes the extraction of valuable information quite di�cult.
It is worth noting that the order generation process of individuals is still
poorly understood, in contrast to the aggregate order-book dynamics for

53See Mannaro et al. (2008) and Pellizzari and Westerho� (2009) for the CDA case.
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which a number of scaling-laws have been identi�ed.54 We hope that future
research, for example by means of laboratory experiments, may help us in
deciphering these processes. It is crucial to understand the agents' individ-
ual behavior at the micro-level to generate more realistic dynamics at the
macro-level. In the end, we believe that our model is an ambitious �rst step
towards more realistic `wind-channels' for testing regulatory policies. In fu-
ture research, we plan to tackle several of the issues mentioned throughout
the text.

54See e.g. Zovko and Farmer (2002).
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