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ABSTRACT 
PERSISTENT ZEROS: THE EXTENSIVE 
MARGIN OF TRADE* 

Julian Hinz, Amrei Stammann, and Joschka Wanner 

The extensive margin of bilateral trade exhibits a high level of persistence that cannot be 
explained by geography or trade policy.  We combine a heterogeneous firms model of 
international trade with bounded productivity with features from the firm dynamics literature to 
derive expressions for an exporting country’s participation in a specific destination market in a 
given period. The model framework asks for a dynamic binary choice estimator with two or three 
sets of high-dimensional fixed effects. To mitigate the incidental parameter problem associated 
with nonlinear fixed effects models, we characterize and implement suitable bias corrections. 
Extensive simulation experiments confirm the desirable statistical properties of the bias-corrected 
estimators. Empirically, taking two sources of persistence — true state dependence and 
unobserved heterogeneity — into account using a dynamic specification, along with appropriate 
fixed effects and bias corrections, changes the estimated effects considerably: out of the most 
commonly studied potential determinants (joint WTO membership,  common regional trade 
agreement, and shared currency), only sharing a common currency retains a significant effect on 
whether two countries trade with each other at all in our preferred estimation. 
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1 Introduction

What induces country pairs to trade? In 2006, still more than one quarter of potential bilateral

trade relations reported zero trade flows. Figure 1 breaks down the share of nonzero trade flows

in 2006 along the percentiles of four different ad-hoc indicators of “trade potential”: bilateral

distance; product of GDPs; “naive” gravity, i.e. the product of GDPs divided by their bilateral

distance; and the latter when excluding country pairs in FTAs, with common currencies or

common colonial history. The x-axis indicates the potential trade volume, i.e. the joint economic

size and/or proximity of any two countries. All four plots paint a common picture: the black dots,

covering all country pairs, show a strong general relationship between trade potential and actual

Figure 1: Determinants of the Extensive Margin of Trade — Gravity and Persistence.
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nonzero trade. The blue and red dots split the country pairs according to whether the two did or

did not engage in trade in the previous year. The clearly separated pattern for the two groups

highlights a remarkable persistence of trade relations, even after controlling for differences in

trade potential in terms of distance, size, and bilateral trade policy. More than 75 percent of

those country pairs in the lowest percentile of trade potential trade again in 2006, provided they

already did so in 2005. On the other hand, even comparably large and close pairs are likely not

to trade in 2006 if they did not trade in 2005 either.1,2

In this paper we examine the determinants of the extensive margin of international trade, explic-

itly taking its persistence into account. We combine a heterogeneous firms model of international

trade with bounded productivity with features from the firm dynamics literature to derive ex-

pressions for an exporting country’s participation in a specific destination market in a given

period. These expressions depend on partly unobserved (i) exporter-time, (ii) destination-time,

and (iii) exporter-destination specific components, as well as on (iv) whether the exporter has

already served the market in the previous period, and on (v) exporter-destination-time specific

gravity-type trade cost determinants. We estimate the model making use of recent advances in

the estimation of binary choice estimators with high-dimensional fixed effects to address (i)-(iii).

The inclusion of fixed effects in a binary choice setting induces an incidental parameter problem

that is potentially aggravated by the dynamics introduced by (iv). To mitigate this bias, we

characterize and implement new analytical and jackknife bias corrections for coefficients and

estimates of average partial effects in our specifications with two- and three-way fixed effects.

Extensive simulation experiments demonstrate the desirable statistical properties of our pro-

posed bias-corrected two- and three-way fixed effect logit and probit estimators. The empirical

results provide evidence that both unobserved bilateral factors and true state dependence due to

entry dynamics contribute strongly to the high persistence. Taking this persistence into account

changes the coefficients considerably: out of the most commonly studied potential determinants

(joint WTO membership, common regional trade agreement, and shared currency), only sharing

a common currency has a significant effect on whether two countries trade with each other at all.

Our paper builds on recent insights from three flourishing strands of literature. First, our paper is

related to the literature on the extensive margin of international trade. A number of theoretical

frameworks have sought to propose mechanisms behind the decisions of firms to export, and

their aggregate implications of zero or nonzero trade flows at the country pair level. Analogous to

the intensive margin counterpart, these theories have established gravity-like determinants, such

as two countries’ bilateral distance, a free trade agreement, a common currency and joint mem-

1Note that throughout the paper, “country pair” refers to a directed pair of countries, i.e. Germany-France and
France-Germany are two distinct country pairs.

2The years 2005–2006 are the last available in our data set. A very similar pattern emerges for other points in
time (see Figure 6 in Appendix A where the same graph is reproduced for the years 1990–1991). If longer time
intervals are considered, a similar picture remains, but the relationship becomes considerably weaker (see Figure 7 in
Appendix A for the years 1997–2006).
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bership in the WTO. Egger and Larch (2011) and Egger, Larch, Staub, and Winkelmann (2011)

append an extensive margin to an Anderson and Wincoop (2003)-type model by assuming export

participation to be determined by (homogeneous) firms weighing operating profits and bilateral

fixed costs of exporting. This results in a two-part model in which, given a country’s participation

in exporting to any given destination, trade flows follow structural gravity. Helpman, Melitz,

and Rubinstein (2008) build a model of international trade with heterogeneous firms. Here, the

volume of trade between two countries can change either because incumbent firms expand their

operations, or because of new competitors entering into a market. Eaton, Kortum, and Sotelo

(2013) move away from the arguably simplifying notion of a continuum of firms and develop

a model of a finite set of heterogeneous firms. Here, no firm may export to a given market

because of their individual efficiency draws. Our model proposed in this paper directly builds

on Helpman, Melitz, and Rubinstein (2008) and extends it by features from the literature on

firm dynamics. In this firm-level literature, Das, Roberts, and Tybout (2007) develop a dynamic

discrete-choice model in which current export participation depends on previous exporting, and

hence sunk costs, and observable characteristics of profits from exporting. Alessandria and Choi

(2007) extend this line of research and develop a general equilibrium framework that takes

sunk costs and “period-by-period” fixed costs into account, showing that, contrary to previous

partial equilibrium evidence, aggregate effects are negligible for the US. More recent works have

looked at new exporter dynamics (Ruhl and Willis, 2017), emphasizing that sunk costs may be

relatively smaller and continuation costs relatively larger than previously assumed. Bernard,

Bøler, Massari, Reyes, and Taglioni (2017) stand somewhat in contrast to this finding, showing

that first and second year growth rates may suffer from a bias as a result of different entry dates

throughout the year. Berman, Rebeyrol, and Vicard (2019) note the important role of “demand

learning” and firms’ updating of their future demand and market participation. In a similar vein,

Piveteau (2019) develops a model in which new firms accumulate consumers — or fail to do

so — determining entry and exit. While these newer models feature rich firm-level predictions,

they require tailor-made econometric models for their estimation. Our model abstracts from the

specific role of new firms and has the advantage of yielding an econometric specification and

demanding an estimator that remains general and flexible to be applied in other contexts.

Second, our paper builds on advances in the literature on the gravity equation and the intensive

margin of international trade. With the advent of what has now been coined structural gravity

(Head and Mayer, 2014), the gravity framework has gained rich microfoundations. Anderson

and Wincoop (2003) and Eaton and Kortum (2002) each formulate an underlying structure

for exporting and importing countries that in estimations can easily be captured by appropri-

ate two-way country(-time) fixed effects, as first noted by Feenstra (2004) and Redding and

Venables (2004). Although not theoretically motivated, since Baier and Bergstrand (2007) it

has furthermore become standard to include country pair fixed effects to tackle unobservable

bilateral characteristics. Estimating the model introduced in this paper similarly calls for at least
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two sets of fixed effects, specific to exporters and importers in a given year. Additionally, and

following Baier and Bergstrand (2007), there is no reason to believe that bilateral unobservables

should not be a problem in the context of the extensive margin. Our preferred estimation of the

model thus includes the “full set” of fixed effects that has become standard in the estimation of

gravity models of the intensive margin of trade: exporter-year, importer-year and bilateral fixed

effects that leave only bilateral-time-specific variation for the estimation of parameters of interest.

Third, the paper builds on and contributes to the literature on the econometrics of generalized

linear models (GLMs) with fixed effects. Recent advances in this literature have made it possible

to go beyond ordinary linear models in the context of high-dimensional fixed effects by providing

fast and feasible algorithms (see Guimarães and Portugal (2010), Stammann (2018), and Hinz,

Hudlet, and Wanner (2019)).3 As known since Neyman and Scott (1948), the inclusion of fixed

effects potentially introduces an incidental parameter problem, leading to biased estimates. In

the last few years, there have been a number of advances to correct this bias, and a variety of

approaches have been proposed (see Fernández-Val and Weidner (2018) for a recent overview).

Fernández-Val and Weidner (2016) develop analytical and jackknife bias corrections for nonlinear

maximum likelihood estimators in static and dynamic models with individual and time effects

for structural parameters and average partial effects. In Fernández-Val and Weidner (2018) they

generalize their previous findings and show that the order of the bias induced by fixed effects in

a wide family of models translates into a simple heuristic p/n, with n being the sample size and

p the number of estimated parameters. Recently, Czarnowske and Stammann (2019) show how

analytical bias corrections can be efficiently implemented in a high-dimensional fixed effects

setting using the methods described by Stammann (2018). Our paper is complementary to

computational and econometric contributions on the estimation of the intensive margin of trade.

Larch, Wanner, Yotov, and Zylkin (2019) present a feasible procedure to estimate pseudo-poisson

(PPML) models with three high-dimensional fixed effects. Correia, Guimarães, and Zylkin (2019)

generalize this estimation procedure to arbitrary sets of fixed effects. Weidner and Zylkin (2019)

investigate the incidental parameter problem in three-way fixed effects PPML models under

fixed T asymptotics and suggest an appropriate jackknife bias correction. We contribute to this

literature by characterizing and implementing analytical and jackknife bias corrections for our

specific two- and three-way fixed effects in the context of binary choice models. This helps us

mitigate the bias induced by estimating our theory-consistent model, requiring exporter-time

(it), importer-time (jt), and in our preferred specification bilateral fixed effects (ij).

The remainder of the paper is structured as follows. In Section 2 we build a dynamic model of

3Stammann, Heiß, and McFadden (2016) have shown in the context of binary choice models with individual
fixed effects that a weighted version of the Frisch-Waugh-Lovell theorem (Frisch and Waugh (1933), Lovell (1963))
can be incorporated in a standard Newton-Raphson optimization procedure. This result paved the way to derive
a computationally efficient algorithm for all GLMs with high-dimensional multi-way fixed effects (see Stammann
(2018)). More recently, Hinz, Hudlet, and Wanner (2019) offer a different way to partial out fixed effects using a
modification of the Gauss-Seidel algorithm proposed by Guimarães and Portugal (2010).
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the extensive margin of international trade. The model yields aggregate predictions that can be

structurally estimated using a probit model with high-dimensional fixed effects. In Section 3 we

describe the estimator and bias correction procedure. We show its performance in Monte Carlo

simulations in Section 4, before finally estimating the theoretical model in Section 5. Section 6

concludes.

2 An Empirical Model of the Extensive Margin of Trade

As a theoretical foundation for our econometric specification, we consider a stylized dynamic

Melitz (2003)-type heterogeneous firms model of international trade. Following Helpman, Melitz,

and Rubinstein (2008, henceforth HMR) we assume a bounded productivity distribution, like a

truncated Pareto in HMR’s case. We deviate from HMR by explicitly stating a time dimension

and, unlike in the standard Melitz setting, separate fixed exporting costs into costs of entering

a new market and costs of selling in a given market (as in Alessandria and Choi, 2007; Das,

Roberts, and Tybout, 2007).

There are N countries, indexed by i and j, each of which consumes and produces a continuum

of products. The representative consumer in j receives utility according to a CES utility function:

ujt =

(∫
ω∈Ωjt

(ξijt)
1
σ qjt(ω)

σ−1
σ dω

) σ
σ−1

with σ > 1. (1)

where qjt(ω) is j’s consumption of product ω in period t, Ωjt is the set of products available

in j, σ is the elasticity of substitution across products, and ξijt is a log-normally distributed

idiosyncratic demand shock (with µξ = 0 and σξ = 1) for goods from country i in country j

and period t (similar to Eaton, Kortum, and Kramarz, 2011). Demand in country j for good ω

depends on this demand shock, j’s overall expenditure Ejt, and the good price pjt(ω) relative to

the overall price level as captured by the price index Pjt:

qjt(ω) =
pjt(ω)−σ

P 1−σ
jt

ξijtEjt.

with Pjt =

(∫
ω∈Ωjt

ξijtpjt(ω)1−σdω

) 1
1−σ

.

Each country has a fixed continuum of potentially active firms that have different productivities

drawn from the distribution Git(ϕ), where ϕ ∈ (0, ϕ∗it]. The productivity distribution evolves over

time and firms’ ranks within the productivity distribution can also change from period to period,

though firms that in the last period did not export to a market already served by a domestic

competitor are assumed not to directly jump to being the country’s most productive firm in the
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next period.4 Each period, a firm can decide to pay a fixed cost fprodit and start production of a

differentiated variety using labour l as its only input, such that lt(ω) = fprodit + qt(ω)/ϕt(ω). A

firm’s marginal cost of providing one unit of its good to market j consists of iceberg trade costs

τijt and labour costs wit/ϕt(ω). Firms compete with each other in monopolistic competition and

charge a constant markup over marginal costs. Therefore, the price of a good ω produced in i

and sold in j is:

pijt(ω) =
σ

σ − 1

τijtwit
ϕt(ω)

.

A firm’s operating profits in market j are hence given by:

π̃ijt(ω) =
1

σ

(
σ

σ − 1

τijtwit
ϕt(ω)

)1−σ
P σ−1
jt ξijtEjt.

If a firm wants to export to a market j in period t, it has to pay a fixed exporting cost fexpijt . The

exporting fixed cost is higher by a market entry cost factor fentry ≥ 1 if the firm has not been

active in the respective market in the previous period. For tractability, the entry cost factor is

assumed to be constant across countries and time. Capturing the export decision by a binary

variable yijt(ω), i.e. equal to one if the firm decides to serve market j in period t, we can

formalize a firm’s realized profits in market j as follows:

πijt(ω) = yijt(ω)
{
π̃ijt(ω)− fexpijt (fentry)[1−yij(t−1)(ω)]

}
.

In the absence of entry costs, a firm would simply compare its operating profits to the fixed

exporting cost and decide to serve a market if the former are greater than the latter. With market

entry costs, a firm might be willing to incur a loss in the current period if expected future profits

from that same market outweigh the initial loss. Firms discount future profits at a rate δ per

period. To keep things tractable and allow us to derive a theory-consistent estimation expression

below, we assume that firms expect their future operating profits from and fixed costs of serving

a given market to be equal to today’s values, i.e. Et[π̃ij(t+s)] = π̃ijt and Et[fexpij(t+s)] = fexpijt

∀s ∈ N.5 The current value of today’s and all future operating profits from market j is then

given by
∑∞

s=0(1 − δ)sπ̃ijt =
π̃ijt
δ . A firm will decide to serve a destination market if these

discounted expected profits exceed the sum of today’s and discounted future fixed costs of entry

and exporting, given by

fexpijt (fentry)(1−yij(t−1)(ω)) +

∞∑
s=1

(1− δ)sfexpijt =
fexpijt

δ

(
1 + δ(fentry − 1)

)(1−yij(t−1)(ω))
.

4Note that we could in principle also allow for new firm entry into the pool of potential producers without changing
our final expression for the extensive margin as long as the new entrants cannot become the country’s most productive
firm right away.

5Note that our final expression for the extensive margin also holds if firms instead expect their operating profits
from serving an export market to grow at a constant rate ḡ < δ.
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Given this model setup, the question whether a country exports to another country at all can be

considered by looking at the most productive firm (with ϕ∗t ) only. Denoting that firm’s product

by ω∗, we can capture the aggregate extensive margin by the binary variable yijt as follows:

yijt = yijt(ω
∗) =


1 if

(
1
σ

(
σ
σ−1

τijtwit
ϕ∗
it

)1−σ
Pσ−1
jt ξijtEjt

)
fexpijt (1+δ(fentry−1))

(1−yij(t−1))
≥ 1,

0 else.

(2)

Country i is hence more likely to export to country j in period t if (i) bilateral variable trade costs

are lower; (ii) wages in i, and hence production costs, are lower; (iii) the productivity of the most

productive firm is higher, again reducing production costs; (iv) competitive pressure, inversely

captured by the price index, in j is lower, corresponding to the idea of inward multilateral

resistance coined by Anderson and Wincoop (2003) in the intensive margin context; (v) the

market in j is larger; (vi) bilateral fixed costs of exporting are smaller; or (vii) i’s most productive

firm already served market j in the previous period and therefore does not have to pay the

market entry cost. Note that (i) to (iv) all act via higher operating profits and depend on the

elasticity of substitution between goods. The higher this elasticity, the stronger the reaction

of profits to changes in any of these factors. At the same time, a higher elasticity reduces the

mark-up firms can charge and hence makes it generally harder to earn enough profits to mitigate

the fixed costs of exporting. Further note that the importance of the entry costs depends on

the discount factor. Intuitively, if agents are more patient, the one-time entry costs matter less

compared to the repeatedly earned profits.

In order to turn equation (2) into the empirical expression that we will bring to the data, we

take the natural logarithm and group all exporter-time and importer-time specific components

and capture them with corresponding sets of fixed effects. Further, we need to specify the fixed

and variable trade costs. In keeping with the existing literature, we model them as a linear

combination of different observable bilateral variables, such as geographical distance, whether i

and j are both WTO members, or whether i and j share a common currency. In our most general

specification, we additionally include country pair fixed effects. Following Baier and Bergstrand

(2007), this is common practice in the estimation of the determinants of the intensive margin of

trade in order to avoid endogeneity due to unobserved heterogeneity. Further, these bilateral

fixed effects may capture (part of) the strong persistence documented above.6 We then arrive at

the following econometric model:

yijt =

1 if κ+ λit + ψjt + βyyij(t−1) + x′ijtβx + µij ≥ ζijt,

0 else,
(3)

6If the trade costs further include any exporter(-time) or importer(-time) specific components, these are captured
by the aforementioned corresponding sets of fixed effects.
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where κ = −σ log(σ)−(1−σ) log(σ−1)− log(1+δ(fentry−1)), λit = (1−σ)(log(wit)− log(ϕ∗it)),

ψjt = (σ − 1) log(Pjt) + log(Ejt), βy = log(1 + δ(fentry − 1)), x′ijtβx + µij = (1− σ) log(τijt)−
log(fexpijt ), and ζijt = − log(ξijt) ∼ N (0, 1). The error term distribution implies that a probit

estimator is the appropriate choice to estimate our model. Alternatively, we could deviate from

Eaton, Kortum, and Kramarz (2011) and assume a log-logistic distribution for the idiosyncratic

demand shocks, which would lead to a logit specification.

Our theoretical framework implies a flexible empirical specification that can reconcile the

extensive margin estimation with the stylized fact presented in Section 1. Note that we chose

to make a number of simplifying assumptions in order to achieve the clear theory-consistent

interpretation of specification (3). An alternative interpretation of equation (3) as a reduced-

from representation of a more elaborate and realistic model (similar e.g. to how Roberts and

Tybout, 1997, motivate their empirical consideration) is equally justifiable. At the same time,

while our model is written along the lines of Helpman, Melitz, and Rubinstein (2008), which

remains the benchmark for the empirical assessment of the (aggregate) extensive margin of trade,

it is not decisive for our empirical specification that zero trade flows result from a truncated

productivity distribution instead of a discrete number of firms (as in Eaton, Kortum, and Sotelo,

2013) or from fixed exporting costs in a Krugman (1980)-type homogeneous firms setting (as in

Egger and Larch, 2011; Egger, Larch, et al., 2011).

3 Binary Response Estimators with High-Dimensional Fixed Effects

Having set up the empirical framework, we now turn to the estimation procedure. As equation

(3) demands two- or three-way fixed effects to capture unobservable characteristics, we describe

how to implement suitable binary choice estimators. In a first step, we review a recent procedure

for estimating probit and logit models with high-dimensional fixed effects. In a second step, we

characterize appropriate bias correction techniques to address the induced incidental parameter

problem.

3.1 Feasible Estimation

In this subsection, we sketch how to estimate structural parameters, average partial effects

(APEs), and the corresponding standard errors in a binary response setting in the presence of

high-dimensional fixed effects. Let Z = [D,X], where D is the dummy matrix corresponding

to the fixed effects and X is a matrix of further regressors. Note that X may also include

predetermined variables. Further, let α denote the vector of fixed effects, β the vector of

structural parameters, and θ = [α′,β′]′. The log-likelihood contribution of the ijt-th observation

is

`ijt(β,αijt) = yijt log(Fijt) + (1− yijt) log(1− Fijt),
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Table 1: Expressions and Derivatives for Logit and Probit Models

Logit Probit

Fijt (1 + exp(−ηijt))−1 Φ(ηijt)

∂ηFijt Fijt(1− Fijt) φ(ηijt)

∂η2Fijt ∂ηFijt(1− 2Fijt) −ηijtφ(ηijt)

νijt (yijt − Fijt)/∂ηFijt (yijt − Fijt)/∂ηFijt
Hijt 1 ∂ηFijt/(Fijt(1− Fijt))
ωijt ∂ηFijt Hijt∂ηFijt

∂η`ijt yijt − Fijt Hijt(yijt − Fijt)

Note: ηijt = x′ijtβ + λit + ψjt or ηijt = x′ijtβ + λit + ψjt + µij
is the linear predictor.

where αijt = [λit, ψjt]
′ in the case of two-way fixed effects and αijt = [λit, ψjt, µij ]

′ in the case

of three-way fixed effects.7 Further, Fijt is either the logistic or the standard normal cumulative

distribution function. See Table 1 for the relevant expressions and derivatives.

The standard approach to estimate binary choice models is to maximize the following log-

likelihood function:

L(β,α) =
I∑
i=1

J∑
j=1

T∑
t=1

`ijt(β,αijt)

using Newton’s method. The update in the (r − 1)-th iteration is

θr − θr−1 = (Z′Ω̂Z)−1Z′Ω̂ν̂ , (4)

where (Z′Ω̂Z)−1 and Z′Ω̂ν̂ denote the Hessian and gradient of the log-likelihood, respectively,

and Ω̂ is a diagonal weighting matrix with diag(Ω̂) = ω̂.

The brute-force computation of equation (4) quickly becomes computationally demanding, if

not impossible.8 Thus Stammann (2018) suggests a straightforward strategy called pseudo-

demeaning, which mimics the well-known within transformation for linear regression models.

The approach allows us to update the structural parameters without having to explicitly update

the incidental parameters, which leads to the following concentrated version of equation (4)

7Note that we use for brevity notation for balanced data.
8In a balanced data set (I = J = N) with two-way fixed effects the routine requires to estimate ≈ 2NT fixed

effects associated with a 2NT × 2NT Hessian. In the case of three-way fixed effects, the number of parameters to be
estimated is even ≈ N(N − 1) × 2NT . In a trade panel data set with 200 countries and 50 years, the number of
fixed effects in the latter case amounts to 59800 parameters.
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βr − βr−1 =
(

(M̂X)′Ω̂(M̂X)
)−1

(M̂X)′Ω̂(M̂ν̂) , (5)

where M̂ν̂ is the concentrated gradient, M̂X is the concentrated Hessian, and M̂ = IIJT − P̂ =

IIJT −D(D′Ω̂D)−1D′Ω̂ is known as the residual projection that partials out the fixed effects.

After convergence of the optimization routine, the standard errors associated with the structural

parameters can be computed from the inverse of the concentrated Hessian.

Since the computation of M̂ itself is problematic even in moderately large data sets, Stammann

(2018) proposes to calculate M̂ν̂ and M̂X using the method of alternating projections (MAP),

which only requires repeatedly performing group-specific one-way weighted within transfor-

mations. This approach is feasible, since these within transformations translate into simple

scalar transformations (see Stammann, Heiß, and McFadden, 2016).9 Note that all expressions

containing M̂ or P̂ can be calculated efficiently based on the MAP.

Next, we address the estimation of APEs. An estimator for the APEs is

δ̂k =
1

IJT

I∑
i=1

J∑
j=1

T∑
t=1

∆̂k
ijt ,

where the partial effect of the k-th regressor ∆̂k
ijt is either ∆̂k

ijt = ∂F̂ijt/∂xijtk in the case of a

continuous regressor or ∆̂k
ijt = F̂ijt|xijtk=1

− F̂ijt|xijtk=0
in the case of a binary regressors. Another

question that arises in the context of APEs is how to calculate appropriate standard errors, even

in the case of high-dimensional fixed effects. A possible candidate is the delta method, but in

its standard form it requires the entire covariance matrix, which we do not obtain using the

pseudo-demeaning approach. However, as outlined in Fernández-Val and Weidner (2016) and

Czarnowske and Stammann (2019) in the context of individual and time fixed effects, it is

possible to use a concentrated version of the delta method. In the following we present the

feasible covariance estimators for our two-way and three-way error structure.10 An appropriate

covariance estimator for the APEs of the two-way fixed effects model is

V̂δ =
1

I2J2T 2


 I∑
i=1

J∑
j=1

T∑
t=1

̂̄∆ijt

 I∑
i=1

J∑
j=1

T∑
t=1

̂̄∆ijt

′
︸ ︷︷ ︸

v1

+

I∑
i=1

J∑
j=1

T∑
t=1

Γ̂ijtΓ̂
′
ijt︸ ︷︷ ︸

v2

 , (6)

9For further details, we refer the reader to Appendix B.1, where we sketch the MAP for our application of two-way
and three-way models, and provide the entire optimization routine corresponding to equation (5).

10The corresponding asymptotic distribution of the estimators is provided in Appendix B.3.
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and of the three-way error component model

V̂δ =
1

I2J2T 2


 I∑
i=1

J∑
j=1

T∑
t=1

̂̄∆ijt

 I∑
i=1

J∑
j=1

T∑
t=1

̂̄∆ijt

′
︸ ︷︷ ︸

v1

+
I∑
i=1

J∑
j=1

T∑
t=1

Γ̂ijtΓ̂
′
ijt︸ ︷︷ ︸

v2

+ 2

I∑
i=1

J∑
j=1

T∑
s>t

̂̄∆ijtΓ̂
′
ijs︸ ︷︷ ︸

v3

 , (7)

where in both cases ̂̄∆ijt = ∆̂ijt − δ̂, ∆̂ijt = [∆̂1
ijt, . . . , ∆̂

m
ijt]
′, δ̂ = [δ̂1, . . . , δ̂m]′, and

Γ̂ijt =

 I∑
i=1

J∑
j=1

T∑
t=1

∂β∆̂ijt −
(
P̂X
)
ijt
∂η∆̂ijt

′ Ŵ−1
(
M̂X

)
ijt
ω̂ijtν̂ijt −

(
P̂Ψ̂
)
ijt
∂η ˆ̀

ijt ,

with Ψ̂ijt = ∂η∆̂ijt/ω̂ijt, and ∂η ˆ̀
ijt defined in Table 1. To clarify notation, ∂ιg(·) denotes the

first order partial derivative of an arbitrary function g(·) with respect to some parameter ι. Note,

that the term v2 refers to the concentrated delta method. The terms v1 and v3 are in the spirit of

Fernández-Val and Weidner (2016) to improve the finite sample properties. These are, on the

one hand, the variation induced by estimating sample instead of population means (v1). On the

other hand, if we are concerned about the strict exogeneity assumption (as we are in the case of

dynamic three-way error structure models), the covariance between the estimation of sample

means and parameters is another factor that should be incorporated (v3). These computationally

efficient covariance estimators can be readily applied not only to uncorrected APE estimators,

but also to the bias-corrected APE estimators, which we will introduce below.

3.2 Incidental Parameter Bias Correction

As many nonlinear estimators, standard fixed effects versions of the logit and probit models suffer

from the well-known incidental parameter problem first identified by Neyman and Scott (1948).

The problem stems from the necessity to estimate many nuisance parameters, which contaminate

the estimator of the structural parameters and average partial effects. It can be further amplified

by the inclusion of a lagged dependent variable. Note that this induces an incidental parameter

problem, even in the linear three-way fixed effects setting (see Nickell, 1981) — and hence in

our case also affects a linear probability model specification. Fernández-Val and Weidner (2018)

derive the order of the bias induced by incidental parameters to be given by bias ∼ p/n, where

p and n are the numbers of parameters and observations, respectively. The literature suggests

different types of bias corrections to reduce this incidental parameter bias. Jackknife corrections,

like the leave-one-out jackknife proposed by Hahn and Newey (2004), or the split-panel jackknife
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(SPJ) introduced by Dhaene and Jochmans (2015), are the simplest approaches to obtain a bias

correction, at the expense of being computationally costly. In contrast to analytical corrections,

their application only requires knowledge of the order of the bias to form appropriate subpanels

that are used to reestimate the model and to form an estimator of the bias terms. For analytical

bias correction (ABC), it is necessary to derive the asymptotic distribution of the maximum

likelihood estimator (MLE), in order to obtain an explicit expression of the asymptotic bias. This

is then used to form a suitable estimator for the bias terms. Fernández-Val and Weidner (2016)

propose analytical and split-panel jackknife bias corrections for structural parameters and APEs

in the context of nonlinear models with individual and time fixed effects. In the following two

subsections, we adapt and extend the bias corrections of Fernández-Val and Weidner (2016) to

our two-way and three-way error component.11

3.2.1 Two-way fixed effects

The two-way fixed effects case with exporter-time and importer-time fixed effects is closely

related to the two-way fixed effects models with a classical panel structure and individual and

time fixed effects or with a pseudo-panel ij-structure and exporter and importer fixed effects as

discussed by Fernández-Val and Weidner (2016) and Cruz-Gonzalez, Fernández-Val, and Weidner

(2017), respectively. It is straightforward to see that in our case the overall bias consists of

two components that are due to the inclusion of importer-time and exporter-time fixed effects,

respectively, and takes the form B1/I +B2/J .12

The form of the bias suggests to separately split the panel by I and J , leading to the following

split-panel corrected estimator for the structural parameters:

β̂
sp

= 3β̂I,J,T − β̂I/2,J,T − β̂I,J/2,T , with (8)

β̂I/2,J,T =
1

2

[
β̂{i:i≤dI/2e},J,T + β̂{i:i≥bI/2+1c},J,T

]
,

β̂I,J/2,T =
1

2

[
β̂I,{j:j≤dJ/2e,T} + β̂I,{j:j≥bJ/2+1c,T}

]
,

where b·c and d·e denote the floor and ceiling functions. To clarify the notation, the subscript

{i : i ≤ dI/2e}, J, T denotes that the estimator is based on a subsample, which contains all

importers and time periods, but only the first half of all exporters.

In order to form the appropriate analytical bias correction, we need to specify the asymptotic

distribution of the MLE, which we show in Appendix B.3. The analytical bias-corrected estimator

11We do not elaborate on the leave-one-out jackknife bias correction because the large number of fixed effects in
our panel structure makes it unnecessarily computationally demanding.

12See Appendix B.3. We also report the appropriate Neyman and Scott (1948) variance example in Appendix B.2 as
an illustration.
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β̃a is formed from estimators of the leading bias terms that are subtracted from the MLE of the

full sample β̂I,J,T . More precisely:

β̃a = β̂I,J,T −
B̂β

1

I
− B̂β

2

J
, with B̂β

1 = Ŵ−1B̂1, B̂
β
2 = Ŵ−1B̂2, and

B̂1 = − 1

2JT

J∑
j=1

T∑
t=1

∑I
i=1 Ĥijt∂η2F̂ijt

(
M̂X

)
ijt∑I

i=1 ω̂ijt
,

B̂2 = − 1

2IT

I∑
i=1

T∑
t=1

∑J
j=1 Ĥijt∂η2F̂ijt

(
M̂X

)
ijt∑J

j=1 ω̂ijt
,

Ŵ =
1

IJT

I∑
i=1

J∑
j=1

T∑
t=1

ω̂ijt

(
M̂X

)
ijt

(
M̂X

)′
ijt
,

where ∂ι2g(·) denotes the second order partial derivative of an arbitrary function g(·) with respect

to some parameter ι. The explicit expressions of Hijt and ∂η2Fijt are reported in Table 1.

The split-panel jackknife estimator works similarly with APEs as with structural parameters. We

simply replace in formula (8) the estimators for the structural parameters with estimators for

the APEs. The following analytically bias-corrected estimator for the APEs is formed based on

the asymptotic distribution presented in Appendix B.3:

δ̃a = δ̃ − B̂δ
1

I
− B̂δ

2

J
, with

B̂δ
1 =

1

2JT

J∑
j=1

T∑
t=1

∑I
i=1−Ĥijt∂η2F̂ijt

(
P̂Ψ̂
)
ijt

+ ∂η2∆̂ijt∑I
i=1 ω̂ijt

,

B̂δ
2 =

1

2IT

I∑
i=1

T∑
t=1

∑J
j=1−Ĥijt∂η2F̂ijt

(
P̂Ψ̂
)
ijt

+ ∂η2∆̂ijt∑J
j=1 ω̂ijt

.

δ̃ are the APEs evaluated at bias-corrected structural parameters and the corresponding estimates

of the fixed effects. Note that the latter can be obtained by reestimating the model using an

offset algorithm as in Czarnowske and Stammann (2019). The covariance can be estimated

according to equation (6).

3.2.2 Three-way fixed effects

Having adapted the two-way fixed effects bias correction of Fernández-Val and Weidner (2016) to

the ijt-panel setting, we now move on to the more difficult case of extending the consideration to

three-way fixed effects. Fernández-Val and Weidner (2018) conjecture, based on their previously
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discussed formula, bias ∼ p/n, that the bias is of order (IT + JT + IJ)/(IJT ) and of the

form B1/I + B2/J + B3/T . Intuitively, the inclusion of dyadic fixed effects induces another

bias of order 1/T because there are only T informative observations per additionally included

parameter. We support their conjecture by providing the appropriate Neyman and Scott (1948)

variance example in Appendix B.2 and propose novel analytical and jackknife bias corrections

for three-way fixed effects models.

For the split-panel jackknife bias correction, this bias structure implies that we add an additional

splitting dimension, leading to the following estimator for the structural parameters:

β̂
sp

= 4β̂I,J,T − β̂I/2,J,T − β̂I,J/2,T − β̂I,J,T/2, with (9)

β̂I/2,J,T =
1

2

[
β̂{i:i≤bI/2c,J,T} + β̂{i:i≥dI/2+1e,J,T}

]
,

β̂I,J/2,T =
1

2

[
β̂{I,j:j≤bJ/2c,T} + β̂{I,j:j≥dJ/2+1e,T}

]
,

β̂I,J,T/2 =
1

2

[
β̂{I,J,t:t≤bT/2c} + β̂{I,J,t:t≥dT/2+1e}

]
.

Combining insights from the classical panel structure in Fernández-Val and Weidner (2016), the

pseudo-panel setting in Cruz-Gonzalez, Fernández-Val, and Weidner (2017), and the three-way

fixed effects conjecture by Fernández-Val and Weidner (2018), we formulate a conjecture for the

asymptotic MLE distribution in the three-way setting (which we present in Appendix B.3) and

propose to extend the analytical two-way bias correction by a third part B̂3, such that

β̃a = β̂I,J,T −
B̂β

1

I
− B̂β

2

J
− B̂β

3

T
, with B̂β

3 = Ŵ−1B̂3

B̂3 = − 1

2IJ

I∑
i=1

J∑
j=1

(
T∑
t=1

ω̂ijt

)−1( T∑
t=1

Ĥijt∂η2F̂ijt

(
M̂X

)
ijt

+2

L∑
l=1

(T/(T − L))
T∑

t=l+1

∂η ˆ̀
ijt−lω̂ijt

(
M̂X

)
ijt

)
.

L is a bandwidth parameter and is used for the estimation of spectral densities (Hahn and

Kuersteiner, 2007). In a model where all regressors are exogenous, L is set to zero, such that the

second part of B̂3 vanishes and all three estimators of the bias terms are symmetric. Otherwise,

for instance in the dynamic model, Fernández-Val and Weidner (2016) suggest conducting a

sensitivity analysis with L ∈ {1, 2, 3, 4}.

Again, for the APEs the split-panel jackknife estimator is formed by replacing the estimators

for the structural parameters with estimators for the APEs in formula (9). The analytically
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bias-corrected estimator, based on our conjecture for the asymptotic distribution provided in

Appendix B.3, is given by

δ̃a = δ̃ − B̂δ
1

I
− B̂δ

2

J
− B̂δ

3

T
, with

B̂δ
3 =

1

2IJ

I∑
i=1

J∑
j=1

(
T∑
t=1

ω̂ijt

)−1( T∑
t=1

−Ĥijt∂η2F̂ijt

(
P̂Ψ̂
)
ijt

+ ∂η2∆̂ijt

+2
L∑
l=1

(T/ (T − l))
T∑

t=l+1

∂η ˆ̀
ijt−lω̂ijt

(
M̂Ψ̂

)
ijt

)
.

The last part of the numerator is again dropped if all regressors are assumed to be strictly

exogenous. As previously mentioned, standard errors can still be obtained from equation (7).

4 Monte Carlo Simulations

In this section, we conduct extensive simulation experiments to investigate the properties of

different estimators for both the structural parameters and the APEs. The estimators we study

are MLE, ABC, SPJ and a (bias-corrected) ordinary least squares fixed effects estimator (LPM).13

Our main focus are the biases and inference accuracies. To this end, we compute the relative bias

and standard deviation (SD) in percent, the ratio between standard error and standard deviation

(SE/SD), the relative root mean square error (RMSE) in percent, and the coverage probabilities

(CPs) at a nominal level of 95 percent.

For the simulation experiments we adapt the design for a dynamic probit model of Fernández-Val

and Weidner (2016) to our ijt-panel structure for the two cases with two- and three-way fixed

effects.14

4.1 Two-way fixed effects

The simulations in this section correspond to a theory-consistent estimation of the extensive

margin outlined in section 2, taking into account unobserved time-varying exporter- and importer-

specific terms as well as dynamics, but not allowing for bilateral unobserved heterogeneity.

Specifically, we generate data according to

yijt = 1[βyyijt−1 + βxxijt + λit + ψjt ≥ εijt] ,

yij0 = 1[βxxij0 + λi0 + ψj0 ≥ εij0] ,

13Details on LPM and our suggested bias correction in this context are given in Appendix B.4.
14Further simulation experiments including static panel models are presented in Appendix D.
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where i = 1, . . . , N , j = 1, . . . , N , t = 1, . . . , T , λit ∼ iid. N (0, 1/16), ψjt ∼ iid. N (0, 1/16),

and εijt ∼ iid. N (0, 1).15 Further, xijt = 0.5xijt−1 + λit + ψjt + νijt, where νijt ∼ iid. N (0, 0.5),

xij0 ∼ iid. N (0, 1). To get an impression of how the different statistics evolve with chang-

ing panel dimensions, we consider all possible combinations of N ∈ {50, 100, 150} and T ∈
{10, 20, 30, 40, 50}. For each of these combinations we generate 1, 000 samples.

Tables 8 – 13 in Appendix C.1 report the extensive simulation results for the exogenous and prede-

termined regressors, respectively. The left panels contain the results of the structural parameters

and the right panels the results of the APEs. In the following, we focus on the biases and coverage

probabilities forN ∈ {50, 150}, which we visualize in Figures 2 and 3 for better comprehensibility.

First of all, we start analyzing the properties of the different estimators for the structural param-

eters. MLE exhibits persistent biases that do not fade with increasing T but with increasing N .

This result is as expected, since MLE is fixed T consistent as shown in Appendix B.3. Further, its

CPs are too low and decreasing in T . The bias-corrected estimators clearly perform better than

MLE. First, they reduce the bias considerably. ABC shows basically no bias for any considered

sample size. SPJ performs slightly worse. Second, the bias corrections also dramatically improve

the coverage probabilities. Whereas the CPs of ABC are close to the nominal value in all cases,

the CPs of SPJ are somewhat too low for the exogenous regressor in the case of N = 50.

Next, we turn to the estimators of the APEs, where we now also consider LPM. It turns out

that MLE, as well as the two bias-corrected estimators, are essentially unbiased. This is particu-

larly noteworthy for MLE, since it exhibits a non-negligible bias for the structural parameters.

Remarkably, LPM displays persistent biases that — differently to the nonlinear estimators —

do not vanish with larger N . The bias is very small for the exogenous regressor but for the

predetermined regressor it ranges between 5 and 6 percent.16 These persistent biases also explain

that LPM delivers too small CPs that decrease in T . Contrary, the CPs of the three nonlinear

estimators are close to the nominal value in most cases.

All in all, our two-way fixed effects simulation results demonstrate that the bias-corrected

estimators work extremely well in this context — for both structural parameters and APEs

and both bias and coverage probabilities. Between the two, the analytical correction slightly

outperforms the split-panel jackknife correction. If the interest lies only in APEs, the MLE

estimator works well, too, but for the structural parameters it shows bias and essentially useless

coverage probabilities. LPM performs clearly worse than the probit estimators and should —

given the availability of the nonlinear alternatives — only be used with great caution.

15Since {λit}IT and {ψjt}JT are independent sequences, and λit and ψjt are independent for all it, jt, we follow
Fernández-Val and Weidner (2016) and incorporate this information in the covariance estimator for the APEs. The
explicit expression is provided in the Appendix B.3.

16We found that the predicted probabilities of LPM exceed the boundaries of the unit interval considerably. This, in
turn, affects the APEs for binary regressors, since they are based on differences of predicted probabilities.
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Figure 2: Dynamic: Two-way Fixed Effects – Predetermined Regressor
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Figure 3: Dynamic: Two-way Fixed Effects – Exogenous Regressor
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4.2 Three-way fixed effects

The simulations in this section correspond to our preferred empirical specification for the

extensive margin of international trade, in which we not only take into account the theoretically

motivated it- and jt-fixed effects, but additionally allow for bilateral unobserved heterogeneity.

In this three-way error structure environment, we generate data according to

yijt = 1[βyyijt−1 + βxxijt + λit + ψjt + µij ≥ εijt] ,

yij0 = 1[βxxij0 + λi0 + ψj0 + µij ≥ εij0] ,

where i = 1, . . . , N , j = 1, . . . , N , t = 1, . . . , T , βy = 0.5, βx = 1, λit ∼ iid. N (0, 1/24),

ψjt ∼ iid. N (0, 1/24), µij ∼ iid. N (0, 1/24), and εijt ∼ iid. N (0, 1).17 The exogenous regressor

is modeled as an AR-1 process, xijt = 0.5xijt−1 +λit +ψjt +µij + νijt, where νijt ∼ iid. N (0, 0.5)

and xij0 ∼ iid. N (0, 1). Again, we consider different sample sizes, specifically N ∈ {50, 100, 150}
and T ∈ {10, 20, 30, 40, 50} and generate 1, 000 data sets for each.

Tables 17 – 16 in Appendix C.2 summarize the extensive simulation results for both regressors.

For ABC and LPM we report two different choices of the bandwidth parameter, L = 1 and L = 2.

Here, we again focus on the biases and coverage probabilities for N ∈ {50, 150} which are shown

in Figures 4 and 5.

We start by considering the different estimators for the structural parameters. For both kinds

of regressors, MLE exhibits a severe bias that decreases with increasing T . However, even

with T = 50, the estimator shows a distortion of 11 percent in the case of the predetermined

regressor and 5 percent in the case of the exogenous regressor. We also find that the inference

is not valid, since the CPs are zero or close to zero. The bias corrections bring a substantial

improvement. First, they reduce the bias considerably. For example, the MLE estimator of

the predetermined regressor shows a distortion of 63 percent for T = 10 and N = 150. ABC

reduces the bias to 8 percent and SPJ to 20 percent. In the case of the exogenous regressor,

MLE exhibits a bias of 23 percent, whereas ABC has a bias of 1 percent and SPJ of 7 percent.

Irrespective of the type of the regressor, both bias-corrected estimators also converge quickly to

the true parameter value with growing T . Second, the bias corrections improve the CPs. For the

exogenous regressor the CPs of ABC are close to the desired level of 95 percent for all T , whereas

SPJ remains far away from 95 percent even at T = 50. In the case of the predetermined regressor,

the CPs of both corrections approach the nominal level when T rises. This happens faster for ABC.

We again proceed with the APEs, where we also consider LPM as an alternative estimator. Overall,

17We again follow Fernández-Val and Weidner (2016) and incorporate the information that {λit}IT , {ψjt}JT , and
{µij}IJ are independent sequences, and λit, ψjt, and µij are independent for all it, jt, ij in the covariance estimator
for the APEs. The explicit expression is provided in Appendix B.3.
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Figure 4: Dynamic: Three-way Fixed Effects – Predetermined Regressor
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Figure 5: Dynamic: Three-way Fixed Effects – Exogenous Regressor
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we obtain similar findings as for the structural parameters. MLE is distorted over all settings,

but the bias decreases as T increases. The distortion is especially severe in the case of the

predetermined regressor. Even at T = 50, MLE suffers a bias of 15 percent. The bias corrections

bring a substantial reduction in this case. Whereas ABC shows only a small distortion of 1 percent

in the case of the exogenous regressor at T = 10, SPJ is even more heavily distorted than MLE.

However, with increasing T , both SPJ and ABC quickly converge to the true APE. Furthermore,

unlike ABC, SPJ needs a sufficiently large number of time periods to get its CPs close to 95

percent. For the predetermined regressor, these convergence processes last longer for both bias

corrections. Looking at LPM in the case of the exogenous regressors, it produces almost unbiased

estimates irrespective of T , but its CPs fall dramatically with increasing T . Moreover, in the

case of the predetermined regressor, we observe an increase in the bias up to 14 percent with

increasing T .18 These results illustrate the superiority of ABC and SPJ over LPM.

Overall, our three-way fixed effects simulation results confirm the conjecture of Fernández-Val

and Weidner (2018) about the general form and lend support to our conjecture for the specific

structure of the bias terms in the three-way fixed effects specification. First, we find that the bias

corrections indeed substantially mitigate the bias. Second, as already found in other studies,

analytical bias corrections clearly outperform split-panel jackknife bias corrections (see among

others Fernández-Val and Weidner, 2016, and Czarnowske and Stammann, 2019). For samples

with shorter time horizons, ABC is often less distorted and its dispersion is generally lower. This

is also reflected by better CPs. Further, our three-way fixed effects simulation results suggest

that estimates based on MLE or LPM should be treated with great caution. Generally, in the

three-way fixed effects setting, a sufficiently large number of time periods appears to be crucial

to obtain reliable results, even for the bias-corrected estimators.

5 Determinants of the Extensive Margin of Trade

Having described the estimation and bias correction procedures, we now turn to the estimation

of the determinants of the extensive margin of international trade outlined in section 2.

Recall equation (3) that relates the incidence of nonzero aggregate trade flows to exporter-time

and importer-time specific characteristics, as well as trade in the previous period, next to fixed

and variable trade costs:
18A similar behaviour of LPM has been observed by Czarnowske and Stammann (2019) in the context of a dynamic

probit model with individual and time fixed effects. To ensure that the bias correction presented in Appendix B.4 in
our three-way fixed effects specification is implemented correctly we have tested it in a data generation process for
classical linear models, i.e. without binary dependent variables, and found that it works as intended. The undesirable
behavior in our simulation design for the probit model is driven by the fact that, because of the autoregressive process
of x, the predicted probabilities of LPM exceed the boundaries of the unit interval more and more frequently as
T increases. This is particularly reflected in the APEs for binary regressors, since they are based on differences of
predicted probabilities.
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yijt =

1 if κ+ λit + ψjt + βyyij(t−1) + x′ijtβx ≥ ζijt,

0 else .

This yields the following probit model:

Pr(yijt = 1|xijt, yij(t−1), λit, ψjt) = F
(
x′ijtβx + βyyij(t−1) + λit + ψjt

)
, (10)

in case we assume to capture bilateral variables and fixed trade costs entirely with observables,

or:

yijt =

1 if κ+ λit + ψjt + βyyij(t−1) + x′ijtβx + µij ≥ ζijt,

0 else

and:

Pr(yijt = 1|xijt, yij(t−1), λit, ψjt, µij) = F
(
x′ijtβx + βyyij(t−1) + λit + ψjt + µij

)
, (11)

in case we include a time-invariant bilateral fixed effect to capture unobservable country pair

characteristics. yij(t−1) is the lagged dependent variable, x is a vector of observable bilateral

variables, βy and βx are the corresponding parameters. We largely follow Helpman, Melitz, and

Rubinstein (2008) and the wider literature on the determinants of the intensive margin of trade

(compare Head and Mayer, 2014) in the choice of these variables: distance, a common land

border, the same origin of the legal system, common language, previous colonial ties, a joint

currency, an existing free trade agreement, or joint membership in the WTO. In terms of data,

we turn to the comprehensive gravity dataset provided alongside Head, Mayer, and Ries (2010),

which encompasses information on trade flows and these variables of interest from 1948 – 2006.

We report the bias-corrected coefficients in Table 2 and the corresponding average partial effects

in Table 3.19 For each uncorrected and (analytically) bias-corrected coefficients and average

partial effects we also report the uncorrected one in square brackets, as well as the standard

error in parenthesis below. In column (1) we first mimic the specification estimated by Helpman,

Melitz, and Rubinstein (2008).20 Their specification includes exporter, importer and time fixed

effects.21 All coefficients have the expected sign, i.e. a negative impact of distance on the

19While the error term distribution assumed in section 2 suggests a probit estimator, we also estimate equations 10
and 11 with a logit estimator and show the corresponding results in Tables 26 and 27 in Appendix E. The coefficients
and average partial effects are similar to those estimated with the probit model.

20Helpman, Melitz, and Rubinstein (2008) use a dataset that ranges from 1970 to 1997. They also include dummy
variables for whether both countries are landlocked or islands, or follow the same religion. Hence our coefficients
deviate somewhat from theirs, while remaining qualitatively similar.

21Note that following Fernández-Val and Weidner (2018) the incidental bias problem is small enough to ignore in
this setting with i, j and t fixed effects, since the order of the bias is 1/IT + 1/JT + 1/IJ , which in our case becomes
negligible small since I, J and T are large.
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Table 2: Probit Estimation: Coefficients

Dependent variable: yijt

(1) (2) (3) (4) (5)

lagged DV - - 1.664∗∗∗ - 1.140∗∗∗

[-] [-] [1.719] [-] [1.057]
(-) (-) (0.004) (-) (0.005)

log(Distance) - -0.800∗∗∗ -0.528∗∗∗ - -
[-0.656∗∗∗] [-0.821] [-0.546] [-] [-]

(0.003) (0.003) (0.004) (-) (-)
Land border - 0.207∗∗∗ 0.118∗∗∗ - -

[0.260∗∗∗] [0.214] [0.124] [-] [-]
(0.014) (0.016) (0.018) (-) (-)

Legal - 0.137∗∗∗ 0.089∗∗∗ - -
[0.090∗∗∗] [0.141] [0.093] [-] [-]

(0.004) (0.004) (0.005) (-) (-)
Language - 0.426∗∗∗ 0.280∗∗∗ - -

[0.380∗∗∗] [0.436] [0.289] [-] [-]
(0.005) (0.006) (0.007) (-) (-)

Colonial ties - 0.657∗∗∗ 0.487∗∗∗ - -
[0.190∗∗∗] [0.702] [0.542] [-] [-]

(0.02) (0.031) (0.036) (-) (-)
Currency Union - 0.631∗∗∗ 0.424∗∗∗ 0.303∗∗∗ 0.214∗∗∗

[0.381∗∗∗] [0.649] [0.443] [0.335] [0.255]
(0.012) (0.015) (0.017) (0.032) (0.034)

FTA - 0.543∗∗∗ 0.359∗∗∗ 0.073∗ 0.038
[0.508∗∗∗] [0.552] [0.364] [0.072] [0.033]

(0.017) (0.019) (0.021) (0.038) (0.04)
WTO - 0.152∗∗∗ 0.101∗∗∗ 0.052∗∗∗ 0.039∗∗

[0.286∗∗∗] [0.154] [0.104] [0.058] [0.048]
(0.005) (0.008) (0.009) (0.016) (0.017)

Fixed effects i, j, t it, jt it, jt it, jt, ij it, jt, ij
Sample size 1204671 1204671 1171794 1204671 1171794
- perf. class. 12298 147760 141537 370617 374067
Deviance 8.891×105 7.019×105 5.183×105 4.76×105 4.189×105

Notes: Uncorrected coefficients in square brackets. Standard errors in parenthesis.

probability to trade, while all other variables are estimated to have a positive impact. Note

the strong and highly significant impact of a common currency, free trade agreement or joint

membership of the WTO. Ceteris paribus, each is estimated to increase the probability of nonzero

flows by between 6 and 10 percentage points. Column (2) introduces a stricter set of fixed effects,

namely at the exporter-time and importer-time level. Most coefficients and average partial effects

are similar to those in column (1). This changes in column (3), which keeps the same fixed

effects, but adds a lagged dependent variable. Assuming no unobservable bilateral heterogeneity,

as in equation (10), this specification correctly estimates the model set up in section 2. The

first thing to note is the highly significant coefficient for the lagged dependent variable, which

reflects the strong impact of previous nonzero trade flows on current ones. Ceteris paribus, the
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Table 3: Probit Estimation: Average partial effects

Dependent variable: yijt

(1) (2) (3) (4) (5)

lagged DV - - 0.346∗∗∗ - 0.179∗∗∗

[-] [-] [0.344] [-] [0.138]
(-) (-) (0.003) (-) (0.052)

log(Distance) - -0.135∗∗∗ -0.066∗∗∗ - -
[-0.136∗∗∗] [-0.135] [-0.066] [-] [-]

(0.005) (0.005) (0.001) (-) (-)
Land border - 0.035∗∗∗ 0.015∗∗∗ - -

[0.054∗∗∗] [0.035] [0.015] [-] [-]
(0.004) (0.004) (0.003) (-) (-)

Legal - 0.023∗∗∗ 0.011∗∗∗ - -
[0.019∗∗∗] [0.023] [0.011] [-] [-]

(0.001) (0.001) (0.001) (-) (-)
Language - 0.071∗∗∗ 0.035∗∗∗ - -

[0.078∗∗∗] [0.071] [0.035] [-] [-]
(0.003) (0.001) (0.001) (-) (-)

Colonial ties - 0.107∗∗∗ 0.061∗∗∗ - -
[0.039∗∗∗] [0.111] [0.066] [-] [-]

(0.004) (0.007) (0.005) (-) (-)
Currency Union - 0.103∗∗∗ 0.053∗∗∗ 0.038∗∗∗ 0.024∗∗∗

[0.078∗∗∗] [0.103] [0.054] [0.037] [0.025]
(0.004) (0.003) (0.002) (0.005) (0.009)

FTA - 0.090∗∗∗ 0.045∗∗∗ 0.009 0.004
[0.103∗∗∗] [0.088] [0.044] [0.008] [0.003]

(0.005) (0.004) (0.003) (0.007) (0.006)
WTO - 0.026∗∗∗ 0.013∗∗∗ 0.006∗∗ 0.004

[0.061∗∗∗] [0.026] [0.013] [0.006] [0.005]
(0.002) (0.002) (0.001) (0.003) (0.003)

Fixed effects i, j, t it, jt it, jt it, jt, ij it, jt, ij
Sample size 1204671 1204671 1171794 1204671 1171794
- perf. class. 12298 147760 141537 370617 374067
Deviance 8.891×105 7.019×105 5.183×105 4.76×105 4.189×105

Notes: Uncorrected average partial effects in square brackets. Standard errors in parenthesis.

average partial effect shows a 34 percentage points higher probability of nonzero trade, given

the two countries were also engaged in trade in the previous year. The second observation is

that essentially all coefficients are remarkably smaller than those in column (2), and average

partial effects are reduced by about 50 percent across the board. This result underlines the need

to explicitly take persistence into account. Note, however, that the APEs of the two specifications

are not directly comparable, because the static model forces immediate effects and long-run

dynamic adjustments into a single estimate.

Column (4) then takes one step back and one forward. While not including the lagged dependent

variable in the estimation, it introduces a bilateral fixed effect that controls for bilateral unob-
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served heterogeneity. This follows the important insight by Baier and Bergstrand (2007), who

show that controlling for unobserved bilateral heterogeneity produces a considerably different

estimated impact of free trade agreements, among other variables, on the intensive margin of

trade. While now an identification of many of the variables of interest is no longer possible

because of their time invariance, this specification reveals a much reduced estimated impact of

the time-varying variables. The impact of a common currency on the probability of exporting is

reduced to 3.8 percentage points, while those of a common free trade agreement and WTO are

decreased to less than 1 percentage point. This result highlights the importance of controlling

for unobserved country pair heterogeneity and possible endogeneity. Finally, in column (5) we

present our preferred specification, estimating equation (11). The estimation now includes the

“full set” of fixed effects, i.e. exporter-time, importer-time and bilateral fixed effect, in addition

to the lagged dependent variable.22 Again, the coefficient on the latter is highly significant,

entailing an average partial effect of about 18 percentage points. Importantly, the only remaining

statistically significant average partial effect is estimated for a common currency at 2.4 percent-

age points. The impact of a free trade agreement or joint membership of the WTO are statistically

insignificant.

Contrasting the results from column (5) to those of column (1), which currently constitutes the

de-facto standard of estimating the determinants of the extensive margin of trade, underlines

the importance of (i) appropriate exporter-time and importer-time fixed effects that capture

all country-time specific variation; (ii) country pair fixed effects that capture all unobserved

bilateral heterogeneity and address endogeneity concerns, analogous to Baier and Bergstrand

(2007) on the intensive margin; (iii) dynamics, in that country pairs that have previously traded

are significantly more likely to do so than otherwise comparable country pairs. This corroborates

the stylized facts from section 1, which showed country pairs that had previously engaged in

trade to be likely to do so again in the next year. Failing to observe any of these three insights

produces widely different estimates.

Another important insight is that the magnitude of the incidental parameter problem — at least

in this specific setting — is not as severe as one might have feared. The most significant impact

is observed on the coefficient for the lagged dependent variable, which in Table 2 column (5)

differs by about 10 percent, and even almost 24 percent in the respective average partial effect

reported in Table 3 column (5). However, this does not carry through to other variables, in

particular for average partial effects. As shown in simulations in section 4, this may not come

as a big surprise. In this application we consider a panel that covers 57 years, meaning the

relatively large T inhibits a strong bias (e.g. compare Figure 5). As shown in the simulations, the

bias is more severe in settings with fewer time periods and should be handled appropriately.

22Note that in the analytical bias correction we set the bandwidth parameter to L = 2. We report results for
L ∈ {0, 1, 2, 3, 4} in Tables 28 to 33 in Appendix E. The results remain robust with L = 1− 4.
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Table 4: Probit vs. OLS Estimation: Average Partial Effects with Three-way Fixed Effects

Dependent variable: yijt

(1) (2) (3) (4) (5)

lagged DV - - 0.444∗∗∗ 0.474∗∗∗ 0.179∗∗∗

(-) (-) (0.001) (0.001) (0.052)
Currency Union 0.009∗∗∗ 0.038∗∗∗ 0.008∗∗∗ 0.008∗∗ 0.024∗∗∗

(0.003) (0.005) (0.003) (0.003) (0.009)
FTA -0.121∗∗∗ 0.009 -0.065∗∗∗ -0.062∗∗∗ 0.004

(0.003) (0.007) (0.002) (0.002) (0.006)
WTO 0.017∗∗∗ 0.006∗∗ 0.008∗∗∗ 0.008∗∗∗ 0.004

(0.002) (0.003) (0.002) (0.002) (0.003)

Estimator OLS Probit OLS OLS Probit
bias corrected - true false true true
Sample size 1204671 1204671 1171794 1171794 1171794

Notes: All columns include Origin × Year and Destination × Year fixed effects. Standard
errors in parenthesis.

To show the superiority of using suitable binary choice estimators with high-dimensional fixed

effects we also contrast the results to estimating equations (10) and (11) with a linear probability

model. Table 4 shows that OLS with the same set of three-way fixed effects produces estimates

that are far off the probit ones.23 Columns (1) and (2) compare estimates without, columns

(3) to (5) those with a lagged dependent variable.24 Figure 8 underlines this impression: the

LPM produces up to 28 percent of fitted probabilities < 0 or > 1. This result highlights that

binary choice estimators with high-dimensional fixed effects cannot easily be mimicked by an

OLS estimator.

6 Conclusion

In this paper we reexamine the determinants of the extensive margin of international trade. We

set up a model that exhibits a dynamic component and allows for time-invariant unobserved

bilateral trade cost factors, generating persistence — a feature in the data that has so far been

given little attention. We estimate the model using a probit estimator with high-dimensional

fixed effects. As fixed effects create an incidental parameter problem in binary choice settings,

we characterize and implement bias corrections for estimations with appropriate two- and

three-way fixed effects. Finally, we show that our estimates of the determinants of the extensive

margin of trade differ significantly from previous ones. This highlights the importance of true

state dependence and unobserved heterogeneity and therefore strongly supports the use of our

23As for the probit estimates, we also report the bias-corrected LPM estimates with different bandwidth parameters
in Table 33. All in all, the results remain robust with L = 1− 4. We also report estimates for two-way fixed effects in
Table 32 in Appendix E.

24In column (3) we ignore and in column (4) we apply the appropriate bias correction for the LPM with endogenous
regressor, as detailed in Appendix B.4.
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bias-corrected dynamic fixed effects estimator.

The extensive margin of trade obviously extends beyond the aggregate level, warranting further

research at lower levels of aggregation, in particular in the context of firms. While our model’s

prediction and its empirical specification rely on some abstractions, it provides a very tractable

and flexible framework that can be estimated with recently established estimation procedures,

when combined with the bias correction technique we introduce.
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A Stylized facts

Figure 6: Determinants of the Extensive margin of Trade — Gravity and Persistence
(1990–1991).
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Figure 7: Determinants of the Extensive Margin of Trade — Gravity and Persistence
(1997–2006).
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B Computational and Econometric Details

B.1 Computational Details

In this section we briefly demonstrate how the method of alternating projections (MAP) works in

the context of logit and probit models with a two- or three-way error component, and how it can

be efficiently embedded into a standard Newton-Raphson optimization routine (see Stammann,

2018, for further details).

First, note that Mv is essentially a weighted within transformation, where v is an arbitrary n× 1

vector, and M = In − P = In −D(D′ΩD)−1D′Ω. The computation of M is problematic even in

moderately large data sets, and since M is non-sparse, there is also no general scalar expression

to compute Mv. Thus Stammann (2018) proposes to calculate Mv using a simple iterative

approach based on the MAP tracing back to Von Neumann (1950) and Halperin (1962).25 Let

Dk, denote the dummy variables corresponding to the k-th group, k ∈ {1, 2, 3}. Further, let

MDk
v, with MDk

= In −Dk(D
′
kΩDk)

−1D′kΩ. The corresponding scalar expressions of MDk
v

are summarized in Table (5).

Table 5: Scalar Transformations

group MDk
v

importer-time (k = 1) vijt −
∑J
j=1 ωijtvijt∑J
j=1 ωijt

exporter-time (k = 2) vijt −
∑I
i=1 ωijtvijt∑I
i=1 ωijt

dyadic (k = 3) vijt −
∑T
t=1 ωijtvijt∑T
t=1 ωijt

The MAP can be summarized by algorithm 1, where K = 2 in the case of two-way fixed effects

and K = 3 in the case of three-way fixed effects. Thus, the MAP only requires to repeatedly apply

weighted one-way within transformations (see Stammann, 2018)). The entire optimization

routine is sketched by algorithm 2.

Algorithm 1 MAP: Neumann-Halperin

1: Initialize Mv = v.
2: repeat
3: for k = 1, . . . ,K do
4: Compute MDk

Mv and update Mv such that Mv = MDk
Mv

5: until convergence.

25The MAP has been introduced to econometrics by Guimarães and Portugal (2010) and Gaure (2013) in the
context of linear models with multi-way fixed effects.
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Algorithm 2 Efficient Newton-Raphson using the MAP

1: Initialize β0, η0, and r = 0.

2: repeat

3: Set r = r + 1.

4: Given η̂r−1 compute ν̂ and Ω̂.

5: Given ν̂ and Ω̂ compute M̂ν̂ and M̂X using the MAP

6: Compute βr − βr−1 =
(

(M̂X)′Ω̂(M̂X)
)−1

(M̂X)′Ω̂(M̂ν̂)

7: Compute η̂r = η̂r−1 + ν̂ − M̂ν̂ + M̂X(βr − βr−1)

8: until convergence.

B.2 Neyman-Scott Variance Example

In this section we study two variants of the classical Neyman and Scott (1948) variance example

to support the form of the bias terms, and to illustrate the functionality of the bias corrections.

To the best of our knowledge, the variance example of Neyman and Scott (1948) has not been

investigated for our specific error components. We start with the more general three-way fixed

effects case, which nests the two-way error structure.

B.2.1 Three-way Fixed Effects

Let i = 1, . . . , I, j = 1, . . . , J and t = 1, . . . , T . Consider the following linear three-way fixed

effects model

yijt = x′ijtβ + λit + ψjt + µij + uijt . (12)

According to Balazsi, Matyas, and Wansbeek (2018), the appropriate within transformation

corresponding to equation (12) is given by

zijt − z̄ij· − z̄·jt − z̄i·t + z̄··t + z̄·j· + z̄i·· − z̄··· ,

where z̄ij· = 1
T

∑T
t=1 zijt, z̄·jt = 1

I

∑I
i=1 zijt, z̄i·t = 1

J

∑J
j=1 zijt, z̄··t = 1

IJ

∑I
i=1

∑J
j=1 zijt,

z̄·j· =
1
IT

∑I
i=1

∑T
t=1 zijt, z̄i·· =

1
JT

∑J
j=1

∑T
t=1 zijt, and z̄··· = 1

IJT

∑I
i=1

∑J
j=1

∑T
t=1 zijt.

This result is helpful to study the following variant of the Neyman and Scott (1948) variance

example

yijt|λ,ψ,µ ∼ N (λit + ψjt + µij , β) ,

where we can now easily form the uncorrected variance estimator
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β̂I,J,T =
1

IJT

I∑
i=1

J∑
j=1

T∑
t=1

(yijt − ȳij· − ȳ·jt − ȳi·t + ȳ··t + ȳ·j· + ȳi·· − ȳ···)2 (13)

and the (degrees-of-freedom)-corrected counterpart

β̂corI,J,T =
IJT

(I − 1)(J − 1)(T − 1)
β̂I,J,T .

Taking the expectation of (13) (conditional on the fixed effects) yields

β̄I,J,T = Eα[β̂I,J,T ] = β0

(
(I − 1)(J − 1)(T − 1)

IJT

)
(14)

= β0

(
1− 1

I
− 1

J
− 1

T
+

1

IT
+

1

JT
+

1

IJ
− 1

IJT

)
,

where β0 is the true variance parameter. Thus, the three leading bias terms, which drive the

main part of the asymptotic bias, are B
β
1,∞ = −β0, B

β
2,∞ = −β0, and B

β
3,∞ = −β0.

Analytical Bias Correction

Using equation (14), we can form the analytically bias-corrected estimator

β̃aI,J,T = β̂I,J,T −
B̂β

1,I,J,T

I
−

B̂β
2,I,J,T

J
−

B̂β
3,I,J,T

T
, (15)

where we set B̂β
1,I,J,T = −β̂I,J,T , B̂β

2,I,J,T = −β̂I,J,T , and B̂β
3,I,J,T = −β̂I,J,T to reduce the order

of the bias in equation (14) at costs of introducing higher order terms (see equation (17)). Thus,

we can rewrite the analytically bias-corrected estimator (15)

β̃aI,J,T = β̂I,J,T

(
1 +

1

I
+

1

J
+

1

T

)
. (16)

Taking the expectation of (16) yields

β̄aI,J,T = Eα[β̃aI,J,T ] = β0

(
1− 1

I
− 1

J
− 1

T
+

1

IT
+

1

JT
+

1

IJ
− 1

IJT

)(
1 +

1

I
+

1

J
+

1

T

)
(17)

= β0

(
1− 1

IT
− 1

JT
− 1

T 2
− 3

IJ
+

1

I3
+

1

J3
+

4

IJT
+

1

IT 2
+

1

JT 2

− 1

I3T
− 1

J3T
− 1

IJT 2

)
.
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Split-Panel Jackknife

As an alternative to equation (16) we can also form the following SPJ estimator

β̂spjI,J,T = 4β̂I,J,T − β̂I/2,J,T − β̂I,J/2,T − β̂I,J,T/2 ,

where β̂I/2,J,T denotes the half panel estimator based on splitting the panel by exporters. This

estimator also reduces the order of the bias in equation (14) as we see from its expected value

β̄spjI,J,T = Eφ[β̂spjI,J,T ] = 4β̄I,J,T − β̄I/2,J,T − β̄I,J/2,T − β̄I,J,T/2 (18)

= β0

(
1− 1

IT
− 1

JT
− 1

IJ
+

2

IJT

)
.

Numerical Results

Table 6 shows numerical results for the uncorrected and the bias-corrected estimators in finite

samples, where we assume symmetry, i.e. I = J = N . The results demonstrate that the bias

corrections are effective in reducing the bias.

Table 6: Bias - Three-way Fixed Effects

N T (β̄I,J,T − β0)/β0 (β̄aI,J,T − β0)/β0 (β̄spjI,J,T − β0)/β0

10 10 -0.271 -0.052 -0.028
25 10 -0.171 -0.021 -0.009
25 25 -0.115 -0.009 -0.005
50 10 -0.136 -0.015 -0.004
50 25 -0.078 -0.004 -0.002
50 50 -0.059 -0.002 -0.001

B.2.2 Two-way Fixed Effects

In the following we briefly review the example with two-way fixed effects

yijt|λ,ψ ∼ N (λit + ψjt, β) .

Since it is a subcase of three-way fixed effects example, all previous results simplify by dropping

the terms that exhibit T .

The uncorrected variance estimator is26

26We draw on the appropriate demeaning formula for the two-way fixed effects model yijt = x′ijtβ+λit+ψjt+uijt,
which is given by zijt − z̄·jt − z̄i·t + z̄··t.
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β̂I,J,T =
1

IJT

I∑
i=1

J∑
j=1

T∑
t=1

(yijt − ȳ·jt − ȳi·t + ȳ··t)
2

and the (degrees-of-freedom)-corrected variance estimator is

β̂corI,J,T =
IJ

(I − 1)(J − 1)
β̂I,J,T .

Taking the expected value yields

β̄I,J,T = Eα[β̂I,J,T ] = β0

(
(I − 1)2

IJ

)
(19)

= β0

(
1− 1

I
− 1

J
+

1

IJ

)
.

Analytical Bias Correction

Based on equation (19) we can form the following analytically bias-corrected estimator

β̃aI,J,T = β̂I,J,T

(
1 +

1

I
+

1

J

)
,

which has the expected value

β̄aI,J,T = Eα[β̃aI,J,T ] = β0

(
1− 3

IJ
+

1

I3
+

1

J3

)
.

Split-Panel Jackknife

A suitable split-panel jackknife estimator is

β̂spjI,J,T = 4β̂I,J,T − β̂I/2,J,T − β̂I,J/2,T ,

which has the expected value

β̄spjI,J,T = Eα[β̂spjI,J,T ] = 3β̄I,J,T − β̄I/2,J,T − β̄I,J/2,T

= β0

(
1− 1

IJ

)
.

Numerical Results

The numerical results in Table 7 demonstrate that the bias corrections work.
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Table 7: Bias - Two-way Fixed Effects

N (β̄I,J,T − β0)/β0 (β̄aI,J,T − β0)/β0 (β̄spjI,J,T − β0)/β0

10 -0.190 -0.028 -0.010
25 -0.078 -0.005 -0.002
50 -0.040 -0.001 -0.000

100 -0.020 -0.000 -0.000

B.3 Asymptotic Bias Corrections

For the following expressions we draw on the results of Fernández-Val and Weidner (2016),

who have already derived the asymptotic distributions of the MLE estimators for structural

parameters and APEs in classical two-way fixed effects models based on it-panels. As outlined in

Cruz-Gonzalez, Fernández-Val, and Weidner (2017) the bias corrections of Fernández-Val and

Weidner (2016) can easily be adjusted to two-way fixed effects models based on pseudo-panels

with an ij-structure (i corresponds to importer and j to exporter), and importer and exporter

fixed effects. We give an intuitive explanation. Since only J observations are informative per

exporter fixed effects, we get a bias of order J for including exporter fixed effects, and vice versa

a bias of order I for including importer fixed effects. Further, since there are no predetermined

regressors in an ij-structure, we get two symmetric bias terms

B1,∞ = plimI,J→∞

 1

2J

J∑
j=1

∑I
i=1 Eα[Hij∂η2Fij(MX)ij ]∑I

i=1 Eα[ωij ]

 , (20)

B2,∞ = plimI,J→∞

[
1

2I

I∑
i=1

∑J
j=1 Eα[Hij∂η2Fij(MX)ij ]∑J

j=1 Eα[ωij ]

]
, (21)

where ωij is the ij-th diagonal entry of Ω, and M = IIJ −D(D′ΩD)−1D′Ω. ∂ι2g(·) denotes the

second order partial derivative of an arbitrary function g(·) with respect to some parameter ι.

The explicit expressions of Hijt and ∂η2Fijt are reported in Table 1. Equations (20) and (21)

are essentially D∞ from Fernández-Val and Weidner (2016) with adjusted indices. The same

adjustment can be transferred to the APEs.

In the following we apply the same logic to derive the asymptotic bias terms in our two- and

three-way error structure.

B.3.1 Two-way fixed effects

We get a bias of order J for including exporter-time fixed effects, since J observations are

informative per exporter-time fixed effect. In the same way we get a bias of order I for including

importer-time fixed effects. As in the case of the ij-structure of Cruz-Gonzalez, Fernández-Val,
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and Weidner (2017) there are no predetermined regressors, leading to two symmetric bias terms

in the distributions of the structural parameters and the APEs, respectively.

Asymptotic distribution of β̂

√
IJ(β̂I,J,T − β0)→d W

−1
∞ N (κB1,∞ + κ−1B2,∞,W∞), with (22)

B1,∞ = plimI,J→∞

 1

2J

T∑
t=1

J∑
j=1

∑I
i=1 Eα[Hijt∂η2Fijt(MX)ijt]∑I

i=1 Eα[ωijt]

 ,
B2,∞ = plimI,J→∞

[
1

2I

T∑
t=1

I∑
i=1

∑J
j=1 Eα[Hijt∂η2Fijt(MX)ijt]∑J

j=1 Eα[ωijt]

]
,

W∞ = plimI,J→∞

− 1

IJ

I∑
i=1

J∑
j=1

T∑
t=1

Eα[ωijt(MX)ijt(MX)′ijt]

 ,
where

√
J/I → κ as I, J →∞.

Asymptotic distribution of δ̂

r(δ̂ − δ − I−1B
δ
1,∞ − J−1B

δ
2,∞)→d N (0,V∞), with (23)

B
δ
1,∞ = plimI,J→∞

 1

2JT

T∑
t=1

J∑
j=1

∑I
i=1−Eα[Hijt∂η2Fijt]Eα (PΨ)ijt + Eα[∂η2∆ijt]∑I

i=1 Eα[ωijt]

 ,
B
δ
2,∞ = plimI,J→∞

[
1

2IT

T∑
t=1

I∑
i=1

∑J
j=1−Eα[Hijt∂η2Fijt]Eα (PΨ)ijt + Eα[∂η2∆ijt]∑J

j=1 Eα[ωijt]

]
,

V
δ
∞ = plimI,J→∞

r2

I2J2T 2
Eα

 I∑
i=1

J∑
j=1

T∑
t=1

∆̄ijt

 I∑
i=1

J∑
j=1

T∑
t=1

∆̄ijt

′ + I∑
i=1

J∑
j=1

T∑
t=1

ΓijtΓ
′
ijt

 ,
where ∆̄ijt = ∆ijt−δ, ∆ijt = [∆1

ijt, . . . ,∆
m
ijt]
′, δ = [δ1, . . . , δm]′, δk = 1

IJT

∑I
i=1

∑J
j=1

∑T
t=1 ∆k

ijt,

Ψijt = ∂η∆ijt/ωijt, and

Γijt =

 I∑
i=1

J∑
j=1

T∑
t=1

∂β∆ijt − (PX)ijt ∂η∆ijt

′W−1 (MX)ijt ωijtνijt − (PΨ)ijt ∂η`ijt .

r is a convergence rate. ∂ιg(·) denotes the first order partial derivative of an arbitrary function
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g(·) with respect to some parameter ι. The expression V
δ
∞ can be modified by assuming that

{λit}IT and {ψjt}JT are independent sequences, and λit and ψjt are independent for all it, jt:

V
δ
∞ = plimI,J→∞

r2

I2J2T 2
Eα

 I∑
i=1

T∑
t=1

J∑
j=1

J∑
r=1

∆̄ijt∆̄
′
irt +

J∑
j=1

T∑
t=1

I∑
i 6=p

∆̄ijt∆̄
′
pjt

+
I∑
i=1

J∑
j=1

T∑
t=1

ΓijtΓ
′
ijt

 .

B.3.2 Three-way fixed effects

With the inclusion of pair fixed effects, we introduce an additional bias of order T , since only T

observations are informative per pair fixed effect. Another difference that occurs in contrast to

the two-way fixed effects case is that predetermined regressors are now possible. To deal with

this issue we adapt the asymptotic bias terms B∞ and B
δ
∞ of Fernández-Val and Weidner (2016)

to the new structure.

Conjectured asymptotic distribution of β̂

√
IJT (β̂I,J,T − β0)→d W

−1
∞ N (κ1B1,∞ + κ2B2,∞ + κ3B3,∞,W∞), with

B1,∞ = plimI,J,T→∞

 1

2JT

T∑
t=1

J∑
j=1

∑I
i=1 Eα[Hijt∂η2Fijt(MX)ijt]∑I

i=1 Eα[ωijt]

 ,
B2,∞ = plimI,J,T→∞

[
1

2IT

T∑
t=1

I∑
i=1

∑J
j=1 Eα[Hijt∂η2Fijt(MX)ijt]∑J

j=1 Eα[ωijt]

]
,

B3,∞ = plimI,J,T→∞

 1

2IJ

I∑
i=1

J∑
j=1

(
T∑
t=1

Eα[ωijt]

)−1( T∑
t=1

Eα[Hijt∂η2Fijt(MX)ijt]

+2

T∑
τ=t+1

Eα[Hijt(Yijt − Fijt)ωijt(MX)ijt]

)]
,

W∞ = plimI,J,T→∞

− 1

IJT

I∑
i=1

J∑
j=1

T∑
t=1

Eα[ωijt(MX)ijt(MX)′ijt]

 .

where
√

(JT )/I → κ1,
√

(IT )/J → κ2, and
√

(IJ)/T → κ3 as I, J, T → ∞. The second term

in the numerator of B3,∞ is dropped if all regressors are assumed to be strictly exogenous.

39



Conjectured asymptotic distribution of δ̂

r(δ̂ − δ − I−1B
δ
1,∞ − J−1B

δ
2,∞ − T−1B

δ
3,∞)→d N (0,V

δ
∞), with

B
δ
1,∞ = plimI,J,T→∞

 1

2JT

T∑
t=1

J∑
j=1

∑I
i=1−Eα[Hijt∂η2Fijt]Eα (PΨ)ijt + Eα[∂η2∆ijt]∑I

i=1 Eα[ωijt]

 ,
B
δ
2,∞ = plimI,J,T→∞

[
1

2IT

T∑
t=1

I∑
i=1

∑J
j=1−Eα[Hijt∂η2Fijt]Eα (PΨ)ijt + Eα[∂η2∆ijt]∑J

j=1 Eα[ωijt]

]
,

B
δ
3,∞ = plimI,J,T→∞

 1

2IJ

I∑
i=1

J∑
j=1

(
T∑
t=1

Eα[ωijt]

)−1( T∑
t=1

−Eα[Hijt∂η2Fijt]Eα[(PΨ)ijt]

+Eα[∂η2∆ijt] + 2

T∑
τ=t+1

Eα[∂η`ijt−lωijt (MΨ)ijt]

)]
.

V
δ
∞ = plimI,J,T→∞

r2

I2J2T 2
Eα

 I∑
i=1

J∑
j=1

T∑
t=1

∆̄ijt

 I∑
i=1

J∑
j=1

T∑
t=1

∆̄ijt

′

+

I∑
i=1

J∑
j=1

T∑
t=1

ΓijtΓ
′
ijt + 2

I∑
i=1

J∑
j=1

T∑
s>t

∆̄ijtΓ
′
ijs

 ,
r is a convergence rate. The second term in the numerator of B3,∞ and the last term in V

δ
∞

are dropped if all regressors are assumed to be strictly exogenous. The expression V
δ
∞ can be

further modified by assuming that {λit}IT , {ψjt}JT and {µij}IJ are independent sequences, and

λit, ψjt and µij are independent for all it, jt, ij:

V̂δ = plimI,J,T→∞
r2

I2J2T 2
Eα

 I∑
i=1

T∑
t=1

J∑
j=1

J∑
r=1

∆̄ijt∆̄
′
irt +

J∑
j=1

T∑
t=1

I∑
i 6=p

∆̄ijt∆̄
′
pjt

+

I∑
i=1

J∑
j=1

T∑
s 6=t

∆̄ijt∆̄
′
ijs +

I∑
i=1

J∑
j=1

T∑
t=1

ΓijtΓ
′
ijt + 2

I∑
i=1

J∑
j=1

T∑
s>t

∆̄ijtΓ
′
ijs

 ,

B.4 Bias-corrected Ordinary Least Squares

Consider the three-way fixed effects linear probability model

yijt = λit + ψjt + µij + x′ijtβ + εijt ,

which can also be rewritten in matrix notation:
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y = Dα+ Xβ + ε . (24)

We first deal with the computational burden. Applying the three-way fixed effects residual

projection M = IIJT −D(D′D)−1D′ to (24), leads to the following concentrated regression:

My = MXβ + ε . (25)

The demeaning can be efficiently carried out by using the method of alternating projections (see

Gaure, 2013).

Hahn and Moon (2006) have derived the bias of dynamic linear models with individual and time

fixed effects. They show that there is only a bias of order 1/T stemming from the inclusion of

individual effects in combination with predetermined regressors. Transferring their result to our

problem with the three-way error component suggests that the inclusion of pair fixed effects in

combination with predetermined regressors leads to the same order of the bias. Thus, the linear

probability model needs only to be bias-corrected if not all regressors are strictly exogenous. This

is, for example, the case in a dynamic model, where we include yt−1 to our set of regressors.

An estimator of the bias is given by

B̂ =

 1

IJT

I∑
i=1

J∑
j=1

T∑
t=1

(MX)ijt(MX)′ijt

−1− I∑
i=1

J∑
j=1

L∑
l=1

1

T − l

T∑
t=l+1

Xijtε̂ijt−l

 ,

where ε̂ is the residual of (25) and L is a bandwidth parameter.27 This yields the bias-corrected

estimator

β̂ − B̂

IJT
, (26)

where β̂ = ((MX)′(MX))−1 (MX)′My.

27The residuals of equation (24) and equation (25) are identical (see Gaure, 2013).
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C Monte Carlo Results — Dynamic Model

C.1 Two-way fixed effects

Table 8: Dynamic: Two-way FEs – x, N = 50

Coefficients APE

Bias SD RMSE SE/SD CP .95 Bias SD RMSE SE/SD CP .95

N = 50; T = 10

MLE 5 2 5 0.95 0.14 0 1 1 0.97 0.95
ABC -0 2 2 0.99 0.95 -0 1 1 0.98 0.95
SPJ -1 2 2 0.96 0.90 -0 1 1 0.96 0.95
LPM -0 1 1 0.89 0.91

N = 50; T = 20

MLE 5 1 5 0.97 0.00 0 1 1 0.97 0.95
ABC -0 1 1 1.01 0.95 -0 1 1 0.98 0.95
SPJ -1 1 1 0.97 0.88 -0 1 1 0.96 0.94
LPM -0 1 1 0.88 0.92

N = 50; T = 30

MLE 5 1 5 0.93 0.00 0 1 1 0.97 0.94
ABC -0 1 1 0.97 0.94 -0 1 1 0.98 0.95
SPJ -1 1 1 0.93 0.86 -0 1 1 0.96 0.94
LPM -0 1 1 0.90 0.92

N = 50; T = 40

MLE 5 1 5 0.98 0.00 0 1 1 1.00 0.96
ABC -0 1 1 1.03 0.95 -0 1 1 1.01 0.96
SPJ -1 1 1 0.98 0.83 -0 1 1 0.98 0.94
LPM -0 1 1 0.92 0.92

N = 50; T = 50

MLE 5 1 5 0.92 0.00 0 1 1 0.95 0.93
ABC -0 1 1 0.96 0.94 -0 1 1 0.95 0.94
SPJ -1 1 1 0.94 0.80 -0 1 1 0.93 0.92
LPM -0 1 1 0.86 0.90

Table 9: Dynamic: Two-way FEs – x, N = 100

Coefficients APE

Bias SD RMSE SE/SD CP .95 Bias SD RMSE SE/SD CP .95

N = 100; T = 10

MLE 2 1 3 0.97 0.12 0 1 1 0.95 0.94
ABC -0 1 1 0.99 0.94 -0 1 1 0.95 0.94
SPJ -0 1 1 0.97 0.94 -0 1 1 0.94 0.93
LPM -0 1 1 0.79 0.87

N = 100; T = 20

MLE 2 1 2 0.96 0.01 0 1 1 0.90 0.92
ABC -0 1 1 0.98 0.94 -0 1 1 0.90 0.92
SPJ -0 1 1 0.96 0.93 -0 1 1 0.89 0.91
LPM -0 1 1 0.73 0.82

N = 100; T = 30

MLE 2 0 2 0.97 0.00 0 0 0 0.92 0.93
ABC -0 0 0 0.99 0.95 -0 0 0 0.92 0.93
SPJ -0 0 0 0.98 0.93 -0 0 0 0.91 0.92
LPM -0 0 1 0.75 0.83

N = 100; T = 40

MLE 2 0 2 0.97 0.00 0 0 0 0.89 0.92
ABC -0 0 0 0.99 0.95 -0 0 0 0.89 0.92
SPJ -0 0 0 0.99 0.92 -0 0 0 0.88 0.92
LPM -0 0 0 0.73 0.81

N = 100; T = 50

MLE 2 0 2 0.99 0.00 0 0 0 0.92 0.93
ABC -0 0 0 1.00 0.95 -0 0 0 0.92 0.94
SPJ -0 0 0 0.99 0.93 -0 0 0 0.91 0.93
LPM -0 0 0 0.74 0.83

Table 10: Dynamic: Two-way FEs – x, N = 150

Coefficients APE

Bias SD RMSE SE/SD CP .95 Bias SD RMSE SE/SD CP .95
N = 150; T = 10

MLE 2 1 2 0.98 0.12 -0 1 1 0.91 0.92
ABC -0 1 1 0.99 0.95 -0 1 1 0.91 0.93
SPJ -0 1 1 0.99 0.94 -0 1 1 0.91 0.93
LPM -0 1 1 0.67 0.80

N = 150; T = 20

MLE 2 0 2 0.99 0.01 0 0 0 0.91 0.92
ABC -0 0 0 1.00 0.95 -0 0 0 0.90 0.93
SPJ -0 0 0 0.98 0.93 -0 0 0 0.90 0.92
LPM -0 0 0 0.67 0.76

N = 150; T = 30

MLE 2 0 2 1.01 0.00 0 0 0 0.86 0.91
ABC -0 0 0 1.02 0.95 -0 0 0 0.86 0.90
SPJ -0 0 0 1.01 0.95 -0 0 0 0.86 0.91
LPM -0 0 0 0.63 0.73

N = 150; T = 40

MLE 2 0 2 0.99 0.00 0 0 0 0.88 0.91
ABC 0 0 0 1.00 0.95 0 0 0 0.88 0.91
SPJ -0 0 0 0.98 0.94 0 0 0 0.88 0.91
LPM -0 0 0 0.66 0.75

N = 150; T = 50

MLE 2 0 2 1.02 0.00 0 0 0 0.90 0.93
ABC -0 0 0 1.03 0.96 -0 0 0 0.90 0.93
SPJ -0 0 0 1.02 0.95 -0 0 0 0.90 0.93
LPM -0 0 0 0.67 0.73
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Table 11: Dynamic: Two-way FEs – yt−1, N = 50

Coefficients APE

Bias SD RMSE SE/SD CP .95 Bias SD RMSE SE/SD CP .95

N = 50; T = 10

MLE 5 4 7 0.99 0.81 0 4 4 0.99 0.95
ABC -0 4 4 1.03 0.95 -0 4 4 1.01 0.95
SPJ -1 4 4 1.00 0.94 -0 4 4 0.98 0.94
LPM 5 4 7 0.97 0.76

N = 50; T = 20

MLE 5 3 6 0.96 0.65 -0 3 3 0.96 0.94
ABC -0 3 3 1.00 0.95 -0 3 3 0.97 0.95
SPJ -1 3 3 0.97 0.93 -0 3 3 0.94 0.94
LPM 5 3 6 0.96 0.56

N = 50; T = 30

MLE 5 3 6 0.95 0.48 0 3 3 0.94 0.92
ABC 0 3 3 0.99 0.95 0 3 3 0.96 0.93
SPJ -1 3 3 0.97 0.93 0 3 3 0.94 0.93
LPM 6 3 6 0.94 0.40

N = 50; T = 40

MLE 5 2 5 0.98 0.38 0 2 2 0.99 0.95
ABC -0 2 2 1.02 0.95 -0 2 2 1.01 0.95
SPJ -1 2 2 1.01 0.94 -0 2 2 0.99 0.95
LPM 6 2 6 0.97 0.27

N = 50; T = 50

MLE 5 2 5 0.92 0.31 0 2 2 0.93 0.93
ABC -0 2 2 0.96 0.94 -0 2 2 0.95 0.93
SPJ -1 2 2 0.94 0.92 -0 2 2 0.92 0.93
LPM 6 2 6 0.93 0.21

Table 12: Dynamic: Two-way FEs – yt−1, N = 100

Coefficients APE

Bias SD RMSE SE/SD CP .95 Bias SD RMSE SE/SD CP .95

N = 100; T = 10

MLE 2 2 3 0.96 0.80 0 2 2 0.94 0.94
ABC 0 2 2 0.98 0.94 0 2 2 0.95 0.94
SPJ -0 2 2 0.97 0.94 0 2 2 0.95 0.94
LPM 5 2 6 0.91 0.30

N = 100; T = 20

MLE 2 2 3 0.99 0.63 0 2 2 0.99 0.94
ABC -0 1 1 1.01 0.95 -0 2 2 1.00 0.94
SPJ -0 2 2 0.99 0.94 -0 2 2 0.98 0.94
LPM 6 2 6 0.96 0.06

N = 100; T = 30

MLE 2 1 3 0.97 0.52 0 1 1 0.97 0.94
ABC -0 1 1 0.99 0.94 -0 1 1 0.98 0.94
SPJ -0 1 1 0.96 0.94 -0 1 1 0.96 0.93
LPM 6 1 6 0.94 0.01

N = 100; T = 40

MLE 2 1 3 0.99 0.42 0 1 1 0.97 0.94
ABC -0 1 1 1.01 0.95 -0 1 1 0.98 0.94
SPJ -0 1 1 0.99 0.94 -0 1 1 0.96 0.94
LPM 6 1 6 0.94 0.00

N = 100; T = 50

MLE 2 1 3 0.94 0.31 0 1 1 0.92 0.93
ABC -0 1 1 0.96 0.93 -0 1 1 0.92 0.93
SPJ -0 1 1 0.95 0.93 -0 1 1 0.91 0.92
LPM 6 1 6 0.90 0.00

Table 13: Dynamic: Two-way FEs – yt−1, N = 150

Coefficients APE

Bias SD RMSE SE/SD CP .95 Bias SD RMSE SE/SD CP .95

N = 150; T = 10

MLE 2 1 2 0.98 0.79 0 2 2 0.96 0.94
ABC 0 1 1 0.99 0.95 0 2 2 0.97 0.94
SPJ -0 1 1 0.98 0.95 0 2 2 0.95 0.94
LPM 6 2 6 0.92 0.04

N = 150; T = 20

MLE 2 1 2 0.98 0.66 -0 1 1 1.00 0.95
ABC -0 1 1 1.00 0.95 -0 1 1 1.00 0.95
SPJ -0 1 1 0.99 0.95 -0 1 1 0.99 0.95
LPM 5 1 6 0.96 0.00

N = 150; T = 30

MLE 2 1 2 0.98 0.53 0 1 1 0.99 0.95
ABC 0 1 1 1.00 0.95 0 1 1 0.99 0.95
SPJ -0 1 1 0.98 0.95 0 1 1 0.98 0.95
LPM 6 1 6 0.94 0.00

N = 150; T = 40

MLE 2 1 2 0.96 0.42 -0 1 1 0.96 0.94
ABC -0 1 1 0.97 0.94 -0 1 1 0.96 0.94
SPJ -0 1 1 0.96 0.94 -0 1 1 0.95 0.94
LPM 6 1 6 0.91 0.00

N = 150; T = 50

MLE 2 1 2 0.94 0.34 -0 1 1 0.93 0.93
ABC -0 1 1 0.95 0.94 -0 1 1 0.94 0.94
SPJ -0 1 1 0.94 0.94 -0 1 1 0.93 0.94
LPM 6 1 6 0.90 0.00
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C.2 Three-way fixed effects

Table 14: Dynamic: Three-way FEs – x, N = 50

Coefficients APE

Bias SD RMSE SE/SD CP .95 Bias SD RMSE SE/SD CP .95

N = 50; T = 10

MLE 29 3 29 0.82 0.00 4 2 4 1.01 0.33
ABC (1) -1 2 2 1.02 0.94 -1 2 2 1.09 0.94
ABC (2) -1 2 2 1.01 0.93 -1 2 2 1.08 0.93
SPJ -14 3 14 0.62 0.00 4 2 5 0.87 0.32
LPM (1) 0 2 2 0.94 0.93
LPM (2) -0 2 2 0.94 0.93

N = 50; T = 20

MLE 16 1 16 0.87 0.00 3 1 3 0.97 0.36
ABC (1) -0 1 1 0.98 0.94 -0 1 1 1.00 0.95
ABC (2) -0 1 1 0.97 0.93 -0 1 1 0.99 0.95
SPJ -5 1 5 0.86 0.04 1 1 1 0.91 0.89
LPM (1) -0 1 1 0.90 0.93
LPM (2) -0 1 1 0.90 0.92

N = 50; T = 30

MLE 12 1 12 0.92 0.00 2 1 2 1.00 0.48
ABC (1) -0 1 1 1.01 0.95 -0 1 1 1.01 0.95
ABC (2) -0 1 1 1.01 0.95 -0 1 1 1.01 0.94
SPJ -3 1 3 0.93 0.15 -0 1 1 0.96 0.95
LPM (1) -0 1 1 0.89 0.92
LPM (2) -0 1 1 0.89 0.90

N = 50; T = 40

MLE 10 1 10 0.89 0.00 1 1 2 0.97 0.53
ABC (1) -0 1 1 0.97 0.94 -0 1 1 0.98 0.93
ABC (2) -0 1 1 0.97 0.94 -0 1 1 0.97 0.93
SPJ -2 1 2 0.88 0.27 -0 1 1 0.91 0.91
LPM (1) -0 1 1 0.84 0.89
LPM (2) -0 1 1 0.84 0.86

N = 50; T = 50

MLE 9 1 9 0.90 0.00 1 1 1 1.01 0.61
ABC (1) -0 1 1 0.97 0.94 -0 1 1 1.01 0.96
ABC (2) -0 1 1 0.97 0.93 -0 1 1 1.01 0.96
SPJ -2 1 2 0.90 0.33 -0 1 1 0.94 0.94
LPM (1) -0 1 1 0.86 0.88
LPM (2) -0 1 1 0.86 0.87

Table 15: Dynamic: Three-way FEs – x, N = 100

Coefficients APE

Bias SD RMSE SE/SD CP .95 Bias SD RMSE SE/SD CP .95

N = 100; T = 10

MLE 24 1 24 0.89 0.00 4 1 4 1.04 0.02
ABC (1) 0 1 1 1.05 0.95 -0 1 1 1.08 0.94
ABC (2) 0 1 1 1.05 0.96 -1 1 1 1.08 0.91
SPJ -9 1 9 0.70 0.00 6 1 6 0.89 0.00
LPM (1) 0 1 1 0.88 0.91
LPM (2) -0 1 1 0.87 0.91

N = 100; T = 20

MLE 13 1 13 0.89 0.00 2 1 2 0.96 0.02
ABC (1) 0 1 1 0.98 0.93 0 1 1 0.98 0.95
ABC (2) 0 1 1 0.98 0.94 -0 1 1 0.97 0.94
SPJ -3 1 3 0.86 0.01 1 1 1 0.89 0.54
LPM (1) -0 1 1 0.85 0.89
LPM (2) -0 1 1 0.85 0.87

N = 100; T = 30

MLE 9 1 9 0.91 0.00 2 0 2 0.96 0.05
ABC (1) 0 0 0 0.97 0.95 0 0 0 0.96 0.94
ABC (2) -0 0 0 0.97 0.94 -0 0 0 0.96 0.94
SPJ -1 1 2 0.91 0.14 0 0 1 0.93 0.86
LPM (1) -0 0 1 0.82 0.86
LPM (2) -0 0 1 0.82 0.81

N = 100; T = 40

MLE 7 0 7 0.91 0.00 1 0 1 0.94 0.12
ABC (1) 0 0 0 0.96 0.94 0 0 0 0.94 0.93
ABC (2) -0 0 0 0.96 0.94 -0 0 0 0.94 0.92
SPJ -1 0 1 0.92 0.32 0 0 0 0.91 0.91
LPM (1) -0 0 1 0.79 0.81
LPM (2) -0 0 1 0.79 0.73

N = 100; T = 50

MLE 6 0 6 0.94 0.00 1 0 1 1.00 0.17
ABC (1) 0 0 0 0.99 0.94 0 0 0 1.00 0.95
ABC (2) -0 0 0 0.98 0.94 -0 0 0 1.00 0.95
SPJ -1 0 1 0.95 0.48 0 0 0 0.96 0.94
LPM (1) -0 0 0 0.80 0.76
LPM (2) -0 0 1 0.80 0.69

Table 16: Dynamic: Three-way FEs – x, N = 150

Coefficients APE

Bias SD RMSE SE/SD CP .95 Bias SD RMSE SE/SD CP .95

N = 150; T = 10

MLE 23 1 23 0.86 0.00 3 1 4 1.06 0.00
ABC (1) 1 1 1 1.01 0.82 -0 1 1 1.09 0.94
ABC (2) 0 1 1 1.00 0.88 -0 1 1 1.07 0.90
SPJ -7 1 7 0.67 0.00 6 1 6 0.89 0.00
LPM (1) 0 1 1 0.84 0.88
LPM (2) -0 1 1 0.83 0.90

N = 150; T = 20

MLE 11 0 11 0.94 0.00 2 0 2 0.97 0.00
ABC (1) 0 0 0 1.02 0.89 0 0 0 0.97 0.94
ABC (2) 0 0 0 1.01 0.93 -0 0 0 0.97 0.94
SPJ -2 0 2 0.89 0.00 1 0 1 0.90 0.16
LPM (1) -0 0 0 0.81 0.88
LPM (2) -0 0 0 0.81 0.81

N = 150; T = 30

MLE 8 0 8 0.92 0.00 2 0 2 0.96 0.00
ABC (1) 0 0 0 0.98 0.91 0 0 0 0.97 0.93
ABC (2) 0 0 0 0.98 0.95 -0 0 0 0.97 0.95
SPJ -1 0 1 0.91 0.06 0 0 1 0.92 0.73
LPM (1) -0 0 0 0.79 0.80
LPM (2) -0 0 0 0.79 0.66

N = 150; T = 40

MLE 6 0 6 0.95 0.00 1 0 1 0.95 0.01
ABC (1) 0 0 0 1.00 0.94 0 0 0 0.95 0.92
ABC (2) -0 0 0 1.00 0.95 -0 0 0 0.95 0.94
SPJ -1 0 1 0.94 0.22 0 0 0 0.92 0.87
LPM (1) -0 0 0 0.75 0.68
LPM (2) -0 0 0 0.75 0.54

N = 150; T = 50

MLE 5 0 5 0.95 0.00 1 0 1 0.97 0.02
ABC (1) 0 0 0 0.99 0.93 0 0 0 0.97 0.93
ABC (2) -0 0 0 0.99 0.94 -0 0 0 0.97 0.94
SPJ -1 0 1 0.95 0.38 0 0 0 0.95 0.91
LPM (1) -0 0 0 0.76 0.61
LPM (2) -0 0 0 0.76 0.45
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Table 17: Dynamic: Three-way FEs – yt−1, N = 50

Coefficients APE

Bias SD RMSE SE/SD CP .95 Bias SD RMSE SE/SD CP .95

N = 50; T = 10

MLE -62 5 62 0.95 0.00 -70 4 71 1.02 0.00
ABC (1) -6 4 7 1.14 0.81 -7 5 8 1.11 0.76
ABC (2) -7 5 9 1.05 0.68 -8 5 10 1.02 0.62
SPJ 24 6 25 0.77 0.01 -11 6 12 0.94 0.48
LPM (1) 2 5 5 1.02 0.95
LPM (2) 3 5 6 0.94 0.89

N = 50; T = 20

MLE -27 4 27 0.94 0.00 -36 3 37 0.95 0.00
ABC (1) -3 3 4 1.05 0.87 -3 3 5 1.00 0.85
ABC (2) -1 3 3 1.00 0.94 -1 3 4 0.96 0.93
SPJ 5 4 6 0.89 0.69 -2 4 4 0.89 0.89
LPM (1) 8 3 9 0.95 0.28
LPM (2) 11 4 12 0.91 0.09

N = 50; T = 30

MLE -16 3 16 0.97 0.00 -25 3 25 0.97 0.00
ABC (1) -2 3 3 1.06 0.88 -2 3 3 1.01 0.87
ABC (2) -0 3 3 1.03 0.95 -0 3 3 0.98 0.95
SPJ 2 3 3 0.95 0.88 -1 3 3 0.92 0.93
LPM (1) 10 3 11 0.96 0.03
LPM (2) 13 3 13 0.94 0.00

N = 50; T = 40

MLE -11 2 11 0.96 0.01 -19 2 19 0.95 0.00
ABC (1) -2 2 3 1.03 0.86 -2 2 3 0.99 0.85
ABC (2) -0 2 2 1.01 0.95 -0 2 2 0.97 0.95
SPJ 1 2 3 0.93 0.92 -0 3 3 0.90 0.92
LPM (1) 11 2 12 0.95 0.01
LPM (2) 13 2 13 0.93 0.00

N = 50; T = 50

MLE -7 2 8 0.94 0.07 -15 2 15 0.92 0.00
ABC (1) -2 2 3 1.01 0.89 -2 2 3 0.95 0.87
ABC (2) -0 2 2 0.99 0.95 -0 2 2 0.93 0.93
SPJ 0 2 2 0.92 0.92 -0 2 2 0.87 0.90
LPM (1) 12 2 12 0.92 0.00
LPM (2) 14 2 14 0.91 0.00

Table 18: Dynamic: Three-way FEs – yt−1, N = 100

Coefficients APE

Bias SD RMSE SE/SD CP .95 Bias SD RMSE SE/SD CP .95

N = 100; T = 10

MLE -63 3 63 0.98 0.00 -70 2 70 1.04 0.00
ABC (1) -6 2 7 1.13 0.22 -8 2 8 1.10 0.09
ABC (2) -8 2 8 1.04 0.08 -9 2 10 1.01 0.03
SPJ 21 3 21 0.80 0.00 -11 3 11 0.94 0.02
LPM (1) 2 2 3 1.00 0.84
LPM (2) 4 3 4 0.92 0.66

N = 100; T = 20

MLE -29 2 29 0.96 0.00 -37 2 37 0.96 0.00
ABC (1) -3 2 4 1.03 0.42 -4 2 4 0.99 0.37
ABC (2) -1 2 2 0.99 0.86 -2 2 2 0.95 0.83
SPJ 4 2 5 0.91 0.26 -2 2 3 0.90 0.80
LPM (1) 8 2 9 0.95 0.00
LPM (2) 11 2 11 0.91 0.00

N = 100; T = 30

MLE -18 1 18 0.97 0.00 -25 1 25 0.96 0.00
ABC (1) -3 1 3 1.03 0.50 -3 1 3 0.98 0.49
ABC (2) -1 1 1 1.00 0.93 -1 1 2 0.95 0.92
SPJ 2 1 2 0.94 0.72 -1 1 2 0.90 0.90
LPM (1) 10 1 10 0.95 0.00
LPM (2) 13 1 13 0.92 0.00

N = 100; T = 40

MLE -13 1 13 1.01 0.00 -19 1 19 1.01 0.00
ABC (1) -2 1 2 1.06 0.57 -2 1 2 1.04 0.56
ABC (2) -0 1 1 1.04 0.94 -0 1 1 1.02 0.94
SPJ 1 1 2 0.98 0.86 -0 1 1 0.96 0.93
LPM (1) 11 1 11 0.98 0.00
LPM (2) 13 1 13 0.96 0.00

N = 100; T = 50

MLE -10 1 10 0.98 0.00 -15 1 15 0.97 0.00
ABC (1) -2 1 2 1.03 0.61 -2 1 2 0.99 0.62
ABC (2) -0 1 1 1.01 0.95 -0 1 1 0.98 0.94
SPJ 1 1 1 0.98 0.91 -0 1 1 0.95 0.93
LPM (1) 12 1 12 0.94 0.00
LPM (2) 14 1 14 0.93 0.00

Table 19: Dynamic: Three-way FEs – yt−1, N = 150

Coefficients APE

Bias SD RMSE SE/SD CP .95 Bias SD RMSE SE/SD CP .95

N = 150; T = 10

MLE -63 2 64 0.95 0.00 -70 1 70 1.02 0.00
ABC (1) -7 1 7 1.09 0.01 -8 2 9 1.08 0.00
ABC (2) -8 2 9 1.01 0.00 -10 2 10 1.00 0.00
SPJ 20 2 20 0.78 0.00 -11 2 11 0.92 0.00
LPM (1) 2 2 3 0.98 0.71
LPM (2) 3 2 4 0.90 0.42

N = 150; T = 20

MLE -30 1 30 0.99 0.00 -37 1 37 1.00 0.00
ABC (1) -4 1 4 1.07 0.05 -4 1 4 1.03 0.03
ABC (2) -2 1 2 1.02 0.69 -2 1 2 0.99 0.61
SPJ 4 1 4 0.92 0.05 -2 1 2 0.90 0.61
LPM (1) 8 1 8 0.96 0.00
LPM (2) 11 1 11 0.92 0.00

N = 150; T = 30

MLE -19 1 19 0.98 0.00 -25 1 25 0.97 0.00
ABC (1) -3 1 3 1.04 0.15 -3 1 3 0.99 0.13
ABC (2) -1 1 1 1.01 0.89 -1 1 1 0.97 0.87
SPJ 2 1 2 0.96 0.47 -0 1 1 0.92 0.90
LPM (1) 10 1 10 0.93 0.00
LPM (2) 13 1 13 0.91 0.00

N = 150; T = 40

MLE -14 1 14 1.01 0.00 -19 1 19 0.99 0.00
ABC (1) -2 1 2 1.06 0.20 -2 1 2 1.01 0.19
ABC (2) -0 1 1 1.03 0.92 -0 1 1 0.99 0.90
SPJ 1 1 1 0.96 0.76 -0 1 1 0.93 0.92
LPM (1) 11 1 11 0.96 0.00
LPM (2) 13 1 13 0.94 0.00

N = 150; T = 50

MLE -11 1 11 0.97 0.00 -15 1 15 0.95 0.00
ABC (1) -2 1 2 1.01 0.30 -2 1 2 0.97 0.30
ABC (2) -0 1 1 0.99 0.92 -0 1 1 0.95 0.91
SPJ 1 1 1 0.96 0.84 -0 1 1 0.92 0.92
LPM (1) 12 1 12 0.92 0.00
LPM (2) 14 1 14 0.90 0.00
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D Further Monte Carlo Results — Static Model

Although the main focus of our article is on the dynamic two- and three-way fixed effects model,

the static counterparts are also highly relevant for applied work. For this reason, we study the

finite sample properties of MLE, ABC, SPJ and LPM for these model specifications, too. In the

following we briefly sketch the designs. Let i = 1, . . . , N , j = 1, . . . , N , t = 1, . . . , T , βy = 0.5,

β = 1.

Design - Two-way fixed effects

yijt = 1[βxijt + λit + ψjt ≥ εijt] ,

where λit ∼ iid. N (0, 1/16), ψjt ∼ iid. N (0, 1/16), and εijt ∼ iid. N (0, 1). Further, xijt =

0.5xijt−1 + λit + ψjt + νijt, where νijt ∼ iid. N (0, 0.5), xij0 ∼ iid. N (0, 1).

Design - Three-way fixed effects

yijt = 1[βxijt + λit + ψjt + µij ≥ εijt] ,

where λit ∼ iid. N (0, 1/24), ψjt ∼ iid. N (0, 1/24), µij ∼ iid. N (0, 1/24), and εijt ∼ iid. N (0, 1).

Further, xijt = 0.5xijt−1 + λit + ψjt + µij + νijt, where νijt ∼ iid. N (0, 0.5), xij0 ∼ iid. N (0, 1).

Note that, unlike in the dynamic three-way fixed effects model, the OLS estimator of the linear

probability model (LPM) does not require a bias correction for the specifications considered in

this section.

We now review the key results of the simulation experiments.

Results - Two-way fixed effects

Static (see Tables 20, 21, 22): although MLE shows a distortion in the structural parameter

estimates, the bias does not carry over to the estimates of APEs. The bias corrections ABC and

SPJ work well. They reduce the biases of the structural parameters and APEs to 1 or zero percent,

and bring the CPs close to the nominal level. Overall, ABC, SPJ and MLE work similarly well if

APEs are of interest. In terms of structural parameters, ABC exhibits a lower bias and better CPs

than SPJ in samples with smaller N . LPM shows no distortion of the APEs in all settings, but we
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observe that with increasing N , the standard errors are underestimated, resulting in too low CPs.

Note that MLE is consistent under fixed T asymptotics. This is also evident from the simulation

results, where the properties of the estimator do not change with T .

Results - Three-way fixed effects

Static (see Tables 23, 24, 25): we find a considerable distortion in the MLE estimates of the

structural parameters, which decreases with rising T , but is not negligibly small even at T = 50.

ABC and SPJ both reduce this bias considerably, but ABC works better in samples with smaller T .

While the CPs of ABC quickly converge to the nominal level, the CPs of SPJ are still far away

from 95 percent even at T = 50. If we look at the APEs, we see that all estimators have either a

very small bias of 1 percent or none at all. With increasing T , their CPs are also getting closer to

95 percent.
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Table 20: Static: Two-way FEs – x, N = 50

Coefficients APE

Bias SD RMSE SE/SD CP .95 Bias SD RMSE SE/SD CP .95

N = 50; T = 10

MLE 5 2 5 0.97 0.10 0 1 1 0.98 0.94
ABC -0 1 1 1.01 0.94 -0 1 1 0.99 0.94
SPJ -1 1 2 0.98 0.93 -0 1 1 0.96 0.93
LPM 0 1 1 0.96 0.93

N = 50; T = 20

MLE 5 1 5 0.99 0.01 0 1 1 1.06 0.96
ABC -0 1 1 1.03 0.96 -0 1 1 1.07 0.97
SPJ -1 1 1 0.98 0.91 -0 1 1 1.04 0.95
LPM -0 1 1 1.05 0.96

N = 50; T = 30

MLE 5 1 5 0.98 0.00 0 1 1 1.01 0.95
ABC -0 1 1 1.02 0.95 -0 1 1 1.03 0.95
SPJ -1 1 1 1.00 0.89 -0 1 1 1.00 0.95
LPM 0 1 1 0.99 0.94

N = 50; T = 40

MLE 5 1 5 0.94 0.00 0 1 1 0.98 0.95
ABC -0 1 1 0.97 0.94 -0 1 1 0.99 0.95
SPJ -1 1 1 0.95 0.84 -0 1 1 0.97 0.94
LPM -0 1 1 0.97 0.94

N = 50; T = 50

MLE 5 1 5 0.97 0.00 0 1 1 1.02 0.95
ABC -0 1 1 1.01 0.96 -0 1 1 1.04 0.96
SPJ -1 1 1 0.98 0.83 -0 1 1 1.00 0.95
LPM 0 1 1 1.00 0.95

Table 21: Static: Two-way FEs – x, N = 100

Coefficients APE

Bias SD RMSE SE/SD CP .95 Bias SD RMSE SE/SD CP .95

N = 100; T = 10

MLE 2 1 2 0.95 0.13 0 1 1 0.96 0.94
ABC -0 1 1 0.97 0.94 -0 1 1 0.96 0.93
SPJ -0 1 1 0.95 0.93 -0 1 1 0.95 0.93
LPM 0 1 1 0.85 0.90

N = 100; T = 20

MLE 2 1 2 0.98 0.00 0 0 0 0.99 0.96
ABC -0 1 1 1.00 0.95 -0 0 0 1.00 0.95
SPJ -0 1 1 0.99 0.94 -0 0 0 0.99 0.95
LPM -0 0 0 0.89 0.92

N = 100; T = 30

MLE 2 0 2 1.00 0.00 0 0 0 1.03 0.95
ABC 0 0 0 1.02 0.96 -0 0 0 1.03 0.95
SPJ -0 0 0 1.00 0.95 -0 0 0 1.03 0.96
LPM 0 0 0 0.92 0.93

N = 100; T = 40

MLE 2 0 2 0.98 0.00 0 0 0 0.97 0.94
ABC -0 0 0 1.00 0.94 -0 0 0 0.97 0.94
SPJ -0 0 0 0.98 0.93 -0 0 0 0.96 0.94
LPM -0 0 0 0.87 0.91

N = 100; T = 50

MLE 2 0 2 1.00 0.00 0 0 0 0.99 0.95
ABC -0 0 0 1.02 0.96 -0 0 0 0.99 0.95
SPJ -0 0 0 1.02 0.94 -0 0 0 0.99 0.95
LPM -0 0 0 0.88 0.92

Table 22: Static: Two-way FEs – x, N = 150

Coefficients APE

Bias SD RMSE SE/SD CP .95 Bias SD RMSE SE/SD CP .95

N = 150; T = 10

MLE 1 0 2 0.99 0.12 0 0 0 1.02 0.96
ABC -0 0 0 1.01 0.96 -0 0 0 1.02 0.96
SPJ -0 0 0 1.00 0.95 -0 0 0 1.01 0.95
LPM -0 0 0 0.84 0.90

N = 150; T = 20

MLE 1 0 2 0.95 0.01 0 0 0 0.95 0.94
ABC 0 0 0 0.96 0.94 0 0 0 0.95 0.94
SPJ -0 0 0 0.95 0.93 0 0 0 0.95 0.94
LPM 0 0 0 0.79 0.86

N = 150; T = 30

MLE 1 0 2 1.01 0.00 0 0 0 0.96 0.95
ABC -0 0 0 1.03 0.95 -0 0 0 0.97 0.94
SPJ -0 0 0 1.02 0.94 -0 0 0 0.96 0.95
LPM -0 0 0 0.79 0.88

N = 150; T = 40

MLE 1 0 2 0.99 0.00 0 0 0 0.97 0.94
ABC -0 0 0 1.00 0.95 -0 0 0 0.97 0.94
SPJ -0 0 0 0.99 0.94 -0 0 0 0.96 0.94
LPM -0 0 0 0.80 0.88

N = 150; T = 50

MLE 1 0 2 0.99 0.00 0 0 0 0.95 0.94
ABC -0 0 0 1.00 0.94 -0 0 0 0.95 0.94
SPJ -0 0 0 0.99 0.94 -0 0 0 0.95 0.94
LPM 0 0 0 0.78 0.88
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Table 23: Static: Three-way FEs – x, N = 50

Coefficients APE

Bias SD RMSE SE/SD CP .95 Bias SD RMSE SE/SD CP .95

N = 50; T = 10

MLE 22 2 22 0.85 0.00 1 1 2 1.00 0.89
ABC -1 2 2 1.03 0.88 -1 1 2 1.07 0.86
SPJ -12 2 12 0.72 0.00 -0 2 2 0.88 0.91
LPM 0 1 1 1.04 0.96

N = 50; T = 20

MLE 12 1 12 0.92 0.00 0 1 1 1.00 0.94
ABC -1 1 1 1.02 0.92 -0 1 1 1.03 0.93
SPJ -4 1 4 0.88 0.08 -1 1 1 0.92 0.89
LPM -0 1 1 1.04 0.96

N = 50; T = 30

MLE 10 1 10 0.94 0.00 0 1 1 1.02 0.94
ABC -0 1 1 1.02 0.94 -0 1 1 1.04 0.94
SPJ -2 1 2 0.93 0.28 -0 1 1 0.96 0.89
LPM 0 1 1 1.01 0.95

N = 50; T = 40

MLE 8 1 8 0.93 0.00 0 1 1 1.02 0.95
ABC -0 1 1 0.99 0.92 -0 1 1 1.03 0.94
SPJ -2 1 2 0.94 0.40 -0 1 1 0.99 0.90
LPM -0 1 1 0.98 0.94

N = 50; T = 50

MLE 8 1 8 0.96 0.00 0 1 1 1.04 0.94
ABC -0 1 1 1.03 0.93 -0 1 1 1.06 0.95
SPJ -1 1 2 0.95 0.46 -0 1 1 0.99 0.91
LPM 0 1 1 0.99 0.94

Table 24: Static: Three-way FEs – x, N = 100

Coefficients APE

Bias SD RMSE SE/SD CP .95 Bias SD RMSE SE/SD CP .95

N = 100; T = 10

MLE 18 1 18 0.89 0.00 1 1 1 1.05 0.90
ABC -1 1 1 1.05 0.80 -1 1 1 1.09 0.70
SPJ -8 1 8 0.74 0.00 0 1 1 0.89 0.87
LPM -0 1 1 1.04 0.96

N = 100; T = 20

MLE 9 1 9 0.93 0.00 0 0 1 1.01 0.92
ABC -0 1 1 1.00 0.92 -0 0 1 1.03 0.92
SPJ -2 1 2 0.94 0.01 -0 1 1 0.96 0.91
LPM 0 0 0 0.96 0.93

N = 100; T = 30

MLE 7 0 7 0.95 0.00 0 0 0 1.05 0.95
ABC -0 0 0 1.01 0.93 -0 0 0 1.06 0.95
SPJ -1 0 1 0.93 0.21 -0 0 0 0.98 0.92
LPM -0 0 0 0.97 0.95

N = 100; T = 40

MLE 6 0 6 0.96 0.00 0 0 0 1.00 0.94
ABC -0 0 0 1.00 0.94 -0 0 0 1.01 0.94
SPJ -1 0 1 0.95 0.44 -0 0 0 0.95 0.92
LPM -0 0 0 0.93 0.93

N = 100; T = 50

MLE 5 0 5 0.94 0.00 0 0 0 0.99 0.94
ABC -0 0 0 0.98 0.94 -0 0 0 1.00 0.94
SPJ -1 0 1 0.94 0.57 -0 0 0 0.97 0.92
LPM -0 0 0 0.91 0.93

Table 25: Static: Three-way FEs – x, N = 150

Coefficients APE

Bias SD RMSE SE/SD CP .95 Bias SD RMSE SE/SD CP .95

N = 150; T = 10

MLE 16 1 16 0.87 0.00 0 0 1 1.04 0.87
ABC -1 1 1 1.02 0.77 -1 0 1 1.07 0.51
SPJ -7 1 7 0.76 0.00 1 1 1 0.91 0.73
LPM -0 0 0 0.95 0.94

N = 150; T = 20

MLE 8 0 8 0.92 0.00 0 0 0 1.00 0.91
ABC -0 0 0 0.99 0.91 -0 0 0 1.01 0.89
SPJ -2 0 2 0.89 0.00 -0 0 0 0.93 0.91
LPM -0 0 0 0.93 0.93

N = 150; T = 30

MLE 6 0 6 0.93 0.00 0 0 0 0.97 0.93
ABC -0 0 0 0.97 0.93 -0 0 0 0.98 0.92
SPJ -1 0 1 0.93 0.08 -0 0 0 0.92 0.90
LPM -0 0 0 0.88 0.92

N = 150; T = 40

MLE 5 0 5 0.95 0.00 0 0 0 1.01 0.93
ABC -0 0 0 0.99 0.94 -0 0 0 1.02 0.94
SPJ -1 0 1 0.93 0.33 -0 0 0 0.98 0.93
LPM -0 0 0 0.90 0.93

N = 150; T = 50

MLE 4 0 4 0.98 0.00 0 0 0 1.05 0.95
ABC -0 0 0 1.01 0.94 -0 0 0 1.05 0.95
SPJ -0 0 0 0.97 0.51 -0 0 0 1.00 0.94
LPM -0 0 0 0.92 0.92
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E Application

Table 26: Logit Estimation: Coefficients

Dependent variable: yijt

(1) (2) (3) (4) (5)

lagged DV - - 2.869∗∗∗ - 1.929∗∗∗

[-] [-] [2.985] [-] [1.798]
(-) (-) (0.008) (-) (0.009)

log(Distance) - -1.454∗∗∗ -0.980∗∗∗ - -
[-1.181∗∗∗] [-1.494] [-1.012] [-] [-]

(0.005) (0.006) (0.007) (-) (-)
Land border - 0.621∗∗∗ 0.231∗∗∗ - -

[0.660∗∗∗] [0.643] [0.244] [-] [-]
(0.026) (0.029) (0.033) (-) (-)

Legal - 0.262∗∗∗ 0.169∗∗∗ - -
[0.172∗∗∗] [0.269] [0.176] [-] [-]

(0.007) (0.008) (0.009) (-) (-)
Language - 0.737∗∗∗ 0.514∗∗∗ - -

[0.663∗∗∗] [0.757] [0.529] [-] [-]
(0.009) (0.01) (0.012) (-) (-)

Colonial ties - 1.345∗∗∗ 1.002∗∗∗ - -
[0.342∗∗∗] [1.443] [1.102] [-] [-]

(0.036) (0.061) (0.07) (-) (-)
Currency Union - 1.137∗∗∗ 0.775∗∗∗ 0.578∗∗∗ 0.421∗∗∗

[0.660∗∗∗] [1.173] [0.807] [0.64] [0.497]
(0.021) (0.027) (0.031) (0.06) (0.064)

FTA - 1.059∗∗∗ 0.664∗∗∗ 0.130∗ 0.072
[0.955∗∗∗] [1.077] [0.674] [0.123] [0.054]

(0.031) (0.036) (0.04) (0.07) (0.075)
WTO - 0.228∗∗∗ 0.187∗∗∗ 0.095∗∗∗ 0.087∗∗∗

[0.462∗∗∗] [0.232] [0.191] [0.105] [0.102]
(0.009) (0.014) (0.016) (0.028) (0.031)

Fixed effects i, j, t it, jt it, jt it, jt, ij it, jt, ij
Sample size 1204671 1204671 1171794 1204671 1171794
- perf. class. 12298 147760 141537 370617 374067
Deviance 8.857×105 6.976×105 5.2×105 4.728×105 4.184×105

Notes: Uncorrected coefficients in square brack-
ets. Standard errors in parenthesis.

Table 27: Logit Estimation: APEs

Dependent variable: yijt

(1) (2) (3) (4) (5)

lagged DV - - 0.331∗∗∗ - 0.168∗∗∗

[-] [-] [0.332] [-] [0.13]
(-) (-) (0.002) (-) (0.049)

log(Distance) - -0.138∗∗∗ -0.067∗∗∗ - -
[-0.140∗∗∗] [-0.137] [-0.067] [-] [-]

(0.005) (0.005) (0.001) (-) (-)
Land border - 0.058∗∗∗ 0.016∗∗∗ - -

[0.077∗∗∗] [0.059] [0.016] [-] [-]
(0.004) (0.004) (0.003) (-) (-)

Legal - 0.025∗∗∗ 0.012∗∗∗ - -
[0.020∗∗∗] [0.025] [0.012] [-] [-]

(0.001) (0.001) (0.001) (-) (-)
Language - 0.069∗∗∗ 0.035∗∗∗ - -

[0.078∗∗∗] [0.069] [0.035] [-] [-]
(0.003) (0.001) (0.001) (-) (-)

Colonial ties - 0.122∗∗∗ 0.069∗∗∗ - -
[0.040∗∗∗] [0.127] [0.074] [-] [-]

(0.004) (0.006) (0.006) (-) (-)
Currency Union - 0.104∗∗∗ 0.053∗∗∗ 0.041∗∗∗ 0.027∗∗∗

[0.077∗∗∗] [0.104] [0.054] [0.04] [0.028]
(0.004) (0.003) (0.002) (0.006) (0.009)

FTA - 0.098∗∗∗ 0.046∗∗∗ 0.009 0.004
[0.110∗∗∗] [0.097] [0.045] [0.008] [0.003]

(0.005) (0.004) (0.003) (0.006) (0.006)
WTO - 0.022∗∗∗ 0.013∗∗∗ 0.007∗∗ 0.005∗

[0.056∗∗∗] [0.021] [0.013] [0.006] [0.006]
(0.002) (0.002) (0.001) (0.003) (0.003)

Fixed effects i, j, t it, jt it, jt it, jt, ij it, jt, ij
Sample size 1204671 1204671 1171794 1204671 1171794
- perf. class. 12298 147760 141537 370617 374067
Deviance 8.857×105 6.976×105 5.2×105 4.728×105 4.184×105

Notes: Uncorrected average partial effects in
square brackets. Standard errors in parenthesis.

Table 28: Probit Estimation with Different Bandwidths:
Coefficients

Dependent variable: yijt

(1) (2) (3) (4) (5)

lagged DV 0.961∗∗∗ 1.112∗∗∗ 1.140∗∗∗ 1.154∗∗∗ 1.161∗∗∗

(0.036) (0.037) (0.039) (0.04) (0.04)
Currency Union 0.228∗∗∗ 0.217∗∗∗ 0.214∗∗∗ 0.214∗∗∗ 0.216∗∗∗

(0.05) (0.048) (0.048) (0.048) (0.047)
FTA 0.035 0.037 0.038 0.042 0.043

(0.056) (0.054) (0.053) (0.053) (0.053)
WTO 0.041 0.039 0.039 0.040 0.042∗

(0.026) (0.025) (0.025) (0.025) (0.025)

Trim L = 0 L = 1 L = 2 L = 3 L = 4

Notes: All columns include Origin × Year, Destination × Year and Origin × Destination
fixed effects. Standard errors in parenthesis.

Table 29: Probit Estimation with Different Bandwidths:
Average Partial Effects

Dependent variable: yijt

(1) (2) (3) (4) (5)

lagged DV 0.144∗∗∗ 0.173∗∗∗ 0.179∗∗∗ 0.182∗∗∗ 0.183∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002)
Currency Union 0.026∗∗∗ 0.025∗∗∗ 0.024∗∗∗ 0.024∗∗∗ 0.025∗∗∗

(0.003) (0.003) (0.003) (0.003) (0.003)
FTA 0.004 0.004 0.004 0.005 0.005

(0.004) (0.004) (0.004) (0.004) (0.004)
WTO 0.005∗∗ 0.004∗∗ 0.004∗∗ 0.005∗∗ 0.005∗∗

(0.002) (0.002) (0.002) (0.002) (0.002)

Trim L = 0 L = 1 L = 2 L = 3 L = 4

Notes: All columns include Origin × Year, Destination × Year and Origin × Destination
fixed effects. Standard errors in parenthesis.
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Table 30: Logit Estimation with Different Bandwidths:
Coefficients

Dependent variable: yijt

(1) (2) (3) (4) (5)

lagged DV 1.606∗∗∗ 1.879∗∗∗ 1.929∗∗∗ 1.953∗∗∗ 1.965∗∗∗

(0.037) (0.038) (0.039) (0.04) (0.04)
Currency Union 0.448∗∗∗ 0.426∗∗∗ 0.421∗∗∗ 0.421∗∗∗ 0.425∗∗∗

(0.057) (0.054) (0.054) (0.054) (0.053)
FTA 0.065 0.069 0.072 0.077 0.080

(0.063) (0.061) (0.06) (0.06) (0.06)
WTO 0.091∗∗∗ 0.087∗∗∗ 0.087∗∗∗ 0.088∗∗∗ 0.091∗∗∗

(0.028) (0.027) (0.027) (0.027) (0.027)

Trim L = 0 L = 1 L = 2 L = 3 L = 4

Notes: All columns include Origin × Year, Destination × Year and Origin × Destination
fixed effects. Standard errors in parenthesis.

Table 31: Logit Estimation with Different Bandwidths:
Average Partial Effects

Dependent variable: yijt

(1) (2) (3) (4) (5)

lagged DV 0.133∗∗∗ 0.162∗∗∗ 0.168∗∗∗ 0.170∗∗∗ 0.172∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002)
Currency Union 0.028∗∗∗ 0.027∗∗∗ 0.027∗∗∗ 0.027∗∗∗ 0.027∗∗∗

(0.003) (0.003) (0.003) (0.003) (0.003)
FTA 0.004 0.004 0.004 0.005 0.005

(0.004) (0.004) (0.004) (0.004) (0.004)
WTO 0.006∗∗∗ 0.005∗∗∗ 0.005∗∗∗ 0.006∗∗∗ 0.006∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002)

Trim L = 0 L = 1 L = 2 L = 3 L = 4

Notes: All columns include Origin × Year, Destination × Year and Origin × Destination
fixed effects. Standard errors in parenthesis.

Table 32: Probit vs. OLS estimation: Average
Partial Effects with Two-way Fixed Effects

Dependent variable: yijt

(1) (2) (3) (5)

lagged DV - - 0.599∗∗∗ 0.346∗∗∗

(-) (-) (0.001) (0.003)
log(Distance) -0.133∗∗∗ -0.135∗∗∗ -0.053∗∗∗ -0.066∗∗∗

(0.001) (0.005) (0) (0.001)
Land border 0.014∗∗∗ 0.035∗∗∗ 0.003∗ 0.015∗∗∗

(0.002) (0.004) (0.002) (0.003)
Legal 0.008∗∗∗ 0.023∗∗∗ 0.002∗∗∗ 0.011∗∗∗

(0.001) (0.001) (0.001) (0.001)
Language 0.098∗∗∗ 0.071∗∗∗ 0.040∗∗∗ 0.035∗∗∗

(0.001) (0.001) (0.001) (0.001)
Colonial ties 0.021∗∗∗ 0.107∗∗∗ 0.008∗∗∗ 0.061∗∗∗

(0.003) (0.007) (0.002) (0.005)
Currency Union 0.107∗∗∗ 0.103∗∗∗ 0.046∗∗∗ 0.053∗∗∗

(0.003) (0.003) (0.002) (0.002)
FTA -0.155∗∗∗ 0.090∗∗∗ -0.063∗∗∗ 0.045∗∗∗

(0.002) (0.004) (0.002) (0.003)
WTO -0.010∗∗∗ 0.026∗∗∗ -0.008∗∗∗ 0.013∗∗∗

(0.001) (0.002) (0.001) (0.001)

Estimator OLS Probit OLS Probit
bias corrected - true - true
Sample size 1204671 1204671 1171794 1171794

Notes: All columns include Origin × Year, Destination × Year and Origin ×
Destination fixed effects. Standard errors in parenthesis.

Table 33: LPM Estimation with Different Band-
widths: Average Partial Effects

Dependent variable: yijt

(1) (2) (3) (4) (5)

lagged DV 0.444∗∗∗ 0.466∗∗∗ 0.474∗∗∗ 0.480∗∗∗ 0.485∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)
Currency Union 0.008∗∗∗ 0.008∗∗ 0.008∗∗ 0.008∗∗ 0.008∗∗

(0.003) (0.003) (0.003) (0.003) (0.003)
FTA -0.065∗∗∗ -0.062∗∗∗ -0.062∗∗∗ -0.061∗∗∗ -0.061∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002)
WTO 0.008∗∗∗ 0.008∗∗∗ 0.008∗∗∗ 0.008∗∗∗ 0.009∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002)

Trim L = 0 L = 1 L = 2 L = 3 L = 4

Notes: All columns include Origin × Year, Destination × Year and Origin × Destination
fixed effects. Standard errors in parenthesis.
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Figure 8: Fitted Probabilities
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