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1 Introduction

While forecasters may wish to use as much information as possible to increase the accuracy

of their forecasts, the estimation of models with a large number of different time series causes

huge technical difficulties as the number of parameters to be estimated quickly becomes very

large and in-sample overfitting occurs or estimation becomes even infeasible. To overcome this

curse of dimensionality several large scale time-series methods have been proposed. The three

most prominent of these approaches are factor models, large Bayesian vector autoregressions and

model averaging techniques. All of these three approaches handle the dimensionality problem

by aggregating the informational content of the large dataset, yet the aggregation takes place

on different levels.1

In particular, with factor models (see e.g. Stock and Watson, 2002a,b; Bernanke and Boivin,

2003; Forni et al., 2000, 2005) the aggregation of the informational content of a large dataset into

a small number of static or dynamic factors takes place prior to the estimation of small scale

forecasting models such as e.g. autoregressive distributed lag models, vector autoregressions or

Bayesian vector autoregressions. These small forecasting models then include the factor time

series rather than all the time series of the large dataset (see Banerjee, 2013, for an overview of

the factor model approach and a survey on recent papers using factor models for large dataset

problems).

Large Bayesian vector autoregressions (De Mol et al., 2008; Bańbura et al., 2010), on the

other hand, can be estimated with a large number of time series by applying shrinkage to

aggregate the information contained in the large dataset during the estimation process. The

degree of shrinkage thereby increases with the number of times series included in the respective

model.

By contrast, when using model averaging techniques (see e.g. Bates and Granger, 1969; Stock

and Watson, 2003; Timmermann, 2006; Wright, 2009; Faust and Wright, 2009) the aggregation

of the informational content of the large dataset takes place after the estimation of a large

number of small scale forecasting models. Here, the final forecast is computed as a weighted

average over the individual forecasts of all the small scale forecasting models.

While De Mol et al. (2008) show that there is a theoretical connection between the factor

and the shrinkage approach, it is not clear which method to aggregate the informational content

of a large dataset performs best from an empirical perspective. In this paper, we therefore

systematically study the performance of all three of these alternative large scale approaches

using a dataset for Germany that consists of 123 variables in quarterly frequency.

Previous literature has so far only focused on evaluating the forecasting performance of

one or two of these large scale approaches relative to several small benchmark models, to the

Federal Reserve’s Greenbook projections (for US data) or to each other. For example, Bernanke

and Boivin (2003) study the performance of a factor augmented autoregressions and vector

autoregression relative to the Greenbook forecasts, Faust and Wright (2009) evaluate static

factor models as well as model averaging models relative to a number of benchmark models and

1An alternative approach to solving this problem are variable selection methods such as targeted predictors
(Bai and Ng, 2008), Bayesian variable selection (Korobilis, 2013) or the LASSO approach (Tibshirani, 1996).
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the Greenbook projections, Bańbura et al. (2010) study a large Bayesian vector autoregression

and a Bayesian factor augmented vector autoregression and Berg and Henzel (2013) focus on

the same models, but study euro area instead of US data and additionally evaluate the different

models’ density forecasts.2

By contrast, our analysis includes all three large scale approches outlined above. It focuses

on Germany, the largest economy in the euro area, which is considerably smaller but also much

more open than the US or the euro area. For Germany, several authors have investigated the

forecasting performance of factor models estimated on large datasets relative to small benchmark

models (see e.g. Schumacher and Dreger, 2004; Kholodilin and Siliverstovs, 2006; Schumacher,

2007, 2010, 2011). However, so far no comparison of the forecasting performance of factor models

to alternative large scale approaches has been provided. Moreover, most existing empirical

forecasting applications for Germany focus almost exclusively on forecasting real GDP (see e.g.

Drechsel and Scheufele, 2012a,b) rather than a set of key macroeconomic variables as is the case

in this study. To our knowledge, the only two exceptions to this are Müller-Dröge et al. (2014)

and Buchen and Wohlrabe (2014) who evaluate the forecasts for a larger set of German key

macroeconomic variables as well. However, both papers have a different methodological focus

than this paper.

With our comprehensive analysis we provide an assessment of the relative joint and also

univariate forecasting performance of the different large scale forecasting methods for GDP

growth, CPI and PPI inflation, a short- and a long-term interest rate, the unemployment rate,

industrial production, real wages, consumption, investment and the current account balance.

We deem these 11 variables of special interest to forecasters and policy makers because they

are covered, for example, in the monthly survey of Consensus Economics among professional

forecasters. Moreover, we test whether the forecasts obtained with the different models are

unbiased and check whether the relative performance of the different forecasting models is robust

against various alternative model specifications.

Our dataset consists of 123 variables in quarterly frequency covering a sample period from

1978 until 2013. We include indicators from the following categories: composition of GDP and

gross value added by sectors, prices, labor market, financial market, industry, construction and

surveys. Different variants of the three large scale forecasting models as well as a number of

small benchmark models are estimated using a moving window of 15 years of data, while the

forecasts obtained by the different models are evaluated from 1994 through 2013. To assess

the relative (joint) forecasting performance of the different models we compare (multivariate)

mean squared forecast errors, while we compute Mincer-Zarnowitz regressions (see Mincer and

Zarnowitz, 1969) to test for forecast bias. All forecasting models are specified according to

various information criteria. As a robustness check we also specify the models based on their ex

post best forecasting performance and implement forecast pooling over a variety of specifications.

Our results indicate that the large Bayesian vector autoregression and the Bayesian factor

augmented vector autoregression deliver forecasts that are more precise than those obtained by

2Beyond pure reduced form forecasting models, Wolters (2015) compares the forecasting accuracy of a large
Bayesian vector autoregression to Dynamic Stochastic General Equilibrium (DSGE) models and the Fed’s Green-
book projections.
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a univariate autoregressive benchmark or the remaining large scale forecasting models. This

holds for both, measures for the joint forecasting performance for the set of 11 variables as well

as univariate performance measures for the individual series. We find that in contrast to the

remaining factor approaches and the model averaging approaches both models can efficiently

exploit the correlation structure between the series of the large dataset to provide relatively

accurate forecasts, even for longer forecasting horizons.

With respect to the robustness of the relative forecasting performance of the different models

our findings indicate that the forecasting performance of the large Bayesian vector autoregression

and the Bayesian factor augmented vector autoregression is very robust to the specific model

specification, i.e. the number of lags or factors and the degree of shrinkage. By contrast, the

dynamic factor model outperforms all other forecasting models by far if one chooses the ex-

post optimal specification. However, in the quasi real-time exercise, where the number of lags

and factors is chosen based on information criteria, on past forecasting accuracy or where the

forecasts are obtained by pooling over a large set models with different specifications, we find

that this performance is unattainable.

Finally, our results indicate that overall the gains in forecasting accuracy obtained by the

large scale approaches relative to an autoregressive benchmark are only modest for most variables

considered and are in many cases statistically insignificant. We also find that using a large

amount of data would not have helped in forecasting the great slump of German GDP growth in

2008 and that a small forecasting model that only includes the ifo business climate index, which

is often cited by professional forecasters as the single most important predictor for German

GDP growth,3 clearly dominates even the best large scale approaches in terms of short-term

GDP growth forecasting performance.

The moderate gains of the large scale approaches can be explained with the extremely low

persistence of some of the time series. Moreover, many of the time series seem to be characterized

by common components which implies that parsimonious univariate models are often sufficient to

capture the most important information contained in the data. Efficient multivariate modelling

therefore becomes a hard task so that improvements of the large data forecasting methods are

rather small (see also Carriero et al., 2011; Bernardini and Cubadda, 2014).

Still, when forecasters are interested in simultaneously predicting a larger number of vari-

ables, large-scale forecasting models have the advantage that they can be used to coherently

forecast many variables at the same time. This might be an advantage when it comes to the

interpretation of forecasts.

The remainder of this paper is structured as follows. In section 2 we outline the different fore-

casting models. In section 3 we describe the dataset that we use, while in section 4 we describe

our forecasting approach. In section 5 we evaluate the absolute and relative (joint) forecasting

performance of the different models and check for robustness against model misspecification.

Finally, in section 6 we conclude.

3The ifo business climate index is based on a monthly survey among about 7000 firms which report their
assessments of the current business situation and their expectations for the next six months. From these two
assessments the overall ifo index is calculated. The out-of-sample predictive ability of the ifo index for German
GDP has been widely studied, see for example Dreger and Schumacher (2005), Kholodilin and Siliverstovs (2006),
Abberger (2007), Drechsel and Scheufele (2012b) or Henzel and Rast (2013).
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2 Forecasting Models

In the following, we provide a brief overview of the different forecasting models. Let {yi,t}
n
i=1

denote the set of variables to be forecast in log-levels and {xj,t}
m
j=1 the set of possible predictors

in log-levels. Variables expressed in rates such as the unemployment rate or interest rates are

included in {yi,t}
n
i=1 and {xj,t}

m
j=1 in levels rather than log-levels. The total number of variables

in our dataset is given by n+m = k. We compute annualized quarter-on-quarter growth rates

of all variables, denoted by {∆yi,t}
n
i=1 and {∆xj,t}

m
j=1, respectively. To avoid overly complicated

notation, variables expressed in rates are included in levels in the respective ∆ terms as well.

Given the information available at time t, we estimate all forecasting models and construct

forecasts {∆yi,t+h}
n
i=1 with h being the forecast horizon ranging from one to eight quarters

ahead. While some of the forecasting models directly yield growth rate forecasts, we obtain log-

level forecasts from the other models and use these to compute implied quarter-on-quarter growth

rate forecasts. For forecasting models that include lags of the dependent variable the number

of lags p included in the estimation of each model is obtained via the Bayesian information

criterion unless otherwise stated.

2.1 Large Bayesian VAR (LBVAR)

Consider the following VAR Zt = c + A1Zt−1 + ... + ApZt−p + ǫt, where the vector Zt =

(y1,t, ..., yn,t, x1,t, ..., xm,t)
′ contains all the k time series in the dataset. Following Bańbura et al.

(2010) we include the variables in log-levels rather than growth rates to not lose information

that might possibly be contained in the trends. c is a (kx1) vector of constants, A1, ..., Ap

are (kxk)-dimensional parameter matrices and ǫt is a (kx1) vector of independently identically

distributed white noise error terms with zero mean and covariance matrix Ψ.

We use Bayesian techniques to estimate the large VAR outlined above. Since the number of

variables that we want to include in the estimation is fairly large (k = 123), we follow Bańbura

et al. (2010) and implement a prior that shrinks the parameters of the VAR. This allows for

the aggregation of the information contained in the large dataset during the estimation process.

The degree of shrinkage thereby increases with the size of the cross-section, thus allowing the

estimation of a model where the number of parameters exceeds the number of observations by

far.

We implement the Bayesian shrinkage approach by using a version of the Normal inverse

Wishart prior (see e.g. Kadiyala and Karlsson, 1997) that retains the main principles of the

widely used Minnesota prior (Litterman, 1986). According to this prior specification each equa-

tion of the VAR is centered around a random walk with drift or an autoregressive process,

respectively. In contrast to Bańbura et al. (2010), we do not set δi, the prior coefficient means

for the first lag of each variable, equal to zero for stationary variables. Instead, we run a uni-

variate autoregression of order p for each of the k elements in Zi,t and set δi equal to the sum of

the therewith obtained coefficient estimates defined as µi =
∑p

ℓ=1 βℓ if µi < 1. For µi ≥ 1 we set

δi = 1. This approach allows us to capture the different degrees of persistence in the dataset.

The shrinkage of the VAR coefficients towards the prior is achieved through the hyperpa-

rameter λ which enters the prior variance of each coefficent. Bańbura et al. (2010) suggest to set
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the tightness of the prior, so that the LBVAR achieves the same in-sample fit as an unrestricted

small VAR without shrinkage.4 We slightly depart from this approach and set λ such that the

LBVAR achieves the same in-sample fit as a small BVAR containing GDP, prices, the unem-

ployment rate and a short-term interest rate, because the respective unrestricted VAR seems to

be severely overparameterized.

We set the lag length p = 4, however the forecasting performance of the LBVAR proves

to be remarkably robust with respect to the number of lags included in the estimation (see

section 5.3). Following Bańbura et al. (2010) we implement the prior using dummy variables

and augment it to constrain the sum of coefficients of the VAR (see e.g. Sims and Zha, 1998).

2.2 Factor Models (FAAR, FAVAR, BFAVAR, DF)

Assume that ∆X∗
i,t, the standardized set of potential predictors for each variable of interest, can

be represented by two components which are mutually orthogonal to each other and unobserv-

able. These are the common component χi,t and the idiosyncratic component ξi,t, so that we

have ∆X∗
i,t = χi,t + ξi,t.

The basic idea of factor models is that the information contained in the common component

χi,t can be aggregated into a vector of factors Fi,t of dimension κ ≤ (k − 1) which are able to

explain most of the variance of the predictor matrix ∆X∗
i,t. With these factors the dimension of

a large dataset can thus be reduced prior to the estimation of the forecasting model.

In general the common component relates to the factors as χi,t =
∑s

l=0 ηlFi,t−l. Depending

on the lag structure that is assumed we can distinguish two model variants: the static factor

model with s = 0 and the dynamic factor model with s > 0.

2.2.1 Static Factor Models (FAAR, FAVAR, BFAVAR)

From the standardized set of predictors ∆X∗
i,t we extract the (rx1)-dimensional vector of factors

Fi,t = (f1
i,t, ..., f

r
i,t)

′ via static principal component analysis. Following Stock and Watson (2002a)

we use these static factors to estimate a factor augmented direct autoregression (FAAR).5

Moreover, we implement a factor augmented vector autoregression as proposed by Bernanke

et al. (2005) which allows for a more dynamic structure. Following Faust and Wright (2009)

we include the variable to be predicted in log-levels and the factors extracted from the set of

predictors in the estimation.6

We estimate the factor augmented vector autoregression via ordinary least squares (FAVAR)

4Of course, this approach is merely an ad-hoc rule of thumb. Alternatively, λ could also be chosen to maximize
the out-of sample forecasting performance over a pre-sample as for example in Litterman (1986). Giannone et al.
(2012) suggest a more sophisticated hierarchical approach to specifying λ which relies on maximizing the marginal
likelihood, i.e. the density of the data conditional on λ after integrating out the uncertainty about the parameters
of the VAR. However, since we find that the forecasting performance of the large BVAR is very robust to the
exact specification of λ, we do stick to the rule of thumb.

5According to common practice, we chose the direct version of the autoregressive model because the iterated
model variant would require the specification of a subsidiary model for the factors Fj,t in order to compute
forecasts for horizons h > 1.

6We also estimate a FAVAR that includes a small set of core variables (including the variable to be predicted)
and the factors (see e.g. Bernanke and Boivin, 2003; Bańbura et al., 2010). The forecasting performance of this
alternative, however, is considerably worse, so that we do not include this model in the main results.
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as well as with Bayesian techniques (BFAVAR), however the FAVAR performs very poorly so we

do not report the results for this model. For the BFAVAR, the prior is set in a manner analogous

to the large Bayesian VAR with the following two exceptions. First, we set the prior coefficient

mean for the first lag of the factors δ = 0 to account for the fact that the factors have been

extracted from the standardized predictor matrix ∆X∗
i,t. Second, we set the hyperparameter

λ = 0.2. For the determination of the optimal number of factors r we use the information

criterion ICp2 proposed by Bai and Ng (2002).

2.2.2 Dynamic Factor Models (DF)

We set up a dynamic factor model in the spirit of Forni et al. (2003, 2005). This implies

extracting the (qx1)-dimensional vector of dynamic factors F̃i,t from the standardized set of

predictors ∆X∗
i,t via dynamic principal component analysis in the frequency domain. Defining

F̃ ∗
i,t = (F̃ ′

i,t, F̃
′
i,t−1, ..., F̃

′
i,t−s)

′ as a vector of contemporaneous and lagged factors with dimension

r = q(s+ 1), the dynamic factor model can be rewritten as a static factor model χi,t = ηF̃ ∗
i,t.

The factors F̃ ∗
i,t are used to augment a direct autoregression, analogously to the FAAR

outlined above. For the determination of the optimal number of dynamic factors q we apply the

information criterion proposed by Bai and Ng (2007).

2.3 Model Averaging (EWA, BMA)

For each of the n variables of interest ∆yi,t we set up (k − 1) direct autoregressive distributed

lag models ∆yi,t = ρ0 + ρ1∆yi,t−h + ... + ρp∆yi,t−h+1−p + βj∆xj,t−h + ǫj,t, where ∆xj,t−h is an

element of the (k − 1)-dimensional set of potential predictors ∆Xi,t.

The general idea of model averaging is to compute a forecast ∆y
j
i,t+h with each of the

(k − 1) models and aggregate the model-specific forecasts afterwards into one final forecast, i.e.

∆yi,t+h =
∑(k−1)

j=1 ωj∆y
j
i,t+h, where ωj denotes the weight given to the model-specific forecast

∆y
j
i,t+h.

According to the specification of ωj we distinguish two model averaging approaches. The

first approach is Equal Weighted Averaging (EWA) as in Stock and Watson (2003, 2004), where

the (k − 1) models are estimated via OLS and ωj = ω = 1
(k−1) .

Alternatively, we consider Bayesian Model Averaging (BMA) as laid out in Wright (2009),

where each of the model-specific forecasts ∆y
j
i,t+h is weighted with the posterior probability of

the respective model P (Mj), i.e. ωj = P (Mj).
7

2.4 Benchmark Model (AR)

In order to evaluate the relative forecasting performance of the three large scale approaches

described above we implement a univariate autoregression (AR) ∆yi,t = c+
∑p

j=1 ρj∆yi,t−j + ǫt

for each of the variables to be forecast as benchmark.

7The model-specific posterior probability P (Mj) is calculated in each estimation period t for each forecasting
horizon h. For simplicity however, we omit the respective subscripts.
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3 Data

Our dataset builds on the one used in Schumacher (2007) which we have slightly modified and

updated to cover a sample from 1978Q1 to 2013Q3. Overall, our dataset consists of 123 macroe-

conomic variables in quarterly frequency. Series that are available at a higher frequency, e.g.

monthly, are converted into quarterly frequency by computing the average over the respective

quarter. The data can be grouped into the following categories: composition of GDP and gross

value added by sectors, prices, labor market, financial market, industry, construction, surveys

and miscellaneous. A detailed list of the different series can be found in Appendix A.

Most of the data is obtained via Thomson Reuters Datastream, while the remaining data

is directly obtained from the German Federal Statistical Office. We do not account for data

revisions in our quasi real-time forecasting exercise, but use the most recent vintage of the data

available in December 2013. The data is seasonally adjusted. Natural logarithms are taken and

annualized quarter-on-quarter growth rates are computed for time series not expressed in rates.

Following Schumacher (2007) we rescale data which is only available for West Germany prior to

1991 to the pan-German series to avoid regime shifts.

4 Forecasting Approach

We estimate the various forecasting models on a moving window consisting of 60 observations to

account for possible structural breaks in the estimation sample. For the majority of forecasting

models, the forecasts are computed by iterating the forecasting models forward, while for the

FAAR, DFM and the two model averaging approaches direct forecasts are computed.

The evaluation sample for our pseudo out-of-sample forecasting exercise, denoted by T =

T0 + 1, ..., T1, ranges from 1994Q4 until 2013Q3, thus it contains 76 forecasts for each horizon.

Forecast errors are computed as ei,T |T−h = ∆yri,T −∆y
f

i,T |T−h
, where ∆yri,T denotes the realized

quarter-on-quarter growth rate of variable i in period T and ∆y
f

i,T |T−h
denotes the quarter-on-

quarter period T growth rate forecast of variable i computed h quarters earlier.

For the evaluation of the absolute and relative forecasting performance of the different mod-

els we focus on two measures. First, we run Mincer-Zarnowitz regressions (see Mincer and

Zarnowitz, 1969) ∆yri,T = αi,h + βi,h∆y
f

i,T |T−h
+ ǫi,T |T−h and conduct F-tests of the joint null

hypothesis α̂i,h = 0 and β̂i,h = 1 to check whether the forecasts are unbiased and efficient. This

allows us to assess the absolute forecasting accuracy of each model.

Secondly, we compute and analyze (multivariate) mean squared forecasting errors (MSE)

to evaluate the relative (joint) predictive ability of the different forecasting models. We report

the absolute MSE for the AR forecast which we use as a benchmark, while for the remaining

models we report the MSEs relative to this benchmark. Thus a relative MSE smaller than 1

indicates that the forecasting performance of a specific model is more precise than that of the

AR benchmark and vice-versa.

To assess the statistical significance of the forecasting performance of the different models

for each individual variable relative to the AR benchmark we implement the test of equal uncon-

ditional finite-sample predictive ability (see Giacomini and White, 2006) using a symmetric loss
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function. This test can be applied to nested models, meaning that one model can be obtained

from another model by imposing certain parameter restrictions, as well as non-nested models. It

thus provides a coherent framework for comparing a large number of different forecasting mod-

els as is the case in this paper. Asymptotic p-values are computed using Newey-West standard

errors to account for serial correlation of the forecast errors.

Finally, the multivariate root mean squared forecast error, as proposed by Christoffersen and

Diebold (1998), is computed as

multMSEh =
1

T1 − T0 − 1

∑T1

T=T0+1
e′T |T−hWeT |T−h, (1)

where the (1xn)-dimensional vector e
T |T−h

contains the forecast errors ei,T |T−h for all n variables

of interest and W is an (nxn)-dimensional diagonal weighting matrix.

We follow Carriero et al. (2011) as well as Buchen and Wohlrabe (2014) and specifyW = WD

as diagonal matrix with entries being equal to the inverse of the variances of the variables to

be forecast. Müller-Dröge et al. (2014) propose to specify W = WC as the inverse of the

sample variance-covariance matrix and we consider this alternative as well. Both versions of the

multivariate MSE aim at assessing the joint predictive ability of the different forecasting models,

i.e. their suitability to simultaneously forecast a larger set of variables. In the first version the

measure has the advantage that it accounts for the fact that variables with a large variance

are generally harder to forecast by attributing them a smaller weight. In addition to that, the

second version of the measure compensates for possible correlation of the different series.8

As for the univariate MSE we report the absolute multivariate MSE for the AR model, while

for all remaining models we compute the multivariate MSE relative to this benchmark.

5 Results

In this section we report the results of our forecasting exercise. We first focus on the joint

forecasting performance of each large scale approach for our set of 11 German key variables.

Afterwards, we extend the analysis to the performance for the individual variables, with an

emphasis on GDP growth. Finally, we check the robustness of our results.

5.1 Forecasting 11 German Key Macroeconomic Variables Jointly

Figure 1 displays the 11 variables that we consider. It can be seen very clearly that there

is considerable variation in the degree of persistence of the different variables. For example,

German GDP growth shows extremely little persistence and can thus be expected to be very

hard to predict. A comparison of the autocorrelation functions of US and German GDP growth

for a sample covering 1978-2013 shows that there is significant autocorrelation of up to two lags

8The underlying idea is to account for the linear dependence between the different variables that might
simultaneously drive their MSEs and thus inflate the measure of joint predictive ability. In principle, this is
comparable to the approach of computing the variance of the sum of several random variables where a correction
term accounting for the covariance of the pairs of variables is needed as well. Note however, that since we use
the inverse of the covariance matrix as correction, the multivariate MSE decreases for positive correlation and
increases for negative correlation between the pairs of variables in the dataset.
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Figure 1: German key macro variables
Notes: The graph shows the 11 German key macroeconomic variables that we consider from 1990 until 2013. For
all variables, except those expressed in rates, annualized quarter-on-quarter growth rates are shown. Data sources
are listed in Appendix A and Appendix B contains an exact definition of the different variables.
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for US GDP growth, while there is no significant autocorrelation at all for German GDP growth.

The persistence of industrial production, investment and consumption growth is comparable to

that of German GDP growth. Thus, we can expect the different forecasting models to have

similar problems in predicting these variables. By contrast, CPI inflation is more persistent

than GDP growth, but still shows many spikes, which will presumably be hard to predict as

well. The persistence of the unemployment rate series is very high, similar to that of the short-

and long-term interest rate and the current account balance. The German unemployment rate

does not show a clear overall trend, but instead increases until 1998, decreases until 2001,

increases again until 2005 and falls from there until the end of the sample. Predicting these

trend changes might pose another difficulty for most forecasting models.

In table 1, we display both versions of the multivariate MSEs of the different large scale

approaches relative to the AR benchmark for horizons h = 1, 4, 8 as well as the absolute mul-

tivariate MSE for the AR. Both measures indicate that the BFAVAR and to a slightly lesser

extent the LBVAR provide the most accurate forecasts for all the variables over all forecasting

horizons. For short horizons also the remaining large scale approaches are able to improve upon

the AR benchmark, though to a different degree. While the FAAR and the DFM perform almost

as good as the BFAVAR and the LBVAR, the model averaging techniques do worse. For h = 8,

the relative performance of the large scale approaches deteriorates considerably. The BFAVAR

is the only model that can clearly outperform the AR benchmark according to both multivariate

measures considered here.

Table 1: Forecasting a Set of 11 German Key Varaibles

(a) multivariate MSE, W = WD

horizon AR LBVAR FAAR BFAVAR DFM EWA BMA

1 8.03 0.84 0.85 0.80 0.87 0.95 0.94
4 11.16 0.86 1.02 0.82 1.00 0.89 0.91
8 13.52 0.90 1.35 0.86 1.28 1.09 1.10

(b) multivariate MSE, W = WC

horizon AR LBVAR FAAR BFAVAR DFM EWA BMA

1 11.61 0.79 0.83 0.76 0.82 0.91 0.92
4 15.81 0.86 1.01 0.79 1.06 0.87 0.96
8 18.42 1.00 1.51 0.86 1.46 1.01 1.12

Notes: All forecasting models are estimated over a rolling window of 60 quarters. The forecasts obtained by the
different models are evaluated over the sample ranging from 1994Q4 until 2013Q3, thus for each horizon a total
of 76 forecasts is computed. The second column shows the absolute multivariate MSEs for the AR benchmark
model, while all other MSEs are computed relative to this benchmark. The two measures differ with respect
to the weighting matrix W which is a diagonal matrix with the inverse of the series variance as entries (WD

upper panel) and the inverse of the sample covariance matrix (WC lower panel).

The entries in the lower part of table 1 indicate to what extend the different forecasting mod-

els are able to account for possible correlation of the different series. The absolute multivariate

MSE of the AR benchmark is considerably higher for the second version of the measure for all

horizons indicating that there is negative correlation in the data that could be useful for fore-

casting. Interestingly, the relative performance of the large scale approaches generally improves

for short horizons and deteriorates for longer horizons when comparing the upper and the lower
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part of the table. This indicates that for short horizons the models are able to make use of the

correlation structure in the dataset to provide better forecasts than the AR benchmark. For

large horizons, however, this seems no longer to be the case. Especially the factor models, FAAR

and DFM, display a very poor longer term joint forecasting performance. A notable exception

is the BFAVAR which performs equally well under both versions of the multivariate MSE for

all horizons. Apparently, the combination of aggregation information of the large dataset into

factors and shrinkage enables the model to efficiently use all the information contained in the

dataset, even for longer forecasting horizons.

Overall, our results indicate that for short forecast horizons it does not seem to make a very

big difference for the joint forecasting performance of our large scale approaches, whether the

information of the large dataset is aggregated before or during the estimation process of the

forecasting models, as the factor models and the shrinkage approaches perform similarly well.

Aggregation after the estimation process (model averaging approach), however, yields somewhat

less precise short-horizon forecasts. For obtaining accurate forecasts for longer horizons using a

shrinkage approach seems to be essential to extract the relevant information on the longer-run

dynamics of the different variables as evidenced by the very good performance of the BFAVAR

and, to a slightly lesser extent, the LBVAR for longer forecast horizons.

5.2 Forecasting Performance for the Individual Variables

In table 2, panels (a) - (k), we display the univariate MSEs of the different models for the 11

key variables for horizons h = 1, 4, 8.9 Table entries in bold indicate that the null hypothesis of

unbiasedness based on the F-test for the coefficients in the Mincer-Zarnowitz regression cannot

be rejected at the 5 % level. The symbols •, •, •, indicate that the relative MSE is significantly

different from one at the 1, 5, or 10% level, respectively.

As can be seen very clearly from the entries in table 2, the BFAVAR and the LBVAR are the

best performing models in most cases. However, the size of the gains in accuracy over the AR

benchmark as well as the absolute forecasting performance of the different models apparently

depend heavily on the specific variable and the respective forecasting horizon.

For GDP growth (panel (a) of table 2), the absolute MSEs of the AR benchmark are quite

large and flat over the different forecast horizons which is in line with what can be expected

for forecasts of a time series with low persistence, (see Del Negro and Schorfheide, 2013, for

a detailed exposition). Moreover, the entries in table 2, panel (a) reveal that the gains in

forecasting accuracy for German GDP growth obtained by the three large scale approaches are at

best moderate and insignificant, while the differences in the relative MSEs between the various

forecasting models are rather small. Among the three large scale approaches, the BFAVAR

and (to a slightly lesser extend) the LBVAR yield the most accurate forecasts, though for

h = 8 EWA performs best. In the short-run, the gains of the BFAVAR and the LBVAR over

the AR benchmark amount to more than 10%. Yet, for longer horizons, there is almost no

improvement upon the AR, which confirms the results of Schumacher (2007, 2010) for factor

models and Kholodilin and Siliverstovs (2006) for various alternative leading indicators. Thus,

9Figures showing the forecasts are contained in Appendix C.

11



Table 2: univariate MSEs

(a) GDP growth

horizon AR LBVAR FAAR BFAVAR DFM EWA BMA

1 12.09 0.88 0.95 0.86 0.95 0.98 1.03
4 12.64 1.00 1.27• 0.98 1.09 1.01 1.07
8 12.12 1.04 1.42• 0.98 1.22 0.94 1.10

(b) CPI Inflation Rate

horizon AR LBVAR FAAR BFAVAR DFM EWA BMA

1 1.94 0.78• 0.89 0.80• 0.92 0.93• 0.87•
4 1.86 0.95 1.18 0.85• 1.21 0.93 0.92
8 2.07 0.89 1.33 0.82• 1.33 0.92 0.93

(c) Unemployment Rate

horizon AR LBVAR FAAR BFAVAR DFM EWA BMA

1 0.06 0.98 0.98 0.94 0.99 0.95• 0.95•
4 0.76 0.85 1.14 0.81 1.27 1.06 1.07

8 2.17 0.95 1.18 0.83 1.37 1.67 1.79

(d) Industrial Production

horizon AR LBVAR FAAR BFAVAR DFM EWA BMA

1 173.25 0.71 0.64• 0.76• 0.72 0.95 0.97
4 224.63 0.66 0.59 0.64 0.57 0.66 0.63

8 140.27 1.02 1.06 1.00 0.97 1.01 1.07

(e) Private Consumption

horizon AR LBVAR FAAR BFAVAR DFM EWA BMA

1 7.06 0.86 1.04 0.91 1.05 0.99 0.97
4 7.37 0.84• 1.21 0.85• 1.20• 0.96 0.94
8 6.78 0.93 2.27• 0.95 2.02• 1.04 1.03

(f) Machinery and Equipment Investment

horizon AR LBVAR FAAR BFAVAR DFM EWA BMA

1 167.63 0.86 0.86 0.76 0.93 0.95 0.97
4 221.91 0.84 0.85 0.80 0.85 0.80 0.76

8 196.33 0.95 1.04 0.89 1.03 0.95 1.16

(g) Wages

horizon AR LBVAR FAAR BFAVAR DFM EWA BMA

1 5.99 0.76• 0.71 0.56• 0.64• 0.91• 0.83•
4 7.19 0.87• 1.16 0.84• 1.10 0.88• 0.94
8 8.75 0.85 1.39• 0.86• 1.33• 1.10 1.06

(h) PPI Inflation Rate

horizon AR LBVAR FAAR BFAVAR DFM EWA BMA

1 9.22 1.20 0.82 1.03 0.85 0.91• 0.96

4 15.79 1.02 0.98 0.96 1.04 0.94 0.96

8 14.13 1.05 1.21 1.02 1.02 1.10• 1.22•
(i) Short Term Interest Rate

horizon AR LBVAR FAAR BFAVAR DFM EWA BMA

1 0.14 0.83• 0.88 0.73• 0.92 0.91 0.94

4 1.64 0.77 0.94 0.72• 0.98 1.00 1.07
8 4.58 0.77 1.21 0.72• 1.10 1.18 0.97

(j) Long Term Interest Rate

horizon AR LBVAR FAAR BFAVAR DFM EWA BMA

1 0.10 0.90 1.12 0.96 1.11 0.94 0.68
4 0.84 0.73• 1.02 0.74• 1.01 0.93 0.98•
8 1.94 0.62• 1.49 0.63• 1.46 1.07 0.94

(k) Current Account

horizon AR LBVAR FAAR BFAVAR DFM EWA BMA

1 15.31 0.98 1.15 1.03 1.12 0.99 1.00

4 60.89 1.01 1.22 0.99 1.11 0.95 1.07

8 114.59 1.05 1.33 0.96 1.39 1.09 1.25

Notes: See notes on table 1, first part. The symbols •, •, •, indicate that the relative MSE is significantly
different from one at the 1, 5, or 10% level, respectively, while bold numbers imply that the null hypothesis of
unbiasedness cannot be rejected at the 5 % level.

12



adding more information by using a large dataset for the forecasting process of German GDP

growth apparently only leads to marginal improvements in forecasting accuracy over the AR

benchmark. The results of the Minzer-Zarnowitz regressions reveal that none of the forecasting

models is able to provide unbiased forecasts for all forecasting horizons. With the exception of

the LBVAR for h = 1, the AR and the BFAVAR for h = 8 and the EWA for h = 1, 8, for the

remaining models, the estimated constant α̂i,h is larger than zero, but the estimate of the slope

parameter and β̂i,h is smaller than one (and in some cases even negative). This indicates that

the forecasts systematically predict less variation than the GDP growth series actually shows.

For the German CPI inflation rate (panel (b) in table 2), the absolute MSEs for the AR model

are much smaller than those for GDP growth. Still the persistence of quarterly CPI inflation

is quite low and thus the MSE does not increase much with the forecast horizon h. In terms

of relative forecasting performance for the CPI inflation rate, only the BFAVAR significantly

outperforms the AR benchmark over all forecasting horizons with gains in accuracy ranging

between 15% to 20%. For h = 1 also the LBVAR and the two model averaging approaches

significantly beat the AR benchmark. However, none of the forecasting models is able to yield

unbiased forecasts. The estimated constant in the Mincer-Zarnowitz regressions for all models is

larger than zero, while the slope parameter is smaller than one (smaller than zero in most cases).

This indicates that the forecasts are systematically larger than the actual data which may be

attributed to the higher trend inflation in the first part of the estimation sample compared to the

evaluation sample. While CPI inflation is more persistent than GDP growth, the informational

content of the CPI forecasts obtained by all models is even smaller. The R2 from Mincer-

Zarnowitz regressions (not shown in the table) never exceeds 5%.

In contrast to that, for the German unemployment rate (panel (c) in table 2) the explanatory

power of all forecasts is extremely high, especially for short forecasting horizons. For h = 1 theR2

from Mincer-Zarnowitz regressions (not shown in the table) for all forecasting models amounts

to 95% or more, while for h = 4 it still ranges between 66% and 76%. This must certainly

be attributed to the high persistence in the German unemployment rate series, which is also

reflected in the small absolute MSE for the AR which increases with the forecasting horizon. Due

to the various trend changes in the German unemployment rate series, no model systematically

over- or underestimates the unemployment rate. With a few exceptions for h = 8, all forecasts

are unbiased. However, except for the two model averaging approaches for h = 1, no model can

significantly outperform the AR benchmark for the prediction of the German unemployment

rate.

With some exceptions this also holds for private consumption and the PPI inflation rate

(panel (e) and (h) in table 2). However, while no model is able to yield unbiased forecast for

consumption, the forecasts for PPI inflation are unbiased in many cases.

A similar result regarding the relative forecasting performance of the different models can be

observed for the German current account balance (panel (k) in table 2) and German machinery

and equipment investment (panel (f) in table 2). We find that for these variables none of the

large scale approaches considered can significantly improve upon the AR benchmark which is

surprising given the different degrees of persistence of the series.

By contrast, for the short- and long-term interest rates (panel (i) and (j) in table 2) as well
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as for wages (panel (g) in table 2) the best performing large scale model, the BFAVAR, almost

always significantly outperforms the AR benchmark with sizeable gains in accuracy (45% for

wages for h = 1).

For industrial production, there are big and significant gains in accuracy for the BFAVAR

and the FAAR, but only for h = 1. For higher horizons the large scale approcches can not

significantly improve upon the AR benchmark, though in most cases the forecasts are unbiased.

To sum up, we find that over all variables considered the best performing large scale ap-

proaches, namely the LBVAR and the BFAVAR, can clearly improve upon the AR benchmark,

especially in the short run. However, the size of the gains in accuracy for each individual variable

is highly heterogenous. Moreover, the BFAVAR, the LBVAR and the EWA approach provide

genereally more often unbiased forecasts compared to the AR benchmark, the two factor models

and the BMA.

Forecasting the Great Recession. Several studies, for example Kuzin et al. (2013) and

Timmermann and van Dijk (2013), indicate that the performance based ranking of different fore-

casting models may change considerably during the period of the Great Recession of 2008/2009.

Therefore, in what follows, we take a closer look at whether the three large scale forecasting

methods would have been able to forecast the slump of German GDP growth during the Great

Recession.

In addition to the large scale approaches and the small benchmark models outlined in section

2, we analyze the predictive content of the ifo business climate index for German GDP growth

during the Great Recession. As pointed out before, the ifo index is a leading indicator and often

referenced to as the most important benchmark when forecasting German GDP growth (see also

Dreger and Schumacher, 2005; Kholodilin and Siliverstovs, 2006; Abberger, 2007; Drechsel and

Scheufele, 2012b; Henzel and Rast, 2013). We use the ifo business climate index and the subindex

covering business expectations for the next six months and regress GDP growth on a constant

and the respective lagged indicator as in Henzel and Rast (2013): ∆yt = αh + βhifot−h + ǫt,h.

Figure 2 shows the forecasts of the annualized quarter-on-quarter GDP growth rate obtained

by the AR, the LBVAR, the BFAVAR, the BMA and the two ifo indicators considered above

computed for the subsample ranging from 2008Q1 to 2009Q2. Generally, the forecasts of all

six models look roughly similar and none of them is able to predict the downturn in GDP

growth in 2008. Once the recession hits, the models also fail to predict a further deepening of

the recession, but indicate a relatively quick recovery instead. The only notable exceptions are

the one quarter ahead forecasts based on the ifo expectation index and those obtained with the

BFAVAR computed in 2008Q4. As business expectations in Germany already dropped largely in

2008Q3, the ifo expectation index predicts a negative GDP growth rate of -3.17% for 2009Q1.10

The BFAVAR GDP growth forecast is even slightly more pessimistic and amounts to -4.40%.

Still, none of the forecasting models is able to predict the turning point of the Great Recession in

2009Q1. Moreover, once the turning point is reached, the models also considerably underpredict

10However, by construction this model can hardly predict a further deepening of the recession. Since the forecast
is computed as ∆yt+h = α̂h+β̂hifot, the coefficient β̂h would need to increase strongly with the forecasting horizon
h to predict the further deepening of the recession.
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Figure 2: Great Recession GDP growth forecasts

the speed of the recovery for the following quarters.

Given that the performance of the different forecasting models during the Great Recession

was more or less equally disappointing, we would not expect that the Great Recession period

strongly drives the results reported in table 2, panel (a). Surprisingly, the entries in table 3 which

display the MSEs of the different forecasting models relative to the AR benchmark for the pre-

Great Recession subsample ranging from 1994Q1 until 2007Q4 indicate that this is not the

case. Especially for horizons h = 4, 8 the relative performance of the LBVAR and the BFAVAR

improves considerably when the Great Recession is excluded from the evaluation sample. In

this case both models are able to significantly reduce the relative MSE by approximately 10%.

Moreover, the null hypothesis of unbiasedness based on the F-test for the two coefficients in the

Mincer-Zarnowitz regression can no longer be rejected for all forecasts obtained by the LBVAR

and the BFAVAR.

Table 3: Forecasting German GDP growth, excluding the Great Recession of 2008/2009

univariate MSE for GDP growth (column 2: absolute; others: relative to AR)

horizon AR LBVAR FAAR BFAVAR DFM EWA BMA

1 6.64 0.86 0.97 0.91 0.96 0.91 0.95

4 7.29 0.87• 1.36• 0.88 1.10 0.92 1.03

8 7.07 0.90• 1.42 0.91• 1.54• 0.99 1.21

Notes: See notes on table 2. In this table the evaluation sample has been adjusted to cover the period from

1994Q4 until 2007Q4.

The ifo business climate index, which performs slightly better than the expectations based

index for h = 1 (the relative MSEs are equal to 0.84 and 0.94, respectively), yields the most

accurate short-run predictions for German GDP growth when we exclude the Great Recession
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from the evaluation sample. However, the gains upon the best performing large scale approaches

are only very small. For h = 8 the LBVAR and the BFAVAR clearly beat this important

benchmark for the prediction of German GDP growth (the relative MSEs are equal to 1.00 for

the ifo business climate and 0.98 for the ifo expectations index, respectively).

5.3 Robustness with Respect to Alternative Model Specifications

Next, we want to check the robustness of our results reported thus far with respect to alter-

native specifications of the different forecasting models. Therefore, we repeat the forecasting

exercise of the previous section with an optimized specification of each model that is obtained

by computing a variety of different specifications for each model and choosing the one that

yields ex post the best forecasting performance. For an indication of how robust the model’s

forecasting performance is against various alternative model specifications, we then check which

of the forecasting models yield similarly accurate forecasts with the information criteria based

specification and with the ex post optimized specification.

Table 4 shows the ranges of the various parameters of the different forecasting models that

we consider for this exercise. For example, for the FAAR the number of static factors r as well

Table 4: Parameter range to determine ex post optimized specification of forecasting models

parameter range forecasting model

number of lags p 1, 2, ..., 4 all forecasting models
degree of shrinkage λ 0.01, 0.02, ..., 0.1 LBVAR
degree of shrinkage φ 1, 1.1, ..., 2 BMA
number of static factors r 1, 2, ..., 10 FAAR, FAVAR, BFAVAR
number of dynamic factors q 1, 2, ..., 10 DFM
number of lags of the dynamic factors s 1, 2, ..., 4 DFM

as the number of lags p have to be specified. After defining a range for each of these parameters,

i.e. r = 1, ..., rmax and p = 1, ..., pmax, we estimate the FAAR and compute forecasts for each

possible combination of these two parameters. We then choose the specification with the ex post

highest forecasting accuracy as the optimized specification for the FAAR model.

We follow Schumacher (2007) and distinguish the following two approaches: performance

based model selection, time-varying model (PBTV) and performance based model selection, con-

stant model (PBC). With PBTV we divide the evaluation sample into subsamples covering 4

quarters each. For each of these subsamples we select the specification for each forecasting

model and for each forecasting horizon that minimizes the respective subsample MSE. By con-

trast, with PBC we choose the specification for each model that minimizes the MSE over the

whole evaluation sample for each horizon.

In table 5 we report the results of this exercise for horizons h = 1, 4 and 8. Specifically, we

display the absolute multivariate MSEs (first version, W = WD) for all 11 key variables for each

of the different forecasting models obtained when specified according to the various information

criteria (IC) as well as under PBC and PBTV.

Comparing the absolute MSEs reported in table 5 panel (b) and (c) to those reported in
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Table 5: Absolute multivariate MSEs with IC, PBC and PBTV

(a) IC: Information criteria based model selection (quasi real-time forecasting)

horizon AR LBVAR FAAR BFAVAR DFM EWA BMA

1 8.03 6.74 6.82 6.41 7.01 7.59 7.51
4 11.16 9.60 11.39 9.20 11.18 9.92 10.10
8 13.52 12.14 18.26 11.62 17.32 14.76 14.89

(b) PBC: Performance based model selection, constant model

horizon AR LBVAR FAAR BFAVAR DFM EWA BMA

1 7.39 6.06 6.16 5.86 6.03 7.01 6.74
4 9.71 9.12 9.70 8.83 9.61 9.86 9.64
8 11.96 11.22 13.61 11.08 13.86 14.19 13.63

(c) PBTV: Performance based model selection, time-varying model

horizon AR LBVAR FAAR BFAVAR DFM EWA BMA

1 6.80 5.15 4.19 4.59 2.53 6.50 6.12
4 8.85 7.15 6.99 7.59 4.48 8.78 8.54
8 10.83 8.39 9.13 9.75 5.78 12.82 11.90

Notes: All forecasting models are estimated over a rolling window of 60 quarters. The forecasts obtained by
the different models are evaluated over the sample ranging from 1994Q4 until 2013Q3, thus for each horizon a
total of 76 forecasts is computed. The different specification strategies are described in the text.

panel (a) gives rise to the following observations. First, both ex post performance based model

selection approaches generally increase the precision of all forecasting models—which of course

is not surprising given that these approaches rely on out-of-sample information. However, while

overall PBC leads only to modest gains over the quasi real-time forecasts, the gains obtained with

PBTV are very large. This indicates that the optimal specification of the various forecasting

models changes over time.

Regarding the relative performance of the different forecasting models with PBC the entries

in panel (b) indicate that the LBVAR and the BFAVAR again provide the most accurate forecasts

for most horizons. However, especially for higher horizons the gains in accuracy of these two

models over the AR benchmark are less pronounced with PBC (6% and 7% respectively for

h = 8) than with IC (10% and 14% respectively for h = 8). By contrast, as the entries in panel

(c) reveal with PBTV the best performing large scale methods can improve considerably upon

the AR benchmark for all forecasting horizons. The DFM, which now clearly outperforms all

remaining models by far, achieves a reduction in the absolute multivariate MSE upon the AR

benchmark amounting to 60% for h = 1 and roughly 50% for higher horizons. The LBVAR and

the BFAVAR, which rank lower than the FAAR with PBTV, outperform the AR by 25% and

32%, respectively, for h = 1 and 22% and 10%, respectively, for h = 8.

Overall the results documented in table 5 allow us to divide the different models into three

groups according to the degree of robustness of their forecasting performance against alternative

model specifications. First, for the AR benchmark, both model averaging techniques, EWA and

BMA, the BFAVAR and (to a slightly lesser extend) the LBVAR we find that the specific model

specification does not have a large impact on the models’ forecasting performance. For the

LBVAR we find that with PBTV the degree of shrinkage λ varies strongly over time, while in

our quasi real-time specification λ is very stable over time. This also applies to the number of
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lags p included in the estimation. However, the optimally specified model reduces the respective

MSEs only very little. This finding is in line with Carriero et al. (2011) who document the

robustness of the LBVAR’s forecasting performance against the specific choice of λ and p.

Second, according to our results the forecasting performance of the FAAR depends to a

moderate degree on the precise model specification. The FAAR’s forecasting performance would

improve moderately if one could optimally specify the model in real-time. We find that in the

PBTV specification the optimal number of static factors r for the FAAR varies largely over

time, while the number of factors chosen via the information criterion of Bai and Ng (2002) in

the quasi real-time exercise is rather stable (see also Schumacher (2007), p. 288).

Third, we show that the accuracy of the quasi real-time forecasts of the DFM depends to

a very large degree on the specific model specification. Choosing the optimal specification and

allowing for time heterogeneity rather than specifying the model based on information criteria

leads to a considerable improvement in the model’s forecasting performance. This confirms the

findings of Schumacher (2007) who conducts the same analysis for static and dynamic factor

models. One reason for the low degree of robustness of the forecasting performance of the DFM

to alternative model specifications is certainly that the optimal number of dynamic factors q

seems to vary substantially for different forecasting horizons. Further, it turns out that the

number of dynamic factors q chosen according to the Bai and Ng (2007) information criterion

is always considerably smaller than the ex post optimal number of dynamic factors.

Real-Time Performance Based Model Specification and Forecast Pooling To check

whether the principle of performance based model selection can also increase the accuracy of the

different forecasting models when applied in a quasi real-time exercise, we specify the models

based on past forecasting performance rather than on the various information criteria. We call

this approach performance based model selection, real time (PBRT). With PBRT, we evaluate the

performance of the various specifications of the different forecasting models over a subevaluation

sample ranging from T − seval + 1 until T . The best specification of each forecasting model,

i.e. the specification that yields the smallest MSE over the subevaluation sample, is then used

to estimate the respective model with information up to T and to compute forecasts for T + h.

We set the length of the subevaluation sample seval equal to 4 quarters. To be consistent, the

various specifications of the different forecasting models for the subsample evaluation as well as

for the final forecast are estimated over a rolling window of 60 quarters. This implies that our

first subevaluation sample ranges from 1994Q4 until 1995Q3, while the forecasts of the different

models for the exercise in this paragraph are evaluated from 1997Q3 until 2013Q3.

Alternatively, we implement forecast pooling, an approach that has been proposed in the

literature to overcome the uncertainty related to the selection of the best performing specification

of a forecasting model (see or example Kuzin et al., 2013). The basic idea here is, similar to

model averaging, to pool over the forecasts obtained with a large set of different specifications

of a forecasting model to obtain the final forecast of a variable of interest.11 We implement two

11Conceptionally, the difference between model averaging and pooling lies in the source of uncertainty. While
with model averaging there is uncertainty about the predictor variable to include in the estimation, with pooling
there is uncertainty with respect to the best performing specification of a model given a set of predictors.
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versions of forecast pooling: unweighted pooling and MSE-weighted pooling. According to the

first variant, the final forecast of a variable is obtained by averaging over the various forecasts

computed with different specifications of a certain forecasting model. By contrast, with the

second variant we use a weighted mean to obtain the final forecast, where the weight is the

inverse of the MSE of the respective model specification over the subevaluation sample ranging

from T − seval + 1 until T .

In table 6, panel (b) - (d) we report the absolute multivariate MSEs that result from this

exercise. To facilitate the direct comparison we additionally show the absolute MSEs of the

different forecasting models with IC for the same evaluation sample in panel (a). The entries

Table 6: multivariate MSEs with IC, PBRT and Pooling

(a) IC: Information criteria based model selection

horizon AR LBVAR FAAR BFAVAR DFM EWA BMA

1 7.63 6.56 6.78 6.36 7.01 7.30 7.27
4 11.10 9.68 11.36 9.25 11.40 10.04 10.26
8 13.84 12.64 17.71 11.71 16.79 15.09 15.01

(b) PBRT: Performance based model selection, real time

horizon AR LBVAR FAAR BFAVAR DFM EWA BMA

1 7.57 7.12 7.37 5.85 9.91 7.27 7.17
4 10.24 14.77 12.54 10.82 17.00 10.18 10.35
8 12.96 33.26 14.89 14.40 22.20 14.12 13.97

(c) Forecast pooling, unweighted mean

horizon AR LBVAR FAAR BFAVAR DFM EWA BMA

1 7.43 6.18 6.76 6.17 6.48 7.07 6.87
4 10.89 10.11 11.29 9.47 12.25 9.89 10.17
8 13.79 13.47 17.07 11.80 19.55 14.91 14.39

(d) Forecast Pooling, MSE-based mean

horizon AR LBVAR FAAR BFAVAR DFM EWA BMA

1 7.45 6.18 6.79 6.19 6.52 7.09 6.88
4 10.95 10.16 11.24 9.48 11.90 9.90 10.17
8 13.74 13.37 16.78 11.81 18.32 14.91 14.40

Notes: All forecasting models are estimated over a rolling window of 60 quarters. The forecasts obtained by
the different models are evaluated over the sample ranging from 1997Q3 until 2013Q3, thus for each horizon a
total of 65 forecasts is computed. The different specification strategies are described in the text.

indicate that we can increase the accuracy of all forecasting models for h = 1 with either PBRT

or forecast pooling compared to IC, though in most cases only by very little. Moreover, for

higher horizons there is no improvement upon IC for the LBVAR, the BFAVAR and the DFM

with either alternative specification approach.

When comparing the entries in panel (b) - (d), we find that, with the exception of the

BFAVAR, in the short-run either unweighted or MSE-weighted forecast pooling works best for

all models. This confirms previous findings that pooling is indeed a good alternative to avoid

choosing a model specification in real time that does not forecast well (see Kuzin et al. (2013)).

By contrast, for h = 8 all models for which we find an improvement upon IC perform best with

PBRT.

The overall lowest multivariate MSEs for all forecasting horizons are again obtained by the
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BFAVAR, with PBRT for h = 1 and with IC for higher horizons. The gains in accuracy upon

the lowest multivariate MSE of the AR benchmark amount to roughly 20% for h = 1 and 10%

for higher horizons.

Our results also indicate that the extremely good performance of the DFM with the optimized

specification cannot be achieved with any model in real time. Therefore, relying on a single

forecasting model that delivers a good performance and is not prone to the pitfall of choosing

a specification that does not deliver the most precise forecasts, such as the BFAVAR or the

LBVAR, seems to be a good choice for applied forecasters who cannot rely on out-of sample

information to specify their forecasting models. Whether or not the small gains in forecasting

accuracy over information criteria based model specification obtained with PBRT or forecast

pooling justify the additional computational burden that comes with these approaches depends

of course on the specific forecasting context at hand.

6 Conclusion

We have studied three different approaches to aggregating the informational content of a large

dataset for forecasting key macroeconomic variables. We find that, overall, the Bayesian factor

augmented vector autoregression and the large Bayesian vector autoregression perform best and

generally yield more accurate forecasts than a simple AR benchmark model and other large scale

approaches. This holds for both, measures for the joint forecasting performance for a set of 11

core variables as well as univariate performance measures for the individual series.

Our assessment of the joint predictive performance of the large scale approaches reveals that

in general for short horizons all large scale approaches are able to efficiently use the correlation

structure in the dataset to provide better forecasts than the AR benchmark, while for large

horizons this is no longer the case. Here, the combination of aggregating the informational

content of the large dataset into factors and shrinkage seems to be the most efficient approach

to use all the information in the dataset. We also find that the joint forecasting performance

of the BFAVAR and the LBVAR is very robust with respect to the precise model specification,

e.g. the number of lags of the dependent variable or the degree of shrinkage.

Regarding the size of the gains in forecasting accuracy over the AR benchmark for the

individual series of our set of 11 variables, we find considerable differences for the different

variables. While there are large increases in forecasting performance for few variables, the gains

in accuracy rarely exceed 10% in most cases. One reason for this might be that some time series

show very little persistence and are thus very hard to predict by univariate as well as multivariate

forecasting models. Yet, even for time series with more persistence, the high collinearity in the

large dataset seems to prevent large gains from the large-scale multivariate forecasting models

over the AR benchmark. Still, when forecasters are interested in simultaneously predicting a

larger number of variables, large-scale forecasting models have the advantage that they can be

used to coherently forecast many variables. Finally, this might also be an advantage when it

comes to the interpretation of the forecasts.
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Appendix A: Data Description

Our dataset consists of 123 macroeconomic time series in quarterly frequency covering the period

from 1978Q1 until 2013Q3. Below we provide a detailed description of the dataset that reads

as follows:

• Number of the series

• Code of the series (as used in the respective original source, if available)

• Series label

• Source of the series

– FSO: Federal Statistical Office Germany

(a) Statistisches Bundesamt, Volkswirtschaftliche Gesamtrechnungen 1970 bis 1991,

Fachserie 18 Reihe S.28

(b) Statistisches Bundesamt, Volkswirtschaftliche Gesamtrechnungen 3. Vierteljahr

2013, Fachserie 18 Reihe 1.3

(c) Statistisches Bundesamt, Bauhauptgewerbe (query at unit E206)

– DS: Thomson Reuters Datastream

– CS: Schumacher (2007)

• Transformation of the series

– WG: prior 1991 West-German series rescaled to Pan-German series

– log: natural logarithm

– SA: series seasonally adjusted in EViews713 (all other series were already seasonally

adjusted in the original data source).

13Census X12, multiplicative (additive for series with negative numbers), TrendFilter: Auto, no ARIMA, no
data transformation
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No. Code Code Name of Series Source Source Transformation
prior 1991 post 1991 prior 1991 post 1991 WG log SA

Use of GDP and gross value added
1 1.1 BDGDP...D Real gross domestic product FSO(a) DS x x
2 2.3.2 BDCNPER.D Real private consumption FSO(a) DS x x
3 2.3.2 BDCNGOV.D Real government consumption FSO(a) DS x x
4 2.3.5 BDGCMAC.D Gross fixed capital formation: machinery and equipment FSO(a) DS x x
5 2.3.5 BDGCCON.D Gross fixed capital formation: construction FSO(a) DS x x
6 2.3.5 BDGCINT.D Gross fixed capital formation: other FSO(a) DS x x
7 2.3.10 BDEXNGS.D Exports FSO(a) DS x x
8 2.3.10 BDIMNGS.D Imports FSO(a) DS x x
9 2.2 BDVAPAAFE Gross value added: mining and fishery FSO(a) DS x x
10 2.2 BDVAPAECE Gross value added: producing sector excluding construction FSO(a) DS x x
11 2.2 BDVAPACND Gross value added: construction FSO(a) DS x x
12 2.2 BDVAPATFD Gross value added: wholesale and retail trade, restaurants, hotels, transport FSO(a) DS x x
13 2.2 Gross value added: financing and rents* x x
13 2.2 BDVAPAICD/B FSO(a) DS
13 2.2 BDVAPAFID/B FSO(a) DS
13 2.2 BDVAPARED/B FSO(a) DS
13 2.2 BDVAPASTD/B FSO(a) DS
14 2.2 Gross value added: services** x x
14 2.2 BDVAPAAHD/B FSO(a) DS
14 2.2 BDVAPAOSD/B FSO(a) DS

Prices
15 JQ0730 BDGDPIPDE Deflator of GDP CS DS x x
16 JQ0059 BDOCMP06E Deflator of private consumption expenditure CS DS x x
17 JQ0060 BDOEXP02E Deflator of government consumption expenditure CS DS x x
18 JQ006 BDGCMAC,B Deflator of machinery and equipment CS DS x x
19 JQ0065 BDIPDCNSE Deflator of construction CS DS x x
20 BDTOTPRCF BDTOTPRCF Terms of trade DS DS x x x
21 JQ0214 BDEXPPRCF Export prices CS DS x x x
22 JQ0205 BDIMPPRCF Import prices CS DS x x x
23 ECO:DEU:CPIH/Q BDCONPRCE Consumer price index CS DS x x
24 BDPROPRCF BDPROPRCF Producer price index DS DS x x

Labor market
25 2.1.6 2.1.6 Residents FSO(a) FSO(b) x x
26 2.1.6 2.1.6 Labour force FSO(a) FSO(b) x x
27 2.1.6 2.1.6 Unemployed FSO(a) FSO(b) x x
28 2.1.6 2.1.6 Employees and self-employed FSO(a) FSO(b) x x
29 2.1.6 2.1.6 Employees FSO(a) FSO(b) x x
30 2.1.6 2.1.6 Self-employed FSO(a) FSO(b) x x
31 2.1.7 2.1.7 Volume of work, employees and self-employed FSO(a) FSO(b) x x
32 2.1.7 2.1.7 Volume of work, employees FSO(a) FSO(b) x x
33 2.1.7 2.1.7 Hours, employees and self-employed FSO(a) FSO(b) x x
34 2.1.7 2.1.7 Hours, employees FSO(a) FSO(b) x x
35 2.1.8 2.1.8 Productivity, per employee FSO(a) FSO(b) x x
36 2.1.8 2.1.8 Productivity, per hour FSO(a) FSO(b) x x
37 2.1.8 2.1.8 Wages and salaries per employee FSO(a) FSO(b) x x
38 2.1.8 2.1.8 Wages and salaries per hour FSO(a) FSO(b) x x
39 2.1.4 2.1.4 Wages and salaries, excluding employers social security contributions FSO(a) FSO(b) x x
40 2.1.8 2.1.8 Unit labour costs, per production unit FSO(a) FSO(b) x x
41 2.1.8 2.1.8 Unit labour costs, per production unit, hourly basis FSO(a) FSO(b) x x
42 GS1513 BDUSC,04O(BDUSCC04O) Vacancies CS DS x x
43 US02CC BDUSCC02Q Unemployment rate CS DS x

* Series constructed as average of four real series, each weighted with corresponding nominal series.
**Series constructed as average of two real series, each weighted with corresponding nominal series.
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No. Code Code Name of Series Source Source Transformation
prior 1991 post 1991 prior 1991 post 1991 WG log SA

Financial
44 BDSU0101,BDSU0304R BDSU0101,BDSU0304R Money market rate, overnight deposits DS DS
45 BDSU0104,BDSU0310R BDSU0104,BDSU0310R Money market rate, 1 months deposits DS DS
46 BDSU0107,BDSU0316R BDSU0107,BDSU0316R Money market rate, 3 months deposits DS DS
47 BDWU0898 BDWU0898 Bond yields with average rest maturity from 1 to 2 years DS DS
48 BDWU0899 BDWU0899 Bond yields with average rest maturity from 2 to 3 years DS DS
49 BDWU0900 BDWU0900 Bond yields with average rest maturity from 3 to 4 years DS DS
50 BDWU0901 BDWU0901 Bond yields with average rest maturity from 4 to 5 years DS DS
51 BDWU0902 BDWU0902 Bond yields with average rest maturity from 5 to 6 years DS DS
52 BDWU0903 BDWU0903 Bond yields with average rest maturity from 6 to 7 years DS DS
53 BDWU8606 BDWU8606 Bond yields with average rest maturity from 7 to 8 years DS DS
54 BDWU8607 BDWU8607 Bond yields with average rest maturity from 8 to 9 years DS DS
55 BDWU8608 BDWU8608 Bond yields with average rest maturity from 9 to 10 years DS DS
56 BDWU001AA BDWU001AA Stock prices: CDAX DS DS x
57 BDWU3141A BDWU3141A Stock prices: DAX DS DS x
58 BDWU035AA BDWU035AA Stock prices: REX DS DS x

Misc
59 BDEA4001B BDEA4001B Current account: goods trade DS DS
60 BDEA4100B BDEA4100B Current account: services DS DS
61 BDEA4170B BDEA4170B Current account: factor income DS DS
62 BDEA4220B BDEA4220B Current account: transfers DS DS
63 BDHWWAINF BDHWWAINF HWWA raw material price index DS DS x x
64 BDQSLI12G BDQSLI12G New car registrations DS DS x

Industry
65 BDUSNA04G Production: intermediate goods industry CS DS x x
66 BDUSNA05G Production: capital goods industry CS DS x x
67 BDUSNI67G Production: durable and non-durable consumer goods industry CS DS x x
68 BDUSNA39G Production: mechanical engineering CS DS x x
69 BDUSNA42G Production: electrical engineering CS DS x x
70 BDUSNA50G Production: vehicle engineering CS DS x x
71 BDSTDCAPG Export turnover: intermediate goods industry CS DS x x x
72 BDSTFINTG Domestic turnover: intermediate goods industry CS DS x x x
73 BDSTFCAPG Export turnover: capital goods industry CS DS x x x
74 BDSTDCONG Domestic turnover: capital goods industry CS DS x x x
75 BDSTFCONG Export turnover: durable and non-durable consumer goods industry CS DS x x x
76 BDSTDMYEG Domestic turnover: durable and non-durable consumer goods industry CS DS x x x
77 BDSTFMYEG Export turnover: mechanical engineering CS DS x x x
78 BDSTDCEOG Domestic turnover: mechanical engineering CS DS x x x
79 BDSTFCEOG Export turnover: electrical engineering industry CS DS x x x
80 BDSTFCEOG Domestic turnover: electrical engineering industry CS DS x x x
81 BDSTFCEOG Export turnover: vehicle engineering industry CS DS x x x
82 BDSTFVEMG Domestic turnover: vehicle engineering industry CS DS x x x
83 BDDBPORDG Orders received: intermediate goods industry from domestic market CS DS x x x
84 BDOBPORDG Orders received: intermediate goods industry from abroad CS DS x x x
85 BDDCPORDG Orders received: capital goods industry from domestic market CS DS x x x
86 BDOCPORDG Orders received: capital goods industry from abroad CS DS x x x
87 BDDCNORDG Orders received: consumer goods industry from domestic market CS DS x x x
88 BDOCNORDG Orders received: consumer goods industry from abroad CS DS x x x
89 BDNODMYEG Orders received: mechanical engineering industry from domestic market CS DS x x x
90 BDNOFMYEG Orders received: mechanical engineering industry from abroad CS DS x x x
91 BDUSC587G Orders received: electrical engineering industry from domestic market CS DS x x x
92 BDUSC588G Orders received: electrical engineering industry from abroad CS DS x x x
93 BDUSC659G Orders received: vehicle engineering industry from domestic market CS DS x x x
94 BDUSC660G Orders received: vehicle engineering industry from abroad CS DS x x x
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No. Code Code Name of Series Source Source Transformation
prior 1991 post 1991 prior 1991 post 1991 WG log SA

Construction

95 GS17DA BDUSDA17G Orders received by the construction sector: building construction CS DS x x
96 GS20DA BDUSDA20G Orders received by the construction sector: civil engineering CS DS x x
97 GS18DA BDUSDA18G Orders received by the construction sector: residential building CS DS x x
98 GS19DA BDUSDA19G Orders received by the construction sector: non-residential building construction CS DS x x
99 1.3.1 Man-hours worked in building construction CS FSO(c) x x x
100 1.3.1 Man-hours worked in civil engineering CS FSO(c) x x x
101 1.3.1 Man-hours worked in residential building CS FSO(c) x x x
102 1.3.1 Man-hours worked in industrial building CS FSO(c) x x x
103 1.3.1 Man-hours worked in public building CS FSO(c) x x x
104 1.4.1 Turnover: building construction CS FSO(c) x x x
105 1.4.1 Turnover: civil engineering CS FSO(c) x x x
106 BDUSMB36B Turnover: residential building CS DS x x x
107 BDUSMB31B Turnover: industrial building CS DS x x x
108 BDUSMB37B Turnover: public building CS DS x x x
109 BDESPICNG Production in the construction sector CS DS x x x

Surveys

110 WGIFOCPAE BDIFDMPAQ Business situation: capital goods producers DS DS x
111 WGIFOCGAE BDIFDMCAQ Business situation: producers durable consumer goods DS DS x
112 WGIFOCOAE BDIFDMNAQ Business situation: producers non-durable consumer goods DS DS x
113 WGIFOCPKE BDIFDMPKQ Business expectations for the next 6 months: producers of capital goods DS DS x
114 WGIFOCGHE BDIFDMCKQ Business expectations for the next 6 months: producers of durable consumer goods DS DS x
115 WGIFOCOKE BDIFDMNKQ Business expectations for the next 6 months: producers of non-durable consumer goods DS DS x
116 WGIFORTHE BDIFDRSKQ Business expectations for the next 6 months: retail trade DS DS x
117 WGIFOWHHE BDIFDWSKQ Business expectations for the next 6 months: wholesale trade DS DS x
118 WGIFOCPCE BDIFDMPCQ Stocks of finished goods: producers of capital goods DS DS x
119 WGIFOCGDE BDIFDMCCQ Stocks of finished goods: producers of durable consumer goods DS DS x
120 WGIFOCOCE BDIFDNXCQ Stocks of finished goods: producers of non-durable consumer goods DS DS x
121 WGIFOUCGQ BDIFDMPQQ Capacity utilisation: producers of capital goods DS DS x x
122 WGIFOUCRQ BDIFDMCQQ Capacity utilisation: producers of durable consumer goods DS DS x x
123 WGIFOUCOQ BDIFDMNQQ Capacity utilisation: producers of non-durable consumer goods DS DS x x
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Appendix B: Detailed Results for all Models for 11 Variables

• ∆gdpt: annualized quarter-on-quarter GDP growth

• ∆cpit: annualized quarter-on-quarter CPI inflation rate

• ∆ct: annualized quarter-on-quarter private consumption growth

• ∆invt: annualized quarter-on-quarter investment growth (machinery and equipment in-

vestment)

• ∆wt: annualized quarter-on-quarter wage inflation rate

• ∆ipt: annualized quarter-on-quarter industrial production growth

• ∆ppit: annualized quarter-on-quarter PPI inflation rate

• ist : 3-months money market rate

• ut: unemployment rate

• ilt: long-term interest rate (bond yields with average rest maturity from 9 to 10 years)

• cat: current account balance
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Appendix C: Figures of Forecasts for 11 Variables
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Figure 3: GDP growth forecasts.
Notes: The solid black line displays annualized quarter-on-quarter German GDP growth from 1990 until 2013. The grey lines show the h = 1 until h = 8 quarter ahead
forecasts for German GDP growth obtained with the AR benchmark model and one representative variant of each of the large scale forecasting approaches, namely the
LBVAR, the BFAVAR and the BMA. The shaded areas indicate recessions as dated by the Economic Cycle Research Institute.
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Univariate Autoregression
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Figure 4: CPI inflation rate forecasts.
Notes: The solid black line displays the CPI inflation rate from 1990 until 2013. The grey lines show the h = 1 until h = 8 quarter ahead forecasts for German CPI inflation
obtained with the AR benchmark model and one representative variant of each of the large scale forecasting approaches, namely the LBVAR, the BFAVAR and the BMA.
The shaded areas indicate recessions as dated by the Economic Cycle Research Institute.
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Univariate Autoregression
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Figure 5: Unemployment rate forecasts.
Notes: The solid black line displays the German unemploament rate from 1990 until 2013. The grey lines show the h = 1 until h = 8 quarter ahead forecasts for German
unemployment obtained with the AR benchmark model and one representative variant of each of the large scale forecasting approaches, namely the LBVAR, the BFAVAR
and the BMA. The shaded areas indicate recessions as dated by the Economic Cycle Research Institute.
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Figure 6: Industrial production growth forecasts.
Notes: The solid black line displays annualized quarter-on-quarter German industrial production growth from 1990 until 2013. The grey lines show the h = 1 until h = 8
quarter ahead forecasts for German industrial production obtained with the AR benchmark model and one representative variant of each of the large scale forecasting
approaches, namely the LBVAR, the BFAVAR and the BMA. The shaded areas indicate recessions as dated by the Economic Cycle Research Institute.
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Figure 7: Private Consumption growth forecasts.
Notes: The solid black line displays annualized quarter-on-quarter German private consumption growth from 1990 until 2013. The grey lines show the h = 1 until h = 8
quarter ahead forecasts for German private consumption obtained with the AR benchmark model and one representative variant of each of the large scale forecasting
approaches, namely the LBVAR, the BFAVAR and the BMA. The shaded areas indicate recessions as dated by the Economic Cycle Research Institute.
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Figure 8: Machinery and Equipment Investment growth forecasts.
Notes: The solid black line displays annualized quarter-on-quarter German machinery and equipment investment growth from 1990 until 2013. The grey lines show the
h = 1 until h = 8 quarter ahead forecasts for German machinery and equipment investment obtained with the AR benchmark model and one representative variant of each
of the large scale forecasting approaches, namely the LBVAR, the BFAVAR and the BMA. The shaded areas indicate recessions as dated by the Economic Cycle Research
Institute.
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Figure 9: Real wage growth forecasts.
Notes: The solid black line displays annualized quarter-on-quarter German real wage growth from 1990 until 2013. The grey lines show the h = 1 until h = 8 quarter ahead
forecasts for German real wage growth obtained with the AR benchmark model and one representative variant of each of the large scale forecasting approaches, namely
the LBVAR, the BFAVAR and the BMA. The shaded areas indicate recessions as dated by the Economic Cycle Research Institute.
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Figure 10: PPI Inflation Rate forecasts.
Notes: The solid black line displays annualized quarter-on-quarter German PPI inflation rate growth from 1990 until 2013. The grey lines show the h = 1 until h = 8
quarter ahead forecasts for the German PPI inflation rate obtained with the AR benchmark model and one representative variant of each of the large scale forecasting
approaches, namely the LBVAR, the BFAVAR and the BMA. The shaded areas indicate recessions as dated by the Economic Cycle Research Institute.
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Figure 11: Short Term Interest Rate forecasts.
Notes: The solid black line displays the short term interest rate from 1990 until 2013. The grey lines show the h = 1 until h = 8 quarter ahead forecasts for the short term
interest rate obtained with the AR benchmark model and one representative variant of each of the large scale forecasting approaches, namely the LBVAR, the BFAVAR
and the BMA. The shaded areas indicate recessions as dated by the Economic Cycle Research Institute.
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Figure 12: Long Term Interest Rate forecasts.
Notes: The solid black line displays the long term interest rate from 1990 until 2013. The grey lines show the h = 1 until h = 8 quarter ahead forecasts for the long term
interest rate obtained with the AR benchmark model and one representative variant of each of the large scale forecasting approaches, namely the LBVAR, the BFAVAR
and the BMA. The shaded areas indicate recessions as dated by the Economic Cycle Research Institute.
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Figure 13: Current Account Balance forecasts.
Notes: The solid black line displays the German current account balance from 1990 until 2013. The grey lines show the h = 1 until h = 8 quarter ahead forecasts for
the German current account balance obtained with the AR benchmark model and one representative variant of each of the large scale forecasting approaches, namely the
LBVAR, the BFAVAR and the BMA. The shaded areas indicate recessions as dated by the Economic Cycle Research Institute.
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