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1 Introduction

Many decision situations involve outcomes that consist of several attributes. In applied

decision analyses it is useful to decompose the utility function over these multiattribute

outcomes into separate utility functions over the different attributes so as to reduce the

number of preference elicitations. Such decompositions are only justified if the decision

maker’s preferences satisfy particular assumptions. Several authors have identified the

preference conditions that allow decompositions of multiattribute utility functions into

additive, multiplicative, and related decompositions (e.g. Farquhar 1975, Fishburn 1965,

Keeney and Raiffa 1976).

Most of these decomposition results have been derived under expected utility.

Abundant evidence exists, however, that expected utility is not valid as a descriptive theory

of decision under uncertainty. The descriptive deficiencies of expected utility complicate

the empirical assessment of the preference conditions underlying decompositions: it cannot

be excluded that observed violations of preference conditions are due to violations of

expected utility rather than to violations of a decomposition. To obtain robust tests of

the appropriateness of decompositions, it is desirable to derive conditions that are valid

even when expected utility is violated.

In this paper we study multiattribute utility theory under prospect theory (Kahneman

and Tversky 1979, Tversky and Kahneman 1992). Prospect theory is currently the most

influential theory of decision under uncertainty. It characterizes two major deviations

from expected utility: nonlinear decision weighting and loss aversion, i.e. the tendency

for people to treat outcomes as deviations from a reference point and be more sensitive to

losses than to gains of the same magnitude. Both nonlinear decision weighting and loss

aversion are widely documented in the empirical literature.
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Fishburn (1984), Miyamoto (1988), Dyckerhoff (1994), and Miyamoto and Wakker

(1996) studied multiattribute utility under nonexpected utility, but only considered out-

comes of the same sign. Like us, Zank (2001) and Bleichrodt and Miyamoto (2003) studied

multiattribute utility theory under prospect theory but their approach was different than

the approach of this paper as we will explain next.

A central issue in multi-attribute prospect theory is to determine when an attribute

yields a gain or a loss. Consider, for example, a researcher who considers changing jobs.

In evaluating different jobs the researcher has to consider several aspects, e.g. salary,

commuting time, cost of living, amount of research time, etc. How does the researcher

determine whether a particular job offer is an improvement (a gain) compared with his

reference point (presumably his current job)? One possibility is that a decision maker first

determines whether the job offer as a whole is a gain or a loss compared to his reference

point and then applies the decomposition to determine exactly how attractive the job offer

is as compared with other offers. This holistic approach was used by Zank (2001) and by

Bleichrodt and Miyamoto (2003).

Another approach, which is the focus of this paper, is that the researcher determines

a reference point for each attribute and evaluates job offers as gains and losses on each

attribute. This segregated approach seems plausible when the number of attributes is large

and the choice is complex. A decision context where the segregated approach is particularly

intuitive is welfare theory: there we are interested in whether each individual’s welfare is

above some reference level. The segregated approach is common in empirical studies on

loss aversion for tradeoffs under certainty and was found to be descriptively accurate

(Bateman et al. 1997, Bleichrodt and Pinto 2002, Tversky and Kahneman 1991). For the

more common case of uncertainty it has not been analyzed, however. Providing such an
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analysis is the topic of this paper.

The difference between the holistic and the segregate approach is that in the former

loss aversion and decision weighting are attribute-independent, whereas in the latter they

depend on the attributes. As we will show in Section 5, the holistic and the segregated

approach are in general equivalent only when people behave according to expected utility,

i.e. when loss aversion does not affect people’s preferences and there is no decision weight-

ing. An example to further clarify the difference between the holistic and the segregated

approach to multiattribute utility theory is in Section 3.

This paper gives preference foundations for additive utility under prospect theory and

the segregated approach. We restrict our attention to the additive decomposition for two

reasons. First, it is commonly applied in many areas of economics and decision analysis

and, second, other decompositions, such as the multiplicative and the multilinear decom-

positions raise special problems under the segregated approach. Solving these problems

requires different tools and is beyond the scope of the present paper.

The rest of the paper is organized as follows. Section 2 gives notation and explains

prospect theory for single-attribute outcomes. We then move to multiattribute utility

where we first assume, for ease of exposition, that there are just two attributes, which are

both numerical. Section 4 gives preference foundations for prospect theory with additive

utility under the segregated approach. As mentioned, weighting functions are defined

per attribute and they may differ across attributes in the segregated approach. To force

them to be equal across attributes requires additional conditions. We will characterize this

special case in Section 5. We extend our results to the case where there are more than

two attributes in Section 6 and to the case of nonnumeric outcomes in Section 7. Section

8 concludes the paper with some observations on the empirical measurement of additive
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utility in prospect theory under the segregated approach. All proofs are in the appendix.

2 Prospect Theory for Single-attribute Outcomes

We consider a decision maker in a situation where there is a finite number, n ≥ 2 of

distinct states of nature, exactly one of which obtains. S = {1, ..., n} denotes the set

of states of nature. Subsets of S are called events. In a medical decision problem, the

states of nature can, for example, be mutually exclusive diseases and the decision maker

has to choose between different treatments before knowing what the actual disease is. We

consider decision under uncertainty where the probabilities for the states of nature may,

but need not be given. The assumption of a finite number of states of nature is made for

expositional purposes. The results of this paper can be extended to an infinite state space

using tools from Wakker (1993). The extension to decision under risk, i.e. the case where

probabilities are objectively given, is as in Köbberling and Wakker (2003, Section 5.3).

The decision maker’s problem is to choose between prospects. Each prospect is an

n-tuple of outcomes, one for each state of nature. Formally, a prospect is a function from

the set of states of nature to the set of outcomes C. We denote the set of prospects as

P = Cn. We shall write (f1, ..., fn) for the prospect f that gives fj if state j occurs. A

constant prospect gives the same outcome for each state of nature. For ease of exposition,

we assume in this section that outcomes are one-dimensional. The set of outcomes C is

a nondegenerate convex subset of IR. Outcomes are defined with respect to a reference

point. The reference point is a constant prospect, that we will denote as r. We assume

that the reference point is fixed, i.e. we restrict attention to preferences with respect to

one reference point. Variations in the reference point are analyzed by Schmidt (2003).

Let < denote a preference relation on the set of prospects. As usual, Â denotes the
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asymmetric part of < (strict preference) and ∼ denotes the symmetric part of < (indiffer-

ence), and 4 and ≺ denote reversed preferences. We shall use the same notation for the

binary relations on C derived through constant prospects. An outcome x Â r is a gain

and an outcome x ≺ r is a loss.

A prospect f is rank-ordered if f1 < · · · < fn. For each prospect, there exists a

permutation ρ such that fρ(1) < · · · < fρ(n). For each permutation ρ let Pρ = {f ∈ P :

fρ(1) < · · · < fρ(n)}. That is, Pρ is the set of all prospects that are rank-ordered by ρ. If

two prospects can be rank-ordered by a common ρ, then they are comonotonic. For each

event A ⊂ S, the set PA contains those prospects that yield gains for states in A and no

gains for states not in A. We define the set PA
ρ as the intersection of PA and Pρ. Subsets

of sets PA
ρ are sign-comonotonic.

A real-valued function V : P → IR represents < on P if for all f, g ∈ P we have f < g

if and only if (iff) V (f) > V (g). A function V is a ratio scale if it is unique up to unit, i.e.,

if V can be replaced by U if and only if U = σV for positive σ. A weighting function or

capacity W is a function on 2S such that W (∅) = 0, W (S) = 1, and for any two events A

and B, if B ⊂ A thenW (B) ≤W (A). W is strictly increasing ifW (B) < W (A) whenever

B is a proper subset of A.

Prospect theory holds if there exists a utility function U : C → IR with U(r) = 0 such

that prospects f ∈ PA
ρ with A = {ρ(1), ..., ρ(k)} for some k ≤ n are evaluated by

PT (f) =
kX

j=1

π+ρ(j)U(fρ(j)) +
nX

j=k+1

π−ρ(j)U(fρ(j)) (1)

with

π+ρ(j) =W+(ρ(1), ..., ρ(j))−W+(ρ(1), ..., ρ(j − 1)) (2a)
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and

π−ρ(i) =W−(ρ(j), ..., ρ(n))−W−(ρ(j + 1), ..., ρ(n)), (2b)

and choices and preferences correspond with this evaluation. PT (f) denotes the prospect

theory value, or PT value for short, of f , and W+ and W− are weighting functions for

gains and losses, respectively. We will assume throughout that U is strictly increasing, i.e.

for all x, y ∈ C, x > y iff U(x) > U(y), and continuous. If prospect theory holds then

utility is a ratio scale and the weighting functions are uniquely determined.

3 Prospect Theory for Two-attribute Outcomes

From now on C = C1×C2 is a product of two nondegenerate convex subsets of IR. Hence,

we now deal with two product structures: the two-dimensional structure of C and the

n-dimensional structure Cn. In what follows, the index i will refer to the attributes and

the index j to the states of nature. Hence, fji denotes the i-th attribute of the outcome

that is obtained under state j. Outcomes in C will be denoted as x = (x1, x2) or as x1x2

for short.

Let P1 denote the set of prospects on Cn
1 and P2 the set of prospects on Cn

2 . For a

fixed f2 ∈ P2, we define a preference relation <1 on P1 by f1 <1 g1 iff f1f2 < g1f2. We

will in Section 4 impose a condition that implies that the choice of f2 is immaterial. By

restricting attention to constant prospects in P1, we can define a preference relation <1 on

C1. In a similar fashion we can define <2 on P2 and on C2.

A function U : C → IR is additive if U : x 7−→ U1(x1)+U2(x2) where Ui is a real-valued

function on Ci, i = 1, 2. The functions U1 and U2 are joint ratio scales if U1 and U2 can be

replaced by V1 and V2 if and only if Vi = σUi, σ > 0. That is, any common change in unit
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is allowed.

In the holistic approach, any outcome x that is indifferent to r can also be interpreted

as a reference point. Hence, it does not make sense to consider gains or losses on any

separate dimension in the holistic approach. What matters in the holistic approach is

whether an outcome x is a gain or a loss compared to r (i.e., whether x Â r or x ≺ r,

respectively).

Under the holistic approach, additive decomposability means that a prospect f ∈ PA
ρ

with A = {ρ(1), ..., ρ(k)} for some k ≤ n is evaluated as

PT (f) =
kX

j=1

π+ρ(j)(U1(fρ(j)1) + U2(fρ(j)2)) +
nX

j=k+1

π−ρ(j)(U1(fρ(j)1) + U2(fρ(j)2)), (3)

where the decision weights are defined as in Eqs. (2a) and (2b). The uniqueness results

of prospect theory apply, which implies that the attribute utility functions are joint ratio

scales and the weighting function is unique. There is only one permutation function that

applies to both attributes. In this representation, the decision weight that is assigned to

a single-attribute utility function Ui, i = 1, 2, depends on whether the entire outcome is

a gain or a loss. If an outcome x is a gain then the decision weight π+ is applied, if it is

a loss then π− is applied. Preference foundations for Eq. (3) were given by Zank (2001)

and Bleichrodt and Miyamoto (2003).

The segregated approach evaluates for each attribute separately whether it yields a gain

or a loss, i.e. the segregated approach interprets reference-dependence for each attribute

separately. We will denote the reference point on the first attribute by r1 and the reference

point on the second attribute by r2. x1 ∈ C1 is a gain if x1 Â1 r1 and a loss if x1 ≺1 r1 and

x2 ∈ C2 is a gain if x2 Â2 r2 and a loss if x2 ≺2 r2. We will assume that preferences are

monotonic in each attribute. Then, in contrast with the holistic approach, the reference

point will be unique. We further assume that r1 is an interior point of C1 and that r2 is
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an interior point of C2. This ensures that C1 and C2 both contain outcomes that are gains

and outcomes that are losses and that genuine tradeoffs between gains and losses exist for

both attributes.

For each prospect f , there exist permutations ρ1 and ρ2 such that fρ1(1)1 < · · · < fρ1(n)1

and fρ2(1)2 < · · · < fρ2(n)2. Let Pρ1 = {f ∈ P : fρ1(1)1 < · · · < fρ1(n)1}. That is, Pρ1 is

the set of all prospects for which the first attribute is rank-ordered by ρ1. Pρ2 is defined

similarly. For each event A1 ⊂ S, the set PA1 contains those prospects that yield gains

on the first attribute for states in A1 and no gains on the first attribute for states not in

A1. Similarly, P
A2 contains those prospects that yield gains on the second attribute for

states in A2 and no gains on the second attribute for states not in A2. We define P
A1
ρ1
=

PA1 ∩Pρ1 and P
A2
ρ2
= PA2 ∩Pρ2 . Subsets of P

A1
ρ1
are said to be sign-comonotonic on C1 and

subsets of PA2
ρ2
are said to be sign-comonotonic on C2. Under the segregated approach, a

prospect f ∈ PA1
ρ1
∩PA2

ρ2
with A1 = {ρ1(1), ..., ρ1(k1)} and A2 = {ρ2(1), ..., ρ2(k2)} for some

k1, k2 ≤ n is evaluated as

PT (f) =
k1X
j=1

π+ρ1(j)1U1(fρ1(j)1) +
nX

j=k1+1

π−ρ1(j)1U1(fρ1(j)1)

+
k2X
j=1

π+ρ2(j)2U2(fρ2(j)2) +
nX

j=k2+1

π−ρ2(j)2U2(fρ2(j)2). (4)

with

π+ρi(j)i =W+
i (ρi(1), ..., ρi(j))−W+

i (ρi(1), ..., ρi(j − 1)), i = 1, 2 (5a)

and

π−ρi(j)i =W−
i (ρi(j), ..., ρi(n))−W−

i (ρi(j + 1), ..., ρi(n)), i = 1, 2, (5b)

and preferences and choices correspond with this evaluation. The functions U1 and U2 are

strictly increasing and continuous and satisfy U1(r1) = U2(r2) = 0. π+·1 and π−·1 are the
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decision weights for gains and losses for the first attribute, π+·2 and π−·2 are the decision

weights for gains and losses for the second attribute, W+
1 and W−

1 are the weighting

functions for gains and losses for the first attribute, and W+
2 and W−

2 are the weighting

functions for gains and losses for the second attribute. The utility functions are joint ratio

scales and the attribute weighting functions are unique. A comparison between Eqs. (3)

and (4) reveals that the holistic approach and the segregated approach differ both in loss

aversion and in decision weighting.

An example may clarify the difference between the holistic and the segregated approach

to additive utility. Suppose that a researcher considers a job offer from a university that

will take effect in some months time. If the university cannot attract a better candidate in

the meantime, the researcher will be appointed as leader of a research group and becomes

full professor. However, if the university finds a better candidate, the researcher will

be appointed as member of the research group and becomes assistant professor. A full

professor earns $60K per year and has 15 hours research time per week. An assistant

professor earns $40K per year and has 30 hours research time per week. The researcher’s

preferences are monotonic both in money (more money is preferred) and in research time

(more research time is preferred). Suppose that the researcher’s current job, his reference

point, earns $50K per year and has 20 hours research time per week. Suppose also that

(60K, 15h) Â (50K, 20h) Â (40K, 30h). The researcher’s reference point is (50K, 20h)

in the holistic approach and in the segregate approach the researcher’s reference point for

annual earnings is $50K and for research time is 20 hours per week. In the holistic approach,

where we determine first the sign of an outcome and then apply the decompositions, we

assume that the researcher’s utility function for gains is u(x1x2)− u(r1r2) and his utility

function for losses is λ( u(x1x2)− u(r1r2)) where λ is a coefficient reflecting loss aversion
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and u is a basic utility function which expresses the researcher’s attitude towards outcomes

and which is reference independent (Tversky and Kahneman 1991, Köbberling and Wakker

2005). In the segregate approach, where first the decomposition is applied and then it is

determined whether attributes yield gains or losses, the utility for gains is ui(xi)− ui(ri)

and for losses it is λi(ui(xi)− ui(ri)), i = 1, 2. We assume that the holistic basic utility is

additive such that u(x1x2) = u1(x1) + u2(x2).

The researcher does not care about other job aspects than wage rate and available

research time. If event 1 is “no better candidate is found in the meantime” and event 2

is “a better candidate is found in the meantime” then, according to the holistic approach

(Eq. (3)), the PT value of this job offer is equal to

π+1 ((u1(60) + u2(15))− (u1(50) + u2(20)))

+π−2 λ((u1(40) + u2(30))− (u1(50) + u2(20)))

(6)

and according to the segregated approach (Eq. (4)), it is equal to

π+11(u1(60)− u1(50)) + π−12λ2(u
−
2 (15)− u2(20))

+π−21λ1(u1(40)− u1(50)) + π+22(u2(30)− u2(20))

(7)

A comparison between Eqs. (6) and (7) shows that both decision weighting and loss

aversion differ between the two approaches. While loss aversion and decision weighting

are common for single attributes in the holistic approach, they may differ in the segregated

approach. First, we may have different decision weighting for the single attributes when the

rank-order of outcomes is not identical for both attributes. Second, even if the rank-order

is identical, loss aversion and decision weighting may differ as the segregated approach, in

general, allows for different degrees of loss aversion and different weighting functions for

the single attributes. The possibility of attribute-dependent weighting functions can be

realistic in applications. Rottenstreich and Hsee (2001) showed that decision weighting
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depends on the outcome domain with people deviating more from expected utility for

affect-rich outcomes. In Section 5, we will characterize the special case of the segregated

approach where the weighting functions are the same across different attributes. There is

no empirical evidence to conclude that loss aversion differs across different attributes, but

intuitively this seems to make sense.

4 Preference Foundations

This section develops preference conditions for additive prospect theory under the segre-

gated approach, i.e. Eq. (4). We continue to assume that C = C1 × C2 with C1 and C2

nondegenerate convex subsets of IR. The preference relation < on the set of prospects P

is a weak order if it is complete (for all prospects f, g, f < g or g < f) and transitive.

Any prospect f ∈ P yields both a prospect f1 ∈ P1 and a prospect f2 ∈ P2 and, hence,

each prospect f may be viewed as an element of the product P1×P2. Hence, we can denote

prospects as f1f2. Weak separability holds when for all f1, g1 ∈ P1 and for all f2, g2 ∈ P2,

f1f2 < g1f2 iff f1g2 < g1g2 and when for all f1, g1 ∈ P1 and for all f2, g2 ∈ P2, f1f2 < f1g2

iff g1f2 < g1g2. Weak separability entails that the relations <1 on P1 and <2 on P2 are

well-defined. Outcome monotonicity holds if for i = 1, 2, fji ≥ gji for all j implies fi <i gi

with strict preference holding if one of the antecedent inequalities is strict. Continuity

holds if for all prospects fi, the sets {gi ∈ Pi : gi < fi} and {gi ∈ Pi : gi 4 fi} are both

closed in Cn
i , i = 1, 2.

For x ∈ Ci, fi ∈ Pi, i = 1, 2, and j ∈ S define

xjfi = (f1i, ..., fj−1i, x, fj+1i, . . . , fni),
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that is, xjfi is the prospect fi with fji replaced by x. Let a, b, c, d ∈ C1. We write

ab ∼∗1 cd

if (i) there exist f1, g1 ∈ P1 and f2 ∈ P2 and a state j such that

(ajf1, f2) ∼ (bjg1, f2) and

(cjf1, f2) ∼ (djg1, f2),

where ajf1, bjg1, cjf1, and djg1 are sign-comonotonic on C1,

or (ii) there exist v, w ∈ C2 and f1 ∈ P1 such that

(a1f1, v1f2) ∼ (b1f1, w1f2) and

(c1f1, v1f2) ∼ (d1f1, w1f2),

where a1f1, b1f1, c1f1, and d1f1 are rank-ordered prospects in P1 and v1f2, and w1f2 are

rank-ordered prospects in P2.

In the first two indifferences the prospect on the second attribute is kept fixed, in

the final two indifferences everything outside state of nature 1 is kept fixed. The ∼∗1
relationship may be interpreted as measuring strength of preference. For example, from

the indifferences (ajf1, f2) ∼ (bjg1, f2) and (cjf1, f2) ∼ (djg1, f2), we can see that ab ∼∗1 cd

means that, in the presence of f2, a tradeoff of a for b is an equally good improvement as a

tradeoff of c for d: both exactly offset receiving f1 instead of g1 for all other states of nature.

A similar interpretation can be assigned to the indifferences (a1f1, v1f2) ∼ (b1f1, w1f2) and

(c1f1, v1f2) ∼ (d1f1, w1f2). Even though the ∼∗1 relations have a natural interpretation in

terms of strength of preference, they are defined entirely in terms of observed indifferences

and no new primitives beyond observed choice are assumed in their definition. Hence, we

stay entirely within the revealed preference paradigm when using the ∼∗1 relations.
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Let w, x, y, z ∈ C2. We define

wx ∼∗2 yz

if (i) there exist f2, g2 ∈ P2 and f1 ∈ P1 and a state j such that

(f1, wjf2) ∼ (f1, xjg2) and

(f1, yjf2) ∼ (f1, zjg2),

where wjf2, xjg2, yjf2, and zjg2 are sign-comonotonic on C2,

or (ii) there exist a, b ∈ C1 and f2 ∈ P2 such that

(a1f1, w1f2) ∼ (b1f1, x1f2) and

(a1f1, y1f2) ∼ (b1f1, z1f2),

where w1f2, x1f2, y1f2, and z1f2 are rank-ordered prospects in P2 and a1f1, and b1f1 are

rank-ordered prospects in P1.

We say that < satisfies tradeoff consistencyon C1 if improving the first attribute of

an outcome in any ∼∗1 relationship breaks that relationship. That is, if ab ∼∗1 cd and

a0 Â1 a then it cannot be that a0b ∼∗1 cd . Loosely speaking, tradeoff consistency on

C1 ensures that the ∼∗1 relationship is well-behaved when interpreted as a strength of

preference relationship. If the strength of preference of a over b is equal to the strength of

preference of c over d, then the strength of preference of a0 over b cannot be equal to the

strength of preference of c over d, when a0 is strictly better than a.

Similarly, < satisfies tradeoff consistency on C2 if improving the second attribute of an

outcome in any ∼∗2 relationship breaks that relationship. That is, if wx ∼∗2 yz and y0 Â2 y

then it cannot be that wx ∼∗2 y0z. Tradeoff consistency holds if tradeoff consistency holds

both on C1 and on C2. An important advantage of tradeoff consistency as a preference

condition is that it is closely related to measurements of utility by the tradeoff method
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(Wakker and Deneffe 1996). This makes it easy to test tradeoff consistency empirically.

Empirical studies that have used the tradeoff method include Abdellaoui (2000), Etchart-

Vincent (2004), Schunk and Betsch (2006), and Abdellaoui, Barrios and Wakker (2007)

amongst others.

Solvability holds if for any two prospects f, g ∈ P there exists outcomes α and β

such that (α1f1, f2) ∼ g and (f1, β1f2) ∼ g. Solvability implies that the attribute utility

functions U1 and U2 are unbounded.

The next theorem characterizes Eq. (4).

Theorem 1 The following two statements are equivalent:

(i) < is represented by the functional in Eq.(4) with strictly increasing weighting func-

tions W+
1 ,W

−
1 ,W

+
2 , and W

−
2 and continuous, strictly increasing utility functions U1

and U2.

(ii) < satisfies (1) weak ordering, (2) continuity, (3) weak separability, (4) outcome

monotonicity, (5) solvability, and (6) tradeoff consistency.

The uniqueness results of prospect theory apply, that is, the weighting functions W+
i

and W−
i , i = 1, 2, are uniquely determined, and the utility functions U1 and U2 are

joint ratio scales. ¤

5 Common Weighting Functions

In the segregated approach the weighting functions may differ across the two attributes. In

some cases, however, it might be reasonable to take the weighting functions as independent

of the attributes. Empirical evidence suggests, for example, that decision weights for
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money and for health are close (Abdellaoui 2000 compared with Bleichrodt and Pinto

2000). Using common weighting functions facilitates the use of prospect theory in practical

applications, because fewer elicitations are required. In this section we will give a preference

foundation for the special case of Eq. (4) where the weighting functions do not depend on

the attributes.

By continuity and connectedness of C1 and C2, there exist gains x1 ∈ C1 and x2 ∈ C2

and losses y1 ∈ C1 and y2 ∈ C2 such that (x1, r2) ∼ (r1, x2) and (y1, r2) ∼ (r1, y2) and,

hence, such that U1(x1) = U2(x2) and U1(y1) = U2(y2). Recall that r is the constant

prospect that gives (r1, r2) in every state of nature. For any event B, let xBf denote the

prospect f with fj replaced by x for all j in B. We can now define a condition that

ensures attribute independence of the weighting functions for gains and for losses. We say

that < satisfies attribute-independence for states, if for all x1 ∈ C1 and x2 ∈ C2 for which

(x1, r2) ∼ (r1, x2) and for all events B, (x1, r2)Br ∼ (r1, x2)Br. Note that the condition

holds for all x1 ∈ C1 and x2 ∈ C2, but x1 and x2 must be either both gains or both losses

for otherwise the indifference (x1, r2) ∼ (r1, x2) cannot obtain.

Let us now explain the idea behind the condition. As mentioned before, if (x1, r2) ∼

(r1, x2) then U1(x1) = U2(x2). If Eq. (4) holds and x1 and x2 are both gains, the indif-

ference (x1, r2)Br ∼ (r1, x2)Br implies that W+
1 (B)U(x1) = W+

2 (B)U(x2) and W+
1 (B) =

W+
2 (B) follows from U1(x1) = U2(x2). A similar line of argument shows that W

−
1 (B) =

W−
2 (B) whenever x1 and x2 are losses. Because these equalities hold for all events B, we

obtain the following result.

Theorem 2 If we add attribute-independence for states to statement (ii) of Theorem 1

then the weighting functions W+ and W− in statement (i) of Theorem 1 are attribute-

independent, i.e. for all events E, W+
1 (E) = W+

2 (E) = W+(E) and W−
1 (E) = W−

2 (E) =
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W−(E). ¤

If ρ1 = ρ2 and A1 = A2 then Theorem 2 also implies that the decision weights π+ and

π− are attribute-independent. This follows straightforwardly from the definition of the

decision weights, Eqs. (5a) and (5b). Having the weighting functions independent of the

attributes does not make the segregated approach equal to the holistic approach. This

is easily seen by referring back to the example of the researcher considering a job offer.

Under the segregated approach with common weighting functions, Eq. (7) becomes

π+1 (u1(60)− u1(50)) + π−1 λ2(u2(15)− u2(20)) +

π−2 λ1(u1(40)− u1(50)) + π+2 (u2(30)− u2(15)),

which clearly differs from the evaluation under the holistic approach, Eq.(6).

Note that it is not only the presence of the loss aversion parameter which distinguishes

the holistic from the segregated approach. In general, the two approaches differ even if a

prospect yields only gains or only losses. Consider again the job offer example but suppose

now that the researcher’s reference point for annual earnings is $30K and for research time

it is 10 hours per week. The preference (60K, 15h) Â (40K, 30h) still holds. Let E1 denote

the first event and E2 the second event. Then the job offer is evaluated under the holistic

approach as

W+(E1)((u1(60) + u2(15))− (u1(30) + u2(10)) +

(1−W+(E1)((u1(40) + u2(15))− (u1(30) + u2(10))

and under the segregated approach as

W+(E1)(u1(60)− u1(30)) + (1−W+(E2))(u2(15)− u2(10)) +

(1−W+(E1)(u1(40)− u1(30)) +W+(E2)(u2(30)− u2(10)).
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Equality only holds if W+(E1) = (1 − W+(E2)), i.e., if W
+(E1) + W+(E2) = 1. This

must hold for all events E1 and E2, which can only be the case if W
+ is a probability

measure. A similar argument can be used to derive thatW− must be a probability measure.

Hence, for outcomes of the same sign the prospect theory model with attribute independent

weighting under the segregated approach agrees with the prospect theory model of the

holistic approach only in the case when both representations reduce to subjective expected

utility.

6 More than Two Attributes

We will now extend our results to more than two attributes. Let C = C1 × ... × Cm,

m > 2. Each Ci is a nondegenerate convex subset of IR. The reference point on the i-th

attribute is denoted ri and is assumed to be an interior point of Ci. We will denote the

set of prospects on Cn
i as Pi and write prospects as f1...fm. Let gif denote the prospect

f ∈ P with fi replaced by gi and let gihkf denote the prospect f ∈ P with fi replaced

by gi and fk replaced by hk. Weak separability is now defined as for all i ∈ {1, ...,m},

fi, gi ∈ Pi, f
0, g0 ∈ P, fif

0 < gif
0 iff fig

0 < gig
0. The definitions of outcome monotonicity

and solvability easily generalize to the case of more than two attributes. For tradeoff

consistency we define

ab ∼∗i cd

(i) if there exist fi, gi ∈ Pi, f ∈ P , and a state j such that

(ajfi)if ∼ (bjgi)if and

(ajfi)if ∼ (bjgi)if,

where ajfi, bjgi, cjfi, and djgi are sign-comonotonic on Ci,
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or (ii) there exist v, w ∈ Ck, and f ∈ P such that

(a1fi)i(v1fk)kf ∼ (b1fi)i(w1fk)kf and

(c1fi)i(v1fk)kf ∼ (d1fi)i(w1fk)kf,

where a1fi, b1fi, c1fi, and d1fi are rank-ordered prospects in Pi and v1fk, and w1fk are

rank-ordered prospects in Pk.

Tradeoff consistency holds if each ∼∗i -relationship satisfies tradeoff consistency on Ci.

We are now in a position to extend Theorem 1 to the case of more than two attributes.

Theorem 3 The following two statements are equivalent:

(i) < is represented by V =
mP
i=1

Vi(fi) where the Vi are prospect theory functionals with

strictly increasing weighting functions W+
i and W−

i and continuous, strictly increas-

ing utility functions Ui.

(ii) < satisfies (1) weak ordering, (2) continuity, (3) weak separability, (4) outcome

monotonicity, (5) solvability, and (6) tradeoff consistency.

The uniqueness results of prospect theory apply, that is, the weighting functions W+
i

and W−
i are uniquely determined, and the utility functions Ui are joint ratio scales.

¤

Attribute independence can easily be extended to the case of more than two attributes,

so that the arguments preceding Theorem 2 can still be used to ensure that the weighting

functions are attribute-independent.
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7 General Outcomes

For ease of exposition, we have assumed thus far that all attributes are numerical. In

many real-world decisions, this assumption is too restrictive. An example is health, the

area in which decision analysis is most frequently applied (Keller and Kleinmuntz 1998,

Smith and von Winterfeldt 2004). Health consists of two dimensions, survival duration

and health quality, and health quality is a nonnumeric attribute. The extension of our

analysis to nonnumeric attributes is straightforward.

Assume that the Ci are connected topological spaces. C = C1 × ... × Cm is endowed

with the product topology and so is Cn. The reference points ri are in the interior of Ci for

each i. Redefine outcome monotonicity as for all i, if fji < gji for all j then fi <i gi. The

strict version of outcome monotonicity is not necessary here as it follows from the version

with weak preferences and tradeoff consistency (Köbberling and Wakker 2003, Lemma 26).

We can now state the extension of our results to nonnumeric attributes.

Corollary 4 If the Ci, i = 1, ...,m, are connected topological spaces, then Theorems 1,

and 3 still hold if we drop in (i) the requirement that the attribute-wise utility functions

are strictly increasing. ¤

The proof of this claim follows easily from the proofs of Theorems 1 and 3. Theorem

2 can still be used to ensure that the weighting functions are attribute-independent.

8 Empirical Measurement

Let us finally say a few words about the empirical implementability of additive prospect

theory under the segregated approach. The first step is obviously the verification of
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the preference conditions that have been identified in this paper. When these are sat-

isfied the prospect theory functional must be assessed for each attribute, unless attribute-

independence for states holds because in that case the weighting functions need to be

assessed only once. Simultaneous measurement of the utility for gains and losses is diffi-

cult. A procedure to achieve this was proposed by Abdellaoui, Bleichrodt, and Paraschiv

(2007). Their method requires, however, that an “ethically neutral event” exists, i.e. an

event that has decision weight 0.5. Hence, we need to impose some richness on the state

space to be able to apply this method. When the state space is not sufficiently rich, the

method of Abdellaoui, Bleichrodt, and l’Haridon (forthcoming) can be used. This method

assumes that the utility functions are power functions.

Measurement of the weighting functions W+
i and W−

i , i ∈ {1, ...,m}, can be done

either by non choice-based method like in Tversky and Fox (1995), Fox and Tversky

(1998), Wu and Gonzalez (1999) and Kilka and Weber (2001) or by choice-based methods

as in Abdellaoui, Vossmann, and Weber (2005).

Appendix

Proof of Theorem 1: That (i) implies (ii) is routine. Hence, we assume (ii) and derive

(i).

By weak order, weak separability, outcome monotonicity and continuity, < on P can be

represented by V (V1(f1), V2(f2)) with V strictly increasing in V1 and V2. V1 represents <1

and V2 represents <2. By continuity V1 and V2 are continuous, by outcome monotonicity,

they are strictly increasing.

We will now show that V1 and V2 are prospect theory functionals. For a prospect

f1 ∈ P1, define the prospect f
+
1 by f

+
1j = f1j if f1j Â1 r1 and by f+1j = r1 otherwise, and the
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prospect f−1 by f
−
1j = f1j if f1j1 ≺ r1 and by f

−
1j = r1 otherwise. That is, f

+
1 is the positive

part of f1 and f−1 is its negative part. In a similar fashion we define f
+
2 and f−2 . Consider

<1 on P1. Because < satisfies outcome monotonicity and C1 is nondegenerate, all states of

nature are nonnull (a state is null if replacing any outcomes in that state does not affect

the preference). Also, because r1 lies in the interior of C1, <1 is truly mixed (<1 is truly

mixed if there exists a prospect f1 such that f
+
1 Â r1 and f

+
1 ≺ r1, that is, genuine tradeoffs

between gains and losses occur). By Theorem 12 in Köbberling and Wakker (2003) there

exists a prospect theory representation for <1 with U1 the continuous utility function over

C1, U1(r1) = 0, and W
+
1 and W

−
1 the weighting functions over gains and losses on the first

attribute, respectively. Köbberling and Wakker’s (2003) weak monotonicity follows from

outcome monotonicity and sign-comonotonic tradeoff consistency follows from tradeoff

consistency on C1. By Proposition 8.2 in Wakker and Tversky (1993), gain-loss consistency

can be dropped from Köbberling andWakker’s (2003) conditions when the number of states

of nature exceeds 2. This is the case in our analysis if we interpret attributes as events

(Sarin and Wakker 1998, Corollary B.3). U1 is strictly increasing because V1 is strictly

increasing. W+
1 and W

−
1 are strictly monotone by outcome monotonicity. By Observation

13 in Köbberling and Wakker (2003) U1 is a ratio scale and W+
1 and W−

1 are unique. By

solvability, U1 is unbounded.

By a similar line of argument there exists a prospect theory representation for <2 with

U2 the continuous and strictly increasing utility function on C2, U2(r2) = 0, U2 a ratio

scale and W+
2 and W−

2 the unique and strictly increasing weighting functions over gains

and losses on the second attribute, respectively. By solvability, U2 is unbounded.

So far we have shown that V (PT1(f1), PT2(f2)) represents <. It remains to show

that V is additive. We will do so by showing that the rate of trade-off between PT1
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and PT2 is everywhere constant. Take f1 ∈ P1, and let f2 be a rank-ordered prospect in

P2. Take α
1
0 ∈ C2 such that α

1
0 < f22 . Then (α10)1f2 is a rank-ordered prospect in P2.

Let g2 be such that f2j < g2j for all j with at least one of these preferences strict. By

solvability there exists an outcome α11 such that (f1, (α
1
0)1f2) ∼ (f1, (α11)1g2). By outcome

monotonicity α11 Â2 α10. Next we consider the prospect (f1, (α
1
1)1f2). By solvability we

can find an outcome α12 such that (f1, (α
1
1)1f2) ∼ (f1, (α

1
2)1g2). Hence, α

1
2α

1
1 ∼∗2 α11α

1
0.

We proceed in this manner to construct a standard sequence α10, α
1
1, . . . on the second

attribute for which α1sα
1
s−1 ∼∗2 α11α10 for all natural s. It is easily verified that this implies

that PT2((α
1
s)1f2)−PT2((α

1
s−1)1f2) = PT2((α

1
1)1f2)−PT2((α

1
0)1f2). Suppose without loss

of generality that PT2((α
1
1)1f2)− PT2((α

1
0)1f2) = 1.

Next we construct a standard sequence β10 , β
1
1 , . . . on the first attribute by eliciting

indifferences ((β1t )1f1, (α
1
0)1f2) ∼ ((β1t−1)1f1, (α11)1f2), j = 1, 2, . . . , such that all prospects

involved are rank-ordered. These indifferences imply that β1t β
1
t−1 ∼∗1 β11β

1
0 for all nat-

ural t and, thus that PT1((β
1
t )1f1)− PT1((β

1
t−1)1f1) = PT1((β

1
1)1f1)− PT1((β

1
0)1f1). The

indifferences also define a rate of trade-off between PT1 and PT2. Let PT1((β
1
1)1f1) −

PT1((β
1
0)1f1) = c. Then the rate of trade-off between PT1 and PT2 is constant for all the

points we have elicited thus far. This claim follows from trade-off consistency. By trade-off

consistency, we must have ((β11)1f1, (α
1
s−1)1f2) ∼ ((β10)1f1, (α1s)1f2) for any s = 1, 2, . . . .

Applying trade-off consistency again implies that we must have ((β1t )1f1, (α
1
s−1)1f2) ∼

((β1t−1)1f1, (α
1
s)1f2) for any s = 1, 2, . . . ; t = 1, 2, . . . . Hence the rate of trade-off between

PT1 and PT2 is everywhere c.

Next we double the density of the grid {β10 , β11 , . . . }×{α10, α11, . . . } that we constructed

above. By continuity of U2 and connectedness of C2 we can find an outcome α
1/2
1 such

that PT2((α
1/2
1 )1f2) − PT2((α

1
0)1f2) = 1/2. Let α

1
0 = α

1/2
0 and construct a new standard
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sequence α
1/2
0 , α

1/2
1 , . . . by eliciting indifferences (f1, (α

1
1)1f2) ∼ (f1, (α

1
2)1g2). It follows

from outcome monotonicity that α
1/2
2 = α11 and, hence, in general α

1/2
2s = α1s, s = 0, 1, . . . .

We construct a new standard sequence β
1/2
0 , β

1/2
1 , . . . on the first attribute by set-

ting β
1/2
0 = β10 and eliciting indifferences ((β

1/2
t )1f1, (α

1/2
0 )1f2) ∼ ((β1/2t−1)1f1, (α

1/2
1 )1f2), t =

1, 2, . . . . We have to show that the rate of trade-off between PT1 and PT2 in this new

grid {β1/20 , β
1/2
1 , ....} × {α1/20 , α

1/2
1 , ....} is still constant. For this we have to show that

β
1/2
2t = β1t , t = 0, 1, . . . . We will show that β

1/2
2 = β11 . β

1/2
2j = β1j , for all j = 0, 1, .....then

follows from the construction of the standard sequence. By the construction of the

standard sequence, ((β
1/2
2 )1f1, (α

1/2
0 )1f2) ∼ ((β1/21 )1f1, (α

1/2
1 )1f2). By trade-off consistency

((β
1/2
1 )1f1, (α

1/2
1 )1f2) ∼ ((β1/20 )1f1, (α

1/2
2 )1f2) = ((β

1
0)1f1, (α

1
1)1f2) ∼ ((β11)1f1, (α10)1f2). By

transitivity and because α10 = α
1/2
0 , ((β

1/2
2 )1f1, (α

1
0)1f2) ∼ ((β11)1f1, (α10)1f2). By outcome

monotonicity β
1/2
2 = β11 . Hence, the rate of trade-off between PT1 and PT2 is still constant

when we double the density of the grid.

We continue this doubling of density infinitely, creating increasingly fine standard se-

quences α2
−m
0 , α2

−m
1 , . . . and β2

−m
0 , β2

−m
1 , . . . ,m = 2, . . . . On the resulting increasingly fine

grids the rate of trade-off between PT1 and PT2 remains constant by a similar proof as

for the case where the density of the grid was doubled.

Because U1 and U2 are unbounded, for any natural m there can be no x1 ∈ C1 and

no x2 ∈ C2 such that x1 Â β2
−m

t for all t or x2 Â α2
−m
s for all s . There can also be no

outcomes infinitely close to β10 and α10 in the sense that there is always an outcome from

the grid that lies between an outcome x1 ∈ C1 and β10 and an outcome from the grid that

lies between an outcome x2 ∈ C2 and α10 when x1 is unequal to β10 and x2 is unequal to

α10. If x2 6= α10 then U2(x2) − U2(α
1
0) = r > 0 and, hence, there exists a natural number

m such that 2−m < r. By construction there is an element α2
−m
1 of the grid such that
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α10 ≺ α2
−m
1 ≺ x2. A similar argument shows that the grid interferes everywhere. Let x2

and y2 be two outcomes such that x2 Â y2. Suppose that U2(x2)− U2(y2) = r > 0. Then

there exists a natural numberm such that 2−m < r and by construction there is an element

α2
−m
s of the grid such that y2 ≺ α2

−m
s ≺ x2.

Finally, because U1 and U2 are unbounded there cannot be elements x1 and x2 that are

so bad that they are never included in any grid. Consider an outcome x2. Then we can

construct a prospect f2 with f2j = x2 for all j. Because U2 is unbounded we can construct a

prospect g2 such that f2j Â g2j for all j. Let α
1
0 = x2 and construct a new grid by eliciting

indifferences (f1, (α
1
0)1f2) ∼ (f1, (α11)1g2),(f1, (α11)1f2) ∼ (f1, (α12)1g2) etc. This produces a

dense grid that includes x2.

By continuity we can extend the dense grid to all outcomes. Hence, we have shown

that on the whole domain the rate of trade-off between PT1 and PT2 is constant for rank-

ordered prospects. Hence, for rank-ordered prospects V (PT1(f1), PT2(f2)) is additive:

V (f) = PT1(f1) + PT2(f2). Because U1 and U2 are continuos and unbounded and C1 and

C2 are connected we can for any prospects f1 and f2 find rank-ordered prospects g1 and

g2 such that f1 ∼1 g1 and f2 ∼2 g2. We set V (PT1(f1), PT2(f2)) = PT1(g1) + PT2(g2).

Finally, we show that PT1(f1) + PT2(f2) represents <. Suppose that f < g. There are

rank-ordered prospects f 0 and g0 such that f 0 ∼ f and g0 ∼ g. By transitivity, f 0 < g0.

Hence, PT1(f1)+PT2(f2) = PT1(f
0
1)+PT2(f

0
2) ≥ PT1(g

0
1)+PT2(g

0
2) = PT1(g1)+PT2(g2).

which completes the proof of statement (i).

The uniqueness results follow from the uniqueness results for PT1 and PT2 combined

with the fact that on each grid the rate of tradeoff between PT1 and PT2 must be constant.

This completes the proof of Theorem 1. ¤

Proof of Theorem 3: That (i) implies (ii) is routine. Hence, we assume (ii) and derive

25



(i). The proof is very similar to the proof of Theorem 1 and will not be elaborated here.

By weak separability V (V1(f1), . . . , Vm(fm)) with V strictly increasing in each of the Vi

represents < . We then use the results of Köbberling and Wakker (2003) to show that

each Vi has a prospect theory representation. Finally, we show, exactly as in the proof of

Theorem 1, that for all i, k ∈ {1, ...,m}, the rate of trade-off between any PTi and PTk is

constant. This establishes the proof. ¤
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