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ABSTRACT 
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TRANSITION REGRESSIONS –  

A LM-TYPE TEST 

Matei Demetrescu, Julian S. Leppin, and Stefan Reitz  

(Panel) Smooth Transition Regressions substantially gained in popularity due to their flexibility 

in modeling regression coefficients as homogeneous or heterogeneous functions of transition 

variables. In the estimation process, however, researchers typically face a trade-off in the sense 

that a single (homogeneous) transition function may yield biased estimates if the true model is 

heterogeneous, while the latter specification is accompanied by convergence problems and longer 

estimation time, rendering their application less appealing. This paper proposes a Lagrange 

multiplier test indicating whether the homogeneous smooth transition regression model is 

appropriate against the competing heterogeneous alternative. The empirical size and power of 

the test are evaluated by Monte Carlo simulations. 
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Abstract

(Panel) Smooth Transition Regressions substantially gained in pop-
ularity due to their flexibility in modeling regression coefficients as ho-
mogeneous or heterogeneous functions of transition variables. In the
estimation process, however, researchers typically face a trade-off in the
sense that a single (homogeneous) transition function may yield biased
estimates if the true model is heterogeneous, while the latter specification
is accompanied by convergence problems and longer estimation time, ren-
dering their application less appealing. This paper proposes a Lagrange
multiplier test indicating whether the homogeneous smooth transition
regression model is appropriate against the competing heterogeneous al-
ternative. The empirical size and power of the test are evaluated by
Monte Carlo simulations.
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1 Introduction

Since its introduction, the class of smooth transition regression (STR) models has become

increasingly popular in empirical research. The standard modeling framework for smooth

transition models goes back to Teräsvirta (1994) originally suggesting a framework for

a (homogeneous) smooth transition autoregressive model (STAR). Since then, this class

of models has been extended to cover a variety of specific properties of empirical appli-

cations. Amongst others, smooth transitions functions have been introduced in Vector

Autoregressive (STR-VAR) models (Camacho, 2004), GARCH (STR-GARCH) models

(Lundbergh and Teräsvirta, 1998), or panel regression (PSTR) models (González et al.,

2005). In fact, panel STR models have become quite popular in applied work,1 and we

focus on their specification in the following.

STR models with more than one regime-switching regressor can be built with either

homogeneous or heterogeneous2 transition functions. STR models with homogeneous

transition functions use the same transition function for each regime-switching regres-

sor. On the other hand, heterogeneous transition functions allow for different transition

functions across regressors with either the same or a different set of transition variables.

In our case heterogeneous transition functions across the model’s regressors arise from

differing parameters for a given set of transition variables. In the context of panel smooth

transition models, Leppin and Reitz (2016) allow for heterogeneous transition functions.

While heterogeneous STR model are not common in panel smooth transition models, the

idea is not new in the context of Vector STAR models. As mentioned in van Dijk et al.

(2002), p.8 “It is straightforward to generalize the model to incorporate equation-specific

transition functions ... and thereby allow for equation-specific regime-switching”. Appli-

cations of Vector STAR models with equation specific transition functions can be found

in de Dios Tena and Tremayne (2009) or Schleer and Semmler (2015). Teräsvirta and

Yang (2014) outlines linearity testing for Vector STAR models.

The standard (panel) STR model with common transition functions is nested within

the heterogeneous STR model. Of course, the application of a more flexible heterogeneous

STR model is the cautionary choice, because estimating the homogeneous STR model

when a heterogeneous specification is appropriate generally leads to biased parameter

values. However, heterogeneous transition functions come at the price of convergence

problems and increased estimation time, because for each regime-switching regressor a set

of parameters specifying the nonlinear transition has to be estimated. While computation

1On August 31st, 2017, Google Scholar reported a number of 446 citations of the original PSTR paper
of González et al. (2005).

2The use of heterogeneous nonlinearity in the context of STR model is not totally unambiguous.
Another characterization of heterogeneous nonlinearity is used by Anderson and Vahid (1998). They
derive a test against common nonlinear transition in multivariate regressions.
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time is not a concern in small samples (small number of units and time observations),

it becomes an important factor with increasing sample size and increasing number of

regime-switching parameters.

Therefore, we suggest to augment the specification step of the heterogeneous STR es-

timation procedure by a test for homogeneity against the heterogeneous STR alternative.

To this end, we propose a Lagrange Multiplier (LM) test and show how to implement it

in both pure time-series and panel situations. Our test is intended to inform the research

whether the parsimonious homogeneous (panel) STR is sufficient without sacrificing un-

biased parameter estimates.

The model specification step of STR models generally consists of a set of linearity tests

against the nonlinear alternative. The usual test is the Taylor expansion-based linearity

test from Luukkonen et al. (1988). Monte Carlo-based tests for linearity are available as

well, see for example Hansen (1996) and Hansen (1999). A comparison of the tests can

be found in González and Teräsvirta (2006). The logic of these tests also allows for the

post-estimation model evaluation. For instance, Eitrheim and Teräsvirta (1996) proposed

a Taylor expansion-based test for no-remaining nonlinearity.3

Our test may be applied in the final model evaluation stage as a misspecification

test after the estimation of a homogeneous (panel) STR model. In this case, the test

determines the adequateness of the estimated model specification from ex post. Since

the test for multivariate transition functions requires the estimation of the model under

the null of homogeneity it can be seen as a misspecification test after the estimation of a

standard STR model with a common transition function.

The reminder of the paper is structured as follows. Section 2 introduces the proposed

test. Section 3 presents a Monte Carlo evaluation of the properties of our test. Here, we

examine the power and size of the test based on estimates from nonlinear least squares

(NLS). Section 4 concludes, and the appendix gathers some technical results.

2 Testing for homogeneity

2.1 The Langrange Multiplier approach

We now motivate our test statistic on the case of a single unit.

The homogeneous STR model for time t = 1, ..., T with K > 1 regime-switching

3Eitrheim and Teräsvirta also provide size and power simulations. Another evaluation of the test’s
properties can be found in Lundbergh and Teräsvirta (1998).
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regressor variables xt,k and transition function g is given as

yt =
K∑
k=1

β0,kxt,k +
K∑
k=1

β1,kxt,kg(qt; γ, c) + ut, (1)

with a unique logistic transition function

g(qt; γ, c) =
1

1 + exp (−γ(qt − c))
, (2)

which is used for all K regime-switching variables. The regimes are taken to be well-

separated, β1,k 6= 0. The parameter c is a location parameter, γ is the speed of transition

between regimes and qt is the single transition variable. The heterogeneous model differs

from the previous model by allowing for regressor-specific transition functions

g(qt; γk, ck) =
1

1 + exp (−γk(qt − ck))
, (3)

where the parameters γk and ck are regressor-specific. Note that the transition variable qt

is restricted to be the same across all transition functions,4 and the transition functions all

belong to the same family g indexed by the respective location and transition parameters.

The heterogeneous STR model boils down to the homogeneous null model, if we restrict

the parameters γk and ck to be equal across all transition functions. In other words, the

homogeneous STR model is nested in the heterogeneous STR model, which allows the

construction of a formal test of the null hypothesis

H0 : γ = γ1 = ... = γk, c = c1 = ... = ck.

To derive the LM-type test we assume that the data generating process of the variable

yt is a smooth transition-type function withK > 1 exogenous regressors xt,k, k = 1, . . . , K,

and iid Gaussian errors ut, possibly with K different transition functions gt,k as specified

in eqs. (1) and (3). This is only for deriving a test; for establishing its limiting null

distribution, we specify less restrictive conditions in the following subsection.

Estimation under the null is conducted by ignoring the potentially heterogeneous

nature of the transition functions, i.e. a standard STR model with a single transition

function g is estimated by imposing the restrictions that γ = γ1 = ... = γK and c = c1 =

4Otherwise no test for parameter equality is needed, because the transition functions would differ by
definition.
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... = cK . This reduces the model to

yt =
K∑
k=1

β∗0,kxt,k +
K∑
k=1

β∗1,kxt,kg(qt; γ, c) + ut. (4)

In general, estimating Equation (4) when there is heterogeneity results in biased parameter

estimates since β∗ 6= β, therefore testing homogeneity is an important model specification

step.

Let θ be the parameter vector, θ = (β0,1, . . . , β0,K , β1,1, . . . , β1,K , γ1, . . . , γK , c1, . . . , cK)′,

and by θ̂h0 the ML estimator under the null hypothesis, i.e. in the model from Equation (4).

When the error term in Equation (4) is normally distributed with mean 0 and variance

σ2, the (conditional) log-likelihood is given by

l(θ) = − T

2
log 2π − T

2
log σ2

− 1

2σ2

T∑
t=1

(
yt −

K∑
k=1

β0,kxt,k −
K∑
k=1

β1,kxt,kg(qt; γk, ck)

)2

, (5)

where, without loss of generality, we may treat σ2 to be known. The gradient of the

log-likelihood, evaluated at θ = θ̂h0 under the null, should be insignificantly different from

zero and the LM test is based on this property.

Following Engle (1984) we reformulate the test of parameter equality to a test for

omitted variables, where the omitted variables are simply the derivatives of the log likeli-

hood with respect to the restricted parameters. This can be derived directly with the use

of Taylor series approximations. Starting from the unrestricted, heterogenous model

yt =
K∑
k=1

β0,kxt,k +
K∑
k=1

β1,kxt,kg(qt; γk, ck) + ut, (6)

expand Equation (6) with the terms β1,kxt,kg(qt; γ, c) to derive

yt =
K∑
k=1

β0,kxt,k +
K∑
k=1

β1,kxt,kg(qt; γ, c) +
K∑
k=1

β1,kxt,k [g(qt; γk, ck)− g(qt; γ, c)] + ut. (7)

If the transition functions are equal across the regressors (i.e. γk = γ, ck = c for k =

1, . . . , K), the terms β1,kxt,k [g(qt; γk, ck)− g(qt; γ, c)] cancel out, which leaves us with

the homogeneous STR model. In case of different transition functions the two terms

β1,kxt,kg(qt; γ, c) in Equation (7) cancel out and we are back at the heterogenous model

from Equation (6). Therefore, if the terms β1,kxt,k [g(qt; γk, ck)− g(qt; γ, c)] are significant,

at least one of the parameters γk or ck is not equal to the others across transition functions.
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With given estimates of parameters γ and c under the null we can reformulate Equation

(7) to test for the joint hypothesis of γ = γ1 = ... = γk and c = c1 = ... = ck without esti-

mating the model under the alternative. We approximate the terms g(qt; γk, ck)−g(qt; γ, c)

linearly by Taylor series expansions with respect to c and γ. The approximation is located

around the values of c and γ estimated under the H0, ĉh0 and γ̂h0. This linearization serves

two purposes. First, the parameters γk and ck are not identified under the null hypothesis,

and the Taylor approach side-steps this; see Luukkonen et al. (1988). Second, the ap-

proach also leads to (approximate) linear regression models, which eases the computation

of the proposed test. We therefore obtain

yt ≈
K∑
k=1

β0,kxt,k +
K∑
k=1

β1,kxt,kg(qt; γ, c) +
K∑
k=1

β1,kxt,k

[
g(qt; γ̂h0, ĉh0) +

∂g

∂γk

∣∣∣∣γ̂h0
ĉh0

(γk − γ̂h0)

+
∂g

∂ck

∣∣∣∣γ̂h0
ĉh0

(ck − ĉh0)− g(qt; γ̂h0, ĉh0)−
∂g

∂γ

∣∣∣∣γ̂h0
ĉh0

(γ − γ̂h0)−
∂g

∂c

∣∣∣∣γ̂h0
ĉh0

(c− ĉh0)

]
+ ut. (8)

Since we approximate both g(qt; γk, ck) and g(qt; γ, c) around the same values (γ̂h0, ĉh0), the

terms g(qt; γ̂h0; ĉh0) above cancel out. We fill in the required derivatives of the transition

function, which can be found in Appendix A, and set wt = exp (−γ̂h0(qt − ĉh0)) to obtain5

yt ≈
K∑
k=1

β0,kxt,k +
K∑
k=1

β1,kxt,kg(qt; γ, c) +
K∑
k=1

β1,kxt,k

[
− wt

(1 + w)2t
(−qt + ĉh0)(γk − γ̂h0)

− wt
(1 + w)2t

γ̂h0(ck − ĉh0) +
wt

(1 + w)2t
(−qt + ĉh0)(γ − γ̂h0)

+
wt

(1 + w)2t
γh0(c− ĉh0)

]
+ ut,

which can be further aggregated to

yt ≈
K∑
k=1

β0,kxt,k +
K∑
k=1

β1,kxt,kgt(qt; γ, c) +
K∑
k=1

β1,kxt,k

{[
(γ − γ̂h0) + (γ̂h0 − γk)

]
wt

(1 + wt)2
(−qt + ĉh0) +

[
(c− ĉh0) + (ĉh0 − ck)

] wt
(1 + wt)2

γ̂h0

}
+ ut.

This leads to the auxiliary model with possibly omitted variables

yt ≈
K∑
k=1

β0,kxt,k +
K∑
k=1

β1,kxt,kg(qt; γ, c) +
K∑
k=1

zat,kδ
a
k +

K∑
k=1

zbt,kδ
b
k + ut

5Note that w is the same irrespectively of whether the transition function with common parameters
(γ, c) or k individual parameters (γk, ck) is considered. Both are evaluated at the estimated values under
the H0.
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where

zat,k = β1,k
wt

(1 + w)2t
γ̂h0xt,k

zbt,k = β1,k
wt

(1 + wt)2
(ĉh0 − qt)xt,k

δak = (c− ck)

δbk = (γ − γk).

The null of homogeneity translates into δak = δbk = 0, k = 1, . . . , K. In fact, we may only

include up to 2(K − 1) omitted regressors zat,k and zbt,k since one restriction is redundant.

To see this, note that we could easily reformulate H0 to γ1 = γK , γ2 = γK , ..., γK−1 = γK

and c1 = cK , c2 = cK , ..., cK−1 = cK .

Therefore, we shall test the significance of the artificial regressors zat,k and zbt,k in

yt =
K∑
k=1

β0,kxt,k +
K∑
k=1

β1,kxt,kg(qt; γ, c) +
K−1∑
k=1

δakz
a
t,k +

K−1∑
k=1

δbkz
b
t,k + ut (9)

Testing for equality of parameters in the transition function can be carried out by testing

the joint significance of the 2(K−1) additional parameters δak and δbk in Equation (9). The

null hypothesis is thus reformulated as an omitted variable test, which is asymptotically

equivalent to the LM test based on the Gaussian likelihood.

We shall test the equivalent null hypothesis δak = δbk = 0 using the corresponding LM

test which is computed using OLS regressions only as follows. Denoting by û the T × 1

vector of residuals obtained from the model estimation under the null hypothesis, by V̂

the matrix of gradients of the regression function at the restricted estimators, and by Ẑ

the T × 2(K − 1) matrix stacking zat,k and zbt,k, the test can be conducted with the help of

the LM auxiliary regression of û on V̂ and Ẑ,

û = V̂ π̃ + Ẑδ̃ + ṽ,

where ·̃ denotes OLS estimation. More precisely, V̂ =
[
X, D̂, Â1, Â2

]
withX = [x1; . . . ;xK ]

where xk are (T × 1) vectors, D̂ = [x1g(q, γ̂h0, ĉh0); . . . ;xKg(q, γ̂h0, ĉh0)] and, furthermore,

Â1 = [
∑K

k=1 β1,kxk(∂ĝ/∂γ)] and Â2 = [
∑K

k=1 β1,kxk(∂ĝ/∂c)], where ∂ĝ/∂γ stands for the

vector of derivatives of g evaluated at qt and γ̂h0, ĉh0. The matrix

Z =

[
β1,1x1

∂ĝ

∂γ
; . . . ; β1,K−1xK−1

∂ĝ

∂γ
; β1,1x1

∂ĝ

∂c
; . . . ; β1,K−1xK−1

∂ĝ

∂c

]
contains the relevant partial derivatives of the unrestricted model (i.e. the omitted vari-
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ables as suggested by Equation (9)).

The hull hypothesis of homogeneity translates into the null of δ = 0 in the LM auxiliary

regression. E.g. the usual LM statistic is of the form σ̂−2û′Ẑ(Ẑ ′Ẑ−Ẑ ′V̂ (V̂ ′V̂ )−1V̂ ′Ẑ)−1Ẑ ′û,

where σ̂2 = û′û/T .6 Regularity conditions assumed, the limiting null distribution of the

above statistic is χ2
2K−2; this is a particular instance of the panel case we address in the

following subsection and do not discuss it separately. Note that this version excludes

heteroskedasticity, which is more likely to appear in panels. In the panel case we shall

consider more robust tests, also to cross-unit correlation.

2.2 The Panel Case

We now consider the problem of testing the homogeneity of the transition functions within

each unit, while keeping homogeneity for each regressor k across the panel. We find this

to be the relevant question for several reasons. Firstly, it is more likely that transition

functions attached to different variables are different than transition functions attached

to the same variable but in different units. Secondly, while a completely heterogenous

panel is of course conceivable, it requires different estimation techniques (e.g. random

coefficient models) unless N is fairly small. Therefore, it is a more reasonable approach to

first decide for or against within-homogeneity, and then to deal with across-homogeneity,

if necessary. We thus view our panel test as one step in specifying a panel STR model,

and we leave the rest to further research.7

Consider therefore the following panel STR model,

yi,t =
K∑
k=1

β0,kxi,t,k +
K∑
k=1

β1,kxi,t,kg(qi,t; γk, ck) + ui,t, (10)

for

t = 1, . . . , T and i = 1, . . . , N.

The null hypothesis to be tested is the same,

H0 : γ = γ1 = ... = γk, c = c1 = ... = ck.

To do so, we estimate the model in (10) under the null hypothesis of homogenous

transition functions and compute the NT × 1 residual vector û based on the restricted

6The test can equivalently be performed using the following steps: 1. Estimate the model under
the H0, compute the residuals û and the sum of squared residuals SSR0; 2. Regress û on X, D̂, Â1, Â2

and Ẑ as defined above and compute the sum of squared residuals SSR1; 3. Compute the LM-test,
LM = T (SSR0 − SSR1)/SSR0.

7See e.g. Breitung et al. (2016) and the references therein for coefficient homogeneity tests in linear
panel models.
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pooled panel estimator θ̂h0. Then, for each unit i = 1, . . . , N , we construct the matrices V̂i

and Ẑi like for the single-unit case. Finally, stack V̂ =
[
V̂ ′1 ; . . . ; V̂ ′N

]′
, Ẑ =

[
Ẑ ′1; . . . ; Ẑ

′
N

]′
,

and test the above null of homogeneity in the auxiliary regression

û = V̂ π̃ + Ẑδ̃ + ṽ (11)

by checking whether δ̃ is significantly different from 0. The difference to the derivation in

the previous subsection is that the model in (10) is now a pooled panel regression.

Let us now spell out the conditions under which we work. They will be considerably

more general than those under which the test is derived, so we actually have a quasi-LM

test.

Consider the error terms first. In panel macroeconometrics, cross-sectional dependence

is a critical feature; see e.g. the overview article of Breitung (2015). We therefore make

the following

Assumption 1. Let ui,t = λ′ift + εi,t where the r factors satisfy ft ∼ iid (0, Ir) and are

independent of the idiosyncratic components εi,t at all times and units. The loadings λi are

constant and uniformly bounded. Furthermore, εi,t ∼ iid (0, σ2
i ) are independent sequences

across the panel. Finally, εi,t and ft are uniformly L4 bounded.

Formally, the independence conditions imply that the regression errors follow a strict

factor model in the terminology of Chamberlain and Rothschild (1983). The model thus

exhibits cross-sectionally dependent errors. Note however that we do not impose further

restrictions on the loadings, such that, in addition to the typical strong dependence gen-

erated by classical factor models, we allow for moderate cross-dependence in the sense of

Bailey et al. (2016) or even for weak cross-dependence (where most loadings are zero or

close to zero). The model is in fact very general in what concerns error cross-dependence

and one important result is to show that we may account for it by means of panel-

robust standard errors (Beck and Katz, 1995) without having to specify the type of cross-

dependence (weak, moderate, or strong). The independence assumption may be relaxed

at the cost of more involved moment requirements and high-level convergence conditions;

see e.g. Bai (2003). We maintain them however to somewhat simplify the proofs.

Turning our attention to the regressors, let V and Z be the counterparts of V̂ and Ẑ

evaluated at θESTN rather than θ̂ESTN . We assume strict exogeneity as specified in the

following

Assumption 2. Let xi,t,k and qi,t be deterministic such that [V ;Z] has bounded elements

and 1
NT

[V ;Z]′ [V ;Z]→ Q, a positive definite matrix.

Assuming deterministic regressors is a fast way of ensuring exogeneity. Another would

have been to require the r.h.s. variables to be independent of the errors ui,t for all times

9



and units, but this would have required additional moment and ergodicity conditions

so we prefer the former. It should be emphasized that such strict exogeneity is not

essential for the results, since the asymptotic null distribution of the proposed test is

derived by means of a CLT for martingale difference arrays. Therefore, allowing for

weakly exogenous regressors, say in the form of lagged dependent variables, would only

have required additional moment and stability conditions (which further complicate the

model). On the other hand, a dynamic panel structure would ease dealing with serial error

correlation, which we excluded by means of Assumption 1; otherwise, serial correlation

would have to be captured by more complex standard errors; see Driscoll and Kraay

(1998).

The panel LM-type test with robustness is then computed as a significance test for

the parameter vector δ,

T = δ̃′
(

Ĉov(δ̃)

)−1
δ̃, (12)

where the panel-robust estimator Ĉov(δ̃) is a Huber/Eicker/White estimator in the pooled

panel regression (11). Its expression is given in the proof of the following

Proposition 1. Under Assumptions 1 and 2, it holds as N, T →∞ that

T d→ χ2
2K−2.

Proof: See Appendix C.

Examining the proof, it may be seen that the result holds for fixed N as well, such

that the single-unit result follows as a particular case N = 1.

Working with the pooled panel regression from Equation 11 may be seen as suboptimal,

should there be across-heterogeneity, as unaccounted heterogeneity may lead to losses

of power. Simulation results reported in the following section suggest that this is not

necessarily the case. Should one fear that across-heterogeneity is an issue, one may

conduct the LM homogeneity test unit-wise, and then use multiple testing techniques to

identify the units where heterogeneity is significant; see e.g. Simes (1986) and Benjamini

and Hochberg (1995) for suitable multiple testing methods.

3 Monte Carlo Simulation

In this section, we assess the finite-sample behavior of the LM-type test against het-

erogenous transition functions. To this end, we report size and power simulations of the

proposed test. All simulations are run in Stata.
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We compare size and power for the following specification of our test: a standard

test without robustification (χ2
a), a heteroscedasticity-robust version (χ2

b), an individual-

cluster version robust against individual-level correlation (χ2
c) (see Beck and Katz, 1995),

as well as a time-cluster version robust against cross-sectional correlation (χ2
d) (see Driscoll

and Kraay, 1998). The heteroskedasticity-robust version of our test (χ2
b) uses the Hu-

ber/Eicker/White estimator with the assumption of independent observations.8 The time-

cluster version of the test is over-specified given our assumed model from the previous

section and the simulation design below; we include them to see if there are costs in terms

of size or power of using more complex covariance matrix estimators than required. An

outline and formulas for the robust variance estimator in the Stata context can be found

in the User’s Guide in StataCorp (2017b), pp. 322-327 or the Programming Reference

Manual in StataCorp (2017a) pp. 550-573.

For the homogeneous null scenario, we use the following setting:

yi,t = β0,1x1,i,t + β0,2x2,i,t + β1,1x1,i,tgt(qt; γ1, c1) + β1,2x2,i,tgt(qt; γ2, c2) + ui,t (13)

where

xk,i,t ∼ N(0, 1)

qt ∼ U(10, 20)

c1 ∼ U(12, 18)

c2 = c1

γ1 ∼ U(1, 3)

γ2 = γ1

β0,k ∼ U(0.1, 0.5)

β1,k = −β0,k
ui,t = ei,t

ei,t ∼ iidN(0, 0.1)

With this design of c and q,9 we ensure that the location parameter c will never hit the

outer ranges of the distribution of the transition variable q which would imply just one

regime. We set the transition parameter γ such that the transition occurs in a somewhat

smooth manner. For the heterogeneous scenario, we consider the case of differences in γ

and differences in c. The heterogeneous scenario with c1 6= c2 deviates as follows from the

8We are aware of the fact that the usual sandwich estimator is invalid for fixed T , large N for fixed
effects estimator as pointed by Stock and Watson (2008).

9Note that we generated the data with qi,t = qt, which is, of course, covered by our assumptions.
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homogeneous scenario:

c2 =

c1 + 0.025c1 if c1 < 15

c1 − 0.025c1 if c1 ≥ 15

which ensures that the second location parameter will be lower/higher than the up-

per/lower bound. The scenario with γ1 6= γ2 uses

γ2 = 0.5γ1

Furthermore, we consider size and power scenarios with cross-sectional correlation of the

error term. The scenarios differ from the above outlined settings in the following way:

ui,t = κiηt + ei,t

ei,t ∼ iidN(0, 0.1)

ηt ∼ iidN(0, 0.1)

κi ∼ U(0.3, 0.7)

For the simulation, we estimate the parameters by nonlinear least squares (NLS)

using Stata. The NLS estimator includes fixed effects because we suppose that most

practitioners will include them in their panel estimation. We use a grid search procedure

to find starting values for the NLS estimation. We simulate 1000 replications for each

scenario, which differ by the previously outlined data generating schemes and by different

combinations of N and T .

We start with the empirical size for the scenario without cross-sectional correlations.

Table 1 lists the empirical sizes for our test version with different combinations of N

and T . The results show that the test without any robustification (χ2
a) performs fairly

well in the case of non-correlated error terms. Only in small samples, we see a small

distortion. For a larger combination of N and T , this disappears and the empirical size

of the test appears to converge to the nominal one. The test versions with robustification

against heteroscedasticity χ2
b or individual-level correlation (χ2

c) show a similar behaviour

compared to the standard test. The serial correlation-robust version of the χ2-test (χ2
d)

are undersized, at least for small N .

The results for the simulations when error cross-sectional correlation is present are

listed in Table 2. The changes compared to the scenario without cross-sectional correlation

are only moderate. At least in these settings, it seems that error cross-sectional correlation

does not affect the empirical size of the different test versions in a significant way (this is

because the regressors xi,t,k are not correlated across the units).
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Table 1: Empirical size: H0 without cross-sectional correlation

N T χ2
a-Test χ2

b-Test χ2
c-Test χ2

d-Test

20 20 0.050 0.054 0.046 0.017
50 0.052 0.047 0.041 0.038
100 0.067 0.064 0.046 0.060
200 0.061 0.061 0.056 0.051

50 20 0.054 0.054 0.040 0.017
50 0.051 0.058 0.049 0.028
100 0.057 0.056 0.048 0.051
200 0.052 0.050 0.042 0.047

100 20 0.060 0.061 0.044 0.026
50 0.059 0.064 0.050 0.045
100 0.050 0.054 0.051 0.043
200 0.056 0.054 0.052 0.055

200 20 0.062 0.061 0.051 0.022
50 0.065 0.068 0.059 0.041
100 0.054 0.055 0.051 0.047
200 0.049 0.049 0.051 0.039

Table 2: Empirical size: H0 with cross-sectional correlation

N T χ2
a-Test χ2

b-Test χ2
c-Test χ2

d-Test

20 20 0.070 0.066 0.045 0.023
50 0.050 0.045 0.034 0.029
100 0.052 0.041 0.037 0.049
200 0.054 0.054 0.043 0.055

50 20 0.063 0.060 0.051 0.026
50 0.057 0.055 0.047 0.044
100 0.043 0.045 0.037 0.040
200 0.041 0.043 0.038 0.041

100 20 0.085 0.077 0.067 0.029
50 0.052 0.050 0.047 0.048
100 0.050 0.045 0.050 0.043
200 0.043 0.043 0.040 0.047

200 20 0.055 0.053 0.042 0.019
50 0.051 0.055 0.053 0.047
100 0.053 0.053 0.051 0.048
200 0.049 0.051 0.051 0.044
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Table 3: Empirical power: differences in c, no cross-sectional correlation

N T χ2
a-Test χ2

b-Test χ2
c-Test χ2

d-Test

20 20 0.436 0.407 0.325 0.169
50 0.731 0.721 0.643 0.578
100 0.844 0.852 0.807 0.812
200 0.933 0.934 0.912 0.924

50 20 0.660 0.650 0.612 0.247
50 0.871 0.872 0.846 0.743
100 0.952 0.954 0.951 0.952
200 0.991 0.992 0.991 0.989

100 20 0.811 0.805 0.794 0.360
50 0.944 0.943 0.936 0.858
100 0.992 0.991 0.988 0.987
200 0.998 0.998 0.999 0.998

200 20 0.899 0.895 0.887 0.418
50 0.984 0.986 0.985 0.927
100 0.998 0.998 0.998 0.996
200 1.000 1.000 1.000 1.000

Table 4: Empirical power: differences in c, with cross-sectional correlation

N T χ2
a-Test χ2

b-Test χ2
c-Test χ2

d-Test

20 20 0.387 0.359 0.281 0.123
50 0.651 0.638 0.570 0.524
100 0.805 0.801 0.752 0.761
200 0.917 0.912 0.886 0.909

50 20 0.574 0.568 0.568 0.230
50 0.856 0.852 0.837 0.742
100 0.944 0.944 0.942 0.933
200 0.979 0.978 0.974 0.977

100 20 0.791 0.780 0.768 0.334
50 0.940 0.942 0.941 0.849
100 0.980 0.981 0.980 0.979
200 0.997 0.998 0.997 0.998

200 20 0.896 0.902 0.883 0.405
50 0.976 0.975 0.974 0.913
100 0.997 0.998 0.997 0.995
200 1.000 1.000 1.000 0.999
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Table 5: Empirical power: differences in γ, no cross-sectional correlation

N T χ2
a-Test χ2

b-Test χ2
c-Test χ2

d-Test

20 20 0.499 0.481 0.379 0.282
50 0.765 0.757 0.695 0.704
100 0.899 0.898 0.854 0.886
200 0.968 0.968 0.954 0.968

50 20 0.787 0.780 0.753 0.503
50 0.915 0.919 0.897 0.894
100 0.985 0.985 0.985 0.983
200 0.999 0.998 0.997 0.996

100 20 0.875 0.877 0.867 0.657
50 0.987 0.987 0.983 0.975
100 0.980 0.980 0.980 0.980
200 1.000 1.000 1.000 1.000

200 20 0.955 0.954 0.947 0.767
50 0.997 0.997 0.995 0.987
100 1.000 1.000 1.000 1.000
200 1.000 1.000 1.000 1.000

Table 6: Empirical power: differences in γ, with cross-sectional correlation

N T χ2
a-Test χ2

b-Test χ2
c-Test χ2

d-Test

20 20 0.428 0.414 0.307 0.252
50 0.742 0.730 0.658 0.677
100 0.878 0.878 0.830 0.857
200 0.944 0.943 0.923 0.936

50 20 0.703 0.698 0.670 0.485
50 0.904 0.900 0.887 0.875
100 0.971 0.970 0.967 0.962
200 0.993 0.994 0.989 0.993

100 20 0.841 0.843 0.829 0.599
50 0.974 0.974 0.971 0.956
100 0.995 0.996 0.994 0.993
200 1.000 1.000 1.000 1.000

200 20 0.939 0.937 0.933 0.752
50 0.995 0.993 0.993 0.988
100 1.000 1.000 1.000 1.000
200 1.000 1.000 1.000 1.000
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Empirical power is listed in Table 3. We start with differences in the location parameter

c which are generally easier to detect than differences in the speed of transition. For low

combinations of N and T , the test has considerable problems detecting heterogeneity in

the transition functions but with increasing N or increasing T , the test reliably rejects

the null hypothesis. Like for the empirical size, the three version χ2
a, χ

2
b and χ2

c show a

somewhat similar power. The test with robustification against cross-sectional correlation

(χ2
d) needs more observations than the others to reliable reject the null but performs well

for greater samples.

The results for empirical power when cross-sectional correlation is present can be found

in Table 4 and are mainly unchanged compared to the scenario without cross-sectional

correlation.

The power results for detecting differences in γ are listed in Tables 5 and 6. As

mentioned before, differences in γ are harder to detect and have to be more pronounced

to result in a rejection of the null hypothesis. A difference of 50% between γ1 and γ2 is

not reliably detected for a low combination of N and T like N = 20 and T = 20. With

increasing numbers, all versions of the test always reject the null hypothesis which holds

for the Monte-Carlo scenario with and without cross-sectional correlation. Again, the χ2
d

version needs more observations to always reject the null when the alternative is true.

4 Conclusion

This paper proposes a Lagrange multiplier test for checking the homogeneity of smooth

transition regressions against regressors-specific transition functions.

We consider panel versions of this procedure that are robust against cross-sectional

correlation. The test statistic is regression-based and follows a χ2 null distribution asymp-

totically for N, T → ∞ jointly. The test is intended to serve as a model diagnostic tool:

after estimation of a model with homogenous transition functions, the test allows one to

double-check the homogeneity assumptions.

In Monte Carlo experiments, the four different version of the test (standard, robustifi-

cation against heteroskedasticity, robustification against panel correlation, robustification

against cross-sectional correlation) show good size control and satisfactory power. Due to

its simple implementation, we expect our test to provide a useful tool in model evaluation

against heterogeneous smooth transition regression functions.
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Appendix

A Derivatives of the logistic function

Let w = exp (−γ(q − c)). The derivatives of the (logistic) transition function are

∂g

∂γ
=− 1[1 + exp{−γ(q − c)}]−2 exp{−γ(q − c)}(−q + c)

=(1 + w)−2w(q − c)

∂g

∂c
=− 1[1 + exp{−γ(q − c)}]−2 exp{−γ(q − c)}γ

=− (1 + w)−2wγ

∂2g

∂γ2
=2(1 + w)−3w2(q − c)2 − (1 + w)−2w(q − c)2

=(1 + w)−2w(q − c)2
(

2(1 + w)−1w − 1)
)

∂2g

∂c2
=2(1 + w)−3w2γ2 − (1 + w)−2wγ2

=(1 + w)−2wγ2
(

2(1 + w)−1w − 1)
)

∂2g

∂c∂γ
=

∂2g

∂γ∂c
=− 2(1 + w)−3w2(q − c)γ + (1 + w)−2w(q − c)γ − (1 + w)−2w

=(1 + w)−2w
(
− 2(1 + w)−1w(q − c)γ + (q − c)γ − 1

)

∂3g

∂γ3
=6(1 + w)−4w3(q − c)3 − 6(1 + w)−3w2(q − c)3 + (1 + w)−2w(q − c)3

=(1 + w)−2w(q − c)3
(

6(1 + w)−2w2 − 6(1 + w)−1w + 1
)
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∂3g

∂c3
=− 6(1 + w)−4w3γ3 + 6(1 + w)−3w2γ3 − (1 + w)−2wγ3

=(1 + w)−2wγ3
(
− 6(1 + w)−2w2 + 6(1 + w)−1w − 1

)

∂3g

∂γ2∂c
=

∂3g

∂γ∂c∂γ
=

∂3g

∂c∂γ2
= −6(1 + w)−4w3(q − c)2γ + 6(1 + w)−3w2(q − c)2γ

− 4(1 + w)−3w2(q − c)− (1 + w)−2w(q − c)2γ + 2(1 + w)−2w(q − c)

=(1 + w)−2w(q − c)
(
− 6(1 + w)−2w2(q − c)γ + 6(1 + w)−1w(q − c)γ

− 4(1 + w)−1w − (q − c)γ + 2
)

∂3g

∂γ∂c2
=

∂3g

∂cγ∂c
=

∂3g

∂c2∂γ
= 6(1 + w)−4w3(q − c)γ2 − 6(1 + w)−3w2(q − c)γ2

+ (1 + w)−2w(q − c)γ2 − 2(1 + w)−2wγ + 4(1 + w)−3w2γ

=(1 + w)−2wγ
(

6(1 + w)−2w2(q − c)γ − 6(1 + w)−1w(q − c)γ

+ 4(1 + w)−1w + (q − c)γ − 2
)

B Auxiliary results

In the following, ‖·‖ denotes the Euclidean vector norm and the corresponding induced

matrix norm.

Lemma 1. Under the conditions of Proposition 1, it holds for ΩT and ξt,T defined in the

proof of Proposition 1 that

1. maxt=1,...,T

∥∥∥Ω
−1/2
T ξt,T

∥∥∥;

2. Ω−1T

(∑T
t=1 ξt,T ξ

′
t,T − ΩT

)
p→ 0.

Proof: See Appendix C.
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C Proofs

Proof of Lemma 1

To show item 1, write

P

(
max
t=1,...,T

∥∥∥Ω
−1/2
T ξt,T

∥∥∥ > C

)
≤ P

(
max
t=1,...,T

‖ξt,T‖ > C
√
‖ΩT‖

)
= P

(
∪t=1,...,T

(
‖ξt,T‖ > C

√
‖ΩT‖

))
≤

T∑
t=1

P
(
‖ξt,T‖ > C

√
‖ΩT‖

)
≤

T∑
t=1

E
(
‖ξt,T‖4

)
C4 ‖ΩT‖2

where the Bonferroni and the generalized Markov inequalities have been used. Since

ξt,T =
N∑
i=1

(
vi,t

zi,t

)
λift +

N∑
i=1

(
vi,t

zi,t

)
εi,t,

we note that the factor structure of ui,t implies under Assumption 1 that

Cov (ξt,T ) =
N∑
i=1

N∑
j=1

λ′iλj

(
vi,t

zi,t

)(
v′j,t; z

′
j,t

)
+

N∑
i=1

(
vi,t

zi,t

)(
v′i,t; z

′
i,t

)
σ2
i .

Therefore, one may find under Assumption 2 positive constants C1 and C2 such that

‖Cov (ξt,T )‖ ∼ C1

(∑N
i=1 λi

)′ (∑N
i=1 λi

)
+C2N and, thanks to the serial independence of

the errors ui,t, ΩT =
∑T

t=1 Cov (ξt,T ) ∼ C1T
(∑N

i=1 λi

)′ (∑N
i=1 λi

)
+C2NT . Moreover, due

to the same factor structure, E
(
‖ξt,T‖4

)
≤ ‖Cov (ξt,T )‖2 ≤ C∗1

((∑N
i=1 λi

)′ (∑N
i=1 λi

))2

+

C∗2N
2. such that

P

(
max
t=1,...,T

∥∥∥Ω
−1/2
T ξt,T

∥∥∥ > C

)
= O


T

(((∑N
i=1 λi

)′ (∑N
i=1 λi

))2

+N2

)

C4T 2

(((∑N
i=1 λi

)′ (∑N
i=1 λi

))2

+N2

)
 = o (1)

as required, since this holds for any choice of C.
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To show item 2, it suffices to establish that, elementwise,

T∑
t=1

N∑
i=1

N∑
j=1

(
vi,t

zi,t

)(
v′j,t; z

′
j,t

)
(ui,tuj,t − E (ui,tuj,t)) = op

(
T∑
t=1

N∑
i=1

N∑
j=1

(
vi,t

zi,t

)(
v′j,t; z

′
j,t

)
E (ui,tuj,t)

)
;

this is a straightforward exercise given that (u1,t, . . . , uN,t)
′ has a factor structure whose

components are iid sequences with finite 4th order moments, and that
(
v′j,t; z

′
j,t

)′
are

deterministic and bounded under Assumption 2, and we omit the details.

Proof of Proposition 1

We provide the proof for the case with common intercept (which is allowed to vary

across two regimes like the other regressors) to save space; the extension to fixed-effects is

straightforward given that we work with deterministic regressors (up to a negligible term)

and we omit the details.

Begin by noting that, under the null,

θ̂h0 − θ0 ≈ (V ′V )
−1
V ′u

where u stacks the NT panel errors and R1T is negligible. This is a standard application

of optimization estimator theory and we omit the details to save space. Moreover, we

linearize the regression function to obtain under the null

û− u ≈ V
(
θ̂h0 − θ

)
≈ V (V ′V )

−1
V ′u.

As a consequence, we have, up to a negligible term,

Z ′û = Z ′u+ Z ′V (V ′V )
−1
V ′u

=
(
−Z ′V (V ′V )

−1
; I
)( V ′u

Z ′u

)

Then, the statistic of interest is based on the OLS estimators of the auxiliary regression,

for which we obtain using the Frisch-Waugh-Lovell theorem

δ̃ =
(
Z ′Z − Z ′V (V ′V )

−1
V ′Z

)−1
Z ′û

(given that V ′û = 0 are the f.o.c. for the restricted estimation step). The sandwich
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covariance matrix estimator is given by

Ĉov(δ̃) =
(
Z ′Z − Z ′V (V ′V )

−1
V ′Z

)−1
MT

(
Z ′Z − Z ′V (V ′V )

−1
V ′Z

)−1
where

MT =
(
I;−Z ′V (V ′V )

−1
)

Ω̂
(
I;−Z ′V (V ′V )

−1
)′

and Ω̂ is an estimate of the covariance matrix of

(
V ′u

Z ′u

)
. We note that this is (up to

normalization) the expression for panel-robust covariance matrix estimators. The estima-

tor Ω̂ is constructed such that cross-sectional correlation is accounted for (Beck and Katz,

1995),

Ω̂ =
T∑
t=1

N∑
i=1

N∑
j=1

(
vi,t

zi,t

)(
v′j,t; z

′
j,t

)
ûi,tûj,t

where z′j,t and v′j,t are the lines of Zi and Vi.

Therefore, the behavior of the test can be reduced using a standard linear transfor-

mation involving the relevant restrictions to the behavior of the score under the null,

i.e. of
T∑
t=1

N∑
i=1

(
vi,t

zi,t

)
ui,t :=

T∑
t=1

ξt,T

with ξt,T =
∑N

i=1

(
vi,t

zi,t

)
ui,t. The result is then obtained via two steps. First, we show

that the score
∑T

t=1 ξt,T , properly standardized, follows a 4K-dimensional multivariate

normal distribution with identity covariance matrix. Second, we show that panel-robust

covariance matrix estimation in the LM auxiliary regression deliver the proper standard-

ization in the limit.

To this end, let first

ΩT =
T∑
t=1

(
N∑
i=1

(
vi,t

zi,t

)(
v′i,t; z

′
i,t

)
σ2
i +

N∑
i=1

N∑
j=1

(
vi,t

zi,t

)(
v′i,t; z

′
i,t

)
λ′iλj

)
,

which is the covariance matrix of
∑T

t=1 ξt,T . Note that ‖ΩT‖ ∼ C1T
(∑N

i=1 λi

)′ (∑N
i=1 λi

)
+

C2NT for suitable constants C1 and C2; see the proof of Lemma 1. This implies in turn

θ̂h0 − θ0 = Op

 1

N
√
T

max


√√√√( N∑

i=1

λi

)′( N∑
i=1

λi

)
;
√
N


 .
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We now establish that

Ω
−1/2
T

T∑
t=1

ξt,T
d→ N (0, I4K) (14)

by applying a central limit theorem for martingale difference arrays (see Theorem 24.3 in

Davidson, 1994, and the Wold-Cramér device). To this end, note that Ω
−1/2
T ξt,T build the

lines of a martingale difference array thanks to the serial independence of the errors ui,t

given xi,t,k and qi,t, and we only need to check

1. that maxt=1,...,T

∥∥∥Ω
−1/2
T ξt,T

∥∥∥ vanishes in probability, and

2. that
∑T

t=1 Ω
−1/2
T ξt,T

(
Ω
−1/2
T ξt,T

)′ p→ I4k.

The first condition is proved in Lemma 1, which also establishes that Ω−1T

(∑T
t=1 ξt,T ξ

′
t,T − ΩT

)
p→

0, which implies the second condition.

Turning our attention to the panel-robust covariance matrix estimator, it is then

tedious, yet straightforward, to show that

Ω−1T Ω̂T = Ω−1T

T∑
t=1

N∑
i=1

N∑
j=1

(
vi,t

zi,t

)(
v′i,t; z

′
i,t

)
ui,tuj,t + op (1) := Ω−1T Ω̃T + op (1) .

Having shown in Lemma 1 that Ω−1T

(
Ω̃T − ΩT

)
= Ω−1T

(∑T
t=1 ξt,Tξ

′
t,T − ΩT

)
p→ 0, it

follows immediately that

Ω−1T Ω̃T
p→ I4K ,

which, together with the convergence in 14 implies that

Ω̂
−1/2
T

T∑
t=1

ξt,T
d→ N (0, I4K)

thanks to Slutsky’s theorem. Given the condition that 1
NT

[V ;Z]′ [V ;Z] → Q, analogous

results hold for linear combinations of
∑T

t=1 ξt,T and the corresponding covariance matrix

estimator, and the result follows.

22



References

Anderson, H. M. and Vahid, F. (1998). Testing multiple equation systems for common

nonlinear components. Journal of Econometrics, 84(1):1 – 36.

Bai, J. (2003). Inferential theory for factor models of large dimensions. Econometrica,

71(1):135–171.

Bailey, N., Kapetanios, G., and Pesaran, M. H. (2016). Exponent of cross-sectional

dependence: Estimation and inference. Journal of Applied Econometrics, 31(6):929–

960.

Beck, N. and Katz, J. N. (1995). What to do (and not to do) with time series cross-section

data. American Political Science Review, 89(3):634–647.

Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a practical

and powerful approach to multiple testing. Journal of the Royal Statistical Society.

Series B, 57(1):289–300.

Breitung, J. (2015). The analysis of macroeconomic panel data. In Baltagi, B. H., editor,

The Oxford Handbook of Panel Data, chapter 15, pages 453–492.

Breitung, J., Roling, C., and Salish, N. (2016). Lagrange multiplier type tests for slope

homogeneity in panel data models. The Econometrics Journal, 19(2):166–202.

Camacho, M. (2004). Vector smooth transition regression models for US GDP and the

composite index of leading indicators. Journal of Forecasting, 23(3):173–196.

Chamberlain, G. and Rothschild, M. (1983). Arbitrage, factor structure, and mean-

variance analysis on large asset markets. Econometrica, 51(5):1281–1304.

Davidson, J. (1994). Stochastic Limit Theory. Oxford University Press.

de Dios Tena, J. and Tremayne, A. (2009). Modelling monetary transmission in UK

manufacturing industry. Economic Modelling, 26(5):1053 – 1066.

Driscoll, J. C. and Kraay, A. C. (1998). Consistent covariance matrix estimation with

spatially dependent panel data. The Review of Economics and Statistics, 80(4):549–560.
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