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1 Introduction

Today, society has recognized the far-reaching consequences of the increase in carbon in atmosphere

to above its preindustrial level because this contributes to a large extent to global warming. Never-

theless, the carbon stock in the atmosphere is growing continuously and its growth rate increased

even further in the period 2000-2006. (Canadell et al. [1]). This growth depends not only on global

economic activity and the carbon intensity of the economy but also on the effectiveness of the nat-

ural carbon sinks, the terrestrial biosphere and the ocean. The change in atmospheric carbon in a

given year relative to that year’s total carbon emissions constitutes the airborne fraction (AF) of

carbon. This ratio is currently substantially lower than 1, which indicates that the natural sinks

are removing anthropogenic carbon from the atmosphere. Canadell et al. [1] estimate the AF to be

0.45 for the period 2000 to 2006, whereby the ocean sink removed around 0.25 and natural sinks on

land removed around 0.3. But the uptake by the land sinks is subject to strong fluctuations that are

not well understood yet. Looking at the change in the various carbon reservoirs from 1800 to 1994,

Sabine et al. [11] show that the terrestrial biosphere has been a total net source of 39 (±28) Gt C.1

They conclude that “the ocean has constituted the only true net sink for anthropogenic CO2 over the

past 200 years ”(p.370). The absolute value of the long-run atmospheric carbon stabilization level

and the time pattern of its achievement will depend crucially on the marine carbon cycle, which is

therefore perceived to be the most import cycle with regard to the climate (Najjar [10]). Therefore,

any approach to manage the global carbon cycle or to mitigate global warming that ignores the

ocean ignores optimization potential.

Many optimal control models that are used to determine the optimal carbon tax in a climate

change setting apply a constant rate of decay, which yields a proportional decay of carbon in the

atmosphere. As a result, in these models, global warming presents itself merely as a problem of

temporary duration because the stock of carbon in the atmosphere returns to its preindustrial level

when fossil fuel reserves are limited (see, e.g., Tahvonen [14]). Such models, however, only roughly

approximate the global carbon cycle. In reality this “decay” is not really a decay per se, but

rather the shifting of carbon from the atmosphere to the other carbon reservoirs. Hence, it simply

cannot be captured by a constant rate, which implies that the atmosphere is a completely renewable

resource. In this paper, we address the question how the inclusion of the largest carbon reservoir of

the carbon cycle, the ocean, changes the optimal path of carbon emissions and whether its inclusion

allows additional optimization potential.

1Based on the net increase of 165 Gt carbon in the atmosphere from 1800 to 1994, [11] subtract their ocean
inventory estimate of 118 (± 19) Gt carbon from the total of fossil-fuel-emitted carbon, which amounted to 244(±20)
Gt during this period. As a consequence, the terrestrial biosphere has to be considered a net source of carbon if the
carbon budget is to be balanced.
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Variations in the transfer rates between the various reservoirs in the carbon cycle due to dif-

ferences in their relative carbon stock sizes are investigated to some extent in the literature on

nonconstant pollution decay. Here, the decay rate is a function of the size of the pollution stock.

The decay function is concave over some interval, whereby, when the pollution stock exceeds the up-

per boundary, the natural decay process is destroyed (see, e.g., Forster [5], Tahvonen and Withagen

[15], and Toman and Withagen [16]). In general, however, models that assume a nonconstant decay

suffer from a major shortcoming in climate change context applications: they are concerned with

carbon “decay” in the atmosphere only, whereby, as long as the decay capacity is not exhausted,

carbon continues to be removed from the atmosphere. If, in addition, no resource constraint is

included, steady states with positive pollution and decay rates can emerge. Farzin and Tahvonen

[4] incorporate the nonrenewable aspect of the global carbon cycle to some extent into their model.

Based on a paper by Maier-Raimer and Hasselmann [9], they divide the atmospheric stock of car-

bon within their dynamic system artificially into two different stocks, one with a constant rate of

decay and the other without. As a result, the dynamic system converges towards a steady state

with a carbon stock above the preindustrial level and zero extraction. Given that the proportion

of emissions to the nondecaying stock is equal to the long-run equilibrium, the model of Farzin and

Tahvonen [4] captures important aspects of the carbon cycle. Nevertheless, the only management

option in their dynamic system is to control the amount of emissions released into the atmosphere,

which is proportional to the amount of extracted fossil fuels.

Nowadays, carbon capture and storage (CCS) is considered an additional option for reducing

atmospheric CO2 emissions by unmating the use of fossil fuels and emissions. One of the potential

CCS options is to inject CO2 into the deep ocean (IPCC [7]). Ocean CO2 storage entails charac-

teristics of both temporary and permanent storage. The upper limit for the amount of permanent

storage is determined by the long-run atmosphere-ocean equilibrium. CO2 injected into the deep

ocean in excess of this amount, is expected to leak back to the atmosphere, because the ocean be-

comes supersaturated in relation to the atmosphere. Herzog et al. [6] calculate the CCS effectiveness

of injecting CO2 into the deep ocean, whereby CCS effectiveness is measured as the ratio between

the net benefit gained from temporary storage and the benefit gained from permanent storage. They

find “ that the value of relatively deep ocean sequestration is nearly equivalent to permanent seques-

tration if marginal damage (i.e., carbon prices) remains constant or if there is a backstop technology

that caps the abatement cost in the not too distant future” (p.306).

In this paper, we apply a two-box model to include the oceanic carbon stock in the stock exter-

nality problem of carbon accumulation in the atmosphere due to fossil fuel consumption. Thereby,

we replace the constant or nonconstant decay assumption and capture the essential nonrenewable
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aspects of the global carbon cycle without artificially dividing the atmospheric carbon stock. Ad-

ditionally, we introduce ocean sequestration as a control variable to consider its effectiveness not in

an isolated manner but as an additional option in a combined extraction and sequestration deci-

sion. We show without specifying functional forms that the admissible paths for the emission and

sequestration tax are either monotonically increasing or U-shaped. In doing so, we can show that

the optimal path of extraction and ocean sequestration does not allow an interior solution. In the

constrained optimization problem, we introduce functional forms and derive a critical cost level for

sequestration. Below this cost level, ocean sequestration is the long-run option for fossil fuel con-

sumption because the complete amount of emissions is sequestered. When the sequestration costs

are equal or greater than the critical cost level, sequestration will never be utilized in the long run.

However, it might still serve as a temporary option to adjust for high initial levels of carbon in the

atmosphere. The stabilization levels in the atmosphere and the ocean are increasing in the degree

that ocean sequestration is utilized. As a consequence, the utilization of ocean sequestration can

extend our capabilities of deriving utility from fossil fuel consumption, but will also exacerbate the

problem of global warming in the long run.

The paper proceeds as follows. In Section 2 we explain some important facts of the marine carbon

cycle and ocean sequestration. These facts demonstrate the necessity of including the marine carbon

cycle in any approach for global carbon management, but are not essential for understanding the

model. In Section 3 we present our model. In Subsection 3.1 we introduce and explain our model,

in Subsection 3.2 we derive the general properties about the path of the emissions taxes, and in

Subsection 3.3 we derive the admissible steady states and the dynamic properties of the model.

Section 4 concludes.

2 Natural Ocean Uptake and Ocean Storage

The reason that there is a net transfer of carbon between the atmosphere and the ocean is that

there is a difference in the partial pressure of carbon dioxide (pCO2) between these two reservoirs.

As long as the partial pressure in the atmosphere is larger than in the ocean, we will observe a net

transfer into the ocean. The ocean contains about 65 times more carbon than the atmosphere. This

difference is explained not only by the size of these two reservoirs, but also by the chemical reactivity

of CO2 in water and the various carbon pumps in the ocean. Most of the CO2 dissolves in water,

forming carbon acid first and then bicarbonate (HCO−
3 ) and carbonate ions (CO2−

3 ). The sum of

these three elements describes the total amount of carbon in the ocean, called dissolved inorganic

carbon (DIC). The amount of DIC in the ocean consists to 89.1% of bicarbonate ions, to 10.4% of
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carbonate ions and only to 0.5% of CO2 (Najjar [10]). Regarding the last figure, the atmosphere

“sees” only a tiny fraction of the carbon present in ocean surface water within the chemical process

of pCO2 equilibration between the atmosphere and the ocean. The chemical reactivity of CO2

constitutes a chemical sink for CO2 in the mixed layer. The effectiveness of this chemical sink can

be measured by the buffer factor, which measures, for a given release of CO2 into the atmosphere,

the fractional change in atmospheric CO2 relative to the fractional change in DIC: ζ = ∂[CO2]/[CO2]
∂[DIC]/[DIC] .

A low buffer factor therefore indicates that a large fraction of the atmospheric CO2 perturbation

can be taken up by the ocean. The value of the buffer factor is proportional to the ratio between

DIC and alkalinity (Sabine et al. [11]).2

The buffer factor measures the ability of the ocean to take up carbon from the atmosphere, but

not the speed of this uptake. Compared to the total size of the ocean, only a small fraction of it

is in direct exchange with the atmosphere. Whereas the equilibration time for the upper layer of

the ocean with the atmosphere takes around one year, the uptake bottleneck is the transport of

anthropogenic CO2 to the deeper parts of the ocean. This transport is effected by the biological

pump and the solubility pump. The biological pump is driven by two cycles: the organic matter

cycle and the calcium carbonate cycle. Within the first cycle, phytoplankton captures CO2 through

photosynthesis and produces its organic tissue by utilizing the inorganic nutrients that are dissolved

in seawater. The reverse process is respiration and mineralization of this organic matter. Whereas

photosynthetic production is restricted to the light-lit euphotic zone, remineralization is not and, as a

consequence, occurs on average deeper in the water column.3 The organic matter cycle causes surface

depletion and deep enrichment of DIC, but causes slight surface enrichment and deep depletion of

alkalinity in the top layer. Therefore, the organic matter pump decreases surface ocean pCO2 and

hence, pCO2 in the atmosphere (Najjar [10]). The second cycle works in the opposite direction. Its

driving forces are plants and animals that build their CaCO3 skeletons in the euphotic zone from

dissolved calcium and carbonate ions. When these skeletons sink in the water column, they dissolve

back into calcium and carbonate ions. Ocean circulation transports these ions back to the surface

layer. This cycle creates a surface depletion and deep enrichment in DIC and alkalinity. The effect

of the calcium carbonate cycle on alkalinity is about twice as strong as its effect on DIC. As a

consequence, it increases pCO2 in the upper layer and therefore increases atmospheric CO2. Both

cycles are present mainly in the upper layer of the ocean. The term biological pump designates the

2Alkalinity measures the ability of seawater to maintain its pH-value when carbon acids are added. The pH-value
determines the distribution of DIC between the three different carbon forms, but is itself affected by the additional
uptake of carbon.

3The euphotic zone is the layer that receives enough light for photosynthesis to occur. The depth of this layer is
determined by the amount of incoming sunlight and the activity of the water (Sarmiento and Gruber [12] p.111). The
aphotic zone is the layer below the euphotic zone.
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small fraction of organic matter and skeletons that survives remineralization in the euphotic zone

and sinks to deeper layers. On the way to the deep ocean, this material is degraded further by

microbial processes, so that an even smaller fraction reaches the seafloor. Here, the remineralization

process continue, so that only a very small fraction of the carbon is buried. The amount of carbon

removed from the global carbon cylce by sedimentary burial is offset mainly by the natural carbon

intake through rivers, which transport carbon released through weathering into the ocean.4 Due

to their influence on DIC and alkalinity and hence pCO2, both cycles, the organic matter cycle

and the calcium carbonate cycle, are important factors for the chemical equilibration of carbon

between the atmosphere and the upper layer of the ocean. For overall equilibration, however, the

transport of carbon into the deep ocean is important. This transport is effected by the biological

pump and especially by the solubility pump. The solubility pump is driven by two phenomena:

thermohaline circulation and the solubility of CO2. Surface water in equilibrium with atmospheric

CO2 takes up additional CO2 on its way to the poles, as the decreasing temperature increases the

solubility of CO2. The formation of deep seawater is driven by thermohaline circulation, which

transports cold and high-solubility high-latitude surface waters into the deep ocean. Consequently,

these two phenomena act together to pump carbon from the atmosphere into the ocean’s deeper

layers. However, for increasing atmospheric CO2, this uptake process is limited mainly by the

turnover speed, and the total ocean will still be undersaturated for a long time (order of 103 years)

(Körtzinger and Wallace [8]).

Since natural forces transport carbon into the deep ocean, where it cannot affect society as

adversely as when in the atmosphere, the logical question is: Why do we not accelerate the process

of downward carbon transfer by injecting carbon into the deep ocean? CO2 could be transported

via pipelines or ships to an ocean storage site, where it would be injected into the water column of

the ocean or at the seafloor (IPCC [7] p. 37). This way, it would also become part of the global

carbon cycle, but would enter the cycle in a more favorable way. The upper limit of storing injected

carbon in the ocean depends on the ocean equilibration with the atmosphere. Consequently, the

oceanic equilibration value for various stabilization scenarios in the atmosphere would constitute

this upper limit. (IPCC [7] p.38).

4The organic matter cycle has an annual gross primary production of 103 Gt C. Roughly 90% of this production is
repatriated within the euphotic zone. From the remaining 10% only 1% reaches the seafloor, where annually around
0.01 Gt C are buried (Körtzinger and Wallace [8]). The carbon flux produced annually by the calcium carbonate cycle
is only 0.4 Gt C, but 50% of this is buried in sediments (Körtzinger and Wallace [8]).
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3 Model

3.1 Model Description

The global carbon cycle is represented in our model by a simple two-box model, where both boxes

represent carbon stocks. The upper box, S, aggregates the carbon stocks in the atmosphere and in

the upper mixed layer of the ocean. We assume that the atmosphere and the upper mixed layer are

always in equilibrium and that the stock of carbon in the atmosphere is a constant fraction, s, of the

upper box. The lower box, W , is coterminous with the carbon stock in the deep ocean. The upper

box is relatively small in comparison to the lower box. There will be a net flux between these two

boxes when there is a difference between their relative stock sizes. An increase in the stock size in

the upper box causes a downward transfer of excess carbon into the deep ocean, whereas upwelling

water is still free of excess carbon, so that we observe a net transfer from the upper box into the

lower box. A new equilibrium is established when both boxes contain the same concentration of

excess carbon.5 The anthropogenic disturbance in this model is fossil-fuel-based emissions, q(t) at

time t, which are released into the upper box, and the amount of carbon sequestered and injected

into the lower box,6 a(t) at time t. The emissions are proportional to the use of fossil reserves

and we choose units so that proportionality is unity. Subtracting the amount of sequestration from

the total amount of emissions yields the net emissions into the upper box. The two-box model is

described by two equations of motion for the two boxes, which include the proportionality factor ω

to scale the stock of carbon in the lower box with respect to the upper box and the factor turnover

factor γ, which describes the speed of the adjustment process:7

Ṡ = q(t) − a(t) − γ(S(t) − ωW (t)) with S(t0) = S0, (1)

Ẇ = a(t) + γ(S(t) − ωW (t)) with W (t0) = W0. (2)

We investigate the optimal anthropogenic intervention as social planner’s problem, in which he

needs to determine the global optimal amounts of extraction and sequestration. The social planner

faces an objective function in which gross utility of society at any instant of time is generated by

the extraction and use of fossil fuels, q(t). The proportional emissions, q(t), increase the amount

5The ocean is by far the largest carbon reservoir in the global carbon cycle and it is estimated that the ocean will
take up around 85 % of the anthropogenic CO2 emissions in the long run (Körtzinger and Wallace [8]). Note that we
assume that sedimentary burial is constant and does not depend on the stock of carbon in the ocean and that this
amount is balanced by the carbon that is input into the ocean by rivers and volcanos. However, on even longer time
scales of thousands of years, this sediment buffer will be enhanced, so that carbon will be removed from the system
again.

6Note that throughout the paper we denote this activity only as sequestration.
7Given our knowledge of the size of the carbon stock in the deep ocean and the low transfer of anthropogenic

carbon into the deeper parts of the ocean, we can state without loss of generality that only very small values have to
be considered for these two parameters.
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of carbon in the two-box model, whereby the increase in the stock of carbon in the atmosphere

to above preindustrial levels, s ∗ S(t) − Apreind, leads to global warming and thereby causes social

costs for society at any instant in time. The gross utility of fossil fuel extraction and utilization is

described by U(q(t)), which has the properties U ′ > 0, U ′′ < 0, and U ′(0) = b < ∞. The last

property implies that there is a choke price or a backstop price. We assume that the costs of fossil

fuel extraction are constant and are included in U(q(t)). The social costs of global warming are

denoted as damage and are described by the strictly convex function D(S(t)), with the properties

D′ > 0, D′′ > 0, and D′(0) = 0. The equations (1) and (2) indicate that no carbon will vanish

from the system8 and that therefore the release of carbon will increase the stock in both boxes

forever. As a result, there will be a new equilibrium where either the fossil reserves are completely

extracted or the marginal damage is equal to the backstop price. However, regarding various goals

for climate change stabilization, the limiting factor does not seem to be the endowment of fossil

reserves, but rather the storing capacity of the atmosphere. We therefore do not include a stock

of fossil reserves, which simplifies the analysis and the qualitative results. However, we do include

sequestration costs in the objective function. Sequestration costs are described by A(a(t)), which is

also a convex function with the properties A′ > 0, and A′′ > 0, and which are measured in the same

units as utility and damage. The objective function for the social planner is

max
q(t),a(t)

∫ ∞

0
(U(q) −A(a(t)) −D(S(t)))e−ρtdt, (3)

with a(t), q(t) ≥ 0 and q(t) − a(t) ≥ 0. (4)

In the next two sections, we analyze the properties of optimal extraction and sequestration. Our

aim is to derive the optimal steering of the carbon cycle from levels similar to the preindustrial case

and from levels where the carbon stock in the upper box is already significantly higher than the

preindustrial level, while the carbon stock in the lower box is still close to that level.

3.2 General Results

We derive the corresponding current value Hamiltonian from (1), (2), and (3):

Hc = U(q) −A(a) −D(S)) − ψṠ − πẆ , (5)

where lim
t→∞

S(t),W (t) ≥ 0. (6)

8On longer time scales of thousands of years, it is assumed that there is sufficient sedimentary CaCO3 available to
neutralize all fossil fuel reserves (Najjar [10] p.275).
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Note that from now on we drop the time variable whenever it is convenient. We have changed the

signs of the costate variables, ψ and π, in order to facilitate their economic interpretation as a tax.

Together with the two Lagrange multipliers, θ1 and θ2, we obtain the current value Lagrangian:

Lc = Hc − θ1(a− q) − θ2(−a). (7)

The necessary first-order conditions (FOC) for the admissible solution candidates that satisfy con-

ditions (1), (2), and (4) are:

∂Lc

∂q
= 0 ⇒ U ′(q) − ψ − θ1 = 0, (8)

∂Lc

∂a
= 0 ⇒ −A′(a) + ψ − π − θ1 + θ2 = 0, (9)

−
∂Lc

∂S
= −ψ̇ + ρψ ⇒ −D′(S) + γψ − γπ = ψ̇ − ρψ, (10)

−
∂Lc

∂W
= −π̇ + ρπ ⇒ −γωψ + γωπ = π̇ − ρπ, (11)

∂Lc

∂θ1
≥ 0 θ1 ≥ 0 θ1(a− q) = 0, (12)

∂Lc

∂θ2
≥ 0 θ2 ≥ 0 θ2(−a) = 0. (13)

Additionally, we assume that limS→∞D(S) < ∞ and that therefore the integral (3) converges for

all admissible pairs of q, a, S,W . The current value Lagrangian for an interior solution reduces

to the current value Hamiltonian. Due to Theorem 13 in [13] p. 234, our solution candidate,

q∗, a∗, S∗,W ∗, is optimal, if conditions (8) to (11) are satisfied, if the Hamiltonian is concave, and

if the transversality conditions

lim
t→∞

e−ρtψ ≥ 0, lim
t→∞

e−ρtπ ≥ 0 (14)

are fulfilled.9 As our Hamiltonian is concave, but not strictly concave, we have to identify a unique

solution candidate for global optimality. But as we will show later, our dynamic system obeys saddle

path properties and that the optimal solution will approach a steady state, this condition is fulfilled.

From the FOCs we can already derive some insights about the dynamic solution properties. As

already mentioned, we interpret the costate variables as taxes, whereby the costate variable that

corresponds to the carbon stock in the upper box, ψ, has the meaning of an emission tax, and the

9Note that in the infinite horizon context the complete transversality conditions for costate variables are:
limt→∞ ψ(S(t) − S∗(t)) ≥ 0 and limt→∞ π(W (t) −W ∗(t)) ≥ 0 . But as our objective function contains time dis-
counting and we assumed an upper bound below infinity for damage, the integral converges. As a result, we can use
the more simple transversality conditions (14) as sufficient conditions. This is also justified by the fact, that the system
approaches a steady state. For a discussion about sufficient transversality conditions in an infinite horizon problem,
see Chiang [2] pp.240-251 and Theorem 16 in Seierstad and Syssæter [13] p. 244 Equation (214) and Note 22.
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costate variable that corresponds to the carbon stock in the lower box, π, has the meaning of a

sequestration tax. Through time, the marginal utility of fossil fuel extraction should be equal to

the emission tax, ψ. Extraction stops when the emission tax has risen to the value of the choke

price. The level of sequestration is determined by the difference between the emission tax and the

sequestration tax. The level of the emission tax, ψ, has the opposite effect on the level of extraction

and sequestration. The level of ψ indicates the magnitude of the carbon stock problem in the upper

box via the damage function. An increasing level of carbon in the upper box corresponds to higher

damage. Therefore, it is optimal to decrease emissions into the upper box and to increase the level of

sequestration. The increase in the level of sequestration is due to the fact that the negative impact

of adding carbon to the cycle via the lower box is damped by the slow exchange rate between the

two boxes. The steady state values for the two taxes when t→ ∞ are

ψss =
D′

S

γ + ρ
+

γ

γ + ρ
πss, πss =

γω

ρ+ γω
ψss (15)

or both equations solved for ψss and πss

ψss =
(ρ+ γω)D′

S

ρ(γ + ρ+ γω)
, πss =

(γω)D′
S

ρ(γ + ρ+ γω)
. (16)

The first term of the steady state value for ψss in (15) is equal to steady state values of models that

include a constant rate of decay and therefore a proportional decay. In these models, the emission

tax is equal to marginal damage, discounted by the interest rate and the duration of the carbon

stock, whereas the latter is the constant decay rate. In our case, this decay rate is γ, which enters

the movement equation like a constant decay rate if one expands the parenthesis in (1). Under the

proportional decay assumption, the steady state would indicate a situation with constant marginal

damage and a constant stock of carbon, whereby the amount of emissions would be equal to the

amount of decay. In our case, the marginal damage can decrease during some time interval, but will

be increasing in the long run as long as carbon is added to the cycle. Therefore, we retain the findings

of Farzin and Tahvonen [4] that under the assumption of a choke or backstop price and nonrenewable

elements of the atmospheric carbon stock, it is only optimal to extract until the discounted stream

of persistent marginal damage is equal to the backstop price. In our nonrenewable resource two-box

model, the constant rates do not express the proportional amount of carbon that vanish from the

cycle, but the proportional amount of carbon that enters the other box. Consequently, a second

term appears in the steady state value for ψss. The second term indicates the influence of the

sequestration tax on the emission tax. This term and the steady state value for π have the same

structure. Both indicate the discounted fraction that either stock contributes to the other stock,
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weighted by the tax corresponding to the other carbon stock. The combination of these two taxes

describes the accumulation of carbon in the system, which is limited by the fraction of carbon

present in the atmosphere. This can also be seen from (16). Given the purpose of the parameter

values, γ and ω, ψss is greater than πss. The difference between these two taxes, λ = ψ − π, is not

just positive in the steady state but also throughout the whole planning period. The equation of

motion for the tax difference

λ̇ = (γ + γω + ρ)λ−D′(S), (17)

indicates that the transversality condition limt→∞ e−rtλ ≥ 0 would be violated when λ becomes

negative, because the marginal damage cannot become negative. The positive tax difference can

also be seen from (10) and (11), because the only nonhomogeneous element in these two differential

equations is the marginal damage in the equation of motion for the upper box. The influence of

this element on the dynamics is transferred to the equation of motion for the lower box, but only

damped, as ψ is multiplied by γω in(11). As result, not only the value of ψ but also the amplitude

is greater than the value of π. Since the amount of extraction and sequestration varies by the levels

of the two taxes, we investigate the possible paths of the two taxes.

Proposition 1. The paths for the emission tax, ψ, the sequestration tax, π, and the tax difference,

λ, are either monotonically increasing or U-shaped when it is optimal to take action at all.

The proof can be found in Appendix Section 5.1, where we also show that when the path of π is

U-shaped, the path of ψ has to be U-shaped as well, but when the path of ψ is U-shaped, π can be U-

shaped or monotonically increasing. However, the ψ and λ always follow the same path. Therefore,

extraction will either be monotonically decreasing or inversely U-shaped, and sequestration will

either be monotonically increasing or U-shaped. The reverse effect on the two control variables

indicates that we cannot assume an interior solution and therefore have to include the Kuhn-Tucker

conditions in the analysis of the dynamics of the system.

3.3 Specific Results

Our qualitative analysis has indicated that the different movement tendencies for q and a give reason

to carefully check the Kuhn-Tucker conditions. Applying the functional forms where the parameters
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b, u2, a1, a2, v1, and s are positive,

U(q) = bq − u2q
2, (18)

A(a) = a1a+ a2a
2, (19)

D(S) = v1(sS −Apreind)
2, (20)

we derive the necessary conditions from the current value Lagrangian

b+ θ1 − 2u2q − ψ = 0, (21)

−a1 − θ1 + θ2 − 2a2a+ ψ − π = 0, (22)

−2v1s
2S + 2v1sApreind − γπ = ψ̇ − ψ(ρ+ γ), (23)

−γωψ = π̇ − π(ρ+ γω), (24)

θ1 ≥ 0 (θ1 = 0 if a− q < 0), (25)

θ2 ≥ 0 (θ2 = 0 if − a < 0), (26)

and obtain the canonical system:

















ψ̇

π̇

Ṡ

Ẇ

















=

















ρ+ γ −γ −2s2v1 0

−γω γω + ρ 0 0

− 1
2u2

0 −γ γω

0 0 γ −γω

















·

















ψ

π

S

W

















+

















2v1sApreind

0

a2(b+θ1)+(a1+θ1−θ2)u2
2a2u2

− a1

2a2
− θ1

2a2
+ θ2

2a2

















. (27)

The steady state values for the canonical system when t → ∞ are

ψss = b+ θ1, (28)

πss =
(b+ θ1)γω

h2
, (29)

Sss =
2sApreindv1h1 + bρh2

2s2v1h1
+

θ1ρh1

2s2v1h2
, (30)

Wss =
2sApreindv1h1 + bρh2

2s2v1ωh1
+

θ1ρh1

2s2v1ωh2
+
bρ− a1h2

2a2γωh2
−

θ1
2a2h2

+
θ2

2a2γω
, (31)

with h1 = γ + ρ+ γω, and h2 = ρ+ γω.

For the Kuhn-Tucker conditions, we have to consider four different cases:

Case 1: Both constraints are inactive, q − a ≥ 0 and a ≥ 0. This case describes positive extraction

and sequestration whereby not the total amount of fossil fuels extracted is sequestered. We

obtain θ1 = θ2 = 0.
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Case 2: Constraint one is inactive, constraint two is active, q−a ≥ 0 and a = 0. This case describes

positive extraction and no sequestration. We obtain θ2 = π + a1 − ψ.

Case 3: Constraint one is active, constraint two is not, q − a = 0 and a ≥ 0. This case describes

positive extraction and sequestration whereby the total amount of fossil fuels extracted is

sequestered. We obtain θ1 = 2u2q + ψ − b and θ1 = −a1 − 2a2a + ψ − π, and therefore

q = a = b−a1−π
2(u2+a2) and θ1 = ψ − π u2

a2+u2
− a2b+a1u2

a2+u2
.

Case 4: Both constraints are active, q−a = 0 and a = 0. This case describes no activity at all, zero

extraction and zero sequestration. We obtain the values θ1 = b− ψ and θ2 = b− a1 − π.

Four possible steady state situations emerge from the four different cases . Regarding the nonre-

newable feature of the two-box model, in each of the 4 cases the FOCs, (21) and (22), must yield

q = a = 0 and the exchange term in the equations of motion, (1) and (2), must satisfy (S−ωW ) = 0

in an admissible steady state solution. In a first step we investigate each case and check under which

conditions the steady state is admissible.

1. The steady state values for the first case, θ1 = θ2 = 0, are admissible and unique if a1 = b ρ
ρ+γω .

FOC (21) implies q = 0 for ψss = b and FOC (22) implies a = 0 if

b− b
γω

ρ+ γω
− a1 = 0 ⇒ a1 = b

ρ

ρ+ γω
. (32)

The condition (S − ωW ) = 0 is satisfied if the third term in the steady state value for Wss

is zero. The second, fourth, and fifth terms in the steady state value for Wss are zero for the

first case, and the first terms in the steady state values for Sss and Wss differ only by the

parameter ω in the denominator of Wss. The third term is zero if

bρ− a1(ρ+ γω)

2a2γω(ρ+ γω)
= 0 ⇒ a1 = b

ρ

ρ+ γω
. (33)

2. The steady state values for the second case, θ1 = 0 and θ2 > 0, are admissible and unique, if

a1 > b ρ
ρ+γω . FOC (21) implies q = 0 for ψss = b and FOC (22) implies a = 0 if

b− b
γω

ρ+ γω
− a1 + θ2 = 0 ⇒ a1 = b

ρ

ρ+ γω
+ θ2. (34)

The condition (S − ωW ) = 0 is satisfied if the sum of the third and fifth term in the steady

state value for Wss is zero. The second and fourth terms in the steady state value for Wss are
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zero for the second case. The sum of the third and fifth term is zero if

bρ− a1(ρ+ γω)

2a2γω(ρ+ γω)
+

θ2
2a2γω

= 0 ⇒ a1 = b
ρ

ρ+ γω
+ θ2. (35)

3. The steady state values for the third case, θ1 > 0 and θ2 = 0, are admissible, if a1 < b ρ
ρ+γω .

For a given level of a1 that satisfies the last condition, the steady state is unique. FOC (21)

implies q = 0 for ψss = b+ θ1 and FOC (22) implies a = 0 if

b+ θ1 − (b+ θ1)
γω

ρ+ γω
− a1 − θ1 = 0 ⇒ a1 = b

ρ

ρ+ γω
− θ1

γω

ρ+ γω
. (36)

The condition (S − ωW ) = 0 is satisfied if the sum of the third and fourth term in the steady

state value for Wss is zero. The fifth term in the steady state value for Wss is zero in the

third case and the second terms in the steady state values for Sss and Wss differ only by the

parameter ω in the denominator of Wss. The sum of the third and fourth term is zero if

bρ− a1(ρ+ γω)

2a2γω(ρ+ γω)
−

θ1
2a2(ρ+ γω)

= 0 ⇒ a1 = b
ρ

ρ+ γω
− θ1

γω

ρ+ γω
. (37)

4. The steady state values for the fourth case, θ1 > 0 and θ2 > 0, are admissible, if a1 ⋚ b ρ
ρ+γω .

The admissibility of the steady state does not depend on the level of a1. The steady state is

not unique for a given level of a1. FOC (21) implies q = 0 for ψss = b + θ1 and FOC (22)

implies a = 0 if

b+ θ1 − (b+ θ1)
γω

ρ+ γω
− a1 − θ1 + θ2 = 0 ⇒ a1 = b

ρ

ρ+ γω
− θ1

γω

ρ+ γω
+ θ2. (38)

The condition (S−ωW ) = 0 is satisfied, if the sum of the third, fourth, and fifth term is zero.

The sum is zero if

bρ− a1(ρ+ γω)

2a2γω(ρ+ γω)
−

θ1
2a2(ρ+ γω)

+
θ2

2a2γω
= 0 ⇒ a1 = b

ρ

ρ+ γω
− θ1

γω

ρ+ γω
+ θ2. (39)

The admissible steady state values do not differ for the first and the second case. This fact can be

seen by noticing that θ2 only enters into the steady state value expression of Wss. If the steady

state for the third case is admissible, the Kuhn-Tucker multiplier θ1 enters into the steady state

value expression for ψss, πss, Sss, and Wss with a positive sign. As a result, the steady state values

are greater for the third case than for the first and second case. We solve the critical parameter

combination for a1 to indicate the admissability of the steady states. If a1 is equal or greater than
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b ρ
ρ+γω the smaller steady state is admissible, the greater one is not. If a1 is less than this level, the

smaller steady state is not admissible, the greater steady state is. The smaller steady state does not

vary in size due to variations in a1; the greater steady state increases its size when a1 decreases. Due

to its impact on the size of the steady state values, we denote the critical parameter combination

for a1 as the critical level:

acrit = b
ρ

ρ+ γω
. (40)

The admissible steady state values for the fourth case are greater than the corresponding steady

state values for a given level of a1 in case 1, 2, or 3. The steady state values for the fourth case have

to be greater than the ones in the first and second case, because in the first and second cases θ1 does

not enter into the steady state value expressions. The steady state values for the fourth case have

to be greater than for the third case, because it can be seen from conditions (36) and (38) that θ1

has to be greater in the fourth case than in the third case for a given level of a1. The varying size of

the steady state values matters especially for the two state variables, S and W , because it implies

various carbon stabilization levels in the upper and lower boxes.

Proposition 2. If at least one Kuhn-Tucker condition is inactive in the steady state, the steady state

values are uniquely determined by the parameter values. The unique steady state is characterized

either by a1 ≥ acrit, θ1 = 0, and θ2 ≥ 0 or by a1 < acrit, θ1 > 0, and θ2 = 0. The former combination

provides smaller steady state values than the latter.

In the next step we analyze the dynamics toward the steady state. Depending on which Kuhn-Tucker

condition is active, we can divide the control space into four different regimes:

Regime 1: Moderate Sequestration: q > a > 0

Regime 2: No sequestration: q > 0 and a = 0

Regime 3: Complete Sequestration: q = a > 0

Regime 4: No activity: q = a = 0

We consider each regime as a singular dynamic system and check if it converges straight to a

unique steady state, or, if not, to which other regime it switches. The canonical systems and the

corresponding steady state values for each regime can be found in Appendix Section 5.2. The

dynamics can be distinguished by the possible tax paths.

Scenario 1. The initial values for the state variables, S and W , are low and the paths of the two

taxes, ψ and π are monotonically increasing.
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Scenario 2. The initial value is high for the state variable S and low for the state variable W . The

paths of the two taxes, ψ and π, are U-shaped. The sum of the initial values is smaller than the sum

of the specific steady state values, Sss +Wss, which correspond to the specific level of a1.

We investigate the dynamic system for both scenarios in particular. First we consider Scenario 1,

which implies that the path of the tax difference, λ, is monotonically increasing as well. The taxes

and their difference increase monotonically toward their steady state values. As a consequence the

initial levels of the taxes and their difference have to be smaller than their steady state values

and we can rule out Regime 4 as an initial regime under Scenario 1. Regimes 1, 2, and 3 remain

possible regimes to describe the dynamics towards the steady state. However, in the situation

where a1 is greater than or equal to its critical level, only Regime 2 can occur. The condition

θ2 = πss − ψss − a1 ≥ 0 is still fulfilled in the steady state for a1 ≥ acrit. For π to be monotonically

increasing towards its steady state value, the tax difference has to reach its maximum in the steady

state. Consequently, the dynamic system is described completely by Regime 2 and converges to

the unique steady state that is characterized by the smaller steady state values. On the path

towards the steady state, the amount of extraction monotonically decreases towards zero, the amount

of sequestration is constantly zero, and the stocks of carbon in the upper and in the lower box

monotonically increase towards their steady state values.

When a1 is below its critical level, θ2 has to become negative when the dynamic system moves

towards the steady state. When θ2 becomes negative, sequestration becomes positive, the dynamic

system switches towards Regime 1, with both extraction and sequestration being positive, but the

latter being smaller than the former. However, as the emission tax; ψ, and the tax difference, λ, con-

tinue to monotonically increase, the amount of extraction decreases and the amount of sequestration

increases. As a consequence, a second switching point emerges, when the path of extraction and

sequestration intersect. After this point in time, the first Kuhn-Tucker condition becomes binding

and the dynamic system switches towards Regime 3, which implies that the amount of extraction

and sequestration are equal. The Kuhn-Tucker multiplier θ1 = ψ − π u2

a2+u2
− a2b+a1u2

a2+u2
remains pos-

itive after the switching point because the tax difference is monotonically increasing towards the

steady state. However, the amount of extraction and sequestration are solely determined by the level

of π in Regime 3. As a result, both amounts are monotonically decreasing. The dynamic system

converges to the unique steady state which is characterized by the greater steady state values due

to the fact a1 < acrit. On the path to the steady state, the amount of extraction monotonically

decreases towards zero. The amount of sequestration is initially constant zero until the first switch-

ing point. Then it increases monotonically until the second switching point. Thereafter, it follows

the same path as extraction and decreases monotonically towards zero. The stock of carbon in the
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upper and lower box increase monotonically towards their steady state values, whereby the amount

of carbon in the upper box increases after the second switching point only by the natural transfer

rate. The more a1 is below its critical level, the earlier the dynamic system switches from Regime 2

to Regime 1. As both taxes and their difference start at positive initial levels, there exists a level of

a1 for which the dynamic system directly starts in Regime 1. In this situation, the dynamics follow

the same pattern as in the case of initial Regime 2 after the first switching point. When it holds

true that ψ0(
u2+a2

u2
− γω

γω+ρ − a1)− b a2

u2
− a1 > 0 is fulfilled, the dynamic system even starts directly

in Regime 3. For this situation to happen, a1 and a2 have to be rather small which implies that

sequestration costs are very low. The dynamics then follow the same pattern as in the case of initial

Regime 2 after the second switching point.

Proposition 3. Given Scenario 1: When a1 is greater than or equal to its critical level, the dynamic

system starts in Regime 2 and remains there on the complete path toward the steady state. When

a1 is smaller than its critical level, the succession of regimes is either 2, 1, 3 or 1, 3 or only 3,

however, the dynamics towards the steady state are uniquely determined by Regime 3.

In Appendix Section 5.2, we show that the steady state values of Regime 2 are smaller than the ones

of Regime 3 when a1 is below its critical level. This result is line with Proposition 2. In Figure 1, we

show the numerical solution for Scenario 1 and the two situations a1 = acrit and a1 < acrit.
10 In the

left window, we see that the optimal path for the situation a1 = acrit. In the right window, we see

the optimal path for the situation a1 < acrit. For our parameter values, the succession of regimes is

2, 1, and 3. However, the first switching point emerged already after 4 time units, so we do not show

it in the graphic. That implies that we would have started directly in Regime 1 for slightly lower

sequestration costs. We did not find a parameter combination that provided initial Regime 3 for

Scenario 1. The analytical determination whether Regime 3 can occur as initial regime requires the

inclusion of the eigenvectors in their analytical form. Unfortunately, the analytical representation

of the eigenvectors is too complex to allow a comprehensible investigation. Therefore, we make do

with the proposition that Regime 3 might occur as initial regime under Scenario 1, however, the

necessary parameter combination might describe a rather bizarre situation.

We turn now to the case, where the paths of both taxes are U-shaped. Scenario 2 implies that

the path of the tax difference, λ, is U-shaped as well. However, also for the U-shaped case, the paths

of the taxes approach their steady state values from below. As a consequence, the results under

Scenario 1 apply again for the movement of the dynamic system into the steady state. Depending

10We formulated this nonlinear constrained optimization problem in AMPL and solved it with the Knitro algorithm.
The parameter values are b = 60, γ = 1/200, ω = 1/10, ρ = 2/100, a2 = 2, u2 = 1, v1 = 0.0875, s = 3/10, and
Apreind = 600. These parameter values yield acrit = 58.5366. For the second situation, a1 < acrit, the parameter
value for a1 is 45. The initial value for W0 is 20000 Gt C in both situations.
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Figure 1: Numerical solution for q and a for Scenario 1

on the level of a1, the final regime leading to the steady state is described either by Regime 2 or

Regime 3, no matter which regimes previously occurred. The occurrence of the previous regimes

can be distinguished by the levels of S0 and the level of a1. We describe the possible dynamics by

considering each of the four regimes as an initial regime. Again, we investigate first the situation

where a1 is greater than or equal to its critical level whereby the final movement into the steady

state is described by Regime 2.

1. Initial Regime 1 implies initial values for the taxes that lead to q > a > 0. For this situation

to occur, we have to observe ψ0 < ψss, but λ0 > λss. The second condition implies that

S0 > Sss and π0 << πss, otherwise the tax difference could not be U-shaped. As both

taxes and their difference are first decreasing, the amount of extraction increases and the

amount of sequestration decreases. Therefore, a point in time emerges when λt = λss and the

dynamic system switches to Regime 2, within which it remains on the path towards the steady

state. The path of extraction is inversely U-shaped, the path of sequestration is monotonically

decreasing towards zero at the switching point and is constantly zero thereafter.

2. Initial regime 2 implies initial values for the taxes that lead to q > 0 and a = 0. For this

situation to occur, we have to observe ψ0 < ψss and λ0 < λss. The U-shaped path for the

tax difference implies that λ is below its steady state value the whole time. Therefore, the

dynamic system remains in Regime 2. The path of extraction is inversely U-shaped, and the
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path of sequestration is constantly zero.

3. Initial Regime 3 implies initial values for the taxes that lead to q = a > 0. For this situation

to occur, we have to observe π0 < πss and λ0 > λss. The second condition implies S0 > Sss.

The decreasing paths of the taxes and their difference implies that a point in time emerges,

when θ1 becomes negative and the dynamic system switches to Regime 1. This implies that

ψt < ψss and πt < πss but still λt > λss. As the taxes continue to decrease, another point in

time emerges when λt = λss and the dynamic system switches to Regime 2 within which it

remains on the path towards the steady state. In the initial regime the amounts of extraction

and sequestration follow the same path, which is monotonically increasing. After the first

switching point the path of extraction continues to increase, whereas the path of sequestration

decreases monotonically towards zero. After the second switching point, the path of extraction

is inversely U-shaped and the path of sequestration is constantly zero.

4. Initial Regime 4 implies initial values for the taxes that lead to q = a = 0. For this situation

to occur we must observe ψ0 > ψss and π0 > πss. The upper and lower boxes adjust solely due

to natural forces until the dynamic system switches from Regime 4 to Regime 3 which implies

πt < πss. Thereafter, the behavior of the dynamic system is equal to the previous case, where

the initial regime is Regime 3.

Now, we consider the situation where a1 is smaller than its critical level whereby the final movement

into the steady state is described by Regime 3.

1. Initial Regime 1 implies initial values for the taxes that lead to q > a > 0. For this situation

to occur, we have to observe ψ0 < ψss, π0 < πss, and λ0 < λss. The U-shaped paths of

the taxes and their difference allow two different successions of regimes. When the minimum

of the tax difference is smaller than a1, the dynamic system switches towards Regime 2 on

the decreasing part of the path and switches back to Regime 1 after the minimum of λ has

occurred and the taxes are increasing again. When the minimum of the tax difference is greater

than a1, the dynamic system remains within Regime 1, on the path through the minimum.

However, in both cases, there emerges a point in time on the increasing part of the tax paths

when the dynamic system switches to Regime 3 and remains there on the path towards the

steady state. In both successions, the path of extraction is inversely U-shaped. When it holds

true that λmin < a1, the path of sequestration is monotonically decreasing towards zero, is

constantly zero between the first and second switching point, and is monotonically increasing

until the third switching point. Thereafter, it follows the same path as extraction and decreases

monotonically towards zero. When it holds true that λmin ≥ a1, the path of sequestration is
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U-shaped until the only switching point, thereafter, it follows the same path as extraction and

decreases monotonically towards zero.

2. Initial Regime 2 implies initial values for the taxes that lead to q > 0 and a = 0. For this

situation to occur, we have to observe ψ0 < ψss, π0 < πss, λ0 < λss and additionally λ0 < a1

with θ2 > 0. In this case, the U-shaped paths of the taxes and their difference allow only

one succession of regimes. The dynamic system remains in Regime 2 until it holds true that

λt > a1, which can only occur when the dynamic system is on the increasing part of the paths

again. At that point in time, it switches to Regime 1. As the taxes continue to increase,

another point in time emerges when the dynamic system switches to Regime 3 and remains

there on the path towards the steady state. The path of extraction is inversely U-shaped,

the path of sequestration is constantly zero until the first switching point, is monotonically

increasing until the second switching point, and is then monotonically decreasing on the same

path as extraction towards zero.

3. Initial Regime 3 implies initial values for the taxes that lead to q = a > 0. For this situation

to occur, we have to observe ψ0 ⋚ ψss, π0 < πss, λ0 ⋚ λss and additionally λ0 > a1 with

θ1 > 0. The U-shaped paths of the taxes and their difference allow three different successions

of regimes. When the minimum of the tax difference is smaller than a1, the dynamic system

switches first to Regime 1 and thereafter to Regime 2 on the decreasing part of the taxes and

switches back to Regime 1 after the minimum of λ has occurred and the taxes are increasing

again. When the minimum of the tax difference is greater than a1 but at that point in time θ1

is negative, the dynamic system switches to Regime 1 and remains there on the path through

the minimum of λ. However, in both cases, there emerges a point in time on the increasing

part of the taxes when the dynamic system switches to Regime 3 and remains there on the

path towards the steady state. When the minimum of the tax difference is greater than a1

and at that point in time θ1 is positive, the dynamic system is in Regime 3 the whole time.

In all three successions, the path of extraction is inversely U-shaped. For the first succession,

the path of sequestration is first monotonically increasing until the first switching point, is

monotonically decreasing toward zero until the second switching point, is constantly zero until

the third switching point, is monotonically increasing until the fourth switching point and is

then monotonically decreasing on the same path as extraction towards zero. For the second

succession, there are only two switching points and the path of sequestration is similar to

the first succession without the part where it is constantly zero. Between the two remaining

switching points the path of sequestration is U-shaped. For the third succession, the path of
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sequestration is inversely U-shaped on the same path as extraction.

4. Initial Regime 4 implies initial values for the taxes that lead to q = a = 0. For this situation

to occur, we have to observe ψ0 > ψss, π0 > πss, λ0 > λss which implies S0 > Sss. The

U-shaped paths of the taxes and their difference allow three different successions of regimes

that are the same as in the previous case with initial Regime 3. The upper and lower boxes

adjust solely due to natural forces until the dynamic system switches from Regime 4 to Regime

3 which implies πt < πss. The possible paths of extraction and sequestration are the same as

for initial Regime 3 except for the beginning, when both paths are constantly zero until the

first switching point.

In both situations, a1 ≥ acrit and a1 < acrit, the path of S is U-shaped and the path of W is

monotonically increasing. As already mentioned, the succession of the various regimes depends on

the combination of various levels of S0 and various levels of a1. However, for a given level of a1, we

observe initial regimes in the order regime 2, regime 1, regime 3 and regime 4 for increasing levels of

S0. Especially initial regime 3 and 4 imply high initial levels for S. The description of the possible

dynamics under Scenario 2 revealed that sequestration may also be used from the beginning when

the initial conditions constitute a situation where the carbon cycle already differs substantially from

the equilibrium distribution of carbon between the upper and lower boxes.

Proposition 4. Given Scenario 2: All 4 regimes can occur as possible inital regimes. The succession

of the various regimes is determined by the combination of various initial levels of S and various

levels of a1. The final regime is again uniquely determined by the level of a1, which is either Regime

2 for a1 ≥ acrit or Regime 3 for a1 < acrit. In contrast to Assumption 1, the amount of sequestration

may be positive for some time even when a1 ≥ acrit.

The description of the various successions for the 4 initial regimes includes all possible dynamics.

However, some of the successions may only occur for some very special combinations of the initial

levels of S and the parameter values, especially the level of a1. As already mentioned, the complete

analytical determination of the various dynamics would require the inclusion of the eigenvectors in

their analytical form. However, the validity of Proposition 4 is not restricted. In Figure 2 we show

the numerical solution for Scenario 2, various initial levels of S0 above the preindustrial level, and

the two situations a1 = acrit and a1 < acrit.
11 In the left column the paths depict the solutions to

the situation a1 = acrit, in the right column the paths depict the solutions to the situation a1 < acrit.

In the left column, we have two different initial levels, the lower left window shows an enlargement

11We formulated this nonlinear constrained optimization problem in AMPL and solved it with the Knitro algorithm.
The parameter values are the same as for figure 1. The initial level of W0 is 20000 Gt C in each window.

21



0 150 300
0

0.5

1

time

G
t 

C

S
0
=2100 Gt C, a

1
=a

crit

0 200 400
1.5

2

2.5

3

time

G
t 

C

T=387

S
0
=2090 Gt C, a

1
<a

crit

0 150 300
0

0.2

0.4

0.6

0.8

1

time

G
t 

C

T=36

S
0
=2120 Gt C, a

1
=a

crit

0 200 400
2

2.5

3

time

G
t 

C

T1=59 T2=335

S
0
=2120 Gt C, a

1
<a

crit

0 20 40
0

0.05

0.1

time

G
t 

C

T=36

S
0
=2120 Gt C, a

1
=a

crit

0 200 400
1.5

2

2.5

3

time

G
t 

C

S
0
=2400 Gt C, a

1
<a

crit

q a q=a

Figure 2: Numerical solution for q and a for Scenario 2

of the first part of the middle left window. In the right column, we have three different initial levels.

The left column shows the optimal path for initial Regimes 2 and 3. The enlarged lower left window

highlights the period of complete sequestration even for the situation a1 = acrit. We were not able

to obtain a solution with initial Regime 1 for the given parameter values in the situation a1 = acrit.

The right column shows the optimal paths for initial Regime 1 and 3. We were not able to obtain

a solution with initial Regime 2 for the given parameter values in the situation a1 < acrit.

The investigation of the dynamics under Scenario 1 and 2 reveals that the dynamic system never

switches to Regime 4. As a consequence, the dynamics towards the steady state are only determined

by Regime 4 when the dynamic system is completely described by Regime 4. Under Scenario 2,

Regime 4 appears as an initial regime when the initial level of S is greater than its steady state

value associated with the specific level of a1. In Scenario 2, however, we restrict the sum of the
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initial values so that they are lower than the sum of the specific steady state values. As a result, the

natural forces in Regime 4 cause the upper and lower boxes to adjust until it is optimal to be active

again. Without this restriction, initial values can emerge for which the dynamic system remains in

Regime 4 the whole time. The dynamics are completely determined by the adjustment of the two

boxes by the natural forces. The resulting steady state values for Regime 4 depend therefore solely

on the initial levels:

Sssr4 =
ω(S0 +W0)

1 + ω
, Wssr4 =

S0 +W0

1 + ω
. (41)

The steady state values, Sssr4 and Wssr4, apply to the fourth case in the steady state analysis, where

both Kuhn-Tucker multipliers are positive. The values of θ1 and θ2 have to be chosen so that the

general steady state value expressions (30) and (31) match the specific steady state values (41) and

so that FOCs (21) and (22) are fulfilled. We already showed that steady state values for the case

where θ1 > 0 and θ2 > 0 are greater than the corresponding steady state values for the specific level

of a1. This result is confirmed because it is the preliminary condition for the initial values for this

case to occur. We can now extend Proposition 2:

Proposition 5. When both Kuhn-Tucker conditions are active in the steady state, the steady state

values are uniquely determined by the initial levels, S0 and W0. For this case, the dynamic system

is solely described by Regime 4.

In Appendix Section 5.3, we show the necessary parameter restriction so that Regime 2 and Regime

3 obey saddle path properties and that regime 4 obeys saddle path properties without parameter

restrictions. Given the initial values for S and W at the initial or switching points, we can choose

appropriate taxes so that the dynamic system converges to the steady state.

We complete our analysis by investigating the critical level, acrit, which we use to determine the

characteristics of the steady state and the dynamics towards it. If we choose another description of

the sequestration cost function without a linear term, we can conclude that sequestration will always

be utilized when it is optimal to take action at all. However, in our description of the sequestration

cost function, the level of a1 not only determines whether sequestration is just a temporary or the

long-run option but also the extent to which sequestration is utilized. The levels of the steady state

values increase when a1 decreases given that a1 < acrit is satisfied. The greater the distance between

acrit and a1 for acrit > a1, the earlier sequestration is utilized and the earlier the complete amount

of extracted carbon is sequestered. Consequently, an increase in acrit increases the effectiveness

of sequestration for a given level of a1. The effectiveness of sequestration in this two-box model

depends crucially on generating utility by using fossil fuels while delaying the resulting damage
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due to increased levels of carbon in the atmosphere into the future. As result, the effectiveness of

sequestration depends on the time preferences and the adjustment times of the two boxes. The

critical level, acrit, is determined by the discount factor and the adjustment parameters of the two-

box model. When the discount factor decreases, the critical level decreases as well. As a result,

the effectiveness of sequestration decreases because, with a lower discount factor, delaying damages

pays off less. When γ and ω decrease, the critical level increases. As a result, the effectiveness

of sequestration increases because, with lower adjustment factors, the adjustment time of the two

boxes decreases. A smaller value for γ implies a slower mixing of the two boxes. A smaller value for

ω implies a greater lower box, which in turn implies that the lower box can contain greater amounts

of carbon. The adjustment factors, γ and ω, can be estimated so that no variation in the prohibitive

level by them should arise. However, while approximating the carbon cycle with a two-box model,

varying the mixing speed and in the size of the lower box accounts for various assumptions about the

amount of carbon in the lower box that is active when it is in the equilibration process with the upper

box. In the context of our model, variations in the amount of carbon active in the lower box can

be used to approximate various injection depths for carbon sequestration. A deeper injection depth

goes along with a greater lower box and a slower adjustment process. Therefore, the effectiveness

of sequestration depends on the injection depth. Nevertheless, this conclusion depends on the fact

that the two adjustment factors may vary. In general, these two factors describe the effectiveness of

sequestration due to the inertia of the carbon cycle. Both factors are comparatively low in relation

to common discount factors, which implies that the critical level is close to the backstop price.

4 Conclusions

In this paper, we investigate optimal anthropogenic intervention into the global carbon cycle. We

applied a simple two-box model to include the atmospheric and the oceanic carbon reservoirs. The

two-box model allows us to analyze aspects of the global carbon cycle in a more appropriate way

than a simple proportional decay model. Therefore, the resulting steady states in our model differ

clearly from those resulting in proportional decay models. In our model fossil fuel extraction is

halted because of dangerous level of carbon in the atmosphere and not because fossil reserve run

out. This result is based on the nonrenewable features of the two-box model as well as on the

assumption that there is a choke price in our utility function for fossil fuel extraction. Additionally,

we included the option to sequester carbon by capturing CO2 and injecting it into the deep ocean.

The sequestration option does not constitute a backstop technology, as carbon is not removed from

the two-box model. The amount of extraction is determined by an emission tax and the amount of
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sequestration is determined by the difference between the emission tax and an sequestration tax. We

show that the taxes are either monotonically increasing for low initial levels of the upper box or U-

shaped for high initial levels of the upper box. After introducing quadratic-linear functional forms,

we used the linear term in the sequestration cost function to express the parameter combination that

distinguishes the steady states and the dynamics. We derived a critical level for this linear term that

indicates whether the movement towards the steady state is described either by sole extraction and

zero sequestration or by complete sequestration of the extracted amount. The steady state values

for the former case are smaller than for the latter case, implying that a final period of complete

sequestration leads to higher stabilization levels in the atmosphere and the ocean. The dynamics

before the movement towards the steady state are described either by sole extraction, extraction and

sequestration, complete sequestration, or even a period of inaction depending on the initial levels

of carbon in the upper box. Even with high sequestration costs, sequestration might be used as

temporary option, whereby with low sequestration costs, it constitutes the long-run option allowing

extended use of fossil fuels. The effectiveness of sequestration depends on the effect of delaying

the atmospheric carbon stock damage associated with fossil energy use. Consequently, the critical

level for the linear term in the sequestration cost function depends on the discount factor and the

adjustment parameters of the two-box model. A lower discount factor and a faster adjustment of

the two the boxes reduces the effectiveness of sequestration. We interpreted the variation in the

adjustment parameters of the two boxes as constituting a measure for various injection depths for

carbon sequestration.

Our two-box model is a strong simplification of the global carbon cycle. The exchange between

the two boxes is linear and therefore excludes feedback mechanisms in the global carbon cycle.

This simplification is justified to some extent for moderate carbon disturbances like a doubling of

the preindustrial level in the atmospheric reservoir. In order to obtain a better description of the

global carbon cycle, more boxes would have to be included, the different carbon pumps would have

to be modeled separately, and feedback mechanisms would have to be incorporated. Nevertheless,

the purpose of our model is not to predict various carbon stabilization levels for the atmosphere

and the ocean, but to incorporate in a stylized way important aspects of the global carbon cycle.

Additionally, we allowed carbon to be released to another reservoir than the atmosphere, i.e., we

allowed ocean sequestration. Without sequestration, the limiting factor, besides the accumulation

of carbon in the atmosphere, is the inertia of the system to transport carbon from the atmosphere

to the other reservoirs. With sequestration, it would be possible to show that carbon distribution

between the atmosphere and the ocean deviates less from the equilibrium distribution, which is what

we do in a following paper. Even with high sequestration costs, ocean sequestration can still be used
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as a temporary option to adjust large initial disequilibrium carbon distributions. Further research

might investigate the carbon cycle adjusting aspects of sequestration for various stabilization goals

under the explicit inclusion of a backstop technology.
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5 Appendix

5.1 Paths for ψ, π, and ψ − π

We state that the paths for ψ, π, and λ = ψ − π are either monotonically increasing or U-shaped

when it is optimal to take action at all. Therefore, we have to show that the paths for ψ and π

cannot have a maximum. In order to rule out this case, we use a line of argumentation similar to

[14] and [4]. First, we show that ψ cannot have a maximum, second, we extend this result for π and

λ, and third, we analyze the possible combinations of the two possible paths for the taxes.

Path for ψ: We consider the situation where ψ would have a maximum. At that point in time

q would have a minimum, but would increase thereafter. The steady-state value for q is zero.

Therefore, another point in time must emerge when ψ would reverse its sign and increase again. As

a result, there would be two points in time, t1 and t2, when ψ̇t1 = 0, ψ̈t1 < 0, and ψ̇t2 = 0, ψ̈t2 > 0

must be valid. From the equation of motion for ψ, it follows that

ψ̈t1 = −γπ̇ −D′′
SṠ < 0 and ψ̈t2 = −γπ̇ −D′′

SṠ > 0 (42)

would have to be fulfilled in order to reach a maximum for ψ at t1 and a minimum at t2. To

determine the sign of the right-hand side of this equation, we have to distinguish four different cases

at both points in time. The cases vary in the sign of π̇, the sign of Ṡ, and their absolute sizes at the
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two points in time:

t1 − Case1 π̇ > 0, Ṡ > 0, t2 − Case1 π̇ < 0, Ṡ < 0,

t1 − Case2 π̇ > 0, Ṡ < 0 |π̇γ| > |D′′
SṠ|, t2 − Case2 π̇ < 0, Ṡ > 0 |π̇γ| > |D′′

SṠ|,

t1 − Case3 π̇ < 0, Ṡ > 0 |π̇γ| < |D′′
SṠ|, t2 − Case3 π̇ > 0, Ṡ < 0 |π̇γ| < |D′′

SṠ|,

t1 − Case4 π̇ < 0, Ṡ < 0, t2 − Case4 π̇ > 0, Ṡ > 0.

(43)

First, we determine which combination of these cases can occur and which of them is in accordance

with a maximum of ψ at t1 and a minimum of ψ at t2. Obviously, any inclusion of the case 4 at

the two points in time would directly violate the necessary conditions (42). We can also exclude

any combination where π is decreasing at both points in time, because we assume that ψ has a

maximum at t1 and a minimum at t2. ψ is therefore monotonically decreasing between these two

points in time, but increasing again thereafter. When π is still decreasing at point t2, it would

continue to decrease, as ψ increases thereafter. Therefore, the transversality condition for π would

be violated. But a combination where π is increasing at point t1 and decreasing at point t2 can also

be excluded. For this to happen, π would have a maximum between t1 and t2. The corresponding

necessary condition therefore is that π̈ = −γωψ̇ < 0. But for the considered combination, ψ is

constantly decreasing between these two points in time. Therefore, the necessary condition for π

to have a maximum is not fulfilled. As a result, we only have to consider combinations where π is

either monotonically increasing or has a minimum. But if we observe case 2 at t1 and case 3 at t2,

π is constantly increasing and S is monotonically decreasing. But this combination, which allows

for a maximum of ψ at t1 and a minimum of ψ at t2, is only feasible if it is true that |π̇γ| > |D′′
SṠ|

at t1 and |π̇γ| < |D′′
S Ṡ| at t2. However, as ψ is monotonically decreasing between these two points,

whereby q is monotonically increasing, π̇ increases towards to t2, whereas the absolute size of Ṡ

slows down given that it is decreasing at both points in time. Therefore, the sign of the inequality

condition cannot reverse. This means that S has to have a maximum between t1 and t2 and π is

either constantly increasing or has a minimum, which means in turn that we only have to consider

case 1 or 3 at point t1 and case 3 at point t2. For S to reach a maximum, Ṡ must change signs

between t1 and t2. Therefore, an intermediary point, t̃, must emerge where S has its maximum.

We now determine in a second step whether these two remaining combinations are feasible for the

various regimes implied by the distinction between the various Kuhn-Tucker conditions in Section

3.3. For the general case in Section 3.2 the investigation of Regime 1 applies.

Regime 1: In order to observe a maximum for S in Regime 1, the necessary condition to be fulfilled

is S̈ = q̇− ȧ+γωẆ < 0 between t1 and t2. Given case 1 at t1, q is increasing and a is decreasing. As

a result, W must decrease for the necessary condition to be fulfilled. However, W can only decrease
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when there is a net transfer from the lower box to the upper box and when the net transfer also

exceeds the amount of sequestration. We know that the difference between q and a is increasing

towards t2, whereas case 3 states that S is decreasing. This is only possible if the net transfer into

the lower box is positive. Therefore, W must have a minimum between t̃ and t2, which implies

Ẅ = ȧ + γṠ > 0. The last condition is a contradiction, as both a and S are decreasing for the

combination of case 1 at t1 and case 3 at t2. In the other combination, namely case 3 at t1 and

case 3 at t2, π has a minimum between t1 and t2. Therefore, we cannot necessarily state, that a is

decreasing, because it could be the case that π is decreasing faster than ψ and therefore a increases.

But when a increases, the tax difference λ = ψ − π must have a maximum, as π has a minimum.

For the tax difference λ to have a maximum, it must hold that λ̈ = −D′′
SṠ < 0. As a consequence,

S must be increasing, which in turn implies that at the maximum of S, a is already decreasing

again, therefore the maximum condition would be violated and these two conditions cannot be both

fulfilled simultaneously.

Regime 2: In order to observe a maximum for S in regime 2, the necessary condition to be fulfilled

is S̈ = q̇ + γωẆ < 0 between t1 and t2. Note that q is assumed to increase between t1 and t2.

Therefore, γωẆ must be negative and greater in absolute terms than q̇. In order to see a decrease

in the carbon stock in the lower box, W must have increased and had a maximum before t̃, because

by assumption we have excluded situations where the initial level of S0 is low and the initial level

of W0 is high. For W to reach a maximum before t̃, it must hold true that Ẅ = γṠ < 0. However,

S is still increasing at that point in time (Ṡ > 0), which contradicts the assumption for first W and

then S to have a maximum.

Regime 3: In order to observe a maximum for S in regime 3, the necessary condition to be fulfilled

is S̈ = γωẆ < 0 between t1 and t2. The upper box, S, varies only in its size through the natural

transfer of carbon with the lower box. In order to see a maximum for S, the net transfer of carbon

from the lower box to the upper box has to be first positive but then negative. The switching point

from a positive transfer towards a negative transfer corresponds to the maximum point of S. After

this point in time, S becomes decreasing and W becomes increasing. If W was increasing before,

the sufficient condition for a maximum of S is violated: S̈ = ωγẆ < 0. If W was decreasing before,

the potential maximum point of S describes a situation where S and W are in equilibrium because

the transfer rate will be zero. But thereafter S has to decrease, which is only possible, if W is

relatively lower than S. But as we do not allow sequestration to be negative, this situation cannot

occur after a point in time, when both carbon stocks have already achieved an equilibrium point.

Therefore, we can also rule out that S has a maximum in this regime, regardless of whether the

path of sequestration is constantly decreasing or has a maximum.
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To sum up, we have shown that in all 3 regimes, the two remaining combinations are not feasible.

Therefore, we rule out the possibility that ψ has a maximum. As a consequence, we can state that

ψ will be either U-shaped or is monotonically increasing.

Path of π: Based on this conclusion we can extend the proposition to the path of π. When ψ

can have only one extreme point, π cannot reverse its sign twice. Additionally, it is not possible

for the path of π to approach its steady state value from above. Such a path would imply that π

is decreasing, whereas ψ is increasing. As a consequence, π could not achieve a steady state, as it

would continue to decrease. The steady state assumption and the transversality condition would be

violated. Consequently, we rule out the possibility that π has a maximum and, thus, we state that

π is either U-shaped or constantly increasing.

Path of λ: We extend the proposition for the tax difference, λ = ψ − π based on the result that ψ

and π are either monotonically increasing or U-shaped. When λ has an extremum, it must hold true

that λ̇ = ψ̇ − π̇ = 0. Consequently, either both ψ and π are increasing or decreasing. When both

ψ and π are monotonically increasing, which implies that S is monotonically increasing as well, it

must hold true that ψ̇ > π̇ the whole time, otherwise the transversality conditions would be violated.

Additionally, a maximum for λ would imply that π−ψ has a minimum. After λmax has occured, π̇

would be monotonically increasing and the transversality conditions would be violated. Therefore,

the maximum of λ must be followed by a minimum of λ. A minimum requires λ̈ = −D′′(S)Ṡ > 0,

which can only be fulfilled when S decreases. But for ψ and π to be monotonically increasing, S has

to increase monotonically as well. We state that λ has neither a maximum nor a minimum when ψ

and π are monotonically increasing. When ψ and π are U-shaped, λ can have an extremum when

both are still decreasing or when both are increasing again. A maximum for λ, while ψ and π are

decreasing, implies that π decreases faster than ψ for some time and that we observe a maximum

for λ at t1, a minimum for π at t2, and a minimum for ψ at t3. Note, that for the U-shaped case,

π has to reach its minimum before ψ, otherwise the sufficient condition π̈ = −γωψ̇ > 0 would be

violated. At t1, the maximum of λ requires Ṡ > 0 by λ̈ = −D′′(S)Ṡ < 0, whereas at t3 the minimum

of ψ requires Ṡ < 0 by ψ̈ = −γπ̇−D′′(S)Ṡ. As a consequence, S must have a maximum between t1

and t3 with the necessary condition S̈ = q̇ − ȧ+ γωW < 0. λ and ψ are decreasing between t1 and

t3. As a consequence, q is increasing, a is decreasing, and, therefore, W must be decreasing with

|γωẆ | > |q̇− ȧ|. S is decreasing after reaching its maximum, which requires W to increase, because

our two-box model does not allow the carbon stocks in both boxes to decrease. Thereby, W must

have a minimum at that point where S has a maximum when W is supposed to decrease before this

point. But with both Ẇ = Ṡ = 0, the sufficient conditions for the maximum and the minimum are

violated. As result, λ cannot have a maximum until ψ and π have passed their minima. Note that at
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the minimum of π, it holds true that π̇ = 0 and ψ̇ < 0, which implies that λ has to be decreasing as

well. After the two minima of ψ and π, both are monotonically increasing. Therefore, the previous

argumentation where both are monotonically increasing the whole time applies again. We state that

λ cannot have not a maximum when ψ and π are U-shaped, but must have a minimum.

Path combinations: The properties of the tax difference when ψ and π do not have a similar path

remain to be investigated. When π is U-shaped, ψ has to be U-shaped as well in order to fulfill the

sufficient condition for the minimum of π. But when ψ is U-shaped, it is not necessarily the case

that π is U-shaped as well. We cannot rule out the possibility that π might also be monotonically

increasing, even if this case never occurred when we parameterized the model and calculated paths

for various initial conditions. Nevertheless, when ψ is U-shaped, there occurs a point in time when

ψ̇ = 0 holds true, whereas π is monotonically increasing at that point in time, which implies that

π̇ > 0. As a result, λ̇ < 0 which implies that λ will be U-shaped like ψ. The minimum of λ has to

be at a later point in time than the minimum of ψ so that the argumentation used to show that λ

cannot have a maximum is not affected by this special case.

5.2 Canonical System for Regimes 1 to 4

regime 1: The canonical system for Regime 1 is
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, (44)

with the corresponding steady state values

ψssr1 = b, (45)

πssr1 =
bγω

ρ+ γω
, (46)

Sssr1 =
2sApreindv1(ρ+ γω) + bρ(γ + ρ+ γω)

2s2v1(ρ+ γω)
, (47)

Wssr1 =
−a1s

2v1(ρ+ γω) + 2a2sApreindv1γ(ρ+ γω) + bρ(s2v1 + a2γ(γ + ρ+ γω))

2a2s2v1γω(ρ+ γω)
. (48)

The steady state values, Sssr1 and Wssr1 do not just differ by ω in the denominator. The steady

state condition (S − ωW ) = 0 is violated. The dynamic system of Regime 1 does not converge to

an admissible unique steady state.
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Regime 2: The canonical system for Regime 2 is
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Ẇ

















=

















ρ+ γ −γ −2s2v1 0

−γω γω + ρ 0 0

− 1
2u2

0 −γ γω

0 0 γ −γω

















·

















ψ

π

S

W

















+

















2v1sApreind

0

b
2u2

0

















, (49)

with the corresponding steady state values

ψssr2 = b, (50)

πssr2 =
bγω

ρ+ γω
, (51)

Sssr2 =
2sApreindv1(ρ+ γω) + bρ(γ + ρ+ γω)

2s2v1(ρ+ γω)
, (52)

Wssr2 =
2sApreindv1(ρ+ γω) + bρ(γ + ρ+ γω)

2s2v1ω(ρ+ γω)
. (53)

The steady state values, Sssr2 and Wssr2, differ only by ω in the denominator of Wssr2. The steady

state condition (S − ωW ) = 0 is fulfilled. FOC (22) for the determination of a is fulfilled, with

either a1 = acrit and θ2 = 0 or a1 > acrit and θ2 > 0. For both combinations, the dynamic system

converges to a unique steady state that is characterized by low steady state values.

Regime 3: The canonical system for Regime 3 is
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, (54)

with the corresponding steady state values

ψssr3 =
(b− a1)(γω) + ρ

γω
, (55)

πssr3 = b− a1, (56)

Sssr3 =
2sApreindv1γω − a1ρ(γ + ρ+ γω) + bρ(γ + ρ+ γω)

2s2v1γω
, (57)

Wssr3 =
2sApreindv1γω − a1ρ(γ + ρ+ γω) + bρ(γ + ρ+ γω)

2s2v1γω2
. (58)

The steady state values, Sssr3 and Wssr3, differ only by ω in the denominator of Wssr3. The steady

state condition (S−ωW ) = 0 is fulfilled. FOCs (21) and (22) for the determination of q and a simplify

to q = a = b−a1−π
2(u2+a2) , which is fulfilled for the steady state values ψssr3 and πssr3. The dynamic system
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converges to a unique steady state that is characterized by large steady state values. The steady

state values for S in Regime 3 differ from those Regime 1 by Sssr3 − Sssr1 = ρ(γ+ρ+γω)(bρ−a1(ρ+γω))
2s2v1γω(ρ+γω)

.

The difference is positive when a1 < acrit, which is the condition for the steady state of Regime 3

to emerge.

Regime 4: The canonical system for Regime 4 is

















ψ̇

π̇

Ṡ

Ẇ

















=

















ρ+ γ −γ −2s2v1 0

−γω γω + ρ 0 0

0 0 −γ γω

0 0 γ −γω

















·

















ψ

π

S

W

















+

















2v1sApreind

0

0

0

















, (59)

with the corresponding steady state values

ψssr4 =
2sv1(ρ+ γω)(−Apred + s(S0+W0)ω

1+ω

ρ(γ + ρ+ γω)
, (60)

πssr4 =
2sv1γω(−Apred + s(S0+W0)ω

1+ω

ρ(γ + ρ+ γω)
, (61)

Sssr4 =
ω(S0 +W0)

1 + ω
, (62)

Wssr4 =
S0 +W0

1 + ω
. (63)

The steady state values, Sssr4 and Wssr4 ,differ only by ω in the denominator of Wssr4. The steady

state condition (S − ωW ) = 0 is fulfilled. FOCs (21) and (22) for the determination of q and a are

fulfilled with a1 ⋚ acrit but with θ1 > 0 and θ2 > 0. The steady state values are greater than the

specific steady state values for the given level of a1 in Regime 2 or Regime 3.

5.3 Stability Analysis for Regime 2, Regime 3, and Regime 4

Regime 2: In order to show the saddle path properties of Regime 2, we calculate the eigenvalues

of the system using theorem 1 of Dockner [3] p. 94:

p1,2,3,4 =
ρ

2
± [(

ρ

2
)2 −

K

2
±

1

2
(K2 − 4 ∗ Det(J))0.5]0.5, (64)

where J is the Jacobian of the dynamic system and K is due to Dockner [3] p. 100:

K = −
s2v1 + u2γ(1 + ω)(γ + ρ+ γω)

u2
, Det(J) =

s2v1γω(ρ+ γω)

u2
. (65)

33



The two necessary and sufficient conditions for the eigenvalues (64) to be real, with two of the

eigenvalues being positive and two being negative are due to theorem 3 of Dockner [3] p.96 are

K < 0 and 0 < Det(J) ≤
K2

4
. (66)

The determinant of Regime 2 is positive and K is obviously below zero. The last condition is fulfilled

if

(s2v1 + u2γ(1 + ω)(γ + ρ+ γω))2 ≥ 4s2u2v1γω(ρ+ γω). (67)

Given that condition (67) is fulfilled, the dynamic system in Regime 2 obeys saddle path properties.

Regime 3: The proof for Regime 3 follows the same line of argumentation, whereby the values for

J , the determinant of the Jacobian in Regime 3, and K are

Det(J) =
s2v1γ

2ω2

a2 + u2
, K = −γ(1 + ω)(γ + ρ+ γω). (68)

The determinant of Regime 3 is positive and K is obviously below zero. The condition 0 <Det(J)≤

K2

4 is fulfilled if

(1 + ω)2(γ + ρ+ γω)2 ≥ (4s2v1ω
2)/(a2 + u2). (69)

Given that condition (69) is fulfilled, the dynamic system in Regime 3 obeys saddle path properties.

Regime 4: The simple canonical system for Regime 4 allows to calculate directly the eigenvalues,

which turn out to be

p1 = 0, p2 = ρ, p3 = −γ − γω, p4 = γ + ρ+ γω. (70)

We can choose the initial values of the two taxes, ψ and π, in accordance with the initial values

of the state variables, S0 and W0, so that the constants associated with the positive eigenvalues

become zero. The dynamic system is then stable.
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