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Abstract

In this paper we consider daily financial data from various sources
(stock market indices, foreign exchange rates and bonds) and analyze
their multi-scaling properties by estimating the parameters of a Markov-
switching multifractal model (MSM) with Lognormal volatility compo-
nents. In order to see how well estimated models capture the temporal
dependency of the empirical data, we estimate and compare (generalized)
Hurst exponents for both empirical data and simulated MSM models. In
general, the Lognormal MSM models generate ‘apparent’ long memory in
good agreement with empirical scaling provided one uses sufficiently many
volatility components. In comparison with a Binomial MSM specification
[7], results are almost identical. This suggests that a parsimonious discrete
specification is flexible enough and the gain from adopting the continuous
Lognormal distribution is very limited.

Keywords: Markov-switching multifractal; scaling; return volatility.

1 Introduction

The development of the multifractal approach goes back to Benoit Mandel-
brot’s work on turbulent processes in statistical physics [12]. Its adaptation for
financial data resulted in the multi-fractal model of asset returns (MMAR) [13]
which provides a new time series model with attractive stochastic properties

1



accounting for the stylized facts of financial markets. However, the practical
applicability of MMAR suffers from its combinatorial nature and from its non-
stationarity due to the restriction to a bounded interval; in addition, it suffers
from a lack of applicable statistical methods, see [13, 9]. These limitations have
been overcome by the introduction of iterative versions of multifractal processes
[3, 10] which preserve the multifractal and stochastic properties but have more
convenient asymptotical properties.

In this paper, we expand on our previous paper [7] and compare the scaling
properties of the empirical data to those of estimated Markov-switching mul-
tifractal models. Based on the empirical estimates via Generalized Method of
Moments (GMM), simulations are conducted, and we compare the empirical
data and simulated ones in terms of their autocorrelation functions (ACF). In
addition, we compute the generalized Hurst exponent H(q) by means of the
modified R/S method [8] and the approach developed in [4, 5, 6]. We proceed
by comparing the scaling exponents for empirical data and simulated time series
based on our estimated MSM models. The structure of the paper is as follows:
In Section 2 we introduce the multifractal models. Section 3 reports the empiri-
cal and simulation-based results. A summary and concluding remarks are given
in Section 4.

2 Markov-switching multifractal models

In the Markov-switching multifractal model, financial asset returns are modelled
as:

rt = σt · ut (1)

with innovations ut drawn from the standard Normal distribution N(0, 1)
and instantaneous volatility being determined by the product of k volatility
components or multipliers M

(1)
t , M

(2)
t ..., M

(k)
t and a constant scale factor σ:

σ2
t = σ2

k∏

i=1

M
(i)
t . (2)

Each volatility component is renewed at time t with probability γi depending
on its rank within the hierarchy of multipliers and it remains unchanged with
probability 1−γi. The transition probabilities are specified by Calvet and Fisher
[3] as:

γi = 1− (1− γk)(b
i−k) i = 1, . . . k, (3)

with parameters γk ∈ [0, 1] and b ∈ (1,∞). Different specifications of Eq.
(3) have been imposed (cf. [10] and its earlier versions). By fixing b = 2 and
γk = 0.5, we arrive at a relatively parsimonious specification:

γi = 1− (
1
2
)(2

i−k) i = 1, . . . k. (4)
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For the choice of volatility components, a popular version of the MF process
adopts the Binomial distribution: M

(i)
t ∼ {m0, 2 − m0} with 1 ≤ m0 < 2.

Another prominent variant [13, 10] is the continuous version of the multi-fractal
process that assumes the volatility components to be random draws from a
Lognormal distribution1 (LN) with parameters λ and σm, i.e.

M
(i)
t ∼ LN(−λ, σ2

m). (5)

In line with the combinatorial settings (cf. [13, 2]) a normalisation of the
expectation value of M

(i)
t , that is, E[M (i)

t ] = 1 is imposed which leads to a
restriction on the paramenters of the Lognormal distribution:

exp(−λ + 0.5σ2
m) = 1 ⇒ σm =

√
2λ. (6)

Note that the admissible parameter space for the location parameter λ is
[0,∞) where in the borderline case λ = 0 the volatility process collapses to a
constant (the same when m0 = 1 in the Binomial case).

The above multi-fractal processes can be viewed as a special case of a
Markov-switching process which makes maximum likelihood (ML) estimation
feasible if the distribution of volatility components is discrete. In the Binomial
case, state spaces are finite, so that maximum likelihood estimation is possible,
cf. Calvet and Fisher (2004) [3]. However, the applicability of ML encounters
an upper bound for the number of cascade levels (about k ≤ 10) because of the
necessity to evaluate the 2k × 2k transition matrix for every realization. The
limits of current computational capability are reached with about 10 cascade
levels. A more fundamental limitation is the restriction to cases that have dis-
crete distributions of volatility components. Since multifractal processes with
continuous distributions (such as the Lognormal distribution) of the volatil-
ity components imply an infinite number of states, maximum likelihood is not
applicable to them. Lux [10] proposed the Generalized Method of Moments
(GMM) approach as an alternative, which relaxes these computational restric-
tions. GMM is typically applicable without computational restrictions and can
be used in the case of the Binomial MF model for larger numbers of cascade
levels (k > 10), and the Lognormal MF process. The analytical moment con-
ditions for implementing GMM (both the Binomial and the Lognormal model)
can be found in [10].

Using the iterative version of the multifractal model instead of its combina-
torial predecessor and confining attention to unit time intervals, the resulting
dynamics of eq. (1) can also be viewed as a particular version of a stochastic
volatility model. With this rather parsimonious approach, this pertinent MF
process nevertheless preserves the hierarchical structure of MMAR while dis-
pensing with its restriction to a bounded interval. The model also captures
some properties of financial time series, namely, outliers (extreme realizations),

1The lognormal distribution has the probability density function f(x, λ, σm) =

e−(lnx−λ)/(2σ2
m)

x·σm
√

2π
.
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volatility clustering ([11]) and the power-law behaviour of the autocovariance
function:

〈(|rt|q − 〈|rt|q〉) · (|rt+τ |q − 〈|rt+τ |q〉)〉 ∝ τ2d(q)−1, (7)

where for each qth moment and time lag τ , d(q) is the pertinent scaling
function depending on q (for the detailed proof, cf. [3]). Although models of this
class are partially motivated by empirical findings of long-term dependence of
volatility, they do, however, not obey the traditional definition of long memory,
i.e. asymptotic power-law behavior of autocovariance functions in the limit
t → ∞ or divergence of the spectral density at zero, see [1]. The iterative
MF model is rather characterized by only ‘apparent’ long memory with an
asymptotic hyperbolic decline of the autocorrelation of absolute powers over
a finite horizon and exponential decline thereafter. In the case of Markov-
switching multifractal process, the approximately hyperbolic decline, therefore,
holds only over an interval 1 ¿ τ ¿ 2k.

3 Comparison of empirical and simulated series

In this paper, we consider daily data for a collection of stock exchange indices:
the Dow Jones Composite 65 Average Index (Dow) and NIKKEI 225 Average
Index (Nik) over the time period from January 1969 to October 2004, foreign
exchange rates: British Pound to U.S. Dollar (UK), and Australian Dollar
to U.S. Dollar (AU) over the period from March 1973 to February 2004, and
U.S. 1 year and 2 years treasury constant maturity bond rates (TB1 and TB2,
respectively) over the period from June 1976 to October 2004. The daily prices
are denoted as pt, and returns are calculated as rt = ln(pt)− ln(pt−1) for stock
indices and foreign exchange rates and as rt = pt − pt−1 for TB1 and TB2.

We estimate the Lognormal model parameters via Generalized Method of
Moments (GMM). Table 1 presents the empirical estimates of the Lognormal
model for various hypothetical numbers of cascade levels (k = 5, 10, 15, 20)
using the same analytical moments as in [10] (numbers within the parentheses
are the standard errors). The pertinent estimates for the Binomial case have
been reported in [7]. For each time series, we find that the estimates for k ≥ 10
are almost identical. In fact, analytical moment conditions in [10] show that
higher cascade levels make a smaller and smaller contribution to the moments
so that their numerical values would stay almost constant. If one monitors
the development of estimated parameters with increasing k, one finds strong
variations initially with a pronounced decrease of the estimates which become
slower and slower until, eventually a constant value is reached somewhere around
k = 10 for each time series.

As a prelude to our Monte Carlo study comparing the empirical and simu-
lated scaling exponents, we plot the autocorrelation functions (ACF) for empiri-
cal and simulated time series with different k values (Figure 1). We find that the
simulated time series with k = 5 exhibits much faster decay than the empirical
data. In contrast, the ones with larger values of k show the ability of the MSM
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Table 1: GMM estimates of MSM model for different values of k.

k = 5 k = 10 k = 15 k = 20
λ̂ σ̂ λ̂ σ̂ λ̂ σ̂ λ̂ σ̂

Dow 0.148 0.983 0.139 0983 0.139 0.983 0.139 0.983
(0.018) (0.052) (0.018) (0.052) (0.018) (0.053) (0.018) (0.052)

Nik 0.289 0.991 0.279 0.990 0.280 0.991 0.280 0.990
(0.022) (0.036) (0.021) (0.036) (0.022) (0.036) (0.022) (0.036)

UK 0.096 1.053 0.079 1.058 0.078 1.058 0.078 1.058
(0.018) (0.027) (0.017) (0.026) (0.017) (0.027) (0.017) (0.027)

AU 0.140 1.012 0.121 1.014 0.120 1.015 0.120 1.014
(0.024) (0.065) (0.023) (0.065) (0.023) (0.066) (0.023) (0.065)

TB1 0.315 1.049 0.276 1.075 0.275 1.077 0.275 1.077
(0.021) (0.061) (0.019) (0.061) (0.019) (0.061) (0.019) (0.061)

TB2 0.469 1.013 0.403 1.047 0.401 1.048 0.401 1.049
(0.022) (0.056) (0.019) (0.054) (0.019) (0.054) (0.019) (0.054)

Note: Estimation is based on the Lognormal model. All data have been standardized before
estimation.

model to replicate the empirical autocorrelation function, namely, the hyper-
bolic decay of ACF. By recalling eq. (7), we recognize that the approximately
hyperbolic decline holds over an interval 1 ¿ τ ¿ 2k, therefore, a multifractal
process with a higher number of cascade levels implies a longer power-law range
of the autocorrelations, which means a larger region of apparent long-term de-
pendence. We have also studied the ACFs based on the Binomial model, and
they show pretty similar patterns. Studies on other time series have also been
pursued; we omit them here as they are qualitatively similar to the one of the
Dow Jones index.

We have computed H(q) by means of the generalized Hurst exponent (GHE)
approach [4, 5, 6] and H by means of the modified R/S method [8] for the same
data sets, and we proceed by comparing the scaling exponents obtained for
empirical data and simulated time series based on the estimated Lognormal
MSM models. For the results reported in Table 2, we focus on H(q) for q = 1
and q = 2 for the empirical time series as well as for 1000 simulated time
series of each set of estimated parameters. The values for H(1) and H(2) are
averages computed from a set of scaling exponents corresponding to different
τmax (between 5 and 19 days) for the stochastic variable X(t) in ([4, 5, 6]) defined
as the sum of absolute value of returns X(t) =

∑t
t′=1 |rt′ |. The second and

seventh columns in Table 2 report the empirical H(1) and H(2), and values in
the other columns are the mean values over the corresponding 1000 simulations
for different k values: 5, 10, 15, 20, with errors given by their standard deviations.
Boldface numbers are those cases which fail to reject the null hypothesis that
the mean of the simulation-based Generalized Hurst exponent values equals the
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Table 2: H(1) and H(2) for the empirical and simulated data.
H(1) H(2)

Emp k = 5 k = 10 k = 15 k = 20 Emp k = 5 k = 10 k = 15 k = 20

DOW 0.684 0.748 0.847 0.867 0.866 0.709 0.710 0.797 0.812 0.810
(0.034) (0.010) (0.017) (0.023) (0.025) (0.027) (0.011) (0.017) (0.020) (0.021)

AU 0.827 0.742 0.836 0.857 0.857 0.722 0.706 0.790 0.806 0.807
(0.017) (0.010) (0.019) (0.024) (0.025) (0.024) (0.012) (0.019) (0.021) (0.022)

TB1 0.853 0.857 0.908 0.912 0.910 0.814 0.782 0.823 0.824 0.823
(0.022) (0.035) (0.026) (0.027) (0.028) (0.027) (0.027) (0.023) (0.024) (0.023)

Note: Emp refers to the empirical estimates of H(1) and H(2). k = 5, k = 10, k = 15
and k = 20 refer to the mean and standard deviation of the exponent values based on
1000 simulated time series with pertinent k (Lognormal model). Bold numbers show those
cases for which we cannot reject identity of the Hurst coefficients obtained for empirical
and simulated data, i.e. the empirical exponents fall into the range between the 2.5 to 97.5
percent quantile of the simulated data.

empirical Generalized Hurst exponent at the 5% level based on the distribution
of our 1000 Monte Carlo samples. We find that the exponents from the simulated
time series vary across different cascade levels k. In particular, for the stock
market indices, we find coincidence between the empirical series and simulation
results for the scaling exponents H(2) for the Dow Jones index. For the exchange
rate data, we observe that the simulations successfully replicate the empirical
measurements of AU for H(1) when k = 10, 15, 20. In the case of U.S. Bond
rates, we find a good agreement for H(1) when k = 5 and for all k for H(2).
While the empirical numbers are in nice agreement with previous results in
[4, 5, 6], it is interesting to note that simulated data with k ≥ 10 have a tendency
towards even higher estimated Hurst coefficients than found in the pertinent
empirical records. Similar studies for the Binomial model as well as GHE for
other specifications of the stochastic variable X(t) can be found in [7].

To assess the ability to replicate empirical scaling behaviour, we also per-
formed calculations using the modified Rescaled Range (R/S) analysis intro-
duced by Lo (1991) [8], whose results are reported in Tables 3 to 5. Table 3
presents Lo’s test statistics for both empirical and 1000 simulated time series
(absolute returns) based on the Lognormal model with different values of k and
for different truncation lags τ = 0, 5, 10, 25, 50, 100. We find that the values
are varying with different truncation lags, and more specifically, that they are
monotonically decreasing for both the empirical and simulation based statistics.
Table 4 reports the number of rejections of the null hypothesis of short-range
dependence based on 95% and 99% confidence levels. The rejection numbers for
each single k are decreasing as the truncation lag τ increases, but the propor-
tion of rejections remains relatively high for higher cascade levels, k = 10, 15, 20.
The modified R/S approach would quite reliably reject the null of long memory
for k = 5, but in most cases it would be unable to do so for higher numbers of
volatility components, even if we allow for large truncation lags up to τ = 100.
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This appears to be harmony with the impression conveyed by Figure 1. The
corresponding Hurst exponents are given in Table 5. The empirical values of
H are decreasing when τ increases, and a similar behaviour is observed for the
simulation-based H for given values of k. We also find that the Hurst expo-
nent values are increasing with increasing cascade level k for given τ . Boldface
numbers are those cases which fail to reject the null hypothesis that the mean
of the simulation-based Hurst exponent equals the empirical Hurst exponent at
the 5% level, and we observe similar scenarios for the pertinent results based
on the Binomial model reported in [7]. There are significant jumps between the
values for k = 5 and k = 10 as in previous tables, and we observe a good overall
agreement between the empirical and simulated data for practically all series
for k ≥ 10, but not so for the MSM models with smaller number of volatility
components, e.g. k = 5.
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Figure 1: Autocorrelation function (ACF) for the Dow Jones index and simu-
lated time series (absolute returns). All simulations are based on the Lognormal
model with different k values.
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4 Summary and concluding remarks

In this paper, we have investigated the scaling behaviour of estimated Markov-
switching multifractal models with Lognormal volatility components. Based on
the empirical estimates via GMM, we have studied the simulated time series and
compared their autocorrelation functions with the ones from empirical data. In
addition to these qualitative comparisons, we have also calculated the empiri-
cal and simulated scaling exponents by using the Generalized Hurst exponent
and the modified R/S approaches. Comparing the results from the Lognormal
model to our previous study on the Binomial model [7], we observe that there is
not much difference between these discrete and continuous versions of multifrac-
tal processes. This finding is also in line with the very similar goodness-of-fit
and forecasting performance of MSM models reported in [10]. Our results also
demonstrate that the MSM models with a relatively large number of volatil-
ity components (k ≥ 10) are required to capture the long-term dependence of
absolute values of returns.
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