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1 Introduction

A latent factor model describes the influence of unobservable factors on observable data through factor
loadings. Identifying assumptions are required to obtain unique estimates for the model quantities
of interest, such as factors and loadings. The seminal paper of Anderson and Rubin (1956) deals
with the question of model identification and shows that after restricting the covariance of factor
innovations to unity the model is still invariant under orthogonal transformations of loadings and
factors. Anderson and Rubin (1956) call this the rotation problem and provide different solutions,

one of which is to constrain the loadings matrix to a lower triangular matrix.

Following the setup of Anderson and Rubin (1956), Geweke and Zhou (1996) discuss the Bayesian
analysis of a factor model. To deal with the rotation problem, they suggest an identification scheme
that has been widely used in many applications, sometimes in the slightly modified form of Aguilar
and West (2000). This scheme constrains the loadings matrix to a positive lower triangular matrix.
We will refer to this as positive lower triangular (PLT) identification scheme and to the accordingly
constrained estimation approach as the PLT approach. Bai and Wang (2012) show that the PLT
scheme solves the rotation problem also for the dynamic model. The PLT scheme guarantees a
unique mode of the likelihood underlying the posterior distribution. It does not, however, guarantee
the non-existence of local modes. The impact of constraints on the shape of the likelihood is discussed
e.g. by Loken (2005). The constraints influence the shape of the likelihood and thus the shape of the
posterior distribution. This is problematic since local modes can negatively affect the convergence
behavior of Markov Chain Monte Carlo (MCMC) sampling schemes used for estimation purposes,
see e.g. Celeux et al. (2000). As the constraints are imposed on particular elements of the loadings
matrix, inference results depend on the ordering of the data. This is likewise observed by Carvalho
et al. (2008). They call the variables whose loadings are constrained for identification purposes
factor founders and develop an evolutionary search algorithm to choose the most appropriate subset
of variables as factor founders. Similarly, Frithwirth-Schnatter and Lopes (2010) suggest a flexible
approach that imposes a generalized lower triangular structure on the loadings matrix. Altogether,
use of ex-ante identification via constraints on the parameter space may influence inference results

with respect to the model parameters and functions of these parameters.!

The use of parameter constraints for identification and their consequences on inference are also
discussed in the econometric literature for finite mixture models. Similar to factor models, finite
mixture models are typically not identified, as labels of the mixture components can be changed
by permutation. Thus, given symmetric priors, the posterior distribution has multiple symmetric
modes. Identification can be achieved by fixing the ordering of the labels with respect to at least

one of the parameters that are subject to label switching. However, if this identifying assumption is

! Accordingly, Lopes and West (2004) find that model selection criteria used to choose the number of factors are
influenced by the way the variables are ordered and thus by the position of the restrictions on the parameter space.



introduced by prior distributions, the choice of the constraint may have a substantial impact on the
shape of the posterior distribution and estimates derived therefrom, see Stephens (2000). Moreover,
the posterior distribution may have multiple local modes, which has severe consequences for the
mixing behavior of the Gibbs sampler. To cure this problem Celeux (1998) and Stephens (2000)
suggest to achieve identification via post processing the output of the unconstrained sampler using

relabeling algorithms.

Following the literature on finite mixture models, we propose an ex-post approach to fix the
rotation problem that is suitable for the Bayesian analysis of both static and dynamic factor models.
Ex-post identification, also recommended by Chan et al. (2013), can be framed as a decision theoretic
approach and provides a unique posterior estimator, compare Celeux (1998), Celeux et al. (2000),
and Stephens (2000). The suggested approach does not constrain the parameter space to solve the
rotation problem, but obtains model identification by means of re-transformations of the output of
a Gibbs sampler using orthogonal matrices. These orthogonal matrices are determined using a loss
function adequately defined for the static and dynamic factor model. The minimization of the loss
function in static factor models is based on the orthogonal Procrustes transformation proposed by
Kristof (1964) and Schonemann (1966). Additionally, we use a weighting scheme as discussed by
Lissitz et al. (1976), hence we refer it as the weighted orthogonal Procrustes (WOP) approach. For
the dynamic factor model we use a parametrization of the orthogonal matrix allowing for numerical
optimization of the defined loss function.? Inference results from the post-processed Gibbs output
obtained under different orderings of the variables differ only by a single orthogonal transformation.
Similarly, rotations of the solution with respect to criteria like Varimax or Quartimax can be applied
to facilitate interpretability of the results. Our approach is thus purely exploratory.

To illustrate the properties of our ex-post approach towards the rotation problem, we provide a
simulation study with static and dynamic factor models. We compare our inference results from the
WOP ex-post approach with those from the PLT ex-ante approach by Geweke and Zhou (1996). We
check both corresponding samplers for their convergence properties, as well as statistical and numer-
ical accuracy. Convergence is generally obtained faster for the W OP approach. Statistical accuracy
is similar to that of the PLT approach for parameters invariant under orthogonal transformations
and if the PLT approach does not produce pathological posterior distributions. Such pathological
cases do not occur under the WOP approach, which also shows much higher numerical accuracy
than the PLT approach.

In an empirical application, we analyze the panel of 120 macroeconomic time series from Bernanke
et al. (2005) using both the PLT and the WOP approach. As a first exercise, we choose series as fac-

2In an approach for sparse factor models, Kaufmann and Schumacher (2013) perform temporary orthogonal trans-
formations of the model parameters to satisfy an alternative identification scheme suggested by Anderson and Rubin
(1956), such that the outer product of the loadings matrix with itself is diagonal. Under this identification, the latent
factors are sampled and afterwards transformed back into the original parametrization. This approach works well for
sparse factor models, but seems to be inappropriate for the exactly identified exploratory factor models discussed here.



tor founders that are particularly fit for this purpose and estimate the model repeatedly. Afterwards,
we perform repeated estimations of the model under randomly chosen orderings of the series. The

WOP approach is found to be numerically more stable than the PLT approach in both exercises.

The paper proceeds as follows. Section 2 provides the dynamic factor model and discusses briefly
the identification of the model. Section 3 introduces the novel identification approach for static
and dynamic factor models. Section 4 illustrates the differences between the WOP and the PLT
approach by means of a simple example. Section 5 presents a simulation study that compares both
approaches. Section 6 provides an empirical illustration using the data set of Bernanke et al. (2005).

Section 7 concludes.

2 Model setup and identification problem

In a dynamic factor model the comovements in a data panel with N variables and time dimension 7'
are represented by K factors that relate to the data via loadings. The dynamic factor model takes

the form
Yt = AOft"i_Alftfl+~~-+ASft—S+eta t:]-a"')Ta (1)

where 1; is an N X 1 demeaned and stationary vector of observed data, f; is a K x 1 vector of K
latent factors, As, s = 0,...,.S representing N x K matrices of loadings, and e; denotes a N x 1
vector of errors with e; i N(0,%) and ¥ = diag(c?,...,0%).2 Further, the K factors follow a vector

autoregressive process of order P given as

fi = ®1fic1+Pofi o+ ... +Ppfi_pte, (2)

where ®,, p=1,..., P are K x K persistence matrices, and e i N(0,Ig). Setting the covariance
of ¢; to the identity matrix solves the identification problem up to the rotation problem as discussed
by Anderson and Rubin (1956) for static factor models. Bai and Wang (2012) show that this also
holds for the dynamic factor model described here. Further, the value of S has no impact of the

identification scheme. To illustrate the point we consider the likelihood with

© = (vec(Ap), ..., vec(Ag), vec(®1),. .., vec(Pp), diag(X)) (3)

3Note that the model could be further enhanced by an autoregressive process of order Q for errors e; as discussed
by Kaufmann and Schumacher (2013).



summarizing all model parameters, Y = (y1,...,yr) and fo = ... = f_naxqs—1,p—1} = 0 given as

T
LY|©) = /fT e /f1 tl;[lp(yﬂ@,ft, o fies)p(ftlO, fio1, oo fiep)dfy .. dfr (4)
TN T 1 T 5 5
= / / (277)_2‘2’_265(13{2 ((yt *ZAsft—s)/E_l(yt ZAsft—s)>}
T 1 t=1 s=0 s=0
TK T 1 r P L
(277)_T|QE|_5 exp _5 Z(ft - Zq)pft—p)/(ft - Zépft—p) dfl cee dfT-
t=1 p=1 p=1
4

The likelihood is invariant under the following transformation.® Define for any orthogonal K x K

matrix D the transformation

0 = (vec(Ag),...,vec(Ag),vec(®y),...,vec(Pp),diag(X)) (5)
= (vec(AgD),...,vec(AgD),vec(D™ @1 D), ... vec(D ' ®pD),diag(X)) = H(D)O,

with
(D' ® In(st1)) 0 0
H(D) = 0 Ipe([D'®D7Y) 0 |, (6)
0 0 In
where |det(H~1(D))| = |det(D)~WE+D+HE+D| = 1. For completion, considering f; = D~'f;,

t=1,...,T, and df, = | det(D)|df; = df; and taking into account that the transformation has no
impact on the range of parameters yields £(Y]0) = £(Y|©), i.e. the likelihood remains the same
under the transformation in Equation (5). We will refer to this invariance of the likelihood as the

rotation problem.

The invariance of the likelihood kernel is transferred to the posterior distribution and thus posterior
estimators, when the chosen a priori distribution are as well invariant under the transformation
described in Equation (5). As the rotation problem does not involve ¥, we choose the commonly used

conjugate prior given as

(D) = H Fﬁgz‘m O.i—z(a0i+1) exp {_5022} ) (7)

4The static case arising for S = P = 0 corresponds to the closed form likelihood given as

T
_Tn _z 1 , _
(21)" 7 |AoAp + 3| Eexp{QZy;(AOAO+E) lyt}.

t=1

With regard to invariance of the likelihood, the same caveats as in the dynamic case apply.



The priors for Ag, s =0,...,5 and ®,, p=1,..., P are chosen as
w(Py,...,Pp) xe, >0, (8)

and

S

(Ao, ..., Ag) = H(QW)’% |QAS|’% exp {—;(vec(As) - ,LLAS)'QXSI(vec(AS) - ,UAS)} (9)
5=0

respectively. The normal prior for {As}sS:o is in line with the specification of Bai and Wang (2012),
but does not impose constraints. The constant prior for {<Dp}§:1 likewise follows the specification
of Bai and Wang (2012), or, more generally, the specifications for Bayesian vector autoregressive
modeling by Ni and Sun (2005). Additional stationarity constraints can be imposed by demanding
that the eigenvalues of the companion matrix of {(PP};:])D:I are all less than 1 in absolute value, see
e.g. Hamilton (1994, ch.10). Note that the eigenvalues of the companion matrix are unaffected by
the transformation in Equation (5).> We require that all mean vectors are set to zero, i.e. yup, = 0,
§=0,...,5and Qp, =T ®Ig, s=0,...,5 with T a positive diagonal N x N matrix. The so far

stated posterior distribution
p(@|Y) X E(Y|®)7T(E)7T(©l7 R (pP)W(A(]? s 7AS) (10)

is then invariant under the transformation in Equation (5).

The model setup is directly accessible in state-space form. This allows for sampling using the
methodology presented in Carter and Kohn (1994). Appendix A gives a detailed description of the
corresponding Gibbs sampler, which we will call the unconstrained Gibbs sampler in the following,
because it does not impose any constraints on the loadings matrix in order to solve the rotation prob-
lem. The unconstrained Gibbs sampler can access all orthogonal transformations of the parameter
space described by Equation (5).

Conversely, there exist several constrained sampling approaches, which solve the rotation problem
by means of imposing constraints on the loadings matrix. In a model with K factors, the scheme of
Geweke and Zhou (1996) constrains the first K rows and columns to form a positive lower triangular
matrix, hence we call it the positive lower triangular (PLT) identification scheme. This is obtained
by using a Dirac Delta prior at zero for all elements above the diagonal. The positivity constraints

are imposed by either accepting only such draws with exclusively positive diagonal elements or,

5The constant prior for {@p};f:l can also be replaced by normal priors with zero mean and a covariance matrix that
equals the unity matrix times a constant, since this distribution is also not affected by the transformation in Equation
(5).
6 Analogous to the random relabeling approach of Frithwirth-Schnatter (2006), mixing can be sped up by adding
random orthogonal transformations of the parameter space in each draw.



alternatively, by using prior distributions truncated below at zero for the diagonal elements.” In

Chapter 4, some properties of the PLT approach are discussed in more detail.

Leaving the model unidentified with respect to the corresponding K (K — 1)/2 parameters and
the signs of the factors and the corresponding column vectors of the loadings matrices, can also
be understood as a parameter expansion of the model, introducing as additional parameter the
orthogonal matrix D that varies in each iteration of the sampler. As D is only identified conditional
on a subset of the model parameters, it qualifies as a working parameter in the sense of Meng
and van Dyk (1999) and van Dyk and Meng (2001), being redundant, but useful in the estimation
process. Gelman et al. (2008) argue in favor of expanding a model by redundant parameters in
order to improve a sampler’s mixing behavior. A similar parameter expansion approach has been
suggested for static factor models by Chan et al. (2013). Whereas usually, parameter expansion
approaches involve deliberately sampling the additional parameters, for the unconstrained sampler
discussed here, leaving the model partially unidentified automatically results in the evolvement of
an additional parameter governing the state of the sampler with respect to the directed parameters.
This state parameter D can be expressed in terms of an orthogonal matrix that affects the directed
parameters via H(D). The task of the ex-post identification approach discussed in the following
section is therefore to remove the effect of the state parameter D in such a way that all the draws

from the sampler can be assumed to have originated from the sampler in a unique state D.

3 An ex-post approach towards the rotation problem

The rotation problem is solved when the uniqueness of the estimator derived from the posterior dis-
tribution is ensured. The uniqueness is ensured when the invariance of the posterior distribution
under the transformation in Equation (5) is inhibited. This is possible via ex-ante restrictions on the
parameter space hindering the mapping of any points within the admissible parameter space by or-
thogonal matrices. While ex-ante restrictions are routinely applied in many econometric frameworks,
ex-post identification is prominent for finite mixture models, see Celeux et al. (2000), Stephens (2000),
Frithwirth-Schnatter (2001, 2006) and Griin and Leisch (2009).8 To address the rotation problem hin-

"In a similar approach, Aguilar and West (2000) use a Dirac Delta prior at one for the diagonal elements, which
also solves the scaling indeterminacy, so the variances of the factor innovations can be freely estimated. Yet another
approach follows the scheme by Joreskog (1979), where the top K x K section of the loadings matrix is constrained to
the identity matrix. In turn, all elements of the covariance matrix of the factor innovations can be freely estimated.
This approach is discussed in more detail in Bai and Wang (2012).

81n the context of finite mixture models ex-post identification is used as the posterior is invariant under permutation
of mixing components, i.e. when label switching (Redner and Walker, 1984) occurs in the output of an unconstrained
sampler. Richardson and Green (1997) advise to use different identifiability constraints when postprocessing the
MCMC output. For finite mixtures Stephens (2000) and Frithwirth-Schnatter (2001) propose the use of relabeling
algorithms that screen the output of the unconstrained sampler and sort the labels to minimize some divergence
measures, e.g. Kullback-Leibler distances. The main idea behind the relabeling approach in finite mixtures is that the
output of the unconstrained sampler in fact stems from a mixture distribution. The mixing is discrete and occurs via



dering inference, we propose an ex-post approach for Bayesian analysis of dynamic factor models,
which can also be motivated as a decision-theoretic approach, see e.g. Stephens (2000).

The suggested ex-post identification approach is based on the observation that the unconstrained
sampler provides a realized sample {6(7)}71?:1 from the posterior distribution which can equivalently
be interpreted as a sample taking the form {H (D(T))G(T)}f?:l, i.e. a sample given as a transformation
of the realized sample by an arbitrary sequence of orthogonal matrices {D(T)}fi:l. All samples taking
the form {H (D(’"))@(’“)}f“:1 are assigned the same posterior probability. Due to this indeterminacy,
we refer to the unconstrained sample as orthogonally mixing. Each of the interpretations would
result in a different estimate of ©. To distinguish between the different interpretations of the form
{H (D(T))G)(r)}f;l, and correspondingly ensure uniqueness of the estimate, we advocate the use of
a loss function approach allowing for discrimination of the loss invoked under different orthogonal
transformations of the realized sample with respect to parameter estimation.

If for any point the minimal loss can be uniquely determined, orthogonal mizing is immaterial
for parameter estimation, the rotation problem is fixed, and the corresponding estimator is uniquely
identified. Following Jasra et al. (2005), we define a loss function as a mapping of the set of possible
estimators {©*} and each of the parameter values © within the parameter space on the real line,
ie. L: {0} x ©® — [0,00) such that

L(©",0) = mDin{LD(G)*, O(D))}, st. D'D=1, (11)

with Lp(©*,0(D)) denoting for given ©* the loss invoked for any transformation of © as described
in Equation (5). The optimal estimator, corresponding to the optimal action in a decision-theoretic

framework, is then defined as

0* = i L(©*,0)p(0]Y)do. 12
wg min [ L(O7.0)p(O]) (12)

For computational reasons, an Monte Carlo (MC) approximation is used for the integral involved in

Equation (12), thus we obtain

R
1
0" = in —Y L(0,0"), 13
arg min | 7 ; ( ) (13)
where ©() » = 1,..., R denotes a sample from the unconstrained posterior distribution. Based on

the defined loss function the following algorithm is implemented. For a given initialization of the
estimator O, solve for each point Equation (11). Then for given a sequence {D(r)}ffz:1 find a corre-

sponding estimator ©* and iterate until convergence. The choice of the loss function is restricted with

permutations of the labels. The relabeling algorithm fixes the invariance of the likelihood with respect to a specific
permutation based on a decision criterion and reverses thus the mixing.



regard to solvability and uniqueness of the solution to the particular minimization problem. Since the
relative entropy, also known as the Kullback-Leibler distance, between the posterior distribution and
the distribution of interest, vanishes as the number of draws from the posterior distribution goes to
infinity, see Clarke et al. (1990), this measure is obviously an appropriate choice for the loss function.
Moreover, a quadratic loss function produces estimators that are first-order equivalent to the esti-
mators obtained under a Kullback-Leibler loss function in many cases, see Cheng et al. (1999). Thus

we suggest the following quadratic loss function for the considered dynamic factor model denoted as

— LDJ((’—‘)*’ @(7”) (D(T’))) + LD72(@*7 @(T‘)(D(T))) 4 LD73(®*, @(T)(D(r))),

with

S

Lpa(07,07(DM) = 3"t [(AD(DD) — A (AD(DY) - A%)] (15)
s=0

= tr [([\(T)D(r) — A (A D) — [\*)} ’

P

Lpa(©7,60(DM)) = S ur|(@f) (D) - a5y (@) (DD) - @p)] (16)
p=1

P
= S u [( DO D) — @ty (DD D) - @;)} ’
p=1
Lps(©*,00(DM)) = tr[(diag(T) — diag(X")) (diag(X) — diag(X"))], (17)

where A" = (Aér)/, . ,/\g)/)/7 o = (CI>Y)I, cey Cbg)/)’ and A* = (AY,...,A¥), respectively. The
dependence on the orthogonal matrix D is thus operationalized as As(D) = A;D, s =0,...,S and
¢,(D) = D'®,D, p=1,...,P. Using the MC version of the expected posterior loss results in the

following minimization problem

R
{{D"L,,0°} = argmin ¥ Lp(0*,0 (D)) st. DYDY =1 r=1,... R (18)

r=1
Note that the standard static factor model is nested in the above for S = P = 0. For illustration, the
solution of the optimization problem is discussed for the static as well as the dynamic factor model,

as the solution principle for the static case applies for the dynamic case as well.

Static Factor Model A solution to the optimization problem stated in Equation (18) applied to
the static factor model is obtained iteratively via a two-step optimization. The algorithm needs

initialization with regard to ©* = {vec(A*), diag(¥*)}, where we choose the last draw of the



unconstrained sampler for convenience.

Step 1 For given ©* the following minimization problem for D) has to be solved for each
r=1,..., R, ie.

DY) = argmin Lp (0,0 (D™)) st DU'DC) =1 (19)

The solution of this orthogonal Procrustes (OP) problem is provided by Kristof (1964)
and Schonemann (1966), see also Golub and van Loan (2013). It involves the following
calculations:

1.1 Define S, = AUVA*,

1.2 Do the singular value decomposition S, = U,M,V,, where U, and V, denote the
matrix of eigenvectors of S,.S. and S..S,, respectively, and M, denotes a diagonal
matrix of singular values, which are the square roots of the eigenvalues of S,.S.. and
S1.Sy. Note that the eigenvalues of S,.S]. and S..S, are identical.

1.3 Obtain the orthogonal transformation matrix D) = U, V.

For further details on the derivation of this solution, see Schonemann (1966). Note that
if the dispersion between the cross sections is rather large, the solution may be improved
via consideration of weights, turning the problem to be solved into a weighted orthogonal
Procrustes (WOP) problem, see e.g. Lissitz et al. (1976) and Koschat and Swayne (1991).
Thus Step 1.1 above is altered into

1.1a Define S, = ATV WA*,

where the weighting matrix W has to be diagonal with strictly positive diagonal elements

and is initialized as the inverses of the estimated lengths of the loading vectors, i.e.

R -1
W=R (Z \/(/_\(7')/_\(7’)/) © I(S+1)N> . (20)
r=1

Consecutively, we use as weights a function of the number of factors and the determi-

nants of the estimated covariance matrices, which are a measure invariant to orthogonal

transformations, i.e. W = diag(wy, ..., w(g41)n), where
a1
L\~ (r) )
T * N *\/ .
w; = det E;(Ai — A = A7) . i=1,...,(S+1)N. (21)

The weighting scheme scales the loadings in such a way that the estimated covariance

matrix has determinant 1 for each variable.



Step 2 Choose A* and ¥* as

- 1 R ~ 1 R
A== "A"DM  and Z*:EZE(”. (22)

As Step 1 minimizes the (weighted) distance between the transformed observations and the
given A*, it provides an unique orientation to each sampled A In Step 2, the estimator is
determined based on an orientated sample. For arbitrary initial choices of A* taken from the
unconstrained sampler output, less than ten iterations usually suffice to achieve convergence
to a fixed point A*. Convergence is assumed if the sum of squared deviations between two

suiccessive matrices A* does not exceed a predefined threshold value, say 1077,

The following proposition summarizes the suggested ex-post approach for the static factor model.

Proposition 3.1. The ex-post approach solves the rotation problem for the static factor model.

Proof. The orthogonal matrix D) that minimizes the loss function in Equation (19) representing
the orthogonal Procrustes problem is unique conditional on almost every O and ©*, where the
elements in ©) are random variables following a nondegenerate probability distribution as implied
by the chosen prior distributions. The availability of a unique solution to the orthogonal Procrustes
problem providing a minimum is shown by Kristof (1964), Schonemann (1966) and Golub and van
Loan (2013) and for the weighted orthogonal Procrustes problem by Lissitz et al. (1976). Following
Golub and van Loan (2013) the minimization problem stated in Equation (19) is equivalent to

the maximization of tr(D"AVA*), where the maximizing D(T) can be found by calculation of

the singular value decomposition of ATVA*. If U, (AT A*)V/! = = diag(m, W mE )) is the
singular value decomposition of this matrix and we define the orthogonal matrix Z, = V/D (’“),UT,
then

K K
YA () A *\ r _ (kk k k
tr(DUVACYA*) = (DU M, V) = (2, M) = Y 2FFmP <N ",
k=1

The upper bound is then attained by setting D(") = U, V!, which implies Z, = I. Note that there
exist points, however, where at least one singular value of A A* is zero. In these cases, the left and
right eigenvectors related to these singular values are not uniquely determined and thus no unique
solution to the orthogonal Procrustes problem exists. However, these points occur with probability

Z€ero.

The unsolved rotation problem implies that within the parameter space pairs of points can be de-
fined, with two points being pairwise orthogonal transformations of each other according to Equation
(5). Denote such a pair as ©1) and ) with 0 = H(Dy)©W) | where Dy is an orthogonal matrix.

To show that the rotation problem is solved by the suggested ex-post approach, one has to show

10



that no such pairs can be defined after postprocessing. After postprocessing, @) and ©@ take the
form H(D1)OW and H(D3)O? respectively, where D;, i = 1,2 implies minimal loss with regard to
©*. Since D; and Dy are uniquely defined as shown above and H(D2)0?) = H(DyD2)0™ we have
consequently DgDy = D1, where we use the fact that the product of two orthogonal matrices is itself
an orthogonal matrix, and orthogonal matrices commute. Assuming without loss of generality that
D, = Ik, we have Dy = D{). This implies that after postprocessing all points that can be represented
as orthogonal transformations of ©(1) are collapsed into ©") as the point invoking minimal loss and

thus enter the parameter estimation as ©(). [

Next, we consider the case of the dynamic factor model. The corresponding ex-post approach is

based on an extended loss function considering the dynamic factor structure as well.

Dynamic Factor Model The algorithm for the dynamic factor model differs with regard to Step

1 from the algorithm presented for the static factor model.

Step 1 For given ©* the following minimization problem for D) has to be solved for each
r=1,...,R, ie.

D) = argmin(Lp1(0*, 07 (D)) + Lp»(0*,07 (D)) st. DD =1 (23)

The solution is based on numerical optimization using a parametrization of D) ensuring
orthogonality. Since every orthogonal matrix D can be decomposed into a reflection
matrix F' with det(F') = det(D) = +1 and a corresponding rotation matrix which can be
factorized into K* = [{(i,7) : i,5 € {1,...,K},j > i}| Givens rotation matrices, we can

parameterize any orthogonal matrix as

Dy = Fi i jyijeq,.. k)55 Gigx i det(D) =1,
D_=F._ H(z’,j):i,je{l,...,K},j>i Gijx if det(D) = —1,

D=

where

11



and

1, fori#r=s#j
gun - 91K cos(V(iz)), forr=s=idiandr=s=j
Gijik = : : , with g,s = ¢ —sin(y ), forr=j,s=1i,
gK1 * 9KK sin(y(iz)),  forr=i,s=j,
0, else,

and 7(; ;) € [—m, m) for all {(i,7) : 4,5 € {1,...,K},j > i}.” This parametrization allows

for a numerical optimization providing two matrices D( " and D). where D) is then

+
chosen as
DY) =arg_min {Lp_(6",6(D")), Lp (6",6(D"))}. (25)
p" ptr

As the starting value for the numerical optimization we choose the solution defined by the
WOP algorithm applied to Lp (0%, 0 (D)) only. Convergence is quickly achieved
and the overall improvement of the target value is generally very small, lying below 3%

for all considered data scenarios.'®

Step 2 Choose O as

H(DM)e", (26)

||M:u

Following the line of arguments presented in case of the static factor model, we state the properties
of the proposed ex-post approach towards the rotation problem for the dynamic factor model in form

of two propositions.

Proposition 3.2. The orthogonal matriz D) that minimizes the loss function in Equation (23) is
unique conditional on almost every O and ©*, where the elements in O) are random variables

following a non-degenerate probability distribution as implied by prior distributions.

Proof. The proof of Proposition 3.2 is given in Appendix B. O

Proposition 3.3. The ex-post identification approach solves the rotation problem for the dynamic

factor model.

9This parametrization resembles the one used by Anderson et al. (1987), which is different with respect to the
domain of the angular parameters, which is v ;) € [-5,5), whereas in our decomposition, it is v ;) € [—m, 7).
Extending the domain accordingly allows to reduce the number of reflection parameters from K to 1, hence, our
approach is more parsimonious with respect to the number of parameters, and, having all but one of the parameters
living in the continuous space, is more easy to handle in optimizations.

10T he accuracy of the numerical optimization procedure has been assessed via comparison of the numerical with the
analytical solution in the static case.
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Proof. The unsolved rotation problem implies that within the parameter space pairs of points can
be defined, with two points being pairwise orthogonal transformations of each other according to
Equation (5). Denote such a pair as ©1) and ©?) with ©(2) = H(Dy)®W, where Dy is an orthogonal
matrix. To show that the rotation problem is solved by the suggested ex-post approach, one has
to show that no such pairs can be defined after postprocessing. After postprocessing, ©1) and
0@ take the form H(D1)®(1) and H(D2)9(2) respectively, where D;, ¢ = 1,2 implies minimal
loss with regard to ©*. Since Dy and Ds are uniquely defined as shown in Proposition 3.2 and
H(D9)©®? = H(DyD;)OW we have consequently DgDy = Dj, where we use the fact that the
product of two orthogonal matrices is itself an orthogonal matrix, and orthogonal matrices commute.
Assuming without loss of generality that D; = Ix, we have Dy = D{. This implies that after
postprocessing all points that can be represented as orthogonal transformations of 0w are collapsed

into ©) as the point invoking minimal loss and thus enter the parameter estimation as ©(1). O

As the minimum of the loss function in Equation (14) is unique for almost every ©* and O
there exists no orthogonal transformation of the postprocessed ©(") that can further reduce the value
of the loss function. Note that the ex-post identification approach yields a unique estimate for almost
every input {0} with finite R conditional on the initial choice of ©*. A single round of the
WOP approach thus generates a unique sequence {D(T)}f;l for almost every Gibbs output with
R < oo and a unique updated ©*. This argument applies iteratively until convergence providing a
sequence {Dy)}ﬁzl

At convergence, we have that all orthogonal transformations of the sample based on a single or-

thogonal matrix, say D,., imply the same loss at convergence and the alter the estimator accordingly

as
1 R R ! R
ot ( (D)o — Z > H(D..) H (D) ( (D)6l — Z ff))@(r))
r=1 r=1 r=1
1 R R / R
_ = Ztr <H(D**D(r) o _ Z **D(r) (r)> (H(D**D(r) e _ Z **D(T) (r))
r=1 r=1 r=1

Note that after the first iteration of the proposed ex post approach the difference of two distinct
initializations with regard regard to the two implied sequences of orthogonal matrices, say {DY)}le
and {Dgr)}f?:l is captured within the sequence {DY) Dg)/}ﬁzl, where we observe in all applications
that this series converges to a unique orthogonal matrix, say Diq, for each r = 1...., R. This implies
that the effect of different initializations are mitigated at convergence up to an transformation based

on a single orthogonal matrix.

We consider it an important advantage that the estimator implied by the defined loss function

invokes the same loss and likelihood value as any orthogonal transformation of the parameter esti-
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mator, which reflects the ex-ante invariance concerning a specific choice for the orthogonal matrix
involved in H(D). To obtain a well-interpretable result, the user is free to apply an orthogonal
transformation D,, to the resulting ex-post identified posterior distribution afterwards. Methods
like Varimax or Quartimax can be applied to the postprocessed Bayes estimates, compare Kaiser
(1958).

4 Comparison of ex-ante and ex-post solutions of the rotation prob-

lem

To illustrate the proposed ex-post approach towards the rotation problem we consider a static factor
model, i.e. S = P = 0, and compare it to the ex-ante approach proposed by Geweke and Zhou (1996)
for Bayesian factor analysis. In the ex-ante scheme the parameter space of the loadings is constrained

to a positive lower triangular (PLT') matrix, i.e.

!/

A1 A1 ... AN1
0 Ao Mg ... A

A= M2 with Ai>0i=1,... K. (27)
0 0 Mgk .. ANK

This is achieved in Maximum Likelihood factor analysis by constraining the upper triangular ele-
ments of the loadings matrix and finding the maximum of the accordingly constrained likelihood. In
Bayesian factor analysis, the constraints are introduced by accordingly defined prior distributions,
which are highly informative. In particular, a Dirac Delta prior is used for every \;; with ¢ < k, and
the prior on (N, ..., \ix) for i < K is K — i + 1-variate Normal truncated below at zero along the
first dimension. These constraints could equivalently be imposed ex-post based on a loss function de-
fined in correspondence with the one in Equation (14). Following Stephens (2000), the corresponding

risk criterion can be formulated as

K 1
=33 tog [I(3(D) = 0)] Zlog D) > 0)] + (ZZ (D) - >>, (28)

=2 k= i=1 k=1

71—

where log(0) is defined by its limit value —oo. The MC version of this loss function subject to D'D = T
can be minimized by performing a QR decomposition of A’. However, the resulting estimator and
its corresponding orthogonal transformation do not invoke the same loss.

A well-known issue under the PLT scheme is that inference results depend on the ordering of the
variables. This has been observed e.g. by Lopes and West (2004), Carvalho et al. (2008) or recently

Chan et al. (2013). The reason for this ordering dependence can be motivated as follows. Consider
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the factor model given as y; = Af; + e;. Then consider a N x N permutation matrix P that is
premultiplied to y; resulting in Py; = PAf; + Pe;. Following Chan et al. (2013), when A has PLT
form, then PA almost surely does not have PLT form, since the set of matrices satisfying the PLT
constraints under both orderings has Lebesgue measure zero. This implies that almost all admissible
points under one set of PLT constraints are inadmissible under a different set of PLT constraints.
Consider the transformation of a (posterior) distribution that satisfies the PLT constraints under a
certain ordering of the data (PLT|O;) into a distribution that satisfies the PLT constraints under a
different ordering of the data (PLT|O3), i.e.

PLT|0y — PLT|Os = {Da,, : Ao, Dag, € PLT|O2} for all Ao, € PLT|O1. (29)

This transformation involves an infinite number of orthogonal matrices Dy in order to let the trans-
formed matrices satisfy the second set of constraints.!! For the (posterior) distribution to remain
unchanged except for an orthogonal transformation, there would have to be a unique orthogonal

matrix performing this operation for every A admissible under the first set of constraints.

A further issue is multimodality. Imposing a lower triangularity constraint onto A without addi-
tionally demanding positive signs on the diagonal elements ensures local identification, see Anderson
and Rubin (1956). Thus every reflection of a subset of columns of A yields the same likelihood
value. Jennrich (1978) calls this phenomenon transparent multimodality. As Loken (2005) shows,
introducing nonzero constraints leads to another type of multimodality, sometimes referred to gen-

wine multimodality.!?

Whereas the constraints ensure that the parameter space contains only one
global mode, they may induce multiple local modes that can no longer be mapped onto each other by
axis reflections. Following the notion of Millsap (2001), imposing constraints may induce a solution
from an equivalence class that is different from the equivalence class containing the true parameters,
where an equivalence class corresponds to all points by the orthogonal transformation of the model

parameters given in Equation (5).

To illustrate the issue of order dependence and multimodality, we discuss a small example that
demonstrates the effect of the PLT restrictions on the shape of the likelihood. We start with a set
of parameters for a model with K = 2 orthogonal static factors having unit variance and N = 10

variables, of which the first five are arranged in three different orderings, while the remaining five

Al matrices A already satisfying both sets of constraints are transformed by the identity matrix, whereas all
matrices whose top K x K section is identical are transformed by the same orthogonal matrix. Finally, for those
matrices whose top K x K section is singular, there exists no unique orthogonal matrix, see also Chan et al. (2013).

12Rubin and Thayer (1982) claim that this issue is also relevant in maximum likelihood confirmatory factor analysis,
which is refuted by Bentler and Tanaka (1983), who attribute these findings to numerical problems. Such numerical
problems, however, are potentially relevant for Bayesian factor analysis.
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stay identical. This data set is simulated using as parameters

_( 0.100 —-0.200  0.500 0.600  0.100 0.174 —0.153 —0.470 0.186 —0.577 /(30)
0 0.000  0.200 —0.100 0.400 —0.900 0.429 -0.392  0.652 0.282 —0.541

and
¥ = diag(0.990, 0.920, 0.740, 0.480, 0.180, 0.786, 0.823, 0.354, 0.886, 0.374). (31)

The three orderings we consider are the original one above, denoted Y'|Oq, the second with ordering
2,3,1,4,5,6,7,8,9,10, denoted Y|Oq, and the third with ordering 5,2,1,3,4,6,7,8,9,10, denoted Y'|Os.
We first obtain the principal components estimate for A, which is afterwards transformed by
D+ 10y, Daxjo, and Dy, respectively, to satisfy the PLT constraints for each of the three orderings
Y'|O1, Y|O2 and Y'|Os respectively. Of course, all three solutions attain the same log likelihood value.
Next, we consider all possible orthogonal transformations of A* under the three orderings. Those
orthogonal transformations that are merely rotations can be expressed by an orthogonal matrix
D, with det(D4) = 1. Those that involve a label switching between the factors or a reflection
about a single axis require an orthogonal matrix D_ with det(D_) = —1. As can be seen from the
decomposition of orthogonal matrices described in Equation (24), all orthogonal matrices in the R? are
expressible as a product of one rotation and one axis reflection. For illustration purposes, we replace
the axis reflection by a permutation, which just adds a rotation by 7 to it, but leaves the determinant
unchanged at -1. We first consider the rotations by applying a grid for the rotation angle between
—m and w. To incorporate the effects of the permutation, we also apply the grid of rotation angles to
the loadings matrix with permuted columns. A permutation implies a label switching, accordingly
the constraints on the loadings of the first factor are exchanged with constraints on the loadings of
the second factor. To illustrate the effect of the identification constraints, all transformations are
afterwards subject to the initial PLT constraints, i.e. all unconstrained parameters are transformed
by the orthogonal matrix, the two parameters that are constrained to positivity are set to a small

value € > 0 and the loading that is set to zero remains zero.™

Figure 1 shows the results of the exercise. The solid lines correspond to the transformations
by means of rotations and the dashed lines to the transformations by means of a permutation and
subsequent rotation. While under the first ordering, the likelihood is almost perfectly flat, hence the
identification constraints have almost no effect at all, under the second ordering, the descent from

the global mode is also quite flat in one direction, but considerably steeper in the other direction.

13Note that if there were no constraints, an orthogonal transformation would leave the likelihood value unchanged,
and if there was merely the zero constraint, there likelihood profile on the circle would be bimodal under rotations
with two identical modes exactly 180 degrees apart, see Loken (2005), and another two modes would evolve under the
label switching and rotation from an identical likelihood profile, but shifted by 90 degrees.
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Under the third ordering, the likelihood declines steeply in both directions. This result corroborates
the finding in Carvalho et al. (2008) that some orderings of the data, corresponding to a particular
choice of factor founders, provide more favorable inference results than others. Aside from the shape,
the permutation and subsequent rotation induces a second mode, which is usually slightly lower than

the first one. This mode is even present under the presumably well-behaved third ordering.

To illustrate the consequences for Bayesian analysis, we estimate the model parameters under
all three orderings, incorporating the PLT constraints. We then repeat the estimation with the
unconstrained sampler, and finally post-process the results of the unconstrained sampler using the
WOP approach. The first row of Figure 2 shows the output of the unconstrained Gibbs sampler with
respect to the loadings parameters of variable 8 on both factors, Ag, under the three orderings, plotted
as Gibbs sequences on the left and as bivariate contour plots on the right. The second row shows the
according sampler output under the PLT constraint, and the third one the output post-processed
with WOP. In all cases, 20,000 draws have been discarded as burn-in, another 20,000 have been
kept. The posterior distribution of Ag from the unconstrained sampler clearly shows its invariance
with respect to orthogonal transformations, whereas the shape of the bivariate posterior distribution
of A\g under the three sets of PLT constraints varies in accordance with the likelihood profile shown
in Figure 1. Eventually, the unconstrained Gibbs output postprocessed with WO P shows the same
shape under all three orderings, hence being ordering-invariant, and is clearly unimodal. Unlike the
PLT ex-ante approach towards the rotation problem, the WO P ex-post approach uses all information
from the likelihood, including information on \;; for i < k, which is overridden in the PLT approach
by the informative priors on the loadings of the factor founders. This does not only lead to ordering
dependence of the resulting posterior estimates, but may also evoke multimodality of the posterior

distribution.

5 Simulation study

To evaluate the properties of the proposed WO P ex-post approach, we now perform several simulation
experiments, where we use the PLT ex-ante approach as a benchmark. The simulation experiments
are designed to analyze the convergence, statistical and numerical properties of both approaches.
We consider 24 different scenarios with the following features in common: First, at least 20% of
the variation in the data is explained by the factors. Second, the simulated loadings matrices A all
satisfy the PLT constraints, so the output from the PLT approach can be directly compared to the
simulated parameters. Third, the diagonal elements of Ay are chosen such that their explanatory
power is the average of the explanatory power of all loadings on the same factor, which qualifies them

as factor founders in the sense of Carvalho et al. (2008).

We simulate data sets with 7" = 100 and 7" = 500, respectively, using either N = 30 or N = 100
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variables. Each of these scenarios is paired with K = 2 and K = 4 stationary factors, which are
either static or follow VAR(1) or VAR(4) processes. The factor loadings are simulated according
to the aforementioned conditions, where A = Ag, i.e. S = 0. We investigate the corresponding 24
different scenarios. In all cases, the number of factors is assumed to be known. The priors are chosen
as given in Chapter 3 with hyperparameters Ts = 100, s = 0,...,5, ¢ = 1, and «ag; = Bo; = 1,
i=1,...,N.

Unlike the PLT approach, the WOP approach does not yield results where the estimated A is
positive lower triangular. The actual values for all elements ©* used in the simulation are known,
however, therefore it is possible to find the orthogonal transformation of the estimated ©* that min-
imizes the loss according to Equation (14), where no weighting scheme is used. This transformation
treats the estimation errors of all entries of all elements of ©* alike, whereas transforming them such
that A satisfies the PLT constraints reduces the errors of the constrained elements to zero at the
cost of the inflating the errors of the remaining elements. Thus minimizing the loss for the estimate
obtained from WOP might be considered giving WOP an unfair advantage. Therefore, we apply
the same transformation on the estimates obtained under the PLT constraints, thus reducing the

errors for the parameter estimates as well.

First, we analyze the convergence properties of the PLT and WOUP approaches. Convergence is
checked using the test by Geweke (1991), adjusting for autocorrelation in the draws by means of the
heteroscedasticity and autocorrelation-robust covariance estimator by Newey and West (1987). We
discard the initial 5,000 draws of the sampler and fix the length of the sample to be kept at 10,000
draws. While no convergence is found for the most recent 10,000 draws, the sequence is extended
by another 1,000 draws. The burn-in sequence is not allowed to extend 100,000 draws, so we do not
extend the sequence any further then and assume that it will not converge. Convergence statistics
are evaluated for orthogonally invariant quantities only, i.e. the sum of squared loadings per variable,
the idiosyncratic error variances, and the determinants of the persistence matrices of the factors at
each lag. The total number of parameters monitored is therefore 2N + P, and convergence is assumed
if the Geweke statistic indicates convergence for 90% of the quantities, where the tests use a = 0.05.
Convergence for the WOP algorithm is assumed if the sum of squared differences between ©* in two
subsequent iterations falls below 1072, We simulate 50 different samples for each scenario, which
do not all converge for a burn-in limited to 100,000 draws. We therefore report both the number of
cases where no convergence is attained and the convergence speed for 25 randomly selected converged
sequences for each scenario. Table 1 shows the results. The scenarios with K = 2 factors do not
experience any difficulties with respect to convergence, neither for the PLT approach nor for the
WOP approach. The latter, however, requires on average about 600 additional draws on top of
the initial burn-in of 5,000 draws, whereas the former requires about 1,500 additional draws. The

scenarios with K = 4 factors require more iterations to converge and sometimes fail altogether. In
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particular, the scenario with P = 4, N = 100 and 7' = 100 stands out. It fails to converge for 4
out of 50 samples under the WOP approach and in 21 out of 50 samples under the PLT approach.
Occasional non-convergence can be observed in some other scenarios for the PLT approach, while
the WOP approach always converges. Beyond the initial burn-in, the W OP approach requires on
average another 4,000 draws to converge, while whe PLT approach needs another 8,000. Note,
however, that monitoring convergence of orthogonally invariant quantities that are functions of the
parameters is not the same as monitoring convergence for the directed parameters in the case of the
PLT sampler. If convergence is indicated for the orthogonally invariant quantities, estimates for the
directed parameters may still perform poorly for the reasons discussed in Section . Yet, focusing on
these quantities is the only feasible approach for comparing convergence behavior of the WOP and
PLT approaches. Convergence of the directed parameters, however, always implies convergence of
the orthogonally invariant quantities, hence the results can serve as a lower bound for the actual

convergence in the PLT approach.

Second, we analyze the statistical properties of the posterior distributions obtained under both
identification approaches. Table 2 reports the squared correlation coefficient between the simulated
factors and the estimated factors. The results are overall similar for WOP and PLT in the scenarios
with K = 2 factors. In scenarios with K = 4 factors, however, PLT sometimes performs considerably
worse than WOP. The large standard deviations in these cases reveal that this is due to particular
samples, indicating that under circumstances convenient for PLT, the results are similar to those
obtained with WOP. Conversely, the WOP scheme provides at least as good results as the PLT
approach for all model setups. Table 3 shows the root mean-squared errors (RMSE) for the loadings
parameters. Since the models involve up to 2,000 loadings parameters, we only report the 5, 25, 50,
75 and 95 % quantiles of the RMSE for each parameter. With the single exception of the model
with N =30, T'= 500, K = 2 and P = 4, all reported quantiles are lower for WOP than for PLT.
In several models, particularly such models with static factors, the difference is negligible, whereas
in other models, particularly those with high lag orders in the VAR process generating the factors,
results are substantially in favor of WOP. Table 5 reports the RMSE for the persistence parameters.
These parameters only exist in 16 out of the 24 models, and there are PK? of them in each model,
hence their number is ranging between 4 and 64. Even though all parameters could be reported for
the small models, due to the size of the large models, we again report the 5, 25, 50, 75 and 95 %
quantiles of the RMSE. Judging by the median, the RMSE is often similar and tends to be better for
WOP than for PLT. The upper quantiles, however, reveal that particularly in models with a more
complex dynamic factor structure, WOP fares better than PLT. If we want to use large values for
P, it thus seems advisable to use WORP rather than PLT for the estimation. Generally, estimates
for quantities invariant to orthogonal transformations are very similar for PLT and WOP, as seen

for the idiosyncratic variances. This consequently also holds for estimates for the product of factors
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and loadings, i.e. the systematic part of the model.'* The posterior distributions obtained under
the PLT constraints tend to be non-elliptical, as seen in Figure 2 and discussed in Section 5. This
can also be highlighted by looking at the difference between AF’ and AF’, where F = 1 1),
e.g. measured as the Frobenius norm of the matrix of differences. This measure of divergence is
generally much larger under PLT than under WOP, for scenarios with K = 4 dynamic factors, the

divergence can be up to 1,000 times larger.

Eventually, we assess the numerical properties of both approaches, using 25 converged sequences.
The directed parameter estimates are again transformed as described before. Table 6 shows the
numerical standard errors for the loadings parameters. For all the models, the numerical standard
errors are substantially larger for PLT than for WOP, particularly for models with a K = 4 factors
and more complex persistence patterns in the factors. Looking at parameters invariant to orthogonal
transformations, the verdict is different: Table 7 shows very similar results for the median numerical
standard error for PLT and WO P, while the right tails reveal substantial differences for some models
in favor of WOUP. The same holds for the product of factors and loadings, which are not explicitly
reported here. The persistence parameters in the factors, again a set of directed parameters, are
evaluated in Table 8. Once again, the numerical standard errors are small for WOUP, but large for
PLT.

Altogether, the simulation study shows that both identification approaches yield very similar
inference results for parameters invariant to orthogonal transformations. Modest improvements can
be obtained by skipping ex-ante identification and using the WOP approach instead. Conversely,
when inference on directed parameters is concerned, the WO P approach provides much better results
than the PLT approach. These results hold for statistical as well as numerical properties. Since
convergence is checked based on orthogonally invariant quantities only, the poorer performance of the
estimates from the PLT approach is likely due to the non-elliptical shape of the posterior distributions
and possible multimodality. These properties are induced by the ex-ante constraints and make the
posterior distribution difficult to handle. Using the unconstrained sampler and postprocessing its

output by the WOP approach prevents such problems.

6 Empirical example

To illustrate the WOP approach, we apply it to a data set of 120 macroeconomic time series from
Bernanke et al. (2005). The time series are measured at monthly frequency over the period from
January 1959 until August 2001, and undergo different types transformations to ensure stationarity.
These transformations are described in detail by Bernanke et al. (2005). We replicate one of the
model setups of Bernanke et al. (2005), with S = 0, K = 4 factors and P = 7 lags in the factor

14Results not reported here, but available upon request.
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dynamics. Instead of considering the Fed Funds rate as an observable factor and the three remaining
factors as latent, we assume that all factors are latent. The W OP approach allows for the estimation
of factor-augmented vector-autoregressive models as well, however, this is beyond the scope of this
paper.

First, we perform 20 repeated estimations of a specific ordering of the data using the PLT and the
WOP approach. The four data series that are then affected by the PLT constraints, hence the factor
founders, are the Fed Funds (FFYF), the industrial production (IP), the monetary base (FM2), and
the consumer price index (PMCP). To make results under both approaches comparable, the posterior
means under WOP are rotated such that they satisfy the PLT constraints. The required orthogonal
matrix @ is found by first performing the QR decomposition A’ = QR, see e.g. Golub and van
Loan (2013). Taking into account the signs of the diagonal elements of the corresponding R gives
the additional column reflections to produce a loadings matrix satisfying the PLT constraints. The
remaining model parameters can then be transformed accordingly. Figure 3 shows the 20 Bayes
estimates for all four factors under both approaches. The correlation between the Fed Funds rate
and the first factor is 0.9989 for PLT and 0.9987 for W OP. The numerical variation of the first two
factors is slightly larger under the PLT approach compared to the W OP approach, while it is much
larger for the last two factors. This result underlines that WOP provides Bayes estimates that have

superior numerical properties.

Next, we consider 20 different orderings of the time series and estimate the accordingly specified
factor model for each of them both by PLT and WOP.'> Table 9 shows the average standard
deviation over all 480 loadings parameters for each of the 20 different orderings of the variables. While
the average standard deviations under the WO P approach vary only little, they deviate substantially
from each other under PLT. Moreover, the smallest average standard deviation under PLT is almost
as small as under WO P, while all other average standard deviations under the PLT approach are
bigger. Figure 4 shows the results of the factor estimates, where the results under both approaches
are orthogonally transformed such that the PLT structure holds with respect to the initial four factor
founders. The results under the W OP approach are virtually identical compared to the first exercise,
where the average correlation between the first factor and FYFF is again 0.9987. This illustrates
that the estimation under the WOUP approach is indeed invariant to the ordering of the variables.
Results obtained under the PLT identification show clear variations, which are much bigger than
under the conveniently ordered time series. The average correlation between the first factor and
FYFF is now only 0.8418, with 12 out of the 20 orderings reaching a correlation of more than 0.99,
but 6 out of them failing to exceed even 0.7. Orthogonally mapping pairs of parameter estimates
obtained under the different orderings onto each other yields an average deviation, measured as the

Frobenius norm of the matrix of differences, that is about 15 times larger for the estimates obtained

15The number of different orderings, or choice of factor founders, is prohibitively large, attaining 197 million, so we
choose only a small random sample.
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from the PLT approach, compared to those obtained from the WOP approach. This underlines the
order dependency of the estimation under the PLT identification approach. The correlation results
correspond to the result of the regression of the estimated onto the simulated factors in the simulation
study in Section 5, shown in Table 2. It must be noted that while rather convenient orderings for

PLT exist, they still do not outperform the results obtained under the WOP approach.

Figures 5 and 6 show the corresponding estimates for the factor loadings, giving the median as
well as the 10% and 90% quantiles of the estimates. While the median under PLT with conveniently
chosen factor founders resembles that under WOP, the range of the estimates is much wider. For
randomly chosen orderings of the data series, the median under PLT is generally much closer to
zero than the median under WOP. In summary, the results of the empirical example underline the
results of the simulation study and highlight that the W OP identification approach has favorable

numerical properties and provides ordering invariant inference.

7 Conclusion

We propose a novel ex-post approach to solve the rotation problem in Bayesian analysis of static and
dynamic factor models. It has been common practice to impose constraints on the loadings matrix
ex-ante by using truncated and degenerate prior distributions on its upper triangular elements,
such that the sampler exclusively draws lower triangular loadings matrices with positive diagonal
elements (PLT). If the PLT approach is used, however, inference results have been observed to be
order-dependent. Thus we suggest to refrain from imposing ex-ante constraints via according prior
distributions. Instead, we propose to use an orthogonally unconstrained sampler, which does not
introduce constraints by the according prior distributions, but instead uses prior distributions for
all model parameters that are invariant under orthogonal transformations. Using the orthogonally
unconstrained sampler also avoids numerical problems that may occur when sampling from truncated
distributions. The rotation problem is subsequently solved in a postprocessing step, where the
distance between each draw of the unconstrained sampler and a fixed point is minimized. For static
models the minimization problem for each draw of the sampler is the weighted orthogonal Procrustes
problem, which has almost surely a unique analytic solution, hence the approach is likewise called
weighted orthogonal Procrustes (WOP) approach. For dynamic models a unique solution exists

almost surely, which can be found by using a numerical optimization routine.

The WOP approach has several desirable properties. The shape of the posterior distribution
does not depend on the ordering of the data, hence the inference results are likewise no longer
order-dependent. Furthermore, estimation and interpretation can be treated separately, as arbitrary
rotation procedures, such like Varimax or Quartimax, can be applied to the posterior mean of the

postprocessed Gibbs output. In a simulation study as well as in an application to a large macroe-
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conomic data set, we compare the WOP approach with the commonly used PLT. Both exercises
confirm the order-independence of the WOP approach, which also converges faster and yields lower
MC errors.
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Tables

PLT WOP
N T P K=2 K=4 K=2 K =14
30 100 0 0 6160 (1028) 0 6600 (2041) 0 5280 (614) 0 5640 (1186)
30 100 1 0 5840 (1344) 0 11160 (6176) 0 5800 (384) O 5760 (1200)
30 100 4 0 6760 (3666) 0 13440 (13961) 0 5800 (1414) O 17120 (13581)
30 500 0 0 5480 (714) 0 6680 (1973) 0 5320 (690) 0 5840 (1214)
30 500 1 0 6200  (3000) 0 8440 (2022) 0 5360 (638) 0 7320 (2155)
30 500 4 0 6160 (2544) 2 14200  (14428) 0 6760 (665 O 7240 (2891)
100 100 O 0 6000 (1414) 0 5640 (810) 0 5400 (645) 0 6160 (2014)
100 100 1 0 6200 (1633) 1 19320 (18538) 0 5560 (1044) O 7440 (2501)
100 100 4 0 7480 (4094) 21 42160  (24535) 0 5800 (1291) 4 26720 (19661)
100 500 O 0 6240 (1234) 0 7920 (3651) 0 5160 (473) 0 6760 (2314)
100 500 1 0 8160 (2075) 0 8800 (4041) 0 5280 (614) 0 5760 (1012)
100 500 4 0 7080 (2971) 1 14280 (8299) 0 5640 (757) 0 7160 (2495)

Table 1: Number of sequences not converged after 100,000 iterations, average length of burn-in for 25 randomly
chosen converged sequences per model. Standard errors in parentheses. Convergence is monitored for orthogonally
invariant statistics of the parameters and assumed to hold if Geweke’s (1991) test does not reject the Null
hypothesis of convergence for at least 90% of the parameters with o = 5%. Heteroskedasticity and autocorrelation
(HAC) robust standard errors have been used.
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PLT WOP
N T K P qos q25 q50 qrs q95 qos q25 q50 qrs q95
30 100 2 0 0.0674 0.1066 0.1232 0.1441 0.1814 0.0658 0.0962 0.1137 0.1321 0.1612
30 100 2 1 0.1851 0.2375 0.2779 0.3100 0.4021 0.0583 0.0871 0.1002 0.1197 0.1569
30 100 2 4 0.2246  0.3090 0.3770 0.4226 0.5283 0.1104 0.1652 0.2428 0.3429 0.4748
30 100 4 0 0.1023 0.1782 0.2366 0.2927 0.3625 0.0871 0.1131 0.1304 0.1484 0.1851
30 100 4 1 0.2449 0.3920 0.4939 0.5811 0.7308 0.0752 0.1224 0.1548 0.1899 0.2554
30 100 4 4 0.3225 0.5027 0.6588 0.8169 1.0892 0.1051 0.2163 0.3103 0.3848 0.5060
30 500 2 0 0.0318 0.0523 0.0597 0.0713 0.0835 0.0317 0.0515 0.0586 0.0667 0.0796
30 500 2 1 0.0521  0.0908 0.1277 0.1588 0.2130 0.0403 0.0722 0.1188 0.1396 0.1743
30 500 2 4 0.1013 0.1648 0.2242 0.3163  0.4940 0.0572 0.1497 0.2135 0.3646 0.5385
30 500 4 0 0.0542 0.0886 0.1094 0.1378 0.1907 0.0456 0.0603 0.0679 0.0755 0.0941
30 500 4 1 0.0865 0.1389 0.1635 0.2123 0.2779 0.0463 0.0797 0.1101 0.1524 0.2432
30 500 4 4 0.1850 0.3829 0.5224 0.6727 1.0558 0.0549 0.1338 0.1881 0.2444 0.3656
100 100 2 0 0.0778 0.1075 0.1220 0.1373 0.1734 0.0756  0.1002 0.1135 0.1279 0.1616
100 100 2 1 0.0968 0.1260 0.1760 0.2128 0.2644 0.0616  0.0777 0.0961 0.1139 0.1574
100 100 2 4 0.1841 0.2895 0.3244 0.3617 0.4115 0.0763 0.1050 0.1269 0.1493 0.1841
100 100 4 0 0.1146  0.1807 0.2122 0.2515 0.3265 0.0876 0.1128 0.1297 0.1476 0.1831
100 100 4 1 0.2452 0.3696 0.4462 0.5426 0.7669 0.0783 0.1059 0.1216 0.1377 0.1801
100 100 4 4 0.4041 0.5659 0.6458 0.7598 0.9625 0.1349 0.2746 0.4840 0.6739 1.0730
100 500 2 0 0.0439 0.0547 0.0633 0.0712 0.0871 0.0387 0.0481 0.0541 0.0620 0.0729
100 500 2 1 0.0350 0.0479 0.0565 0.0656 0.0779 0.0302 0.0386 0.0455 0.0561 0.0720
100 500 2 4 0.0638 0.0782 0.0871 0.0985 0.1193 0.0423 0.0529 0.0671 0.1015 0.1334
100 500 4 0 0.0647 0.0887 0.1059 0.1325 0.2109 0.0451 0.0574 0.0656 0.0732 0.0899
100 500 4 1 0.0590 0.0772 0.0903 0.1100 0.1477 0.0479 0.0626 0.0757 0.0956 0.1608
100 500 4 4 0.4626  0.6600 0.8145 0.9796 1.4613 0.1417  0.2389 0.3435 0.4449 0.7268

Table 3: RMSEs for the loadings parameters from 25 randomly chosen converged sequences per model. Instead of
reporting all NK parameters per model, we only report the 5%, 25%, 50%, 75% and 95% quantile. The left five
columns show the results obtained under PLT identification and optimal orientation of the estimated parameters,
i.e. results are subsequently orthogonally transformed, such that the distance between the estimated and simulated
parameters is minimized, and the right five columns show the results obtained under WOP identification and
optimal orientation of the estimated parameters, i.e. results are subsequently orthogonally transformed, such
that the distance between the estimated and simulated parameters is minimized.
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PLT WOP
N T K P qos q25 q50 qrs q95 qos q25 q50 qrs q95
30 100 2 0 0.0656  0.1057 0.1357 0.1590 0.2571 0.0655 0.1063 0.1365 0.1588 0.2574
30 100 2 1 0.0606 0.1185 0.1374 0.1776  0.2638 0.0479 0.1138 0.1336 0.1720 0.2537
30 100 2 4 0.0667 0.1082 0.1416 0.1804 0.2542 0.0582 0.1013 0.1343 0.1747 0.2548
30 100 4 0 0.0877 0.1299 0.1497 0.1690 0.2726 0.0863 0.1296 0.1498 0.1690 0.2722
30 100 4 1 0.0740 0.1287 0.1635 0.1897 0.3468 0.0737 0.1257 0.1493 0.1864 0.2596
30 100 4 4 0.0828 0.1355 0.1564 0.2014 0.3884 0.0826 0.1210 0.1467 0.1840 0.3510
30 500 2 0 0.0260 0.0449 0.0606 0.0712 0.0991 0.0259 0.0450 0.0607 0.0712 0.0989
30 500 2 1 0.0264 0.0406 0.0601 0.0768 0.1068 0.0263 0.0406 0.0602 0.0769 0.1061
30 500 2 4 0.0320 0.0436 0.0584 0.0681 0.1299 0.0251 0.0391 0.0563 0.0662 0.1297
30 500 4 0 0.0367 0.0528 0.0609 0.0817 0.1179 0.0365 0.0526 0.0608 0.0822 0.1178
30 500 4 1 0.0369 0.0533 0.0676 0.0777 0.0963 0.0370 0.0485 0.0653 0.0755 0.0961
30 500 4 4 0.0359 0.0573 0.0676 0.0863 0.1923 0.0359 0.0551 0.0632 0.0793 0.1241
100 100 2 0 0.0613 0.1071 0.1372 0.1799 0.2561 0.0613 0.1068 0.1370 0.1786  0.2556
100 100 2 1 0.0616  0.0993 0.1426 0.1720 0.2626 0.0607 0.0970 0.1426 0.1720 0.2521
100 100 2 4 0.0612 0.1114 0.1408 0.1720 0.2866 0.0595 0.1074 0.1368 0.1697 0.2822
100 100 4 0 0.0691 0.1053 0.1372 0.1828 0.2930 0.0690 0.1058 0.1373 0.1829 0.2932
100 100 4 1 0.0678 0.1105 0.1405 0.1728 0.3355 0.0682 0.1079 0.1378 0.1723 0.2783
100 100 4 4 0.0693 0.1055 0.1450 0.1771 0.3532 0.0734 0.1104 0.1399 0.1703 0.2966
100 500 2 0 0.0275 0.0450 0.0584 0.0787 0.1222 0.0275 0.0450 0.0584 0.0786 0.1221
100 500 2 1 0.0276  0.0445 0.0589 0.0788 0.1217 0.0277 0.0446 0.0588 0.0786 0.1220
100 500 2 4 0.0273 0.0464 0.0614 0.0764 0.1170 0.0270 0.0462 0.0614 0.0764 0.1170
100 500 4 0 0.0291 0.0476 0.0647 0.0798 0.1283 0.0292 0.0478 0.0645 0.0798 0.1280
100 500 4 1 0.0288 0.0457 0.0638 0.0770 0.1205 0.0288 0.0454 0.0630 0.0771 0.1203
100 500 4 4 0.0333  0.0540 0.0773 0.0948 0.2345 0.0332 0.0546 0.0748 0.0989 0.1767

Table 4: RMSEs for the idiosyncratic variance parameters from 25 randomly chosen converged sequences per

model.

Instead of reporting all N parameters per model, we only report the 5%, 25%, 50%, 75% and 95%

quantile. The left five columns show the results obtained under PLT identification, and the right five columns

show the results obtained under WOP identification.
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PLT WOP
N T K P qos q25 q50 qrs q95 qos q25 q50 qrs q95
30 100 2 1 0.0679 0.0936 0.1160 0.1386 0.1644 0.0439 0.0525 0.0686 0.0900 0.1067
30 100 2 4 0.0709 0.0922 0.0986 0.1230 0.1781 0.0781 0.0907 0.0997 0.1068 0.1222
30 100 4 1 0.0545 0.0620 0.0774 0.1162 0.2533 0.0488 0.0603 0.0763 0.0936 0.1093
30 100 4 4 0.0594 0.0726 0.0958 0.1282 0.2215 0.0721  0.0913 0.1060 0.1190 0.1567
30 500 2 1 0.0392 0.0420 0.0456 0.0647 0.0907 0.0350 0.0385 0.0425 0.0605 0.0850
30 500 2 4 0.0366  0.0473 0.0500 0.0563 0.0764 0.0334 0.0446 0.0497 0.0561 0.0818
30 500 4 1 0.0240 0.0344 0.0403 0.0550 0.1019 0.0196 0.0281 0.0321 0.0418 0.0492
30 500 4 4 0.0330 0.0475 0.0647 0.0912 0.1509 0.0270 0.0374 0.0437 0.0470 0.0599
100 100 2 1 0.0558 0.0564 0.0746 0.0976 0.1052 0.0392 0.0518 0.0684 0.0830 0.0925
100 100 2 4 0.0732 0.1242 0.1447 0.1633 0.1888 0.0724 0.0934 0.1143 0.1307 0.1695
100 100 4 1 0.0582 0.0738 0.0773 0.1034  0.2500 0.0378 0.0568 0.0727 0.0847 0.1259
100 100 4 4 0.0640 0.0853 0.1055 0.1324 0.1705 0.0817 0.1100 0.1204 0.1378 0.1614
100 500 2 1 0.0259 0.0260 0.0298 0.0409 0.0519 0.0265 0.0271 0.0320 0.0423 0.0511
100 500 2 4 0.0346 0.0386 0.0425 0.0460 0.0507 0.0339 0.0396 0.0423 0.0462 0.0513
100 500 4 1 0.0267 0.0321 0.0377 0.0438 0.0491 0.0270 0.0337 0.0375 0.0442 0.0515
100 500 4 4 0.0463 0.0661 0.0914 0.1228 0.2093 0.0424 0.0585 0.0772 0.1047 0.2131

Table 5: RMSEs for the persistence parameters in the factors from 25 randomly chosen converged sequences.
Instead of reporting all PK? parameters per model, we only report the 5%, 25%, 50%, 75% and 95% quantile.
The left five columns show the results obtained under PLT identification, and the right five columns show the

results obtained under WOP identification.
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PLT WOP
N T K P qos Q25 50 qrs qos qos Q25 50 qrs qos
30 100 2 0 0.0072 0.0143 0.0168 0.0231 0.0364 0.0021  0.0046 0.0057 0.0072 0.0096
30 100 2 1 0.0364 0.0835 0.1196 0.1653 0.3328 0.0029 0.0047 0.0058 0.0079 0.0101
30 100 2 4 0.0095 0.0178 0.0238 0.0292 0.0372 0.0028 0.0048 0.0059 0.0075 0.0096
30 100 4 0 0.0377 0.0605 0.0814 0.1023 0.1557 0.0014 0.0046 0.0053 0.0061 0.0085
30 100 4 1 0.0476 0.0978 0.1743 0.2194 0.3184 0.0038 0.0068 0.0091 0.0133 0.0199
30 100 4 4 0.0622 0.0879 0.1090 0.1297 0.2060 0.0031 0.0067 0.0082 0.0105 0.0140
30 500 2 0 0.0044 0.0076 0.0093 0.0110 0.0153 0.0011 0.0020 0.0024 0.0028 0.0037
30 500 2 1 0.0054 0.0087 0.0119 0.0182 0.0270 0.0015 0.0029 0.0036 0.0041 0.0052
30 500 2 4 0.0081 0.0133 0.0166 0.0203 0.0246 0.0019 0.0044 0.0051 0.0065 0.0097
30 500 4 0 0.0189 0.0341 0.0586 0.0855 0.1335 0.0010 0.0029 0.0033 0.0036 0.0045
30 500 4 1 0.0339 0.0572 0.1512 0.2194 0.3231 0.0013  0.0037 0.0048 0.0063 0.0087
30 500 4 4 0.0451 0.1073 0.1643 0.2141 0.3405 0.0015 0.0036 0.0046 0.0053 0.0066
100 100 2 0 0.0289 0.0441 0.0550 0.0674 0.0939 0.0026  0.0034 0.0040 0.0047 0.0059
100 100 2 1 0.0145 0.0308 0.0712 0.0993 0.1271 0.0039 0.0053 0.0061 0.0071 0.0085
100 100 2 4 0.0473 0.0872 0.1249 0.1699 0.2145 0.0033  0.0050 0.0060 0.0089 0.0110
100 100 4 0 0.0307 0.0448 0.0555 0.0714 0.0917 0.0035 0.0047 0.0055 0.0063 0.0082
100 100 4 1 0.1009 0.1446 0.1891 0.2523 0.3768 0.0045 0.0063 0.0071 0.0082 0.0099
100 100 4 4 0.0560 0.0979 0.1255 0.1559 0.2894 0.0108 0.0153 0.0202 0.0271 0.0375
100 500 2 0 0.0054 0.0124 0.0263 0.0373 0.0488 0.0027 0.0033 0.0036 0.0040 0.0050
100 500 2 1 0.0131 0.0226 0.0286 0.0348 0.0430 0.0030 0.0042 0.0048 0.0052 0.0062
100 500 2 4 0.0212 0.0446 0.0590 0.0672 0.0806 0.0030 0.0040 0.0047 0.0058 0.0074
100 500 4 0 0.0308 0.0445 0.0581 0.0814 0.1637 0.0032 0.0040 0.0045 0.0048 0.0059
100 500 4 1 0.0297 0.0446 0.0588 0.0749 0.1719 0.0035 0.0046 0.0051 0.0057 0.0069
100 500 4 4 0.1023 0.1663 0.2556 0.3656  0.5931 0.0037 0.0058 0.0074 0.0096 0.0150

Table 6: Numerical standard errors for the loadings parameters from 25 randomly chosen converged sequences.
Instead of reporting all NK parameters per model, we only report the 5%, 25%, 50%, 75% and 95% quantile.
The left five columns show the results obtained under PLT identification, and the right five columns show the

results obtained under WOP identification.
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PLT WOP
N T K P qos Q25 50 qrs qos qos Q25 50 qrs qos
30 100 2 0 0.0007 0.0010 0.0012 0.0015 0.0025 0.0007 0.0011 0.0015 0.0019 0.0028
30 100 2 1 0.0007 0.0010 0.0013 0.0019 0.0029 0.0006 0.0010 0.0013 0.0018 0.0029
30 100 2 4 0.0006 0.0010 0.0013 0.0018 0.0028 0.0004 0.0011 0.0014 0.0019 0.0030
30 100 4 0 0.0010 0.0016 0.0019 0.0023 0.0114 0.0009  0.0015 0.0019 0.0023 0.0030
30 100 4 1 0.0011  0.0015 0.0021 0.0024 0.3164 0.0011  0.0016  0.0018 0.0023 0.0030
30 100 4 4 0.0009 0.0016 0.0021 0.0025 0.0533 0.0010 0.0017 0.0018 0.0022 0.0037
30 500 2 0 0.0002 0.0004 0.0005 0.0007 0.0013 0.0003  0.0005 0.0006 0.0009 0.0012
30 500 2 1 0.0002 0.0004 0.0006 0.0007 0.0016 0.0003 0.0005 0.0006 0.0009 0.0011
30 500 2 4 0.0003 0.0004 0.0006 0.0007 0.0013 0.0003  0.0005 0.0006 0.0008 0.0012
30 500 4 0 0.0004 0.0006 0.0007 0.0010 0.0031 0.0004 0.0006 0.0008 0.0012 0.0015
30 500 4 1 0.0004 0.0006 0.0007 0.0009 0.0174 0.0004 0.0007 0.0008 0.0011 0.0015
30 500 4 4 0.0004 0.0006 0.0007 0.0011 0.0243 0.0004 0.0006 0.0008 0.0010 0.0016
100 100 2 0 0.0005 0.0009 0.0012 0.0016 0.0028 0.0006  0.0010 0.0015 0.0019 0.0031
100 100 2 1 0.0006  0.0009 0.0011 0.0015 0.0024 0.0006 0.0011 0.0014 0.0019 0.0029
100 100 2 4 0.0006 0.0010 0.0014 0.0017 0.0029 0.0007 0.0011 0.0014 0.0018 0.0030
100 100 4 0 0.0007 0.0010 0.0013 0.0017 0.0032 0.0008 0.0012 0.0015 0.0021 0.0034
100 100 4 1 0.0007 0.0010 0.0014 0.0017 0.0031 0.0008 0.0012 0.0015 0.0019 0.0032
100 100 4 4 0.0007 0.0012 0.0015 0.0021 0.0055 0.0008 0.0012 0.0016 0.0020 0.0031
100 500 2 0 0.0002 0.0004 0.0005 0.0006 0.0011 0.0003 0.0005 0.0006 0.0008 0.0012
100 500 2 1 0.0002 0.0004 0.0005 0.0006 0.0012 0.0003  0.0005 0.0006 0.0007 0.0013
100 500 2 4 0.0003 0.0004 0.0005 0.0007 0.0011 0.0003  0.0005 0.0006 0.0008 0.0013
100 500 4 0 0.0003 0.0005 0.0006 0.0007 0.0012 0.0003 0.0005 0.0007 0.0009 0.0013
100 500 4 1 0.0003 0.0004 0.0005 0.0007 0.0013 0.0004 0.0005 0.0007 0.0008 0.0012
100 500 4 4 0.0006 0.0013 0.0027 0.0053 0.0278 0.0003 0.0006 0.0008 0.0010 0.0017

Table 7: Numerical standard errors for the idiosyncratic variances from 25 randomly chosen converged sequences.
Instead of reporting all N parameters per model, we only report the 5%, 25%, 50%, 75% and 95% quantile. The
left five columns show the results obtained under PLT identification, and the right five columns show the results
obtained under WOP identification.
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PLT WOP
N T K P qos q25 q50 qrs q95 qos q25 q50 qrs q95
30 100 2 1 0.0487 0.0497 0.0601 0.0699 0.0701 0.0005 0.0007 0.0010 0.0018 0.0027
30 100 2 4 0.0023 0.0030 0.0035 0.0075 0.0109 0.0013 0.0014 0.0017 0.0020 0.0023
30 100 4 1 0.0187 0.0315 0.0363 0.0420 0.0460 0.0009 0.0010 0.0012 0.0014 0.0020
30 100 4 4 0.0145 0.0185 0.0226 0.0284 0.0454 0.0014 0.0017 0.0020 0.0021 0.0029
30 500 2 1 0.0021 0.0030 0.0048 0.0059 0.0059 0.0006 0.0006 0.0007 0.0008 0.0010
30 500 2 4 0.0005 0.0007 0.0021 0.0026 0.0036 0.0006  0.0006 0.0008 0.0009 0.0012
30 500 4 1 0.0090 0.0231 0.0342 0.0465 0.0941 0.0004 0.0006 0.0006 0.0008 0.0011
30 500 4 4 0.0070 0.0126 0.0168 0.0236  0.0377 0.0004 0.0006 0.0006 0.0007 0.0009
100 100 2 1 0.0053 0.0087 0.0141 0.0173 0.0174 0.0007 0.0008 0.0011 0.0015 0.0019
100 100 2 4 0.0234 0.0343 0.0576 0.0815 0.1044 0.0010 0.0012 0.0013 0.0020 0.0027
100 100 4 1 0.0252 0.0330 0.0402 0.0568 0.0934 0.0006 0.0012 0.0013 0.0016  0.0020
100 100 4 4 0.0108 0.0143 0.0191 0.0255 0.0339 0.0015 0.0025 0.0029 0.0037 0.0053
100 500 2 1 0.0082 0.0086 0.0130 0.0173 0.0174 0.0003 0.0004 0.0006 0.0010 0.0013
100 500 2 4 0.0015 0.0028 0.0051 0.0096 0.0119 0.0004 0.0005 0.0007 0.0007 0.0009
100 500 4 1 0.0021 0.0048 0.0072 0.0095 0.0202 0.0004 0.0006 0.0007 0.0008 0.0009
100 500 4 4 0.0151  0.0281 0.0316 0.0399 0.0959 0.0005 0.0008 0.0011 0.0015 0.0035

Table 8: Numerical standard errors for the persistence parameters in the factors from 25 randomly chosen con-
verged sequences. Instead of reporting all PK? parameters per model, we only report the 5%, 25%, 50%, 75%
and 95% quantile. The left five columns show the results obtained under PLT identification, and the right five

columns show the results obtained under WOP identification.
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WOP PLT

1 0.0343  (0.0101) 0.2114  (0.1350)
2 0.0350  (0.0110)  0.0978  (0.0973)
3 0.0347  (0.0103) 0.1394  (0.1410)
4 0.0368  (0.0109) 0.1260  (0.1384)
5 0.0373  (0.0113) 0.1384  (0.1364)
6 0.0344  (0.0108) 0.0349  (0.0105)
7 0.0336  (0.0105) 0.1351  (0.1359)
8 0.0341  (0.0105) 0.0410  (0.0129)
9 0.0340  (0.0108) 0.1400  (0.0942)
10 0.0362  (0.0111) 0.1147  (0.0871)
11 0.0366  (0.0111)  0.1572  (0.1432)
12 0.0349  (0.0103) 0.0479  (0.0165)
13 0.0348  (0.0108) 0.1426  (0.1447)
14 0.0343  (0.0106) 0.1662  (0.1312)
15 0.0376  (0.0095) 0.1559  (0.1501)
16 0.0352  (0.0107) 0.1535  (0.1663)
17 0.0372  (0.0113) 0.1955  (0.1027)
18 0.0343  (0.0104) 0.1368  (0.1433)
19 0.0351  (0.0111)  0.0409  (0.0195)
20 0.0352  (0.0108) 0.1324  (0.1125)

Table 9: Standard deviations of posterior densities of \;x. Data have been permuted to obtain 20 different
orderings. Standard deviations over the 480 entries of A are given in parentheses.
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Figure 1: Log likelihood values of the principal components estimates, rotated along the circle, with constraints
imposed.
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Figure 3: Estimated factors from 120 macroeconomic time series, displaying the results 20 randomly chosen
converged sequences. Variables chosen as factor founders are Fed Funds Rate (FYFF), Industrial Production
(IP), Monetary Base (FM2), and Consumer Price Index (PMCP). The first row shows the results from the PLT
approach, the second row shows the results from the WOP approach, which have been orthogonally transformed
to obtain the same tridiagonal loadings structure as PLT.
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Figure 4: Estimated factors from 120 macroeconomic time series, displaying the results 20 randomly chosen
converged sequences. Factor founders have been set randomly, results have afterwards been orthogonally trans-
formed to create a positive lower triangular loadings matrix on the same four variables used as factor founders
before, i.e. Fed Funds Rate (FYFF), Industrial Production (IP), Monetary Base (FM2), and Consumer Price
Index (PMCP). The first row shows the results from the PLT approach, the second row shows the results from

the WOP approach.
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Figure 5: 10, 50 and 90 percent quantiles of the posterior estimates for the factor loadings obtained from 20
randomly chosen converged sequences. Variables chosen as factor founders are Fed Funds Rate (FYFF), Industrial

Production (IP), Monetary Base (FM2), and Consumer Price Index (PMCP). The first plot shows the results

from the PLT approach, the second plot shows the results from the WOP approach.
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Figure 6: 10, 50 and 90 percent quantiles of the posterior estimates for the factor loadings obtained from 20

Factor founders have been set randomly, results have afterwards been

orthogonally transformed to create a positive lower triangular loadings matrix on the same four variables used

randomly chosen converged sequences.

as factor founders before, i.e. Fed Funds Rate (FYFF), Industrial Production (IP), Monetary Base (FM2), and
Consumer Price Index (PMCP). The first plot shows the results from the PLT approach, the second plot shows

the results from the WOP approach.
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A The unconstrained Gibbs sampler

For the model described in Equations (1) and (2) and prior distributions given in Equations (7) to
(9), the unconstrained sampler proceeds by iterative sampling from the corresponding full conditional

distributions, see also Bai and Wang (2012).

A.1 Sampling the latent factors by forward-filtering backward-sampling using a

square-root Kalman filter

The latent dynamic factors are obtained via forward-filtering backward-sampling, using the ensemble-
transform Kalman square-root filter in order to improve the performance of the sampling approach,
see Tippett et al. (2003). Let

C =max{P,S+ 1} (32)
and define
d, ... o, D¢
oo Ik Ok Ok (33)
Ox Ix O

as the CK x CK extended block companion matrix of the latent dynamic factors, where &, = Ox
for ¢ > P,

Ei = ey Oixc-1)k) (34)

as the vector of error terms in the state equation,

Q- ( U 0K><(Cl)K> (35)

Oc—1)KxK Ox

as the corresponding covariance matrix, and

Fe=1fl,.. .. ficl (36)
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as a vector of stacked latent factors containing the contemporary factors and C' lags.'® The state

equation of the model then is obtained as
F,=GFi_1 + E;. (37)
Accordingly, the observation equation is
yr = HF; + e, (38)
where
H =[Ao,...,Ac], (39)

with A, = Onx i for ¢ > S. With the state estimate at time ¢ — 1 being Ft,l‘t,l, where F0|0 = 0nx1,
the predicted state at time ¢ is

Ft|t—1 = Gﬁ‘t71|t717 (40)
and the prediction covariance is
S't\t—l = th—l\t—lG/ + @, (41)

where 5’0|0 = I. Taking the observed value y; into account, we obtain the prediction error

Utlt—1 = Yt — HFt\t—l’ (42)
The Kalman gain is obtained as
Ky = St|t—1H/(Hgt\t—lH +3)7, (43)

hence the updating of the covariance matrix can be written as
Sy = (I — K¢H) Sy, (44)

For the according updating step of the ETKF, we first perform a singular-value decomposition of

St\t—l as

Sijt—1 = A1 Zue1 Ay (45)

16 Assume that ft = 0k x1 for t < 0 throughout.
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and define the square root of the prediction covariance as

1
th — At‘t71Zt2|t71' (46)
Considering the according singular-value decomposition of the innovation covariance matrix as
Sy = Ay Zy Al (47)
the corresponding square root can be defined as
u 1
Zt — At‘tZtTt. (48)
The result from Equation (46) can be inserted into Equation (44) to obtain
Su=2l1-z'"mmEZ 2’0 +5) " mZ]) 7], (49)

hence obtaining a square root of the term in parentheses by an according singular value decomposition

of an equivalent expression by the Sherman-Morrison Woodbury identity,
(I+z{'H'sHz)"' = BT,B, (50)
or, equivalently,
1+72'0'sHz{ = B, 'B] (51)

The required square root is then

NI

M; = BT, 2, (52)
allowing for the square-root updating as

Z¢ = 71 M. (53)
Then the innovation covariance matrix can be rebuilt as

St|t = ZtaZf', (54)
and the updated mean is

Ft|t = Ft\t—l + St|tHZ_1ut\t—l' (55)
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The factors are then obtained by backward-sampling from the resulting Ft|T and S’ﬂT.

A.2 The remaining parameters

Throughout the paper, we assume diagonality for 3 resulting in

N Bal 1 a;—1 1

P

FE Y e V) = T s (32) {20 (56)
i=1 l Z i

where o; = %T—}—ozo,; and f3; = %Zle(yit—z:f:o A;ift_s)Q—i—Bgi and ag; = Bg; = 1foralli=1...,N.

Due to diagonality of X, the full conditional distribution of the loadings can be factorized over the

S +1 A matrices, and row-wise within these matrices, taking the N individual rows A, ; per matrix

into account. This yields the following full conditional distribution:

1 1
f{As } oY, X, {(I)p}p—la {ft}t 1) H H(QW |Q/\ S 2exp {—2(>\s,z‘ - lu’)\s,i),Q;\ii(AS,i - M/\s,i)} )

s=01i=1
(57)
where 2 ; = (ﬁ ZtT:1 fr—sfi—s + (Ts)i,i Ir)~" and Hxsi = QA”(% 23:1 Yitf{—s)-
Finally, considerla stacked version of the persistence parameters forl the factors,
d=[0), ..., dp/ (58)
and denote a shortened T'— P x K factor matrix starting at time point ¢ as
Fo=1[fi, ..., fT—P+(t71)]/a (59)
and
F=|[F, ..., Fp] (60)

containing P such matrices. Then the full conditional distribution of @ for normally distributed

innovations in the factors and with an uninformative prior distribution obtains as

FRIY. 2, (A0, () = 2) F 101 exp { = vec(®) = g 5 vec() = ) | (61

where Qg = U7 @ (F/F)~" and pg = vec((F'F) ' F'Fp.1), see e.g. Ni and Sun (2005). It is easy

to see that a parameter expansion of F; in terms of the orthogonal parameter D as described at the
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end of section 2 results in

Fy(D) = F,D, (62)
and, consequently,
F(D)=F(Ip® D), (63)
such that
Q3(D) =¥ ' @ (F(Ip @ D)) (F (Ip® D))" = Q, (64)
and

115(D) = ((F (Ip @ D)) (F (Ip ® D)))"Y(F (Ip ® D)) (Fp41D)
— (Ip ® D) pig D. (65)

B Proof of Proposition 3.2

Proof. Given a parametrization of D ensuring orthogonality the minimization problem in Equation
(23) can be restated as

D = argmin(L(0%,0M) + Ly(0*,0M))

P
= argmaxte(D'AD'AY) +tr [ Y D@V Da;
p=1

To start with, let K = 2 and look at tr(D’AM A*) first. Define
M = A0'A*, (66)

and assume the parametrization D = D_, i.e.

D, — (COS(’H) —Sin(’7+)> ' (67)

sin(y4)  cos(yy)
Then D, can be expressed in terms of an angle v, € [—m, 7) resulting in

(D) tr( maycos() + marsin(ys)  ma cos(ys) +ma Sin(w))

—myysin(y4) + ma1 cos(v4)  —mazsin(yy) + maz cos(v4)
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= (ma1 + maz) cos(v4) + (ma21 — mi2) sin(yy)

= /(m11 +ma2)2 + (a1 — m12)? cos(yy — atan2(myy + mag, Mo — mi2))

= Ay cos (74 +¢4), (69)

which is a sinusoid, see e.g. Shumway and Stoffer (2010, Chapter 4.2.), with amplitude A4 =

2 2 . — _ 1
\/(mu + ma2)? 4 (ma1 — mi2)?, phase ¢y = —atan2(m11 +maz2, ma1 —mi2), and frequency w = 5,
i.e. there is exactly one maximum in the domain of « for any choice of D, .!" Note that (69) uses

the important equality

Acos(wt + @) = Z A; cos(wt + ¢;), (71)
i—1

where A = \/(Zle Ajcos(pi)? + (7, A sin(p;))® and ¢ = atan2 (Y7, A; cos(i), Sr, Aisin(g;)),
for which a proof can be found e.g. in Smith (2007). Next, consider the parametrization D = D_.

The resulting matrix for K = 2 is hence

D - (COS(W—) Sin(%)> _ (72)

sin(y-) — cos(v-)

Then D_ can again be expressed in terms of an angle v_ € [—m, ) resulting in

(D M) = tx (mn cos(7-) +marsin(y-) maz cos(y-) + ma2 Sin(V)) (73)
mqi sin(y—) — mai cos(y—) mygsin(y_) — mag cos(v-)
= (m11 — maz) cos(v-) + (m1z + ma1) sin(y-)
= V/(m11 — m22)2 + (M2 + ma1)? cos(v- — atan2(miy — maz, M1z + ma1))
— A cos(v-+), (74)

which is also a sinusoid, but with amplitude A_ = \/(m11 — ma2)? + (mia + ma1)?2, phase p_ =
—atan2(mi; — maa, mi2 + may), and frequency w = i Thus, v— and 4 are uniquely identified if
A_ and ¢_ or A, and ¢ respectively are all distinct from zero. Note that the events mq; —maoa =0
and mo1 +m1a = 0 or my1 + mey = 0 and mg; — my2 = 0 corresponding to A_ and ¢_ being zero or
A4 and ¢4 being zero respectively occur with probability zero since the corresponding restrictions

on ©) and ©* denote a subspace of the parameter space. Further, the two maxima implied by ~_

"The two-argument arctangent function atan2(y,z), defined on the interval [—m,7) and based on a half-angle
identity for the tangent, is given as

2 2 _
7vx+yyx (70)

atan2(y, x) = 2arctan
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and 4 are distinct with probability one since the event A_ = A, occurs as well with probability

Zero.

!/
Now look at tr (Z;::l D’@I([,T) D@;) and let P = 1. Assuming D = D yields

(D' D®*) = ¢ty (k1 (74) + k2 (74)) + &1 (ks () + ka(12)
+ B3 (ks (12) + ke(14)) + 631 (k7 (14) + ks (7)), (75)
with
Fi(rs) = —cos(v:) (815 cos(r4) + ;) sin(r1)) = —6{; cos? (14) + 617 sin(74) cos(v) (76)
Fa(re) = —sin(y:)(95 cos(v4) + &%) sin(v4)) = o sin®(v4) — @5y sin(v) cos(r4) (77)
ks(re) = —cos(r4)(07) cos(ry) — 60 sin(r4)) = —4{7) cos®(v4) — o\ sin(4) cos(v+) (78)
ka(re) = —sin(r3)(08) cos(v4) — ¢y sin(r4)) = —¢by sin®(74.) — 657 sin(v+) cos(v4) (79)
ks(14) = —cos(v:) (05 cos(v4) + ;) sin(v4)) = —o%) cos?(14) + 65 sin(74) cos(r4) (80)
ko(re) = —sin(y:)(00y cos(vs) + 617 sin(r4)) = o} sin®(v4) + ¢y sin() cos(r4) (81)
Fr(re) = —cos(r4)(05) cos(r4) — o5y sin(14)) = —65) cos®(v4) — oS sin(r4) cos(v+) (82)
ks(re) = —sin(r2)(01) cos(vs) — @13 sin(14)) = oy sin®(v4) + ¢l sin(v4) cos(14) (83)
Consider Equations (77), (79), (81) and (83) and obtain

Ry = ¢21 sin?(v4) — 655 sin(7+) cos(y4)
= =% (1 = cos’(v4)) — 8% sin(yy) cos(11) = by — o} (84)

ky = ¢22 sin®(y4) — ¢21 sin(y4) cos(v4)
= —%) (1 cos?(14)) — %) sin(ys) cos(ry) = 65 — (85)

ks = —o) sin®(v4) + oy sin(yy) cos(y4)
= =6\ (1 = cos®(v4)) + 815 sin(1y) cos(11) = 617 — ks (86)

ks = —oyy sin?(vy) + oy sin(yy) cos(ys)
= —1) (1 cos?(74)) + 67 sin(y4) cos(yy) = by — {5 (87)

Inserting (76), (78), (80), (82), (84), (85), (86) and (87) into (75) yields

(D' DB*) = ¢ty (ks + kr — 65)) + ¢y (ks — ks + 655)
+ P59 (ks — k3 + </>ﬁ)) + @51 (k7 + k1 — (r))
= — 6500 — 1105 + o) — ¢316) +

=cp
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(%5 + 030 (k1 + ky) + (611 — 03) (ks — ks)

= co + (65 + 051 (815 + 65)) cos?(74) + (817 — 655) sin(+) cos(y4))
(61 — 05) (6 — 659)) cos®(4) — (813 + 657) sin(y+) cos(74))

= o+ (812 + 05 (817 + 650 + (651 — 032 (@} — 053)) cos?(74)

+ (65 + 05) (817 — 65)) — (071 — d39) (81 + 657)) sin(v) cos(y4)

=cC2

= co + (c1 cos(y4) + casin(y4)) cos(y4)

= co + (y/ 3 + 3 cos(v4 + atan2(cy, c2))) cos(v4)
—_—— —_—

1 1
=co+ 53 cos(cq) + 563 cos(2v4+ — ¢4)

= Vi + Ay cos(2v4 + p4), (88)
where cg through ¢4 are constant terms, and the second-last equality uses the fact that

cos(1) cos(y2) = % (cos(y1 — 7y2) + cos(y1 + 72)) - (89)

The result of (88) is sinusoid with vertical shift Vi = ¢y + %03 cos(cq), amplitude Ay = %Cg, phase
Y+ = —cyq, and frequency w = %, i.e. there are exactly two maxima in the domain of v for any
choice of D,. The equivalent result for D = D_ obtains analogously. For P > 1, reversing the order
of summation and trace operator in tr (Zf;l D’@IS,T)/D@;;), we obtain P such sinusoids, which all
depend on the same 7., thus we can apply Equation (71) to the demeaned sinusoids and afterwards
add the sum of the means again, another vertically shifted sinusoid with frequency % and thus two
maxima in the domain of ;. Note that the choice of D = D yields the superposition of P sinusoids,
whereas the choice of D = D_ yields another superposition of P sinusoids, however with according
changes in the phase, amplitude and vertical shift parameters. Although for D as well as for D_ we
find two maxima each, the maxima under the two parametrization are distinct with probability one
as the restrictions on the parameter space causing coincidence of the two sets of maxima under the
two parametrizations of the orthogonal matrix refer to a subspace of the parameter space having thus
probability zero. Further using the same line of argument as above, for each of the parametrizations
there exist two maxima with probability one.

To show the uniqueness of the maximum of tr(D’/AT A*) + tr <Z£:1 D’@Z(,T)/D@;) we must con-
sequently consider for both cases, D = D; and D = D_, a superposition of two sinusoids with
frequency % and %, respectively. The first of them has one peak and one trough on the interval

[—m, ), while the second has two of each. The sum over these two sinusoids has two peaks of identical
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height if and only if the peak of the first coincides with one of the two troughs of the second. Denoting
the phase of tr(D’A(T)/A*) as pa and the phase of tr <Z§:1 D’@I()T)/DCI);) as g this implies the strict
equality pp = ™+ 2pp corresponding to a restriction of the parameter space having probability zero.

Now consider the general case for K > 2. To derive the structure of the expression tr(D’AA*),
look at the matrix D first. D can be expressed as the product over K(K — 1)/2 Givens rotation
matrices and a reflection about the K* axis. For the time being, the reflection is not considered.
The Givens rotation matrices are functions in the angles v = (71, ... 77[{(#71)). Thus, defining the

constituent set of elements

. N K(K—1)/2
CS = {cos('yk*),sm(%*) = cos (%* — 5) }k*zl ) (90)
each entry of D can be characterized as
Ty K(K—-1)/2 g ij
ij b, . T Cj*k*
dij = Z all H cos (Y ) 7"k cos (’Yk* — 5) ; (91)
jr=1 k*=1

with Tj; denoting the number of subsets involved in d;;, a;{ e {-1,1}, b;{k* and c;{k* taking either

¢ < 1. Then

. ij
values 0 or 1, and bj*k* + Chper

K
a(D'AV'A) = ST d AR, (92)
j=1

where D.; denotes the j*" column of D and (1_\(’")/1_&*).3' denotes the j* column of A™'A*. The same

expression can also be stated in the structural form from Equation (91), hence

Tiea K(K-1)/2

I . A A,
w(DAR) = S gt T cos(ue) 5 cos (me = 5 )7 (93)
=1 k*=1

where T}, ; denotes the number of subsets entering tr(D'A)A*), q;{]\ is a function of the aj-z; and the

elements in the matrix AA*, and b;.r*/;\c* and C;r*/}g* taking either values 0 or 1, and b;-r*/;\c* + C;r*/}f* <1.
It can be seen from Equation (92) that each subset involved in any d;; enters Equation (93), which

is hence a weighted sum over the union of products of all subsets of CS involved in D.

A weighted one-element subset of CS is a sinusoid with frequency %, as discussed for K = 2.
Since the 7y« are all mutually independent, the multiple-element subsets of CS are therefore sinusoids
with the same frequency along each dimension and dimensionality not larger than K(K — 1)/2.
tr(D’ATA*) is then the superposition of T}, 3 such sinusoids. In fact, all sinusoids can be treated
as K(K — 1)/2-variate sinusoids, which are constant along the dimensions whose angles they do

not depend on. The superposition yields a unique maximum if each .« enters at least one of the
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sinusoids, otherwise the value of the respective i+ is irrelevant for the maximization. Further, it
must be ensured that all sinusoids have a unique maximum in the subset of v they depend on, or, if

this is not the case, the different parametrizations in v all imply the same D.

Unlike the univariate sinusoids with frequency %, however, multivariate ones have multiple max-

ima, because joint replacements of pairs of elements of v can exploit the trigonometric identity
cos(y) = —cos(y+m) = —cos(y—m) = cos(—y). (94)

Without loss of generality, consider the bivariate sinusoid cos(v1) cos(y2), which has a maximum in

I' = (0,0). By Equation (94), the exists a second maximum in v = (7, 7). The case of the bivariate

3
sinusoid is also shown in the left panel of Figure 7. Accordingly, a trivariate sinusoid allows for ( ) =

4 4
3 pairwise replacements, and a 4-variate sinusoid allows for <2> + (4) =6+ 1 = 7 replacements,

where the second term denotes the replacement of two pairs of angles by their counterparts at the

same time. The number of additional redundant parametrizations for a K (K — 1)/2-variate sinusoid

| KE=D o) K(K-1) K(K-1)
is thus » .._° 2?* , implying a total number of modes of 2 ~*. Note, however,
i

that in order to obtain a redundant parametrization of D, all involved sinusoids must allow for the

according pairwise replacements. The actual number of modes is therefore usually much smaller
K(K—1)

than 2 -1

is 4 = (y £ m,£7m — 72,73 £ 7), where the sign of £7 must be chosen such that the angle is in

Consider e.g. K = 3, where the only admissible replacement for v = (V1,72,73)

the admissible range for 7. Taking the redundant parametrizations into account, there exists thus a
unique orthogonal matrix D providing a maximum for the involved sinusoids and thus a unique D
maximizing tr(D’ATVA*).

An expression analogous to the one in Equation (93) can also be found for 25:1 tr(D’ @ér)/Dq);).
Note that here, it is possible that the cos(yx+) enter in quadratic form, hence, the resultant sinusoids
have frequency 2. 25:1 tr(D’ @I(,T)/DCI)*) then has the structural form

p
Ttr<1> K(Kil) trd T trd
> ot T eoston) ¥ eosope — 5 (95)

with b;ﬂ‘,};* and C;{fi* taking values {0, 1,2}, b;ﬂ?;* + cg-r*%* < 2, where p}iq’ is a function of the elements
!/

involved in the matrices @I(,T) and ®;, p = 1,...,P. Hence 25:1 tr(D’q)I(,r) D®j) is the sum of

sinusoids having frequency % or % along each dimension. Consequently, assuming that all -

enter the expression in Equation (95) at least once, the result is a superposition of K(K — 1)/2-

variate sinusoids, which do not exceed the frequency % in any dimension. A bivariate sinusoid with
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frequency % in each dimension is shown in the right panel of Figure 7. Each dimension where the

frequency is doubled necessarily has twice as many maxima. Nonetheless, the number of maxima

K(K-1) . . . . . S i .
cannot exceed 2-4— 2z ! and is thus finite. Superimposing the sinusoids in Z}:ﬁfl p;-]* with those in

tr(D’'AA*) thus results in a unique maximum almost surely, where the event that two maxima of
the superimposed sinusoids are equally qualified by the sinusoids with lower frequency corresponds to
a restriction on the parameter space and hence occurs with probability zero. The same maximization
over 7, but involving a reflection over the K th axis, yields a lower or higher value with probability
one. In the latter case, the corresponding matrix D with det(D) = —1 yields the unique maximum,
in the former case, the matrix D with det(D) = 1, not involving the axis reflection, yields the unique

maximum.

O

Figure 7: Bivariate sinusoids with frequency i along each dimension (left) and frequency % along each dimension
(right).
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