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1. Introduction 
 
According to the Intergovernmental Panel on Climate Change (IPCC, 2013), average 
global surface temperature has increased by about 0.8 °C between 1880 and 2012. For 
the 21st century global warming exceeding 2 °C on average relative to the period 1850-
1900 is projected by most scenario models. Even more pronounced increases in many 
regions are ‘very likely’ in the IPCC’s terminology. Trends for rainfall are more 
complex because there is considerable variation between and within countries. Overall, 
precipitation is on a downward trend at least since the 1950s. In particular in West 
Africa and the tropical rain-forest zones a strong decline in rainfall has been observed as 
well as more intense and widespread droughts (IPCC, 2013).  

At the same time the importance of agricultural production increases to match 
growing global demand for food in times of continuing population and consumption 
growth. Agriculture also remains an important sector for many low-developed 
countries, contributing more than a fifth to their gross domestic product (GDP) and 
employing more than a quarter of their total labor force.1  

Climate variables like temperature and precipitation can be viewed as agricultural 
production inputs and can have a potentially large impact on agricultural output. The 
impact is likely to be different across climatic regions. For example, a moderate 
increase in temperature and decrease in precipitation will probably have a smaller 
impact in temperate than in dry climate regions. Further, capacities to adjust agricultural 
production to climate change might be larger in countries with a large share of intensive 
farming than in low income countries where low-tech rain-fed agriculture dominates. 
Thus, it is important to understand the relationship between climate and agricultural 
production across countries with heterogeneous production technologies in order to 
design appropriate adaptation strategies.  

Despite the potential importance of climate factors, most aggregate agricultural 
production function estimates have been restricted to relating agricultural output to 
traditional and modern production factors. Typically, traditional input factors include 
labor, land and livestock and modern factors are fertilizer and tractors, with livestock 
and tractors as proxies for traditional and modern capital formation (see e.g. Hayami 
and Ruttan, 1970; Craig et al., 1997; Fulginiti et al., 2004). None of these studies 
considers the influence of changes in climate on agriculture.2 

                                                           
1 In 2012, the World Development Indicators of the World Bank report a share of agriculture in GDP of 
more than 20 % for 30 countries (out of 136, for which data was available) with a maximum of 55.8 % 
(for Chad) and a population-weighted global average of 14.4 %. For the same year, the Food and 
Agricultural Organization reports a share of economically active population in agriculture of more than 
25 % for 36 countries (out of 217) with a maximum of 44.1 % (for Bhutan) and a population-weighted 
global average of 18.7 %. 
2 Recently, there is a growing body of literature relating climate change to GDP. For example, Barrios et 
al. (2010) find that less rainfall leads to declining GDP growth rates in Sub-Saharan Africa countries, 
while they do not find any significant impact of increases in temperature. In contrast, Lanzafame (2012) 
finds supportive evidence between temperature and per-capita GDP growth in Sub-Saharan countries, 
while the evidence on rainfall is less clear-cut. On a global scale, Dell et al. (2012) find that higher 
temperatures reduce GDP growth rates in poor countries and have no discernable effects on GDP growth 
in rich countries, while changes in precipitation have no substantial effects on growth in either poor or 
rich countries. These different results show that there is no consensus in the literature. Further, the effects 
of climate change on GDP can give at most a rough indication of the more specific effects on agricultural 
production. The agricultural sector accounts only for a small fraction of GDP in some countries, is one of 
the sectors that are probably most directly influenced by climate change and focusing on GDP growth 
neglects substitution effects between the agricultural and other sectors. 
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To provide respective evidence, we analyze the influence of temperature, rainfall 
and droughts on agricultural production by applying a production function framework in 
a panel of 127 countries from various income classes over the period from 1961 to 
2002. Different production technologies imply potentially very different adaptive 
capacities of the agricultural sector to climate change across countries. For example, 
O’Brien et al. (2004) find that irrigation contributes to higher adaptive capacity in intra-
national comparison. In a study on India McKinsey and Evenson (1998) show that 
technology development affects the impact of climate change on agricultural 
production. Hence, in order to estimate a meaningful effect of climate factors on 
agriculture it is essential to consider heterogeneous production technologies to account 
for different adaptive capacities. We therefore allow for parameter heterogeneity in our 
global panel and also provide separate estimates for countries of different income 
groups.3 

Closest to our work are Barrios et al. (2008) who consider climate factors in a 
production function and examine the impact of climate change on agriculture in Sub-
Sahara Africa and other developing countries. They find a significant negative impact of 
temperature and a positive impact of rainfall on agricultural output in Sub-Saharan 
African countries. In contrast, they find no significant impact of temperature and rainfall 
for other developing countries, which they attribute mainly to technological adaptation. 
Their conclusion is that this difference in responses to climatic changes is responsible 
for a large part of the output gap in agriculture between Sub-Sahara Africa and the rest 
of the developing world in the last half-century. 

An alternative to production functions estimates is the Ricardian approach (see 
Mendelsohn et al., 1994). It attempts to measure the effect of climate change via 
changes in land values. If land markets are operating properly, prices will reflect the 
present discounted value of land rents into the infinite future. Hence, this approach is 
able to account for the full range of compensatory responses to changes in climate made 
by farmers. However, the reliability of the Ricardian approach depends crucially on the 
ability to account fully for all factors correlated with climate change and influencing 
agricultural productivity. Omitted variables, such as unobservable farmer and soil 
quality, could lead to a bias of unknown sign and magnitude. Consequently, the 
Ricardian approach may confound climate with those other factors so that we chose to 
estimate production functions to control for various input factors directly. Further, the 
data necessary to apply a Ricardian approach, such as land values or agricultural profits, 
is not available for many countries (see e.g. Mendelshon et al., 1994; Deschenes and 
Greenstone, 2007; and Guiteras, 2009).4 

Applying the production function approach in a global panel with 127 countries and 
a long sample raises the issue of cross-sectional dependence and non-stationarity.  The 
presence of cross-sectionally and serially correlated errors violates the assumption that 

                                                                                                                                                                          
 
3 Earlier studies of agricultural production also stressed the importance of allowing production technology 
to differ across countries (see e.g., Hayami and Ruttan, 1985; Cermeño et al., 2003; Gutierrez and 
Gutierrez, 2003). However, none of them investigates this in a manner which allows for full heterogeneity 
of technology parameters as well as total-factor productivity (TFP), or includes climate factors. 
4 The main disadvantage of a production function approach is that it does not account for the full range of 
farmer adaptations. This property results in a tendency to bias the factor coefficients of the impact on 
agriculture downwards (Mendelsohn et al., 1994). While this bias may be rather small in low-developed 
regions, where adaptation to climatic changes was relatively low (like in Sub-Sahara Africa), there is a 
greater likelihood of a downward bias for other country groups. This bias has to be taken into account 
when interpreting the results, which are expected to be conservative estimates. 
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disturbances are independently distributed. Thus, estimations and inference based on 
models that do not account for common unobserved factors or shocks and non-
stationarity of some data series can yield biased and misleading results, particularly in 
standard fixed effect panel estimators (see Phillips and Sul, 2003; Bai, 2009; Kapetanios 
et al., 2011). In the case of cross-sectional dependence, such common unobserved 
factors could for example be reflected in oil price shocks, a global financial crisis or 
local events that affect several countries via spillover effects. We test for cross-sectional 
independence of the different time series and reject it. To address these issues, we adopt 
the common correlated effects (CCE) estimator of Pesaran (2006), a sufficiently general 
and flexible econometric approach, which is applicable under both cross-sectional 
dependence and cross-country heterogeneity. Eberhardt and Teal (2012) use similar 
techniques in order to address the issue of parameter heterogeneity across countries, but 
they do not consider climate variables as agricultural production inputs.5 

We find a moderate negative effect of warming and droughts and partially also a 
negative effect of reductions in rainfall in the global panel. Allowing for parameter 
heterogeneity and including common unobserved factors reduces the magnitude of the 
climate coefficients. Hence, traditional fixed effects and pooled OLS estimates 
overestimate the effects of climate change on agricultural output. When considering 
income groups, we find no effects in high-income countries, while there is a negative 
effect of warming in middle-income countries and additionally highly significant 
adverse effects of reductions in rainfall and of increases in the frequency of droughts in 
low-income countries. These effects of rainfall and droughts are especially pronounced 
in Sub-Sahara Africa. Together with our model diagnostics, these results underline the 
high relevance to consider technology heterogeneity when assessing the effects of 
climate change on agricultural production. 

The different findings for high- and low-income countries are also reaffirmed by 
analysis using the Ricardian approach. For example, in the case of the United States, 
Deschenes and Greenstone (2007) estimate the effect of the presumably random year-
to-year variation in temperature and precipitation on agricultural profits and find that 
climate change will increase annual profits in US agriculture by 3.4 % and that changes 
in temperature and rainfall virtually have no effect on yields among the most important 
crops. Using a similar approach, but for the case of India, Guiteras (2009) estimate that 
major crop yields in India will be reduced by 4.5 % to 9 % in the medium term, and by 
25 % in the long-run, respectively. 

 
The remainder of the paper is structured as follows. Section 2 introduces the 

empirical model and describes the data. In section 3 we present and discuss the main 
results. This section is divided in sub-sections discussing cross-sectional dependence 
and time-series properties of the variables, pooled regressions, averaged country 
regressions, and alternative specifications to check robustness, respectively. Finally, 
section 4 concludes. 
 
 

                                                           
5 Their results suggest that what they call the ‘agro-climatic environment’ drives similarities in TFP 
evolution across countries with heterogeneous production technology, which is also pointing to inter-
regional climatic spill-over effects. They argue that this could be a possible explanation for the failure of 
technology transfer from advanced countries of the temperate ‘North’ to arid and equatorial developing 
countries of the ‘South’. Thus, it is essential to allow for parameter heterogeneity in order to account for 
heterogeneous production technology capacities to adapt to climate change. 
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2. Method and data 
 
 
2.1 The econometric model and methodology 
 
Following the literature (particularly Eberhardt and Teal, 2012), we apply a Cobb-
Douglas production function to analyze agricultural production. Allowing for 
heterogeneous slope parameters, we consider the following linear panel regression 
model: 
 

𝑦𝑖𝑡 =  𝛼𝑖 +  𝛽𝑖′𝑥𝑖𝑡 +  𝑢𝑖𝑡,      𝑖 = 1, 2, … ,𝑁; 𝑡 = 1,2, … , 𝑇,               (1) 
 
where 𝑦𝑖𝑡 represents the agricultural net output in values in the 𝑖𝑡ℎ country at time 𝑡. 
𝑥𝑖𝑡 = (𝐿𝑖𝑡, 𝑛𝑖𝑡, 𝑙𝑖𝑣𝑒𝑖𝑡, 𝑓𝑖𝑡, 𝑡𝑟𝑖𝑡, 𝑇𝑖𝑡, 𝑅𝑖𝑡, 𝐷𝑖𝑡, )′ includes (proxies for) labor (L), land under 
cultivation (n), livestock (live), fertilizer (f), agricultural capital stock (tr), and the 
climate variables, temperature (T), rainfall (R) and droughts (D). The country specific 
intercept is denoted by 𝛼𝑖 and 𝑢𝑖𝑡 is the error term. All variables in equation (1) are 
expressed in natural logarithms except of temperature, rainfall and the drought dummy. 
Further, the dependent variable and the agricultural input variables are expressed in per 
worker terms, such that the addition of the labor variable (L) in levels in the estimations 
indicates deviation from constant returns to scale (CRS).  

The common unobserved factors as well as the spatial effects will be modelled 
through the error term. In particular, we shall assume that 𝑢𝑖𝑡 has the following multi-
factor structure: 
 

𝑢𝑖𝑡 =  𝛾𝑖′𝐟𝑡 +  𝜀𝑖𝑡,                      (2) 
 
in which 𝐟𝑡 is the m x 1 vector of unobserved common effects, which can be stationary 
or non-stationary (see Kapetanios et al., 2011) and are allowed to be serially correlated 
and possibly correlated with 𝑥𝑖𝑡. The individual-specific errors, 𝜀𝑖𝑡, are assumed to be 
distributed independently of both, the regressors and the unobserved common factors. 

To eliminate cross-sectional dependence (CD) asymptotically, arising from both, 
strong factors (like global oil price shocks or the like) and weak factors (such as local 
spillover effects, i.e. the lack of seasonal rainfall), we make use of the common 
correlated effects (CCE) type estimators developed by Pesaran (2006). Thus, the 
estimation and testing approach to equation (1) with multifactor errors (equation 2) has 
the following form: 
 

𝑦𝑖𝑡 =  𝛼𝑖 +  𝛽𝑖′𝑥𝑖𝑡 +  g�𝑖′ z�𝑡  + 𝜀𝑖𝑡,       𝑖 = 1, 2, … ,𝑁; 𝑡 = 1,2, … , 𝑇,        (3) 
 
where 𝑧𝑡̅ = (𝑦�𝑡, 𝑥̅𝑡′)′, with 𝑦�𝑡 and 𝑥̅𝑡 being the cross-section averages of the dependent 
variable and regressors, respectively.  

The CCE mean group estimator (CCEMG) allows coefficients of interest to vary 
across countries and is defined as a simple average of the individual country CCE 
estimators. In contrast, the CCE pooled estimator (CCEP) is computed by pooling 
observations over the cross-sectional units. If individual slope coefficients are assumed 
to be the same, then efficiency gains from pooling observations can be achieved (see 
Pesaran, 2006). 



6 
 

For comparison and robustness purposes, we will compute several regression 
models. In the pooled models we estimate OLS in levels (POLS), two-way fixed effects 
(2FE) and the Pesaran (2006) common correlated effects (CCE) pooled estimator. In the 
heterogeneous models we implement the Pesaran and Smith (1995) mean group (MG) 
and the heterogeneous version of the CCE estimator, the CCE mean group estimator 
(CCEMG). The aim of this exercise is to assess the size of bias of climate coefficients 
estimated by previous models (POLS, 2FE) with climate coefficients of the more 
appropriate CCE-approaches. 

 
 
2.2 Data 
 
The data used to estimate equation (3) is derived from three sources. All the agricultural 
data for our empirical analysis is taken from the Food and Agricultural Organization’s 
FAOSTAT panel database. For a measure of agricultural output (𝑦) we use real 
agricultural net output (in thousand International $) which covers practically all crops 
and livestock products originating in each country except for fodder crops. Intermediate 
primary inputs of agricultural origin are deducted, including fodder and seed. The 
quantities for each commodity are weighted by the respective 1999-2001 average 
international commodity prices and then summed for each year by country. The prices 
are in international dollars, which are derived using a Geary-Khamis formula for the 
agricultural sector.  

The labor variable (𝐿) represents the annual time series for total economically 
active population in agriculture, while the land variable (𝑛) represents arable and 
permanent crop land (in 1,000 hectare). The latter consists of land under temporary 
agricultural crops (multiple-cropped areas are counted only once), temporary meadows 
for mowing or pasture, land under market and kitchen gardens and land temporarily 
fallow (less than five years). Livestock (𝑙𝑖𝑣𝑒) is a proxy for capital formation in rural 
areas. To account for the economic relevance of different types of livestock, we follow 
the methodology of Eberhardt and Teal (2012) and construct the variable by applying 
specific weightings.6 Fertilizer (𝑓) is measured as the quantity, in metric tons, of plant 
nutrients consumed for domestic use in agriculture, which includes ‘crude’ and 
‘manufactured’ fertilizers. For capital stock (𝑡𝑟) we follow the common convention and 
use the total number of agricultural tractors in use as a crude proxy.7 

Temperature (𝑇) and rainfall (𝑅) data were constructed by Dell et al. (2012) relying 
on data from the Terrestrial and Air Temperature and Precipitation: 1900–2006 Gridded 
Monthly Time Series, Version 1.01 (Matsuura and Willmott 2009).8 The latter provides 
worldwide (terrestrial) monthly mean precipitation and temperature data at 0.5 × 0.5 
degree resolution (approximately 56 km × 56 km at equator), which Dell et al. (2012) 
aggregate to the country-year level weighted by population distribution, using 
geospatial software.9  

Finally, data for drought events (𝐷) is obtained from the International Disaster 
Databank of the Centre for Research on the Epidemiology of Disasters (CRED). CRED 

                                                           
6 live = 1.1*camels + (buffalos + horses + mules) + 0.8*(cattle + asses) + 0.2*pigs + 0.1*(sheep + goats) 
+ 0.01*(chicken + ducks + turkeys). 
7 Agricultural data available at: http://faostat.fao.org/. 
8 Data available at: http://www.aeaweb.org/articles.php?doi=10.1257/mac.4.3.66. 
9 For a detailed description of the dataset, see Appendix I in Dell et al. (2012). 
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defines a drought as an extended period of time characterized by a deficiency in a 
region’s water supply that is the result of constantly below average precipitation.10  

Table 1 provides summary statistics of the variables11, while table 2 lists the total 
number of drought events per country and income classes of the whole sample period. 
The latter indicates that droughts occurred more frequently in countries of the lower 
middle and low income classes. 

 
 

*** Table 1 about here *** 
*** Table 2 about here *** 

 
 

Figure 1 presents the population-weighted global means of the climate variables – 
temperature and rainfall – over the sample period. These variables show a clear trend: 
temperatures tend to rise, and increasingly so since about 1980, and rainfall experiences 
a downward trend.  

Finally, figure 2 illustrates the sum of drought events in a given year. As a trend, 
the number of drought events increased over the sample period, with a considerable 
peak in the early 1980s and more pronounced year-to-year-volatility in the years since 
then. 

 
 

*** Figure 1 about here *** 
*** Figure 2 about here *** 

 
 

Furthermore, the drought dummy is weakly but significantly positive correlated with 
temperature (0.12, p<0.001) and negative with rainfall (-0.07, p<0.001).  
 
 
 
3. Empirical Results 
 
 
3.1 Testing for cross-sectional dependence and unit roots 
 
In this sub-section, we implement Pesaran’s (2004) CD test for cross-sectional 
dependence in panel data. The test is robust to non-stationarity, parameter heterogeneity 
and structural breaks and has been shown to perform well even in small samples. The 
extend of cross-sectional dependence of the variables in levels and residuals from 
ADF(p) regressions of each variable across the 127 countries over the period from 1961 
to 2002 are summarized in table 3 and table 4, respectively. 
 

 
*** Table 3 about here *** 

 
                                                           
10 Data is available at: http://www.emdat.be/, definitions from http://www.emdat.be/glossary/9. 
11 Note that we have an unbalanced dataset. In particular, 204 observations of the fertilizer variable are 
missing, resulting in 5108 observations that enter the panel regressions. 
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Table 3 indicates that average correlation varies considerable across variables, but 

is highly significant in all cases. With respect to climate, the correlation of temperature 
is of considerable size (0.352), while the correlation of rainfall is small, though 
significant on the 1 % level. This is plausible since rainfall variations and trends within 
a country are much more independent of common global or regional trends while this is 
not the case for temperature, for which interregional spill-overs play a much larger role. 

 
 

*** Table 4 about here *** 
 
 

The test on residuals from the ADF(p) regressions support the previous findings on 
cross-sectional dependence shown in table 3. For each lag p = 1, 2, and 3, the reported 
CD statistics in table 4 are highly significant, with the temperature variable displaying a 
very large test statistic. To investigate cross-sectional dependence of our regression 
models, formal CD test results and mean absolute correlation coefficients for residuals 
are also reported for each specification (see lower end of tables 6 to 9). 

The presence of cross-sectional dependence in the variables and residuals from 
ADF(p) regressions implies that the use of standard panel unit root tests, such as the test 
proposed by Im, Pesaran, and Shin (2003), is not valid. To account for cross-sectional 
dependence when investigating stationarity, we therefore make use of the cross-
sectionally augmented IPS (CIPS) test proposed by Pesaran (2007). This test follows the 
CCE approach and filters the cross-sectional dependency by augmenting the ADF 
regressions carried out separately for each country with cross-section averages. 
Furthermore, the CIPS test allows for heterogeneous unit root processes, while it 
assumes one unobserved factor. The corresponding test statistics for different lag orders 
are presented in table 5. 

 
 

*** Table 5 about here *** 
 
 

Overall, considering the present data dimensions and characteristics, and given all 
the problems and caveats of panel unit root tests, results in table 5 show that we can 
suggest most conservatively that non-stationarity for conventional agricultural input and 
output variables cannot be ruled out.12 At the lower end of the following tables 6 to 9, 
which contain our main estimation results, we indicate residual stationarity for each 
empirical model by applying the CIPS test. If the presence of a unit root in the residuals 
cannot be rejected, t-statistics are invalid (Kao, 1999) and tend to vastly overstate the 
precision of the parameter estimates (Bond and Eberhardt, 2009). 
 
 
 
 
                                                           
12 In contrast, temperature and precipitation are following a trend-stationary process with some certainty 
on the global level. However, we also implemented a Dickey-Fuller unit root test for each country 
separately and find that about a quarter (a third) of the countries have non-stationarity temperature 
(rainfall) series.  
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3.2 Pooled estimation results 
 
The results of the pooled estimations are presented in table 6. The base model includes 
agricultural inputs only (columns 1, 4 and 7), the extended model includes temperature 
and precipitation (columns 2, 5 and 8) and the full model also includes the drought 
dummy (columns 3, 6 and 9). For all three models we provide OLS estimates in levels 
(POLS), two-way fixed effects (2FE) estimates and estimates computed with the pooled 
version of the CCE estimator (CCEP). In the lower panels of the table we report the 
implied returns to scale and labor coefficients as well as residual diagnostics with 
respect to stationarity and cross-sectional dependence. 

 
 

*** Table 6 about here *** 
 
 

The size and signs of the parameter coefficients of agricultural inputs are in line 
with previous findings. Interestingly, the parameter size of traditional inputs livestock 
(𝑙𝑖𝑣𝑒) and land (𝑛) are higher compared to the implied labor coefficient and modern 
inputs tractors (𝑡𝑟) and fertilizer (𝑓). Furthermore, all specified global production 
functions in table 6 indicate decreasing returns to scale (DRS).13 Including climate 
variables does not change the magnitude and signs of conventional inputs and the 
direction of returns to scale. 

With respect to climate variables, we find that temperature has a negative impact 
which varies from -0.011 to -0.019, depending on the respective regression model. 
Thus, a 1 °C increase in temperature reduces agricultural output by about 1 % to 2 % on 
average. The rainfall coefficient is positive throughout, but significant and of 
considerable size in the POLS estimation only. However, the impact of climate is 
underpinned by the negative and significant coefficient of the drought dummy. 
Interestingly, the coefficient in the POLS estimation is about 7 times larger compared to 
the 2FE model and CCEP model. This indicates that without controlling for individual 
country fixed effects, the parameter coefficient of the drought dummy is vastly 
overestimated. Referring to the fixed effects models, agricultural output would drop by 
more than 2 % on average in a given year if one drought event occurs. 

Turning to diagnostics, residuals in the CCEP model are stationary, in contrast to 
the standard panel estimators in levels (POLS, 2FE), for which non-stationary residuals 
cannot be rejected. Hence, standard panel estimators produce invalid t-statistics and 
tend to overemphasize the precision of the coefficients. Also the CD test provides 
mixed results. Although the mean absolute residual correlation has decreased in the 
CCEP model compared to the POLS estimation, the CD test nevertheless rejects the null 
hypothesis of cross-sectional independence. In contrast, residuals in the 2FE model are 
cross-sectional independent, but also reveal a higher mean absolute residual correlation. 
In conclusion, all these diagnostics indicate that parameters can be seriously biased 
using pooled regression models, especially OLS techniques. Our next step is therefore 
to allow for heterogeneity in the slope parameters. 
 
 
 
                                                           
13 It is worth to mention here that Eberhard and Teal (2012) note that decreasing returns of scale could be 
due to empirical misspecification of the global production function. 
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3.3 Averaged country regression results 
 
The averaged country regression results are presented in table 7. Again, there is the base 
(columns 1 and 4), the extended (columns 2 and 5) and the full model (columns 3 and 6) 
in two variants: as mean group (MG) estimator and as heterogeneous versions of the 
CCE estimator (CCEMG). Regarding average parameter estimates of the agricultural 
factor inputs, MG and CCEMG estimators yield qualitatively the same results compared 
to the pooled specifications. The only crucial exception is that the CCEMG models 
show insignificant coefficients of labor, indicating constant returns in the average 
country regressions. To account for that, we also estimated a restricted version of the 
model (in columns marked [b]). 

 
 

*** Table 7 about here *** 
 
 

Referring to the climate variables, coefficients have the same sign as in the pooled 
regressions, but the size of the coefficients has changed notably. The coefficients of 
temperature and droughts are again negative and in most cases significant while the 
coefficient of rainfall is again positive, but only significant in the MG model. Overall, 
allowing for parameter heterogeneity and including common unobserved factors 
reduces the magnitude of the climate coefficients (temperature, precipitation and 
drought) in the global agricultural production function. 

With respect to diagnostics, results from the CIPS test reject non-stationarity of 
residuals in all models. Further, the mean absolute residual correlation is smaller 
compared to the pooled estimations but the CD test cannot reject cross-sectional 
independence only in the CCEMG models. Taking these test results into account, the 
CCEMG model with imposed CRS provides the best results from an econometric 
perspective. Overall, if stationarity and cross-sectional dependence are taken into 
account, robust estimation results are produced, which are smaller in size and less often 
significant.  

Hence, idiosyncracies on the country level and in particular differences in 
technology play a relevant role. Consequently, we refine our results with respect to 
income groups (high, medium, and low income countries) to better reflect 
systematically different technologies in agricultural production and capacities in climate 
change adaptation. Table 8 shows the results. We applied the full version of the 
CCEMG model with imposed CRS as the qualitatively best model for high (column 1), 
middle (column 2) and low income countries (column 3),14 as well as for the full sample 
without countries from Sub-Sahara Africa (column 4), and for countries from Sub-
Sahara Africa only (column 5). 

 
 

*** Table 8 about here *** 
 
 

While the results show that agricultural production in high-income countries has 
hardly been affected by climate change at all, the other two income groups are affected. 
                                                           
14 The high income group consists of high-income OECD and non-OECD countries, the middle income 
group includes upper as well as lower middle income countries; for details see table 2. 
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In both groups warming had a significant negative effect on output, particularly in the 
middle-income group. In the low-income group the coefficient for precipitation is 
highly significant and of considerable magnitude compared to global results. Droughts 
have only a significant effect on agricultural output in low income, but not in middle or 
high income countries. Looking at Sub-Saharan African countries only, the effects of 
precipitation and droughts are strongly intensified. In particular the coefficient on 
droughts doubles compared to all low income countries and becomes significant on the 
1 % level.  

These results underline the relevance of technology heterogeneity. They also seem 
plausible, because most high-income countries are located in temperate and cold 
climatic zones, dampening the adverse consequences of climate change, and their 
agricultural sector is industrialized, supporting capacity to adapt to negative effects from 
climate change. In contrast, low income countries are located predominantly in the arid 
and equatorial climatic zones, where low-tech rain-fed agriculture is dominating. These 
connections are also reaffirmed by the implied labor coefficient, which is large in the 
low-income group, but very low in the high-income group. Also in the case of Sub-
Sahara Africa, the relevance of labor is considerable, especially compared to modern 
inputs (which do not yield significant results). In this case, also the effect of rainfall and 
especially of droughts turns out to be comparably large. For all models, diagnostics 
work perfectly well and non-stationarity as well as cross-sectional dependence can be 
rejected. 

Overall, these results show that between-country differences in the effects of 
climate change are related to the character of agriculture. The role of technology is 
crucial and gaps between income groups are widening. While growth of output per 
worker is 3.5 % on average in the high-income group over the sample period, this 
growth is down to 2.2 % in the middle-income group and amounts to 0.5 % only in the 
low-income group, where agricultural land per worker is even constantly decreasing. 
These differences are to be taken seriously into account when deciding about necessary 
adaptation strategies, because our results show that climate change is already seriously 
affecting agricultural production, especially in poorer countries. 

 
 
3.4 Alternative specifications 
 
We use the full version of the CCEMG model with imposed CRS to show the 
robustness of the results from tables 7 and 8. Results of these robustness checks are 
shown in table 9 and can be compared with column 5b and 6b from table 7. We 
exchanged temperature and rainfall with their 5-years-moving-average (column 1), with 
their absolute (column 2) and relative (column 3) variation and with a drought and a 
flood dummy15 without (column 4) and with (column 5) temperature and rainfall as 
additional regressors, checked for geometric effects in temperature and precipitation 
(column 6) and for various interactions of climate variables (columns 7 and 8). 

 
 

*** Table 9 about here *** 
 
 

                                                           
15 Also taken from http://www.emdat.be/, definitions from http://www.emdat.be/glossary/9. 
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Variations and averages of temperature and rainfall show similar but weaker results 
compared to their direct effect. To replace them with a drought and flood dummy 
performs well with respect to droughts, but the flood effect generally remains 
negligible. Also other robustness checks (not shown) do not challenge previous results. 
This includes an analysis of the lag structure of the full model, where a tendency of 
decreasing effects of rainfall and droughts but increasing effects of temperature can be 
observed (but with weak significance at best),16 of the exclusion of certain countries,17 
and of experiments with climate zones.18 

Two interesting findings nevertheless stand out. When considering geometric 
patterns, temperature as well as rainfall show counterbalancing effects. In both cases, 
first-order effects increase, while second-order effects partially offset these dynamics. 
However, both temperature coefficients also become insignificant. The second result is 
the interaction of temperature and rainfall, which produces a positive and highly 
significant coefficient. This indicates a generally decreasing (negative) effect of 
temperature when rainfall is increasing and hence a partial counterbalance of the two 
climate inputs. Again, diagnostics work perfectly well and non-stationarity as well as 
cross-sectional dependence can be rejected for all models. 
 
 
4. Conclusion 
 
In this paper, we estimate the relationship between agricultural production, conventional 
input factors and climate variables (temperature, rainfall, and droughts) for 127 
countries over the period from 1961 to 2002. Both, previous agricultural production 
analyses in general and the analysis of climate factors in particular, reinforce the 
necessity to consider heterogeneous production technologies. Different from previous 
studies, we apply a production function approach allowing for parameter heterogeneity 
and CCE-type estimations in order to take into account cross-sectional dependence. 
Hence, we provide a qualitative improvement of the assessment and robust evidence for 
the influence of climate change on global agricultural production and for different 
income groups. In this context, we are able to show that model misspecification is a 
serious issue because of cross-sectional dependence and non-stationarity. Residual 
diagnostics especially indicate a bias of pooled regression models, but also of MG 
estimators. 

Our results confirm earlier evidence of the relevance and magnitude of the effects 
of traditional and modern inputs in agricultural production, but climate factors add 
explanatory power to the model. Four major findings stand out: (1) we find evidence of 
significant negative effects of temperature and drought events on agricultural production 
in regressions with homogenous and heterogeneous slope parameters, while the effect 
of precipitation is positive but not regularly significant; (2) the effects generally 
diminish in size when allowing for parameter heterogeneity and controlling for cross-
sectional dependence by applying the CCE-estimator; (3) while agricultural production 
in high income countries is hardly affected by climate change, middle and especially 
low income countries are affected by increases in temperature and the latter also by 

                                                           
16 We analyzed up to three lags, results are available on request. 
17 Like China, India, or the Gulf states, results are available on request. 
18 We applied five climate zones and two different classifications, results are available on request. The 
only notable deviation from our main results is that the effect of temperature turns out to be positive and 
significant in countries with cold climates. 
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changes in precipitation and the frequency of droughts; (4) the adverse effects of 
climate change results are especially pronounced in Sub-Sahara Africa. 

Overall, these results show that between-country differences of the effects of 
climate change are related to technological heterogeneity in agricultural production. 
Hence, further research is necessary to identify more details about connections and 
transmission channels. Particular challenges are the larger effects in middle and 
especially low income countries. This is – politically and economically – a crucial issue, 
because structural change in agriculture will take time, while local food security is an 
immediate issue. Hence, to dampen the negative consequences of already unavoidable 
climate change dynamics, it is necessary to apply adaptation measures which are 
sensitive to technological heterogeneity in the agricultural sector. This is also another 
direction of further research, especially with respect to econometric refinements of this 
field of analysis: while we control for parameter heterogeneity and find clear evidence 
of its relevance, explicit modelling of different production technologies and of the 
effects of TFP-levels on adaptation would certainly be desirable. 

Overall, climate change is already negatively affecting global agriculture and thus 
endangering the livelihoods of large populations. In particular, low and middle income 
countries in the arid and equatorial climatic zones experience a negative impact. Given 
recent IPCC projections, this trend is very likely to continue and even aggravate in the 
future, especially in poor countries (see IPCC, 2014). Hence, our findings reinforce the 
importance of proper adaptation strategies considering the specific characteristics of 
agriculture as well as its specific vulnerabilities to climate change dynamics. 
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Appendix: 
 
 
 
Table 1: Summary statistics 
 

Variable Obs Mean Std. Dev. Min Max 
Variables in levels 
y  5302 3.58 6.93 0.11 50.72 
L (`000s) 5302 8,263.74 41,900.00 2.00 511,000.00 
n 5297 4.74 12.72 0.11 140.47 
live 5302 6.38 12.46 0.06 102.28 
f 5108 0.41 0.92 0.00 7.05 
tr 5302 0.12 0.28 0.00 1.97 
T (C°) 5314 19.62 7.05 -3.00 29.58 
R (100 mm) 5314 11.23 7.14 0.07 53.58 
Variables in logs 
y 5302 0.18 1.39 -2.22 3.93 
L 5302 13.95 1.89 7.60 20.05 
n 5297 0.64 1.15 -2.20 4.95 
live 5302 0.85 1.40 -2.77 4.63 
f 5108 -3.22 2.66 -11.56 1.95 
tr 5302 -5.13 3.01 -13.67 0.68 
Notes: We report the descriptive statistics for output (in I$1,000), labor (headcount), 
tractors (number), livestock (cattle-equivalent numbers), fertilizer (in metric tons) and 
land (in hectare), temperature (°C) and precipitation (100 mm); small letters indicate per 
worker terms. 
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Table 2: Country statistics 
 
code country T R D  code country T R D 
High-income OECD-countries 
AUS Australia 15.96 8.34 15  IDN Indonesia 25.55 21.97 9 
AUT Austria 7.60 9.33 0  IRN Iran, Islamic Rep. 14.12 3.78 4 
CAN Canada 4.93 9.24 8  IRQ Iraq 21.62 2.68 6 
DNK Denmark 7.86 5.66 1  JAM Jamaica 24.65 18.87 5 
FIN Finland 3.26 5.97 0  JOR Jordan 17.65 2.84 2 
FRA France 10.64 7.82 4  MAR Morocco 16.92 4.29 7 
DEU Germany 8.74 7.50 0  PRY Paraguay 22.18 14.78 6 
GRC Greece 14.62 6.34 1  PHL Philippines 25.51 22.31 9 
ISL Iceland 2.49 8.54 0  ROM Romania 8.88 5.36 2 
IRL Ireland 9.16 10.16 0  LKA Sri Lanka 26.79 21.98 11 
ITA Italy 11.81 10.44 2  SUR Suriname 26.64 20.97 0 
JPN Japan 13.14 16.12 1  SWZ Swaziland 20.51 8.09 10 
KOR Korea, Rep. 11.24 12.60 3  SYR Syrian Arab Republic 17.30 3.81 2 
NLD Netherlands 9.90 7.65 0  THA Thailand 26.83 14.39 4 
NZL New Zealand 11.98 11.22 1  TUN Tunisia 18.46 4.09 2 
NOR Norway 3.59 9.90 0  Low income countries 
PRT Portugal 15.04 10.55 2  AFG Afghanistan 11.16 3.51 7 
ESP Spain 13.88 6.60 11  BGD Bangladesh 25.57 19.95 4 
SWE Sweden 5.44 5.97 0  BEN Benin 27.00 10.93 7 
CHE Switzerland 5.28 12.25 0  BFA Burkina Faso 27.68 8.01 22 
GBR United Kingdom 9.17 7.93 0  BDI Burundi 20.14 11.44 3 
USA United States 12.96 8.96 6  KHM Cambodia 27.54 14.14 6 
High-income non-OECD-countries CMR Cameroon 24.23 18.22 4 
CYP Cyprus 19.26 3.83 2  CAF Central African Republic 24.30 14.17 2 
ISR Israel 19.91 4.12 1  TCD Chad 27.80 6.95 19 
KWT Kuwait 25.43 1.06 0  ZAR Congo, Dem. Rep. 23.19 15.00 3 
QAT Qatar 26.53 0.78 0  COG Congo, Rep. 24.09 14.80 1 
SAU Saudi Arabia 25.06 1.03 0  CIV Cote d’Ivoire 26.12 13.32 1 
ARE United Arab Emirates 26.54 1.28 0  ETH Ethiopia 19.69 10.82 21 
Upper middle income countries GMB Gambia, The 26.12 10.00 13 
ARG Argentina 17.14 8.84 0  GHA Ghana 26.54 13.39 5 
BLZ Belize 25.50 23.64 0  GIN Guinea 25.18 19.86 4 
BWA Botswana 20.83 4.49 10  GNB Guinea-Bissau 26.69 15.08 9 
CHL Chile 11.33 5.85 6  HTI Haiti 24.21 10.97 9 
CRI Costa Rica 22.28 40.00 3  IND India 25.20 12.09 15 
GNQ Equatorial Guinea 23.84 21.21 0  KEN Kenya 20.01 12.34 14 
GAB Gabon 24.60 21.05 0  PRK Korea, Dem. Rep. 7.68 9.69 1 
HUN Hungary 10.28 5.77 2  LAO Lao PDR 23.66 18.29 7 
LBN Lebanon 16.82 9.55 0  LSO Lesotho 12.20 6.91 7 
LBY Libya 20.39 2.33 0  LBR Liberia 25.78 24.98 1 
MYS Malaysia 26.02 25.63 1  MDG Madagascar 20.72 15.44 8 
MEX Mexico 18.61 8.96 7  MWI Malawi 22.71 11.05 8 
OMN Oman 25.24 1.25 0  MLI Mali 28.19 6.88 10 
PAN Panama 24.84 27.20 1  MRT Mauritania 28.55 2.71 23 
POL Poland 7.86 5.95 0  MNG Mongolia -1.50 2.28 1 
ZAF South Africa 17.53 6.75 9  MOZ Mozambique 24.14 9.83 14 
TTO Trinidad and Tobago 25.79 18.48 0  MMR Myanmar 25.08 19.15 0 
TUR Turkey 12.15 6.03 0  NPL Nepal 20.19 16.01 6 
URY Uruguay 17.21 11.03 2  NIC Nicaragua 25.54 15.48 4 
VEN Venezuela, RB 25.33 11.58 0  NER Niger 28.13 4.52 15 
Lower middle income countries NGA Nigeria 26.72 13.11 3 
ALB Albania 13.01 12.47 3  PAK Pakistan 22.54 4.12 4 
DZA Algeria 16.76 5.00 3  PNG Papua New Guinea 21.93 27.58 4 
AGO Angola 22.17 10.81 9  RWA Rwanda 19.75 11.18 8 
BOL Bolivia 18.80 10.61 6  SEN Senegal 27.20 6.59 18 
BRA Brazil 21.90 13.88 13  SLE Sierra Leone 26.05 25.69 0 
BGR Bulgaria 9.96 6.17 3  SOM Somalia 26.81 4.05 11 
CHN China 13.65 9.84 20  SDN Sudan 27.69 4.54 11 
COL Colombia 21.40 19.75 1  TZA Tanzania 22.35 10.35 11 
CUB Cuba 25.33 12.05 8  TGO Togo 26.16 12.14 3 
DOM Dominican Republic 25.25 16.05 1  UGA Uganda 22.20 12.28 10 
ECU Ecuador 20.40 14.27 2  VNM Vietnam 24.31 15.67 5 
EGY Egypt, Arab Rep. 21.14 0.46 0  YEM Yemen, Rep. 22.95 2.70 5 
SLV El Salvador 23.27 16.31 4  ZWE Zimbabwe 20.61 7.10 11 
GTM Guatemala 20.96 20.85 4       
GUY Guyana 26.81 21.88 3       
HND Honduras 24.01 14.31 7       
Notes: T = average temperature (°C), R = average precipitation (100 mm), D = total number of drought events; the 
sample period is from 1961 to 2002. 
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Table 3: CD test statistics and p-value of variables 
 
Variable test statistics p-value 𝝆�𝒊𝒋 |𝝆�𝒊𝒋| 
y 209.33  0.00 0.370 0.619 
L 52.88  0.00 0.098 0.796 
n -3.33  0.00 -0.006 0.655 
live 67.84  0.00 0.121 0.562 
f 253.44  0.00 0.446 0.539 
tr 261.78  0.00 0.467 0.682 
T 203.29  0.00 0.352 0.377 
R 41.13  0.00 0.071 0.175 
Notes: 𝜌�𝑖𝑗  where 𝑖 ≠ 𝑗 refers to the correlation coefficient for the variable in 
question between countries 𝑖 and 𝑗; |𝜌�𝑖𝑗| = is the absolute value of the same 
statistic; 𝐶𝐷 = �2𝑇/𝑁(𝑁 − 1) ∑ ∑ 𝜌�𝑖𝑗𝑁

𝑗=𝑖+1
𝑁−1
𝑖=1 , which tends to 𝑁(0,1) 

under the null hypothesis of cross-section independence. For more details 
see Pesaran (2004). 
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Table 4: CD test statistics and p-value of ADF(p) regressions 
 
Variable ADF(1) p-value ADF(2) p-value ADF(3) p-value 
y 9.19 0.00 10.99 0.00 11.46 0.00 
L 31.31 0.00 41.68 0.00 43.84 0.00 
n 4.35 0.00 4.28 0.00 4.5 0.00 
live 6.48 0.00 7.13 0.00 5.27 0.00 
f 15.61 0.00 14.14 0.00 13.49 0.00 
tr 7.00 0.00 6.64 0.00 7.24 0.00 
T 123.42 0.00 118.27 0.00 111.68 0.00 
R 19.5 0.00 19.13 0.00 18.2 0.00 
Notes: pth-order Augmented Dickey-Fuller test statistics, ADF(p), for all variables are 
computed for each cross section unit separately. We include an intercept and a linear 
time trend in the ADF(p) regressions. 𝐶𝐷 = �2𝑇/𝑁(𝑁 − 1) ∑ ∑ 𝜌�𝑖𝑗𝑁

𝑗=𝑖+1
𝑁−1
𝑖=1 , which 

tends to 𝑁(0,1) under the null hypothesis of cross-section independence. We use 
interpolated fertilizer data since CD tests are not possible with too much gaps. For more 
details see Pesaran (2004). 
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Table 5: CIPS unit root tests 
 

Variables in levels: ADF equation contains intercept 
 y L n live f tr T R 

lags Ztbar p Ztbar p Ztbar p Ztbar p Ztbar p Ztbar p Ztbar p Ztbar p 
0 -7.66 0.00 12.79 1.00 6.34 1.00 2.81 1.00 -9.43 0.00 -1.20 0.12 -35.23 0.00 -40.23 0.00 
1 -3.79 0.00 2.10 0.98 1.95 0.98 -1.68 0.05 -5.29 0.00 -2.29 0.01 -24.08 0.00 -21.77 0.00 
2 -1.42 0.08 4.70 1.00 1.76 0.96 -1.21 0.11 -2.68 0.00 -0.96 0.17 -14.12 0.00 -14.29 0.00 
3 -0.92 0.18 4.53 1.00 1.18 0.88 -0.92 0.18 0.61 0.73 -0.66 0.26 -11.17 0.00 -9.78 0.00 
4 0.67 0.75 4.92 1.00 1.02 0.85 0.90 0.82 1.43 0.92 -0.21 0.42 -6.35 0.00 -5.49 0.00 

Variables in levels: ADF equation contains intercept and trend 
0 -2.59 0.01 14.68 1.00 9.40 1.00 5.72 1.00 -9.08 0.00 1.58 0.94 -33.01 0.00 -36.72 0.00 
1 2.01 0.98 -4.73 0.00 3.19 1.00 -0.38 0.35 -5.42 0.00 -1.18 0.12 -20.94 0.00 -16.67 0.00 
2 5.11 1.00 2.14 0.98 3.33 1.00 0.62 0.73 -2.39 0.01 -0.37 0.36 -8.89 0.00 -8.85 0.00 
3 5.57 1.00 2.62 1.00 2.24 0.99 0.90 0.82 0.78 0.78 1.21 0.89 -6.49 0.00 -4.46 0.00 
4 8.67 1.00 2.35 0.99 2.11 0.98 2.36 0.99 1.97 0.98 0.21 0.58 -0.81 0.21 0.07 0.53 

Variables in first differences: ADF equation contains intercept 
0 -49.61 0.00 -2.68 0.00 -29.21 0.00 -34.21 0.00 -48.31 0.00 -34.36 0.00 -52.69 0.00 -52.86 0.00 
1 -35.97 0.00 -3.85 0.00 -16.38 0.00 -22.44 0.00 -35.45 0.00 -22.57 0.00 -50.20 0.00 -49.26 0.00 
2 -21.45 0.00 -2.24 0.01 -8.40 0.00 -14.54 0.00 -25.11 0.00 -16.16 0.00 -36.05 0.00 -36.31 0.00 
3 -15.68 0.00 0.94 0.83 -5.16 0.00 -10.67 0.00 -16.20 0.00 -9.88 0.00 -30.18 0.00 -27.73 0.00 
4 -8.32 0.00 1.56 0.94 -2.54 0.01 -6.19 0.00 -10.38 0.00 -6.15 0.00 -20.38 0.00 -20.02 0.00 

Notes: The reported values are CIPS(p) statistics, which are cross section averages of Cross-sectionally Augmented Dickey–Fuller (CADF(p)) test 
statistics, for more details see Pesaran (2007). The relevant lower 1, 5, and 10% critical values for the CIPS statistics are −2.23, −2.11, and −2.04 with 
an intercept case, and −2.73, −2.61, and −2.54 with an intercept and a linear trend case, respectively. 
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Table 6: Pooled regressions 
 [1] 

POLS 
[2] 

POLS 
[3] 

POLS 
[4] 

2FE 
[5] 

2FE 
[6] 

2FE 
[7] 

CCEP 
[8] 

CCEP 
[9] 

CCEP 
L -0.058*** -0.061*** -0.057*** -0.235*** -0.236*** -0.236*** -0.477*** -0.449*** -0.463*** 
 (-17.11) (-16.60) (-15.46) (-3.63) (-3.64) (-3.64) (-3.40) (-3.24) (-3.22) 
n 0.258*** 0.267*** 0.267*** 0.260*** 0.261*** 0.261*** 0.183* 0.192* 0.150 
 (30.58) (29.99) (30.26) (3.32) (3.35) (3.35) (1.68) (1.76) (1.48) 
live 0.212*** 0.234*** 0.239*** 0.350*** 0.349*** 0.347*** 0.336*** 0.339*** 0.340*** 
 (27.44) (30.58) (31.19) (8.37) (8.33) (8.29) (8.13) (8.07) (7.77) 
f 0.166*** 0.157*** 0.155*** 0.072*** 0.072*** 0.072*** 0.024*** 0.024*** 0.023*** 
 (27.66) (27.38) (27.37) (6.45) (6.49) (6.49) (4.13) (4.13) (3.85) 
tr 0.132*** 0.110*** 0.108*** 0.050*** 0.050*** 0.050*** 0.071*** 0.071*** 0.069*** 
 (24.23) (19.62) (19.40) (3.23) (3.24) (3.23) (4.14) (3.98) (3.81) 
T  -0.016*** -0.016***  -0.019** -0.019*  -0.011* -0.012* 
  (-11.56) (-11.09)  (-2.03) (-1.97)  (-1.93) (-1.94) 
R  0.014*** 0.013***  0.002 0.002  0.000 0.000 
  (14.53) (13.88)  (1.35) (1.20)  (0.40) (0.14) 
D   -0.144***   -0.021*   -0.024*** 
   (-8.06)   (-1.75)   (-4.12) 
Obs. 5103 5103 5103 5103 5103 5103 5103 5103 5103 
Countries - - - 127 127 127 127 127 127 
Min. obs. - - - 19.00 19.00 19.00 19.00 19.00 19.00 
Avg. obs. - - - 40.18 40.18 40.18 40.18 40.18 40.18 
Max. obs. - - - 42.00 42.00 42.00 42.00 42.00 42.00 
Implied βL 0.174 0.173 0.332 0.033 0.049 0.072 -0.091 -0.064 -0.009 
Returnsb DRS DRS DRS DRS DRS DRS DRS DRS DRS 
RMSE 0.432 0.419 0.417 0.148 0.147 0.147 0.077 0.077 0.076 
Stationarity† I(1) I(1) I(1) I(1) I(1) I(1) I(0) I(0) I(0) 
Mean |ρij|‡ 0.415 0.392 0.379 0.400 0.397 0.397 0.196 0.199 0.199 
CD (ρ) -2.28 (0.02) -2.74 (0.01) -2.99 (0.00) -0.24 (0.81) -0.19 (0.85) -0.26 (0.79) -2.11 (0.04) -2.05 (0.04) -1.83 (0.07) 
t statistics in parentheses, * p < 0.10, ** p < 0.05, *** p < 0.01 
Dependent variable: [1]-[9] log output per worker; We include year dummies in equations [1] to [6]. 
b The implied returns to scale are labeled decreasing (DRS) if the coefficient on labor is negative significant, and constant (CRS) if this coefficient is insignificant. The implied labor 
coefficient is computed by adding up all the coefficients on the RHS variables (except for labor), subtracting them from unity and then adding the coefficient on labor (the result is the 
implied labor coefficient if constant returns were to hold). For more details see also Eberhardt and Teal (2012).  
RMSE reports the root mean squared error. 
Residual Diagnostics: † Pesaran (2007) CIPS test results: I(0) - stationary, I(1) - nonstationary. The series is considered to be I(0) if all tests (up to 3 lags) reject the H0 of non-stationarity 
(results available upon request). 
‡ Mean Absolute Correlation Coefficient and Pesaran (2004) CD test, H0: cross-sectional independence. 
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Table 7: Mean group estimators 
 [1] 

MG 
[2] 

MG 
[3] 

MG 
[4] 

CCEMG 
[5] 

CCEMG 
[6] 

CCEMG 
    [a] [b] [a] [b] [a] [b] 

L -0.360** -0.340** -0.319* -0.086  -0.135  -0.047  
 (-2.21) (-2.01) (-1.93) (-0.71)  (-1.12)  (-0.37)  
n 0.210*** 0.192** 0.178** 0.211*** 0.200*** 0.142** 0.187*** 0.139* 0.179*** 
 (2.76) (2.38) (2.14) (2.93) (3.64) (1.96) (3.16) (1.70) (2.96) 
live 0.241*** 0.259*** 0.259*** 0.305*** 0.319*** 0.304*** 0.301*** 0.305*** 0.306*** 
 (7.89) (8.09) (8.21) (9.03) (9.16) (8.54) (8.92) (8.52) (8.70) 
f 0.031*** 0.028*** 0.029*** 0.032*** 0.035*** 0.023*** 0.028*** 0.022*** 0.025*** 
 (5.03) (5.10) (5.36) (5.14) (5.65) (4.12) (4.61) (4.05) (4.62) 
tr 0.074*** 0.073*** 0.075*** 0.075*** 0.105*** 0.060*** 0.111*** 0.059*** 0.110*** 
 (3.21) (3.22) (3.41) (3.56) (4.87) (2.89) (5.28) (2.81) (5.56) 
T  -0.010*** -0.010***   -0.008** -0.007* -0.008** -0.005 
  (-3.32) (-3.26)   (-2.18) (-1.79) (-1.99) (-1.36) 
R  0.002** 0.002*   0.002 0.002 0.001 0.002 
  (2.28) (1.78)   (1.55) (1.57) (1.09) (1.54) 
D   -0.011***     -0.012*** -0.010*** 
   (-3.87)     (-3.47) (-3.64) 
Obs. 5103 5103 5103 5103 5103 5103 5103 5103 5103 
Countries 127 127 127 127 127 127 127 127 127 
Min. obs. 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 
Avg. obs. 40.18 40.18 40.18 40.18 40.18 40.18 40.18 40.18 40.18 
Max. obs. 42.00 42.00 42.00 42.00 42.00 42.00 42.00 42.00 42.00 
Implied βL 0.084 0.116 0.159 0.291 0.341 0.342 0.378 0.447 0.607 
Returnsb DRS DRS DRS CRS - CRS - CRS - 
RMSE 0.066 0.061 0.061 0.055 0.060 0.048 0.052 0.046 0.50 
Stationarity† I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) 
Mean |ρij|‡ 0.148 0.146 0.144 0.150 0.152 0.153 0.154 0.155 0.154 
CD (ρ) 8.99 (0.00) 7.10 (0.00) 6.82 (0.00) 0.31 (0.76) 0.05 (0.96) 1.45 (0.15) 0.94 (0.34) 1.69 (0.09) 0.97 (0.33) 
t statistics in parentheses; * p < 0.10, ** p < 0.05, *** p < 0.01 
Dependent variable: [1]-[6] log output per worker; We include linear trend in equations [1] to [3]; Outlier-robust mean of parameter coefficients across groups are presented. 
b The implied returns to scale are labeled decreasing (DRS) if the coefficient on labor is negative significant, and constant (CRS) if this coefficient is insignificant. The implied 
labor coefficient is computed by adding up all the coefficients on the RHS variables (except for labor), subtracting them from unity and then adding the coefficient on labor (the 
result is the implied labor coefficient if constant returns were to hold). For more details see also Eberhard and Teal (2012).  
RMSE reports the root mean squared error. 
Residual Diagnostics: † Pesaran (2007) CIPS test results: I(0) - stationary, I(1) - nonstationary. The series is considered to be I(0) if all tests (up to 3 lags) reject the H0 of non-
stationarity (results available upon request). 
‡ Mean Absolute Correlation Coefficient and Pesaran (2004) CD test, H0: cross-sectional independence. 
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Table 8: Climate effects and income levels 
 
 [1] 

CCEMG  
High income 

[2] 
CCEMG  
Middle 
income 

[3] 
CCEMG  

Low income 

[4] 
CCEMG  

without SSAa 

[5] 
CCEMG  
SSAa only 

n 0.221** 0.278*** 0.050 0.278*** 0.207** 
 (2.11) (2.95) (0.72) (3.92) (2.56) 
live 0.386*** 0.288*** 0.309*** 0.298*** 0.296*** 
 (4.64) (5.79) (5.18) (6.79) (5.17) 
f 0.065*** 0.031*** 0.008 0.045*** 0.013 
 (3.29) (3.29) (1.52) (6.11) (1.47) 
tr 0.262*** 0.145*** 0.024 0.105*** 0.034 
 (3.93) (3.12) (0.97) (3.83) (1.15) 
T -0.004 -0.014** -0.016* -0.009** -0.011 
 (-0.58) (-2.01) (-1.86) (-2.11) (-0.85) 
R -0.003 -0.001 0.006*** -0.000 0.008*** 
 (-1.33) (-0.38) (3.04) (-0.23) (3.55) 
D 0.000 -0.001 -0.010* -0.007** -0.019*** 
 (0.93) (-0.19) (-1.70) (-2.43) (-3.13) 
Obs. 1120 2094 1889 3580 1523 
Countries 28 51 48 88 39 
Min. obs. 24.00 19.00 26.00 24.00 19.00 
Avg. obs. 40.00 41.06 39.35 40.68 39.05 
Max. obs. 42.00 42.00 42.00 42.00 42.00 
Implied βL 0.073 0.274 0.629 0.290 0.472 
Returnsb - - - - - 
RMSE 0.043 0.52 0.48 0.050 0.050 
Stationarity† I(0) I(0) I(0) I(0) I(0) 
Mean |ρij|‡ 0.154 0.151 0.161 0.149 0.161 
CD (ρ) 0.59 (0.56) -1.75 (0.08)  -0.93 (0.35) 0.43 (0.66) -1.19 (0.24) 
Method: Mean group type estimators, CRS imposed 
t statistics in parentheses; * p < 0.10, ** p < 0.05, *** p < 0.01 
Dependent variable: [1]-[5] log output per worker. 
a SSA refers to Sub-Sahara Africa 
b CRS imposed in equations [1] to [5]. 
For all other details see Table 7. 
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Table 9: Alternative specifications 
 [1] 

CCEMG 
5-years-
averages 

[2] 
CCEMG 

Variation 1 

[3] 
CCEMG 

Variation 2 

[4] 
CCEMG 
Droughts 

and floods 

[5] 
CCEMG 

Full model 
with floods 

[6] 
CCEMG 

Full model 
with squares 

[7] 
CCEMG 

Interaction 1 

[8] 
CCEMG 

Interaction 2 

n 0.144** 0.182*** 0.175*** 0.149** 0.173*** 0.129** 0.149** 0.137** 
 (2.37) (3.02) (2.95) (2.57) (2.86) (1.99) (2.36) (2.12) 
live 0.289*** 0.299*** 0.303*** 0.304*** 0.311*** 0.322*** 0.308*** 0.317*** 
 (8.27) (8.85) (8.87) (8.09) (8.33) (9.07) (8.58) (8.17) 
f 0.018*** 0.027*** 0.026*** 0.032*** 0.026*** 0.026*** 0.030*** 0.027*** 
 (2.96) (4.67) (4.65) (4.70) (4.34) (4.61) (4.26) (4.30) 
tr 0.129*** 0.110*** 0.112*** 0.127*** 0.113*** 0.095*** 0.111*** 0.115*** 
 (5.17) (5.51) (5.55) (5.71) (5.33) (4.54) (4.34) (4.42) 
T     -0.006 -0.139 -0.051*** -0.007* 
     (-1.56) (-0.68) (-2.71) (-1.78) 
R     0.002** 0.040*** -0.062 0.002 
     (2.06) (3.70) (-1.63) (1.51) 
5-yr-T -0.005        
 (-0.34)        
5-yr-R 0.002        
 (0.59)        
Abs. Var. T †  -0.007*       
  (-1.77)       
Abs. Var. R †  0.002       
  (1.59)       
Rel. Var. T ♯   -0.004*      
   (-1.79)      
Rel. Var. R ♯   0.000      
   (1.03)      
D    -0.012*** -0.010*** -0.009***  -0.073 
    (-3.45) (-3.57) (-2.82)  (-1.40) 
F    -0.001 -0.003    
    (-0.26) (-0.94)    
T2      0.003   
      (0.60)   
R2      -0.002***   
      (-3.79)   
T*R       0.006***  
       (2.88)  
T*D        0.000 
        (0.14) 
R*D        0.001 
        (0.85) 
Obs. 4638 5103 5103 5103 5103 5103 5103 5103 
Countries 127 127 127 127 127 127 127 127 
Min. obs. 17 19.00 19 19.00 19.00 19.00 19.00 19.00 
Avg. obs. 36.520 40.18 40.18 40.18 40.18 40.18 40.18 40.18 
Max. obs. 38 42.00 42 42.00 42.00 42.00 42.00 42.00 
Implied βL 0.423 0.387 0.388 0.401 0.394 0.535 0.509 0.481 
Returnsb - - - - - - - - 
RMSE 0.049 0.053 0.053 0.054 0.048 0.047 0.051 0.049 
Stationarity I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) 
Mean |ρij| 0.159 0.153 0.154 0.153 0.155 0.156 0.150 0.152 

CD (ρ) 0.41 
(0.68) 

0.70 (0.48) 0.76 (0.45) 0.28 (0.78) 1.77 (0.08) 0.21 (0.83) -1.51 (0.13) -0.90 (0.37) 

Method: Mean group type estimators, CRS imposed 
t statistics in parentheses, * p < 0.10, ** p < 0.05, *** p < 0.01 
Dependent variable: [1]-[8] log output per worker. 
b CRS imposed in equations [1] to [8]. 
† Absolute variations of T and R were computed by subtracting from annual temperature/rainfall their 30 year averages of the 
period 1961 to 1991. 
♯ Relative variations of T and R were computed by dividing absolute variations by the standard deviation of the respective 
time series. 
For all other details see Table 7. 
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Figure 1: Temperature and rainfall trends, 1961-2002 
 

 
Method: Global population-weighted average temperature and rainfall (127 countries). 
  

18
.5

19
19

.5
20

20
.5

de
gr

ee
s

1960 1970 1980 1990 2000
year

Temperature

8
9

10
11

12
10

0s
 m

m
 / 

ye
ar

1960 1970 1980 1990 2000
year

Rainfall



26 

Figure 2: Trends in global drought events 
 

 
Method: Cumulated number of drought events per year (127 countries). 
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