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Contagion Risk in the Interbank Market: A
Probabilistic Approach to Cope with
Incomplete Structural Information∗

Mattia Montagna†, Thomas Lux‡

Abstract

Banks have become increasingly interconnected via interbank credit and other forms
of liabilities. As a consequence of the increased interconnectedness, the failure of
one node in the interbank network might constitute a threat to the survival of
large parts of the entire system. How important this effect of “too-big-too-fail” and
“too-interconnected-too-fail” is, depends on the exact topology of the network on
which the supervisory authorities have typically very incomplete knowledge. We
propose a probabilistic model to combine some important known quantities (like
the size of the banks) with a realistic stochastic representation of the remaining
structural elements. Our approach allows us to evaluate relevant measures for the
contagion after default of one unit (i.e. number of expected subsequent defaults, or
their probabilities). For some quantities we are able to derive closed form solutions,
others can be obtained via computational mean-field approximations.

JEL Classification: D85, G21, D83
Keywords: contagion, interbank market, network models

1 Introduction

Systemic risk refers to the likelihood of a large portion of the financial sys-
tem - potentially, the entire system - to jointly fail after an idiosyncratic
shock, leading to a major disruption of capital allocation and risk trans-
formation throughout the economic system. The consequences of systemic
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1 Introduction 2

events on the real economy have been dramatically revealed during the last
financial crisis, directing the attention of academics and politicians towards
new methodologies to study complex financial systems and the sources for
systemic risk.

The probability of a large portion of the financial system to fail is gov-
erned by several direct and indirect connections among the individual fi-
nancial institutions (hereafter, banks). Examples of direct connections are
credit lines, interbank lending and derivative contracts. Indirect connections
consist of spillover effects that one distressed institution can induce on any
other, examples being fire sales and liquidity spirals (Brunnermeier (2009)).
A link between two financial institutions always involves the transfer of a
certain amount of risk between the banks’ balance sheets. Because of the
very nature of the financial system, the idiosyncratic risk of each institution
is shared among its direct and indirect counterparties, which transfer some
of the risk to their own counterparties, and so on. The result is a system in
which the materialization of the risk in one bank can induce losses to spread
among a large number of financial institutions, although they might not be
directly connected with the bank in distress themselves.

In reality neither the banks themselves nor any other party might be
able to exactly quantify the magnitude of risk that could be transmitted via
the interbank network. This uncertainty could be completely removed if one
had all the necessary information regarding interbank claims. However, this
is often not possible, for various reasons. First, banks are not forced by law
to report all of their connections to other banks1. Second, some components
of the interbank network are evolving extremely fast, resulting in a practical
impossibility to keep track of all prevailing interbank links2. Third, most of
the transactions are still conducted in over-the-counter trades. In all such
cases, a probabilistic representation reflecting this uncertainty could be very
helpful to assess contagion risk.

The aim of this paper is to develop a probabilistic framework for the es-
timation of the probability of systemic events in a banking network of which
only some key statistics and statistical regularities are known. Our work
continues the recent line of research on the determinants and the modeling
of systemic risk in stylized models of the topology of the interbank financial
market. The pioneering work of Allen and Gale (2000) has first demon-
strated the relevance of the structure of interbank linkages for the stability
of the financial system in analytically solvable models with a few banks
only. Subsequently, more general network approaches have been developed.
Nier et al. (2007), have studied a random network structure for interbank
liabilities. They demonstrate how the resilience of the whole system to id-

1 And also if it were the case, this information would be available to regulators, but not
to the single institutions, for which the problem would therefore persist.

2 Examples are the overnight interbank network and the derivative network.
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iosyncratic shocks is affected by the topological features of the system, such
as the connectivity of the nodes. Alternative network structures have been
studied by Iori (2008), Bluhm et al. (2013) and Georg (2013), among oth-
ers. May and Arinaminphaty (2009) provide an analytical formulation of
the results of Nier et al. using a mean-field approach, offering more general
insights into the connections between complexity and stability. Another re-
lated analytical approach is Gai and Kapadia (2010) who use a stochastic
framework based on the generating function methodology to the analysis
of network structures as presented, e.g., in Newman (2013). Glasserman
and Young (2014) derive theoretical bounds for the magnitude of contagion
under different assumptions on the network structure and the heterogeneity
of banks. The basic contribution of our approach to this nascent analyti-
cal literature is that we will focus on capturing certain stylized facts of the
interbank market that are not captured yet in previous approaches. Our
work is most closely related to May and Arinaminphaty (2009), but we
relax two of the assumptions that are crucial in the derivation of their an-
alytical solution, homogeneity in bank sizes and the Erdös-Rényi topology
for the interbank network. We expand this line of research by providing a
analytical and semi-analytical solutions for more general cases, where both
the interbank network topology and the bank size distribution can take any
form.

In order to apply our framework, we develop an algorithm aimed at
generating financial systems capturing certain empirical “stylized facts” of
interbank markets3. One pervasive finding in empirical data is disassortativ-
ity of link formation via interbank credit. In network theory, if high-degree
vertices have a tendency to attach to low-degree ones, the resulting graph
is said to display disassortative mixing or disassortative behavior. A simple
way to identify such a structure consists in studying the distribution of the
average degree of the neighbours of the vertices belonging to the network.
In the case of disassortative mixing, this distribution should be a decreasing
function of the degree of the nodes. Disassortative mixing has indeed been
found to be a typical feature of many real networks, examples including the
internet, the World Wide Web, protein interactions and neural networks
(Caldarelli, 2007). Interestingly, essentially all interbank markets investi-
gated so far seem to be characterized by disassortative behavior, as docu-
mented by Boss et al. (2004) for the Austrian interbank market, Soramäki
et al. (2006) for the US Fedwire network, Iori et al. (2008) for the Italian
interbank market, and Imakubu and Soejima (2006) for the Japanese inter-
bank market. Therefore, it seems important to include this well-established
stylized fact in the study of artificial financial networks, since this particular

3 As in the case by Nier et al. (2007) and May and Arinaminphaty (2005), our networks
are static since the single nodes are not allowed to change their behavior during the spread
of the shock, but just absorb the propagation of losses.
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structure could affect the ability of a system to absorb shocks.
Another feature that is often present in real networks is a characteristic

power law distribution of the degrees (the number of connections across the
units constituting the network). A power-law distributions of degrees also is
the feature characterizing so-called scale-free networks. Scale-free networks
are characterized also by the presence of hubs, namely nodes with a degree
that is much higher than the mean degree of the other nodes. Therefore, in
a scale-free network, there is a high probability that many transactions take
place through one of the high-degree nodes of the network. The presence of
such hubs makes a system in general more prone to a break-down in case of
targeted attacks. This feature is the downside of their high connectivity that
might contribute to an efficient channeling of flows providing short paths
between any two nodes belonging to the system. Again, in real interbank
money markets scale-free degree distributions have been frequently reported.
Examples are Inaoka et al. (2004) and Imakubu and Soejima (2006) for
the Japanese interbank market, and Boss et al. (2004) for the Austrian
interbank market, while there exist divergent results for the Italian interbank
market (Iori et al., (2008), Fricke et al. (2012)).

We also believe that it is important to consider a realistic size distribution
when studying the interbank network. As with firms size distributions in
general (Luttmer (2007)), the distribution of the (balance sheet) sizes of
banks is skewed to the right and at least close to a fat-tailed power-law
distribution. As reported by Ennis (2001) and Janicki and Prescott (2006)
for U.S. banks, the banking system is characterized by a large number of
small banks and a few large banks, and the size distribution seems to be close
to lognormal with a Pareto-distributed tail. A study on the evolution of the
banking system in a European country can be found in Benito (2008), where
the presence of few big hubs in the Spanish banking system is highlighted,
and, again, the distribution is found to be highly skewed, and has become
more skewed during the last decades. Glasserman and Young (2014) show
how theoretical bounds on network effects depend on the heterogeneity of
bank sizes and the distribution of links with both kinds of heterogeneity
being crucial determinants for the extent of contagion effects.

We take the above three stylized facts into account in the design of
our artificial banking system. In particular, we construct a Monte Carlo
framework for an interbank market characterized by the above empirical
features via what is called a fitness algorithm (De Masi et al., 2006). With
a particular choice of such a function as a generating mechanism for our
network, we can make sure that our artificial banking sector displays a power
law degree distribution together with disassortative link formation. As an
immediate consequence, in an interbank market characterized by a power law
in the size distribution, the default of a single small or medium-sized bank
will mostly not affect the stability of the entire system: as one might expect,
their losses are easily absorbed by their mostly large lenders, and typically
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no domino effect occurs. The situation changes when the initially defaulting
bank is one of the hubs of the system. In this case the propagation of the
shock proceeds like the propagation of a circular wavefront in the water:
starting from an initial node, the shock will hit at the same time all nodes
that are directly linked to the source. Moreover, each time a new node is
hit by the wave, it also will become a source of shock propagation itself,
expanding the range of nodes that will potentially be affected by the shock.
Those are the kind of network effects we are interested in.

Note that the results reported so far in the literature using network ap-
proaches in order to study domino effects in interbank markets have mostly
used either random network models or networks constructed from aggregate
data via a maximum entropy principle (cf. Upper, 2011, for an overview).
Both approaches are very likely to underestimate the extent of a contagious
spread of a disturbance due to the very homogeneous level of activity and
connectivity in such artificial networks (as demonstarted, for example, by
Montagna and Lux, 2013). In contrast, the above stylized facts show strong
heterogeneity for the levels of activity (size of the balance sheets, as well as
the extent of connectivity, namely the degree distribution). In addition, the
pronounced negative assortativity is also not covered by random networks
or those constructed from entropy principles. We might, therefore, expect a
higher risk of contagion effects in models that share the above stylized facts.

The paper is organized as follows: Section 2 introduces the basic ideas
of our probabilistic framework to measure systemic risk. Section 3 shows
the algorithm we will use to generate interbank markets, demonstrating its
ability to reproduce the above stylized facts. Section 4 applies the general
probabilistic approach to this framework. Section 5 provides simple exam-
ples of contagion processes, and explains how the framework can be used to
measure the systemic importance of single institutions. Section 6 uses more
realistic shocks to perturb the banking system, by introducing correlation
between banks’ assets. Section 7 concludes.

2 The probabilistic framework

To assess financial stability we need a framework capable to measure the
likelihood of systemic events. As our starting point, we consider the joint
distribution of the equity levels of all the banks in the system. We denote
by:

Φ (η1, η2, . . . , ηN ) (1)

the joint distribution of equity levels ηi, for a financial system composed of
N banks i = 1, 2, . . . ,N4.

4 We will specify later a complete structure for the banks balance sheets. In the present
section, the framework we introduce is independent of the shape and composition of assets
and liabilities, as well as of the possible direct and indirect mechanisms that propagate
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In assessing the financial stability of the system, we are interested in
studying how the distribution Φ evolves after a shock hits the system. The
uncertainty on the level of equity of banks can be due to two reasons. First,
there could be incomplete information regarding the structure of the fi-
nancial system. In this case, a pre-determined shock will generate several
scenarios for the evolution over time given the initial configuration of the
system: assigning a probabilistic weight to each of them will result in a joint
distribution for the equity levels. Second, the shock itself could be described
as a draw from of a stochastic variable. Even if the structure of the financial
system were completely known, one would need to investigate the resulting
scenarios through a probabilistic perspective. The known data on current
balance sheet sizes would then be used as initial condition, and ignorance on
the composition of the balance sheet and the existing interbank links would
constitute the source of uncertainty.

Let us indicate with S a shock hitting the system at time t = 0. This
shock can assume several forms: it can be a deterministic shock to a single
institution, e.g. the default of a certain amount of its loan portfolio, it can
be a probabilistic shock to a set of banks, specifying a correlation structure
among the single shock components which reflect the correlation among their
investments. Independently from its form, the shock will generally change
the initial configuration of banks’ equity levels, and we indicate with:

Φ(~η|S) = Φ (η1, η2, . . . , ηN ;S) (2)

the distribution of the equity levels conditional on the shock S. In all that
follows, we will refer to eq. (2) as the Φ-function of the financial system
conditional on the shock S. From the joint distribution 2 it will be possible
to quantify the probability of systemic events after an exogenous shock S,
taking into account the incomplete structural information on the financial
system. We explore in the following several examples for the use of our
framework.

We start by considering the case where the shock S consists in wiping out
a certain percentage of assets λ from bank i0; the shock S can be therefore
represented by the N -dimensional vector ~s = (0, 0, . . . ,λi0 , . . . , 0) = si0 .
The function Φ(~η|~s) includes all the information regarding the losses suffered
by the other banks after the default of bank i0, and can therefore be used
to develop measures for its systemic importance. The expected number of

the shock from one institution to the other.
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defaults 〈N̄ |si0〉 is computed as:

〈N̄ |si0〉 = 〈
N∑
i=1

(1− θ(ηi)) |~s〉 =
N∑
i=1
〈(1− θ(ηi)) |~s〉 =

=
N∑
i=1

∫ +∞

−∞
dη1

∫ +∞

−∞
dη2 . . .

∫ 0

−∞
dηi . . .

∫ +∞

−∞
dηNΦ(~η|~s) (3)

where we indicated with θ(·) the classical Heaviside function. The mean
number of defaults computed in eq. (3) is a first indicator of the systemic
importance of a financial institution. In fact, it quantifies the spillover effects
coming from the default of bank i0. Nevertheless, the above expression can
underestimate systemic importance since it ignores the events populating the
tails of the distribution Φ, as well as a possible correlation structure among
banks’ balance sheets. To overcome this problem, another choice could be
to compute the probability to observe a certain number N̄ of defaults given
the defaults of bank i0, that is Pr [N̄ |si0 ], which can be computed as:

Pr [N̄ |si0 ] = c ·
∑
Π

0∫
−∞

dη1 · · ·
0∫

−∞

dηN̄ · · ·
∞∫

0

dηNΦ(~η|si0) (4)

where Π represents all possible permutations of the indexes i, c being a
normalization factor:

c =

(
N̄ !

N !(N − N̄)!

)−1

(5)

The quantity expressed in eq. (4) can be seen as the systemic value at risk
conditional on the initial shock S.

The shock S can also be described by a set of stochastic variables. Let’s
consider therefore a vector of random variables ~Λ = (Λ1, Λ2, . . . , ΛN ). The
distribution of the i-th component Λi could, for instance, be extracted
from the profit-loss distribution of banks. Moreover, a correlation struc-
ture among the N variables can be specified and it will play a fundamental
role in assessing the probability of joint failures in the system, i.e. systemic
events. Given the distribution Φ(~η|~Λ), another interesting quantity one
may want to compute is the extreme q-quantile of the distribution of the
number of defaults following the stochastic shock ~Λ. If we call φ(N̄ |~Λ) the
distribution of the number of defaults conditional on the shock ~Λ, that is:

φ(N̄ |~Λ) = Pr
[
N̄ |~Λ

]
(6)

the extreme q-quantile of this distribution, Nq, defined as:∫ Nq

0
dxφ(x|~Λ) = (1− q) (7)
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measures the fatness of the tail of the joint distribution where systemic
events are happening.

The above set of measures to detect systemic importance of institutions
and to assess systemic risk can be further enriched depending on the par-
ticular scenarios one wants to analyze, and on the available data. In the
following, we concentrate on one particular mechanism of contagion among
financial institutions, which is direct interbank exposure through bilateral
loans. For this mechanism of contagion, we are able to analytically compute
some of the above quantities, while others can be easily computed through
numerical algorithms. We highlight again that, due to the generality of the
framework we introduced, including other forms of interbank contracts is
straightforward, at least from a computational point of view. The goal of
the paper is to provide a framework based on statistical tools and basic
assumptions on the contagion mechanism to capture "probabilities" of con-
tagious events based upon empirically plausible distributional assumptions
for the observed structural features of the financial network. In order to
test our approach on a simulated interbank market, we introduce in the
next section an algorithm which (i) is able to reproduce the most common
features of real interbank lending networks; (ii) allows to include eventual
uncertainty one has on the structure of the banking system; and (iii) is easy
to implement and calibrate. Then, we show how to compute the quantities
expressed above, and how they can play a role in assessing systemic risk.

3 The structure of the banking network

We consider an interbank market (IbM) composed of N financial entities
linked together by their claims on each other. Each bank in the IbM will be
represented as a node in the network, and the information of the loans among
banks will constitute the edges of the network. These edges are directed
and weighted, the weight of the link starting from node i and pointing
to node j being the total amount of money that bank i lends to bank j.
The structure of our model will be set up in a way to represent certain
documented empirical features. Following Nier et al (2007), we use the
scheme in Fig. 1 to represent the balance sheets of banks. The assets Ai
of each bank (i = 1, 2, . . . ,N) are partitioned into interbank loans li and
external assets ei:

Ai = li + ei (8)
The liabilities Ii of each bank are partitioned into interbank borrowing bi
and customers’ deposits di:

Ii = bi + di (9)
Solvency requires that the difference between a bank’s assets and its liabili-
ties be positive, that is:

ηi ≡ (li + ei)− (di + bi) > 0 (10)



3 The structure of the banking network 9

where we denote bank i’s net worth by ηi.

Fig. 1: The balance sheet
structure of each bank i be-
longing to the IbM.

If relationship (10) is not fullfilled, bank i becomes insolvent. Note that
we could instead impose a minimal capital requirement and intercept the
bank’s operations if its capital falls below a certain threshold. For most
purposes this would leave our results qualitatively unchanged as it would
just lead to a linear rescaling of the balance sheet. However, our analytical
representation of an insolvency cascade is facilitated by a zero threshold for
the default of a financial institution.

Following Nier et al. (2007), we impose the following relations, that hold
for all banks belonging to the IbM:

ei = θAi (11)

li = (1− θ)Ai (12)

ηi = γAi (13)

i.e., external assets, interbank loans and net worth are determined (initially)
as fixed functions of total assets. This enables us to characterize the evolu-
tion of the balance sheet of the banks using the common pair of parameters θ
and γ. Unlike Nier et al. (2007) who investigate a banking sector with banks
of equal size of balance sheets and interbank liabilities, we, however, try to
mimic some of the documented dimensions of heterogeneity in the banking
sector via the distribution of banks’ size and that of the links between banks.

The empirical properties of real interbank networks that we attempt to
reproduce are the disassortative behavior and the power law in the degree
and size distributions. To this end, we arrange the nodes on a scale free
network according to the following algorithm, based on Montagna and Lux
(2013):

1. we start with an assumption on the distribution of the size of the banks.
Using Ai as parameter indicating the size of a bank, we assume that
ρ (Ai) ∝ A−τi (and Ai ∈ [a, b]) so that the size distribution will follow a
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power law over the interval between a and b determining the minimum
and maximum size of a bank in our system. In the following we will use
τ = 2. We note that since this formalism defines the size distribution
over a finite range, the numbers a and b defining the absolute range of
bank sizes will also be of some relevance.

2. once we have drawn the N -element set {Ai} i.e. the distribution of
the total assets of the banks, we compute the external assets ei, the
sum of interbank loans li and the net worth ηi, according to eqs. (11)
- (13).

3. we now denote the size parameter Ai as the peculiarity of the node.
We add interbank liabilities to the system taking into account the
banks’ peculiarity. In order to build up networks in this way, we use
a probability function P (Ai,Aj): this function provides the proba-
bility that a bank i (characterized by total external assets Ai) lends
money to bank j (characterized by total external assets Aj). It has
typically been found in empirical data of interbank credit relations
that a pool of small and medium-sized banks mostly lend money to
the largest banks of the system, which in turn redistribute liquidity
to external financial markets or within the system itself (Iori et al.
(2008), Cocco et al. (2009), Fricke and Lux (2012)). The choice of
an appropriate probability function allows to reproduce those impor-
tant empirical observations. In this paper, we will use the following
alternative probability functions:

P1 (Ai,Aj) = d1 ·
(

Ai
Amax

)α
·
(

Aj
Amax

)β
(14)

P2 (Ai,Aj) = d2 · (Ai +Aj) (15)

P3 (Ai,Aj) = d3 ·H (Ai +Aj − z) (16)

where Amax denotes the size of the balance sheet of the largest bank
in the system, α, β and z are constants, and H(x) is the Heaviside
step function. d1, d2 and d3 can be used to adjust the density of the
networks. The next section will present the main topological properties
of networks produced by functions (14), (15) and (16). With any of
these probability functions, we can build an N ×N probability matrix
P ∈ MN×N , with entries pij = Ps (Ai,Aj) ∈ [0, 1] determining the
probability for the link between i and j, and s = 1, 2, 3;

4. the next step consists in constructing the adjacency matrix A of the
network, according to the rule:

aij =

{
1, with probability pij
0, with probability (1− pij)



3 The structure of the banking network 11

In this way we reproduce the systematic tendency of accumulation of
links at larger entities. As we will show below, these functions also
allow us to reproduce the disassortative nature of empirical banking
networks5;

5. we also assume that the volume of loans reflect banks’ peculiarity; it
seems natural to assume that financial entities will have more intense
links with banks with high peculiarity (balance sheet size). Including
this notion in the probability functions we compute the load lij (the
volume of credit) of the link between bank i and bank j as:

lij =
lipij∑
j∈Ωi

pij
(17)

where Ωi denotes the set of nodes for which aij = 1;

6. in the last step, we compute the internal borrowing bi as:

bi =
n∑
j=1

lji (18)

and the customers’ deposits di as:

di = (ei + li)− (ηi + bi) (19)

Deposits are, thus, the residual in the construction of the balance sheets
of banks that is adjusted in a way to guarantee consistency. While this leads
to a certain degree of heterogeneity of the role of deposits across banks, this
is not necessarily an unrealistic feature of our system, as banks rely to a
different degree on different sources of funding.

Let us also emphasize that in the algorithm there are two levels of ran-
domness: the first appears in step 1, in the determination of the sizes of the
nodes, while the second appears in step 4, in the realization of the probabil-
ity matrix. Thus, for a fixed sequence of the sizes {Ai}, various realizations
of the network are possible. Given current data availability for the financial
sector, a most plausible implementation of our framework might consider the
bank sizes as known data but the link structures as the unknown realization
of the stochastic process specified above.

The probability functions reflect the micro behavior of banks when se-
lecting their counterparties in the interbank market, and they assume a

5 It is possible especially for symmetric probability functions, to encounter situations
where aij = aji = 1. Since loops are not allowed in our model (they would mean that
bank i and j are both borrower and lender of each others), we have to add a rule for the
elimination of one of the edges. A possible choice is to randomly eliminate one of the two
links i → j or j → i. However, other choices are possible as well, if the aim is to enforce
the disassortative behavior of the networks.
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crucial role in the determination of the characteristics of the financial sys-
tem. One of the main features of these networks is the presence of power
laws in the degree distributions of both in- and out-degree. In particular, one
can show that using the probability functions (14), (15) and (16), one ob-
tains, respectively the following approximate distributions for in-degree and
out-degree, kin and kout, under the three different generating mechanisms6:

P1(kin) ∝ k
− 1+β

β

in , P1(kout) ∝ k
− 1+α

α
out (20)

P2(kin) ∝ (c1kin + c2)
−2 , P2(kout) ∝ (c3kout + c4)

−2 (21)

P3(kin) ∝ k−2
in , P3(kout) ∝ k−2

out (22)

In the same way, it is possible to see that the average degree of a neigh-
bour is determined by:

〈knn〉 (Ai) =
N

k(Ai)
·
b∫
a

p(Ai, t)k(t)ρ(t)dt (23)

where k(Ai) is the mean total degree of node i, as a function of its own
fitness parameter.

The density of the network generated by the probability functions (20)
to (22) is:

Dl =
2
∑N
i,j=1 p

l
ij

N(N − 1) ∝ dl (24)

where l = 1, 2, 3. The density of the networks can therefore be easily manip-
ulated via the parameters dl, keeping fixed the other topological features. In
case of a constant probability function P (Ai,Aj) = d, networks produced
are random with density equal to d.

As we can see, with all three kinds of probability functions, the results
are scale-free networks (i.e., a power-law distribution of degrees). Since eq.
(23) involves the mean total-degree of a node, k(Ai), there is no closed-
form solution for this expression for the three probability functions. The
disassortative behavior can, however, be confirmed via numerical integration
of eq.(23), cf Fig. 2. It is apparent from eqs. (20) to (22), that it will be
possible to change the exact shape of the degree distributions as well as
the degree of disassortative behavior by modifying the parameters of the
probability functions, and the distribution of the fitness parameters. Fig. 2
shows the simulated degree distributions and the average neighbour degree
for functions (14), (15) and (16), for parameters α = 0.2, β = 1.2 and

6 Cf. Caldarelli (2007). The main steps in deriving in-degree and out-degrees distribu-
tions are also detailed in the Appendix.



4 Single Shocks and Network Risk 13

z = 0.5 ·Amax; finally, d1 = d2 = d3 = 1. With this choice of the parameters
we get tail indexes in the in- degree distribution equal to, respectively, −1.83,
−2 and −2, and −6, −2 and −2 for the out-degree distributions. Moreover,
a clear disassortative behavior is observed in all the three cases7.

Fig. 2: The first three panels show the in- and out-degree distributions for the three
probability functions (14), (15) and (16). The last panel shows the mean neighbour
degree as a function of the total degree of the nodes. The curves in the last panel
are decreasing with the degree itself, indicating that big nodes are connected to a
multitude of small and medium-sized nodes, which themselves are connected with
only a (relatively) small number of hubs.

4 Single Shocks and Network Risk

We now combine the probabilistic framework introduced in Sec. 2 and
the algorithm introduced in Sec. 3 to asses how the financial stability of
the banking system is affected by the main parameters of the model. The
shock S in this section will consist in wiping out a percentage of the ex-
ternal assets of the largest bank in the system, so it can be written as
~s = (0, 0, . . . ,λi0 , . . . , 0) = si0 , where i0 is the largest bank. In this sce-
nario, the only uncertainty is due to the missing information regarding the

7 In order to reinforce the disassortative behavior, one could use a criterion for the
elimination of the loops different from the one described in footnote 5. In particular, if
both the edges i → j and j → i are present in the network, one could eliminate the one
starting from the biggest node of the two: this mechanism would contribute to tuning the
system even more towards the characteristics of real interbank network structures, where
mostly small banks lend money to big banks, as described in the introduction.
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structure of the banking system, represented by the probability functions
introduced in Sec. 3. In particular, we will use function (14) to generate our
interbank networks, and we will explore how the parameters γ and θ affect
the stability of the banking system.

When the largest bank in the system fails, the other banks can suffer
losses in two ways. The first way is through direct contagion. In fact, the
initial loss is first absorbed by the bank’s net worth ηi0 , then by its interbank
liabilities bi0 and last its deposits di0 , as the ultimate sink. That is, we
assume priority of (insured) customer deposits over bank deposits which, in
turn, take priority over equity (net worth). If the bank’s net worth is not
large enough to absorb the initial shock, the bank defaults and the residual is
transmitted to creditor banks through interbank liabilities. Creditor banks
are assumed to receive an amount of the residual shock proportional to their
exposure to the failed bank. Those banks will have to book losses in their
equities8.

The second way banks can suffer losses is indirect contagion through
network effects. In fact, in case the direct creditors of the initial failing
bank are not able to absorb the losses, they will fail and transmit losses to
their own creditors. The process continues until the losses are completely
absorbed by the system or, alternatively, the whole system has failed.

It seems natural when studying the loss propagation process to formally
introduce a discrete event index t describing the different phases of the
propagation of the shock. We call that index the round of propagation.
We start from a situation in which the system is in a stationary state with
positive net worth of all banks, and at a certain point t = 0 we subject one
bank, i0, to a shock by wiping out a fraction λi0 of its external assets9. At
event time t = 0 no other banks will incur any losses, but part of the assets
of the initially shocked bank have been destroyed, and so we can write:

Φt=0(η1, η2, . . . , ηn|si0) = δ

(
ηi0 −

(
η0
i0 ·

γ − λi0θ
γ

))
·

N∏
i=1,i 6=i0

δ(ηi − η0
i )

(25)
where δ(x) is the Dirac delta, and η0

i are the net worths of the banks before
the shock starts propagating. If we apply now eq. (3) we obtain:

N̄ t=0 =

{
1, if γ ≤ λi0θ
0, otherwise

(26)

8 We disregard partial recovery of the defaulted loans as this will happen only much later
during bankruptcy proceeding and would be of little relevance to the unfolding short-run
dynamics.

9 We note here that restricting ourselves to the case of a single shocked unit does
not restrict the generality of our approach. In fact, simultaneous deterministic shocks
to different banks at the same time can be represented as the convolution of multiple
Φ-functions.
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Fig. 3: The figure schematically shows the Φ-function at round zero, i.e. eq.
(25). At time t = 0 all the banks have a well-defined non-stochastic net worth
ηi, represented in the figure by a vertical line of length 1, i.e. the probability for
each bank to have net worth ηi to be exactly 1. The red line represents the largest
bank in the IbM. The distribution of banks size has been drawn from a power-law
distribution with tail parameter equal to 2.

and so the perturbation can start propagating only if the shock is large
enough10. Fig. 3 shows an illustration of the function Φt=0 and the initially
shocked bank i0 (red line). Note that, initially, the net worth of each bank
is known with certainty, i.e. all values have probability 1 (vertical axis).

We can now move on to the next round; at time t = 1 the variables ηi
are still independent (and hence uncorrelated), and it is possible to factorize
the Φ-function as in the previous case:

Φt=1(η1, η2, . . . , ηn|si0) = δ

(
ηi0 −

(
η0
i0 ·

γ − λi0θ
γ

))
·

N∏
i=1,i 6=i0

Φt=1
i (ηi|si0)

(27)
where Φt=1

i (ηi|si0) represents the marginal distribution of the net worth
of bank i at time t = 1. In the probabilistic determination of eq. (27)
the stochastic representation of our ignorance of the details of interbank
credit connections comes in. We assume that these connections are well
represented by the probability function P (Ai,Aj) introduced in Sec. 3 that
replicates important stylized facts of empirical data. In the Appendix we
show that Φt=1

i (ηi|si0) consists of two parts: with probability pii0 bank i
will be affected in the first round of aftereffects after the initial shock, while
with probability 1− pii0 , it will still remain unaffected at this stage (it is
sufficiently remote from bank i0). The first case, then, leads to a loss due
to the defaults of bank i0 on some of its interbank loans. In the absence
of exact knowledge this effect is stochastic (to the outside observer or to
the supervisory authority). We show in the Appendix that the size of the
loss can be approximated by a Normally distributed random variable. The

10 If N0 = 0, the first bank is able to absorb the shock and no contagion effects will be
registered in the system.
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Fig. 4: The picture shows one of the marginal distribution functions described by
eq. (28). Each of these distributions are composed by a Dirac delta centered on η0

i ,
indicating that with probability (1− pii0) bank i is not linked to bank i0 directly,
and so its net worth will rest unchanged at time t = 1. The second component
gives a contribution of the propagation of the initial shock if a link exists to bank
i0 which happens with probability pii0 .

complete expression can be written as:

Φt=1
i (ηi|si0) = P Ii ·

b(γ, θ)(a(γ, θ)− ηi)−2

σi1
√

2π
exp

−1
2

 b(γ,θ)
a(γ,θ)−ηi −m

i
1

σi1

2
+ (1− P Ii )δ(ηi − η0

i ) (28)

where a(γ, θ) and b(γ, θ) are functions of the percentage of net worth and
of the weight of the first term, P Ii = pii0 is the probability for bank i to
belong to the first shell of banks connected to i0. Explicit equations for mi

1
and σi1 are presented in the Appendix, and both completely depend only on
the topological features of the network and in the case of our probability
functions (14) through (16) on the size of the balance sheet of the banks.
We compute in the Appendix the mean value and the standard deviation for
Φt=1
i (ηi|si0), and we show that its variance tends to zero when the entries of

the probability matrix pij tend to 0 or 1, namely when the network becomes
deterministic.

Fig. 4 shows an example of the marginal distributions Φt=1
i (ηi|si0) for

a single bank, and the blue area highlighted in the figure is the probabil-
ity for that bank to fail. The marginal Φ-function expressed in eq. (28)
represents what can be defined as first round effects. In fact, banks sub-
ject to the potential losses in this first stage of the propagation are only
the direct counterparties of the initial failing bank i0. In the other stages
of the shock propagation, instead, all the banks can potentially be subject
to losses because of the network of interbank contracts, and we call them
higher round effects. In general, a closed form solution for the Φ-function
describing higher round effects is hard to obtain. Although different types
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of approximations are possible11, we prefer to generate random variables ac-
cording to the joint distribution Φt and compute numerically the integrals
in eqs. (3), (4) and (7)12.

Figure 5 shows the temporal evolution from t = 1 (round 1) to t = 2
(round 2) of one of the marginal distributions Φt

i (ηi| si0). We immediately
note from the graph that also the contribution linked to (1− pii0) spreads
out, due to possible connections of second order (i.e. credit expanded to
the creditor banks of the initially defaulting one). This fact actually reflects
the topology of the networks generated by probability function (14): the
small diameter of these scale-free networks imposes that in two steps a node
can mostly reach every other nodes, if the initially shocked bank is one of
the biggest of the system. If we again consider the marginal distributions,
we can split them up into three components, so that for round 2 we can
formally write:

Φt=2
i (ηi|si0 ) = P I

i ·Φ
t=2,I
i (ηi|si0 ) + P II

i ·Φ
t=2,II
i (ηi|si0 ) + (1− P I

i − P
II
i ) · δ(ηi − η0

i )
(29)

where P Ii is the probability for bank i to belong to the first shell with respect
to the initially defaulting bank i0, that is P Ii = pii0 , and in general P li is
the probability for bank i to belong to the lth shell, l = I, II, III, . . . , with
respect to bank i013. The contribution linked to (1− P I − P II) is a Dirac
delta since in two rounds there is no way for the shock to hit banks belonging
to the 3rd (or higher) shell. In the pink distribution of Fig. 5, representing a
possible outcome of eq. (29) this contribution vanishes simply because with
the underlying parameters P Ii + P IIi ' 1. In general, higher-order defaults
can occur over many rounds.

Note that in the limit t → ∞14 the system will converge in probability
to a steady state, defined by the Φ-function Φ∞(η1, η2, . . . , ηN |si0). De-
composing the overall distribution into the effects emanating from different

11 One possible approach consists in assuming the variables to be independent, factorize
the function Φ and compute it as in the first round. Another possibility is to use a
mean field approximation to derive approximate solutions to the first moments of the
distribution.

12 In the Appendix we show how to compute those variables.
13 It is easy to see that :

P l
i = (1− P I

i )(1− P
II
i ) · · ·

(
1− P l−1

i

)
·1−

N∏
j1=1,j1 6=i

· · ·
N∏

jl=1,jl 6=i

(
1− pij1P

(l−1)
j1

· · · pjl−1jl
P II

jl−1P
I
jl

) (30)

which is the probability for node i not to belong to shells 1, 2, . . . , l− 1, multiplied by the
probability for at least one l-length path to exist connecting node i and node i0.

14 Numerically we saw from the simulations that a good approximation is typically ob-
tained for t ∼= 20, and after t ∼= 7 rounds one obtains about 95% of all defaults observed
in the simulations.
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Fig. 5: The figure shows the temporal evolution of the marginal Φ-function from
round t = 1 (cyan distribution) to round t = 2 (pink distribution), for a particular
bank i. At t = 2, due to the small diameter of the present network, also the contri-
bution linked to (1− pii0) spreads, adding a second contribution to the probability
for bank i to fail.

"shells", we can write the stationary distribution as:

Φ∞i (ηi|si0) =
∞∑
l=1

P l ·Φ∞,l
i (ηi|si0) (31)

With a finite diameter d of the network it can be reduced to:

Φ∞i (ηi|si0) =
d∑
l=1

P l ·Φ∞,l
i (ηi|si0) (32)

since P l is equal to zero for each l equal or higher than d. Note that for any
of the l components in eq. (32) a long-lasting sequence of aftereffects can
result since any possible defaults would lead to the possibility of subsequent
defaults in the next period of events whose losses are exceeding their (re-
maining) equity level and so on. So, in principle, along the time dimension,
the sequence of events and, therefore, flow of probability between different
states, evolves for much longer than along the dimension of shells. Typically,
however, the macroeconomic statistics emerge after a relatively small num-
ber of iterations. This holds particularly for the number of defaults as these
are binary counts that only change if losses exceeds threshold value, and
so, higher-order knock-on effects would at some period not trigger any more
defaults. We will see that the additive components of eq. (31) play a fun-
damental role in understanding the results from the simulation engine, and
they are directly related to the network structure through the coefficients
P l.

Figure 6 shows a possible final equilibrium state for the system. In
particular, the mean values of the d = 2 components of the marginal Φ-
functions (32) are plotted for some banks15. We note here the differences

15 Note that in the framework generated by eq. (14) P I
i + P II

i ' 1.
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Fig. 6: The figure shows a possible final equilibrium state for the system; in
particular, different colors represent the marginal distribution of different banks
belonging to the IbM, after the shock has been absorbed. Still for each node the
Φ-function can be decomposed into two components depending on whether they
have been hit immediately after the shock or at a later stage. This is illustrated by
the two different entries for each bank (each color).

in information contained in the Φ-function and in the number of defaults
obtained via eq. (3): although a bank might have a positive mean value in
one (or both) of the two contributions that appear in eq. (32), the prob-
ability for that bank to fail might nevertheless not be zero. This effect is
not caught by eq. (3), but it is correctly quantified via the Φ-function, that
contains all the information regarding the state of the system.

In the following subsection, we explore how the main parameters affect
the stability of the banking system under the failure of the largest bank.

5 Computational Experiments

5.1 The role of bank capitalization
In our first computational experiment we investigate the effects of banks’
net worth on the resilience of the entire banking system. The parameter θ
will be fixed at 0.8, so that each bank will invest 20% of its total assets in
the interbank market, and the remaining 80% in some external assets. We
will let the parameter η vary from 0 to 0.1 16. In all that follows, the number
of banks will be fixed at N = 250. The design of the simulations will be the
same for all the following experiments: the first step consists in generating
one Monte Carlo realization of our banking system as explained in sec. 3. In
the second step we destroy the largest bank: this shock is assumed to wipe
out all the external assets from the balance sheet of the initially failing bank.
For each simulation run, we count the overall number of defaults, as well
as the number of defaults in each single phase of the shock propagation.
We report the average number of defaults across all banks. We will use

16 Remember that by mere rescaling η could also be interpreted as the excess over the
required minimum capital requirement.
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Fig. 7: Number of defaults as a function of the percentage of net worth η, for
probability function 14. The other parameters are fixed at: θ = 0.8, a = 5,
b = 100. The picture shows both the total number of defaults (bold black line)
together with the standard deviation of the mean value (small gray bars), and the
number of defaults occurring during the first four phases of the propagation of the
shock.

probability functions (14) with parameters α = 0.2, β = 1.2. Furthermore
the two limits a and b will be fixed at 5 and 100 respectively17. Fig. 7
shows the result of the pertinent Monte Carlo simulations: we report both
the total number of defaults (black bold line), and the number of defaults in
the first four phases of the propagation of the shock. The thin vertical bars
represent the standard deviation of the black line across our 200 replications
of the simulations.

As one could expect, when the percentage of net worth tends to zero,
the total number of defaults increases to 250: in particular, a threshold
value (η = 0.0143 in the figure) exists below which the system fails com-
pletely, and below η = 0.008 it breaks down within only two rounds. This
is a demonstration of the so called small-world effect: the diameter of this
particular network is roughly about two for the largest bank belonging to
the system, and so in only two rounds the shock will have reached almost
any bank of the IbM. At the other end, when the percentage of net worth is
beyond an upper threshold value, no defaults are reported and no domino
effects set in.

Interestingly, the shape of the line describing the total number of defaults
is far from linear. Starting from the value η = 0.1, we can observe that below
the value η ∼= 0.05 the first defaults appear, and inspection shows that these
typically happen for small banks connected to the initially failed bank. As η

17 Montagna and Lux (2013) investigate how these limits affect the resilience of the
system.
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decreases further, we observe a sharp increase in the number of defaults, and
this growth stops at the value η ∼= 0.02 where the curve enters a plateau.
Inspection of the defaults per round of propagation shows the reason for
this non-linearity: at the level of net worth of the plateau, all the banks
belonging to the first shell around the initially failed bank have failed, and
the banks which are not directly connected to the first failing unit have
enough net worth to survive the subsequent aftereffects of the shock. When
the net worth decreases further, also the banks outside the first shell are
no more able to absorb the perturbation, and the total number of defaults
sharply moves up to 250.

It is interesting to look in more detail at the number of defaults in the
different rounds. In the first round (red line in Figure 7), banks that fail
are directly connected to the initially shocked bank, and when the red line
reaches its saturation at η ∼= 0.018 the complete first shell (composed on
average of 153 units) has failed. We note that the saturation point of the
number of defaults in the first round does not coincide exactly with the
plateau of the total number of defaults: the explanation is that with slightly
higher equity levels the largest banks in the first shell need more than one
hit to fail, and so they populate the failures of higher rounds. The reason
for this is that for larger banks the overall number of credit relationships
to other banks (by assumption, following observed empirical regularities)
is higher on average and so for them the failure of the largest bank will
lead to a proportionally smaller loss than for the smaller client banks of the
defaulted entity. When the percentage of net worth decreases, these defaults
occur already in earlier rounds, up to a point in which all banks of the first
shell are affected in the first round of defaults.

The theoretical counterpart of the shapes appearing in Fig. 7 can be
provided by the analytical framework of Sec. 4. In particular, we can com-
pute the number of expected defaults due to first round effects by inserting
eq. (1) in (3). In the top left panel of the figure, a comparison between the
simulation results and the results obtained via eqs. (27) and (28) for the
effects in the first round is shown. In the second and third panels (upper
right-hand side and lower left-hand side) we represent the contributions, re-
spectively, from the first shell during the second round, and from the second
shell during the second round. The results are now obtained via a numerical
algorithm (see Appendix for more details), which provides the advantage
that these two contributing factors can be clearly distinguished from each
other. In particular, the hump in the number of defaults in the second round
is caused by banks from the first shell that have survived the first round of
knock-on effects but are too fragile to survive the second wave of losses in
round 2. In a similar way it is possible also to compute all effects in the
other rounds.
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Fig. 8: In the four panels we show the expected number of defaults as a function of
the percentage of net worth γ, for the first two rounds. In particular, the first panel
(top-left) contains a comparison between the simulation result and the probabilistic
approach varying the percentage of net worth; the red line is computed combining
eqs. (28) and (3). The slight difference in the two lines is due to the application
of the Central Limit Theorem in the computation of eq. (28) (see Appendix), and
it will tend to zero as the number of nodes increases. The second and third panels
(top-right and bottom-left) highlight the role of different shells in the spread of the
shock. In particular, the two contributions linked to eq. (29) are compared with
the simulation results. The last panel (bottom-right) shows a comparison between
the simulation results and the analytical approach for the second round.

5.2 Interbank exposure
In this section we are going to explore how the number of defaults is affected
by the percentage of interbank exposure as a function of total assets, namely
how the parameter θ affects the resilience of the system. An increase in
interbank assets produces, as an immediate result, an increase in the weight
of each edge, and so an increase of the channels through which the shock can
propagate. This effect can potentially increase the number of defaults in the
system, as the amount of losses transmitted to creditor banks will increase as
well. On the other hand, an increase in interbank exposure implies a reduced
relative exposure to external markets, and since here we are considering, as
initial source of the shock, a loss in value of external assets, this second
effect could reduce the systemic risks from defaults of single banks.

The design of the simulations will remain the same as in the first ex-
periment: we generate a realization of the system and we shock the biggest
bank, wiping out all its external assets. Subsequently we count the number
of defaults. We will show the mean value of those numbers for each round,
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and the standard deviation for the total number of defaults. In this section,
the percentage of net worth η is fixed at 0.025, while the percentage of ex-
ternal assets on total assets, θ, varies from 0.5 to 1 (when θ is equal to one
no interbank assets are present in the bank balance sheets). Fig. 9 shows
the result.

Fig. 9: Number of defaults as a function of the percentage of external assets θ,
i.e. 1− the percentage of interbank exposure θ, for probability function (14). The
other parameters are fixed at: η = 0.025, a = 5, b = 100. The picture shows both
the total number of defaults (bold black line) together with the standard deviation
of the mean value (small gray bars), and the number of defaults occurring during
the first four phases of the propagation of the shock.

Overall results are similar to those reported for similar experiments in
Nier et al. (2008).First, we note that when θ tends to 1 the number of
defaults tends to zero: in this case the banks’ balance sheets contain only
external assets, and so the channels for the propagation of the shock become
smaller and smaller, until θ assumes the value 1 and there are no more links
in the network, and no domino effects are possible. We can also note a
threshold value at θ ∼= 0.78: at this value, the contagion effects reach their
maximum while both more or less intense interbank linkages reduce the
number of knock-on defaults (due to a higher degree of risk sharing on the
left and fewer links for contagion on the right). At the other extreme, when
θ tends to 0, banks become completely isolated from any external market,
and so in our model, where the initial source of the shock comes from the
external assets of the largest bank of the system, the number of defaults
tends to zero as well. Note that this exercise does not leave the size of
the internal shock unaffected. Clearly, when external assets decline in their
absolute size (from right to left) there should be a decrease of contagious
defaults.

A comparison with the analytical solution is shown in Fig. 10. The trend



6 Correlated Shocks and Systemic Risk 24

Fig. 10: Simulations and analytical results for the number of defaults with varying
percentage of external assets.

in the number of defaults can be easily understood by studying the properties
of the Φ-function (28). In fact, as we show in the Appendix, the parameter
bi appearing in the distribution of ηi include the expected losses coming from
the loan to the initial failing bank. These losses monotonically decrease as
the percentage of external assets over total asset increases, since the initial
failing bank is less exposed to idiosyncratic external shock. Interestingly,
here the second-round effects exhibit basically the same pattern as those
observed in the first-round of knock-on effects.

6 Correlated Shocks and Systemic Risk

In the computation of the Φ-functions we have so far assumed that the
initial shock to the system was a percentage of the external assets wiped
out from the balance sheets of a bank in the network. In reality the banks’
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balance sheets shocks are also random events, and in order to assess the
financial stability of a banking system one should combine the information
regarding banks profit/loss distribution with structural information on the
interbank network. In our probabilistic framework, this can be captured by
assigning a distribution for the initial shocks to the external parts of banks
balance sheets. Here we present a simple example for correlated shocks, and
we later discuss the importance of interbank credit on the propagation of
idiosyncratic risk in the network.

As a suitable candidate for the loss distribution of the loan portfolio we
adopt the formulation of Vasicek (1987)18:

v(Λi; p, τ ) =
√

1− τ
τ

exp

(
− 1

2τ
(√

1− τG−1(Λi)−G−1(p)
)2

+
1
2
(
G−1(Λi)

)2)
(33)

where 0 ≤ Λi ≤ 1 is the percentage losses of the loan portfolio, according to
the notation introduced in Sec. 2 , p and τ are parameters of the distribution,
and we indicate with G(·) the Normal standardized cumulative distribution
function. As shown by Vasicek, eq. (33) characterizes the loss distribution
of a large portfolio under the assumption of individual loan values following
a logarithmic Wiener process. In this setting, banks’ shocks are drawn from
the probability distribution function (33), but for the time being we assume
no lending relationships exist among the institutions. Hence, according to
the notation introduced in Sec. 3, we set θ = 1. Moreover, we introduce a
correlation ρ among the shock variables Λi:

cor(Λi, Λj) = δij + (1− δij)ρ (34)

The correlation, of course, leaves the marginal distributions for the single
shocks unchanged. We set the net worth of each bank equal to the α-
quantile of the distribution (33), meaning that the probability of default
of each single institution is α, and we use in the example below α = 0.05.
Our first goal is to show that, also if there is no contagion process, the
probabilistic framework introduced in Sec. 2 can still be usefully applied to
understand and quantify the financial stability of the system. In fact, for
a given level of correlation ρ, we can study the Φ-function of the system
when a vector of stochastic shocks hits the system. The shock S takes here
the form of a vector of random variables ~Λ, where each component has a
distribution described by eq. (33), and the correlation among the variables
is defined by eq. (34). We want to study the function Φ(~η|~Λ) to analyze
the systemic risk in the system.

We compute again the expected value of the number of defaults after a
shock hits the system and the q-quantile of the distribution of the number of

18 In all what follow we use the parameters p and τ equal respectively to 0.1 and 0.2 in
eq. (33).
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defaults, as defined in eqs. (3) and (7). When the correlation among banks’
balance sheets is increasing, keeping the marginals constants, the expected
number of defaults computed as in eq. (3) remains constant. Nevertheless,
as the correlation increases the probability to have tail events (i.e. the
probability to have large number of defaults) increases as well.

Figure 11 shows different measures representing the stability of the sys-
tem as a function of the correlation among banks’ balance sheets, for the
example discussed above. In particular, the average number of defaults
(computed according to eq. (3)), the 5th quantile of the distribution φ(N̄ |~Λ)
(computed according to eq. (7)), and the maximum and the median of the
same distribution are plotted. As one can see from the figure, the expected
number of defaults remains unchanged (the mean is not affected by the cor-
relation). Nevertheless, the risk for tail events increases dramatically with
the correlation. In the right side of the figure, we plot the distribution of
the number of defaults for the two cases ρ = 0 and ρ = 0.5, to show how
the overall distribution of outcomes changes.

Fig. 11: Systemic risk measures in a banking system without interbank credit.
On the left, some systemic risk statistics are plotted as functions of the correlation
between banks’ balance sheets. In particular, the mean number of defaults (eq.
(3)) is seen to be constant, while the extreme 5th-quantile of the distribution of
the number of defaults (eq. (7)) and the maximum number of defaults are seen to
increase. On the right, the distribution of the number of defaults is shown for two
values of the correlation ρ.

We now expand the example above by allowing again for interbank loans.
The shock S assumes the same stochastic form ~Λ described in the previous
section, and again we are interested in varying the correlation ρ among the
shocks experienced by individual banks. The parameter θ, i.e. the fraction
of external assets over total assets, will now be fixed at 0.8. The equity of
the banks will be determined as the regulatory minimum: it consists of the
sum of the lower 5th quantile of the distribution of portfolio losses expressed
in eq. (33) and a fraction γ of their interbank assets, we use γ = 0.02. This
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scenario roughly reflects the standard Basel requirements, where investments
are weighted according to their risk, and interbank loans have a fixed risk
weight independently of the counterparty’s identity.

The results are shown in the same fashion as in the previous case. While,
again, the mean value 〈N̄ |S〉 remains constant, the probability for systemic
events increases. A numerical comparison illustrates the differences: for a
value of the correlation ρ equal to 0.2, the maximum number of defaults
is 108 for the case without interbank connections, and 195 for the case
where interbank loans are present. Equivalently, the last 5th quantile moves
from 39 in the first case to 51 in the second case. Despite the apparently
moderate level of correlation of portfolio risk, the probability of systemic
events is drastically increasing in the presence of interbank connections.

Fig. 12: Systemic risk measures in a banking system where interbank loans are
present. On the left, some systemic risk statistics are plotted as functions of the cor-
relation between banks’ balance sheets. In particular, the mean number of defaults
(eq. (3)) is seen to be constant, while the extreme 5th-quantile of the distribution
of the number of defaults (eq. (7)) and the maximum number of defaults are seen
to increase. On the right, the distribution of the number of defaults is shown for
two values of the correlation ρ.

7 Conclusion

We have introduced an analytical formulation for the assessment of sys-
temic risk through interbank contagion, and we tested our framework on
a simulated financial system. The latter is generated with an algorithm
that reproduces the main important topological features of a real banking
system, which are the disassortative link formation and the power law be-
havior of the degree distribution. Moreover, heterogeneity in bank sizes is
also taken into account, playing an important role for the stability of the
banking system. The results are networks composed of a large pool of small
and medium-sized banks with a dominating pattern of disassortative link
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formation forming credit connections between dissimilar partners.
In this framework, we have investigated how the percentage of net worth

and the percentage of interbank assets (on total assets) affects the spread of
an idiosyncratic shock. The analytical apparatus allows to decompose the
overall number of expected contagion effects both in terms of the sequence
of events and the banks’ location within the network: banks belonging to
the first shell (i.e. creditor banks of the defaulted entity) fail mostly before
the others, and it is possible to distinguish between defaults of the different
shells in the cascade of events.

The analytical formulation of the problem is based on the concept of
Φ-functions. The Φ-function describes, in a discrete event framework, the
evolution of the state of the system. The computation of an explicit closed
form for Φ is possible only for the first round effects. Nevertheless, approxi-
mations or numerical methods can be used for higher rounds. These results,
moreover, can be easily generalized to other forms of interbank contracts.

When allowing for correlation among banks’ investments the probability
of systemic events increases sharply even if each single unit perfectly follows
the micro prudential regulation. The tails of systemic events are further-
more made fatter by direct contracts among the financial institutions, like
in our example of interbank loans. In times where portfolio correlation in-
creases, the correct assessment of the propagation of small probability events
becomes crucial to assess systemic risk.

We note that the computation of the state function would not get much
more complicated when using different values of θ and η for each bank, and
so it can be in principle used in order to asses the systemic impact of each
bank on the entire system. For example, using eq. (7), it is possible to de-
termine the risk that a regulator is willing to run in case of the default of a
particular entity, for different parameters θ and η (or, eventually, heteroge-
neous vectors

−→
θ = (θ1, θ2, . . . , θN ) and −→η = (η1, η2, . . . , ηN ) if, for example,

different capital requirements depending on different systemic impact level
were imposed). In terms of the systemic impact of a default, eq. (3) pro-
vides the expected number of triggered defaults in case of insolvency of a
particular entity: the implementation of this expression using empirical data
can help in quantitatively identify institutions that are too-big-to-fail and
too-interconnected-to-fail. Overall, the framework of Sec. 3 is sufficiently
flexible and general to accommodate whatever knowledge is available on the
structural details of the interbank market. With complete knowledge of all
links and exposures, the exact extent of knock-on effects could be determined
as well as the identity of defaulting units. If we only know some boundary
conditions (like the distribution of balance sheet sizes) and have an informed
guess on others (link distribution and and distribution of mutual exposures
in our present application), expected knock-on effects, quantiles, value-at-
risk and other interesting quantities can be computed numerically. We note
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here that the lack of analytical results for higher rounds is not a major ob-
stacle as the closed-form solutions can easily be replaced by their numerical
counterparts.

References

[1] Acemoglu, D., Ozdaglar, A., Tahbaz-Salehi, A., "Systemic Risk
and Stability in Financial Networks", NBER Working Paper
No. 18727 (2013)

[2] Adrian, T.,Brunnermeier, M. K., "CoVar", NBER Working Pa-
per No. 17454, (2011)

[3] Allen, F. and Gale, D., "Financial contagion", Journal of Po-
litical Economy, Vol. 108, pages 1-33, (2000)

[4] Battiston, S., Delli Gatti, D., Gallegati, M., Greenwald, B. &
Stiglitz, J. E., "Liaisons dangereuses: increasing connectivity,
risk sharing, and systemic risk", Journal of Economic Dynam-
ics and Control, Volume 36, Issue 8 (2012a)

[5] Battiston, S., Puliga, M., Kaushik, R., Tasca, P., and Cal-
darelli, G., "DebtRank: Too Central to Fail? Financial
Networks, the FED and Systemic Risk", Scientific Report,
doi:10.1038/srep00541, (2012b)

[6] Benito, E., "Size, growth and bank dynamics", Documento de
Trabajo, Banco De España, (2008)

[7] Bluhm, M., Faia, E., Krahnen, J. P., "Endogenous Banks’ Net-
works, Cascades and Systemic Risk", SAFEWorking Paper No.
12, (2013)

[8] Boss, M., H. Elsinger, M. Summer,and S. Thurner, "Network
topology of the interbank market", Quantitative Finance, 4(6),
677-684, (2004)

[9] Brunnermeier, Markus K., "Deciphering the Liquidity and
Credit Crunch 2007-2008", Journal of Economic Perspectives,
Volume 23, Number 1, p.77-100, (2009)

[10] Caldarelli, G., "Scale-Free Networks: Complex Webs in Nature
and Technology", Oxford University Press, (2007)

[11] Censor, Y. and Zenios, S.A., "Parallel optimization", Oxford
University Press, (1997)



7 Conclusion 30

[12] Cocco, J. F., Gomes, F. J., Martins N. C., "Lending relation-
ships in the interbank market", Journal of Financial Interme-
diation 18, pp. 24-48, (2009)

[13] De Masi, G., Iori, G., and Caldarelli, G., "Fitness model for
the Italian interbank money market", Physical Review E 74
066112, (2006)

[14] Glasserman P., Young P. H., "How likely is contagion in fi-
nancial networks?", Journal of Banking & Finance, in press,
(2014)

[15] Ennis, H. M., "On the size distribution of banks", Federal Re-
serve Bank of Richmond Economic Quarterly, 87, pp. 1-25,
(2001)

[16] Finger, K., Fricke, D., Lux, T., "Network Analysis of the e-
MID Overnight Money Market: The Informational Value of
Different Aggregation Levels for Intrinsic Dynamic Processes",
Computational Management Science, Volume 10, Issue 2-3, pp
187-211 (2013)

[17] Gai, P. and Kapadia,S., "Contagion in Financial Net-
works",Proceedings of the Royal Society A, 466, 2401-2403,
(2010)

[18] Gai, P., Haladane, A., Kapadia, S., "Complexity, concentration
and contagion", Journal of Monetary Economics, Volume 58,
Issue 5, Pages 453–470 (2011)

[19] Georg, C., "The effect of interbank network structure on con-
tagion and common shocks", Journal of Banking & Finance
37(7), Pages 2216–2228 (2013)

[20] Haldane, A. and May, R., "Financial Systems: Ecology and
Economics", Nature 469, (2011)

[21] Imakubo, K., Soejima, Y., "The Transaction Network in
Japan’s Interbank Money Market", Financial market depart-
ment, Bank of Japan, Financial System Report, (2006)

[22] Inaoka, H., T. Ninomiya, K. Taniguchi, T. Shimizu, and H.
Takayasu, "Fractal Network Derived from Banking Transac-
tion: An Analysis of Network Structures Formed by Financial
Institutions", Bank of Japan Working Paper No. 04-E-4, Bank
of Japan, (2004)



7 Conclusion 31

[23] Iori, G., de Masi, G., Precup, O., Gabbi, G., and Caldarelli,
G., "A Network Analysis of the Italian Overnight Money Mar-
ket", Journal of Economics and Dynamics & Control, 32, pp.
259–278, (2008)

[24] Janicki, H. P., and Prescott, E. C., "Changes in the size dis-
tribution of U.S. banks: 1960-2005", Federal Reserve Bank of
Richmond Economic Quarterly, 92, pp. 291-316, (2006)

[25] Luttmer, E. G. J., "Selection, Growth, and the Size Distribu-
tion of Firms", The Quarterly Journal of Economics, 122 (3):
1103-1144 (2007)

[26] Lux, T., Fricke, D. "Core-Periphery Structure in the Overnight
Money Market: Evidence from the e-MID Trading Platform",
Computational Economics, http://dx.doi.org/10.1007/s10614-
014-9427-x, in press, (2014)

[27] May R., and Arinaminpathy, N., "Systemic risk: the dynam-
ics of model banking systems", Journal of the Royal Society
Interface 6, vol. 7 no. 46, 823-838, (2010)

[28] Memmel, C., Sachs, A.,"Contagion in the interbank market and
its determinants", Deutsche Bundesbank, Discussion Paper,
Series 2: Banking and Financial Studies. No 17/2011, (2011)

[29] Mistrulli, P. E.,"Assessing financial contagion in the interbank
market: Maximum entropy versus observed interbank lending
patterns", Temi di discussione, N 641 (working papers), (2007)

[30] Montagna, M., and Lux, T., "Hubs and resilience: towards
more realistic models of the interbank markets", Kiel Working
Paper, 1826, Kiel Institute for the World Economy, Kiel, (2013)

[31] Nier, E., Yang, J., Yorulmazer, T., and Alentorn, A., "Network
models and financial stability", Journal of Economic Dynamics
& Control 31, (2007)

[32] Newman, M., "Random Graphs as Models of Networks", in
Bornholdt, S. and H. Schuster, eds., Handbook of Graphs and
Networks: From the Genome to the Internet, Wiley (2003)

[33] Soramäki, K., Bech, M. L., Arnold, J., Glass, R. J., and
Beyeler, W., "The topology of Interbank Payment Flows", Staff
Report, 243, Federal Reserve Bank of New York, (2006)

[34] Upper, C., "Simulation methods to assess the danger of con-
tagion in interbank markets", Journal of Financial Stability,
doi:10.1016/j.jfs.2010.12.001, (2011)



A Computation of the state functions: analytical solutions for first round effects 32

[35] Upper C. and Worms A., "Estimating Bilateral Exposures in
the German Interbank Market: Is there a Danger of Conta-
gion?", European Economic Review, 8, 827-49, (2004)

[36] Vasicek, O., "Probability of Loss on Loan Portfolio", KMV Cor-
poration (available at kmv.com), (1987)

A Computation of the state functions: analytical solutions for
first round effects

The purpose of this appendix is to provide the derivation of eqs. (28) and
(29). We first recall the main characteristics of the model; a probability ma-
trix P , with entries pij = Ps (Ai,Aj) (s = 1, 2, 3), indicates the probability
for each possible edge in the system, this is computed after the sequence
{Ai} has been assigned to the system itself. For each probability matrix P ,
a large number of realizations for the adjacency matrices are possible. Once
an adjacency matrix A has been determined for the system, the weight of
each edge is computed according to:

lij =
lipij∑
j∈Ωi

pij
=

(1− θ)Aipij∑
j∈Ωi

pij
(35)

where Ωi denotes the set of nodes which satisfy aij = 1. We can now
start deriving eq. (28). First of all, note that with probability (1− pij),
bank i has no link directed to bank i0, and in that case its net worth ηi in
round 1 rests unchanged and remains identical to η0

i : this situation gives
one of the two contributions in eq. (28). In the other case (aij = 1), we
have instead:

ηr=1
i = η1

i = η0
i − fi0 lii0 = η0

i − fi0
(1− θ)Aipii0

ci
(36)

where η1
i is the net worth of bank i at time t = 1, fi0 is the fraction

of money that bank i0’s creditors lose due the failure of bank i0, and ci =∑
j∈Ωi

pij . Considering the mechanism of contagion explained in section 4,
we have:

fi0 = fi0 (θ, γ) = min

[
(1− θ)Ai0 − γAi0∑

j pji0
, 1
]

(37)

To derive the distribution of the random variables ηi we note that on
the right side of eq. (36) the only random term is ci, since the other are
fixed once the sequence {Ai} and the probability matrix P are fixed. We
can write:

ci =
n∑
j=1

θ (Ps(Ai,Aj)− ξj) · Ps(Ai,Aj) =
n∑
j=1

cij (38)
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where θ(x) denotes again the Heaviside function and ξi are i.i.d. random
variables with uniform distribution between zero and one:

ξi ∼ U[0,1] (39)

Since we are using N = 250, and the variables in eq. (38) are simply func-
tions of i.i.d random variables with finite mean and variance, we can apply
the Central Limit Theorem (CTL) and conclude that ci can be approximated
by a Gaussian distribution with mean:

〈ci〉 =
n∑
j=1
〈θ (Ps(Ai,Aj)− ξj) · pij〉

=
n∑
j=1

∫ 1

0
ρ(ξ)θ (Ps(Ai,Aj)− ξj) · pijdξ

=
n∑
j=1

pij

∫ pij

0
dξ =

n∑
j=1

p2
ij ≡ mi,

(40)

and variance:

σ2
ij = V ar [θ (Ps(Ai,Aj)− ξj)] =

〈
c2
ij

〉
− 〈cij〉2

=

(∫ 1

0
dξ [θ (Pij − ξj)]2 p2

ij

)
− p4

ij = p3
ij − p4

ij ,
(41)

and so:
σ2
i =

n∑
j=1

σ2
ij =

n∑
j=1

(
p3
ij − p4

ij

)
. (42)

Therefore, the distribution of the variables ci can be approximated by:

ρ(ci) =
1

σi
√

2π
· exp

{
−1

2

(
ci −mi

σi

)2
}

. (43)

Now we have to compute the distribution of η1
i , which is a simple function

of ci. Rewriting eq. (36) as:

η1
i = η0

i − fi0
(1− θ)Aipii0

ci
= a− b

ci
(44)

where we indicate the constant terms η0
i and fi0 (1− θ)Aipii0 with a and

b respectively. Denoting by ρc(·) the pdf of ci, we obtain the pdf of η1
i as

follows:
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ρ
(
η1
i

)
=

ρc

(
b

a−η1
i

)
∣∣∣∣f ′ ( b

a−η1
i

)∣∣∣∣ =
b

(a− η1
i )

2 · ρc

(
b

a− η1
i

)

=
b

(a− η1
i )

2 ·
1

σi
√

2π
· exp

−1
2

 b
a−η1

i
−mi

σi

2


(45)

where a and b depend on η and θ. The last equation, combined with the
Dirac delta for the variable ηi, leads us to eq. (28). Note that in the case of
a random network, the individual determinantsmi and σi would be constant
across banks while they depend on the balance sheet size through eq. (14)
to (16) in the present framework.

As regards the state function of the second round, Φt=2 (~η|si0), since the
variable ηis are now dependent, an explicit closed form becomes difficult to
compute (and the same is true for all the other higher rounds). However,
it is possible to use different approximations of these state functions. One
way is the factorization of the function itself as:

Φt=2 (η1, η2, . . . , ηn; si0) =
n∏
i=0

Φt=2
i (ηi) (46)

assuming absence of dependency between variables. However, such an
approximation leaves out some of the interesting spillover effects that are
the focus of our interest. We prefer, therefore, to generate variables ηi and
compute the integral in eq. 3 numerically. In order to generate the variables,
we use the following algorithm, which is built-in into the structure of our
model:
• given a probability matrix P and a sequence {Ai} for the node’s fitness

parameters, we generate a N ×N random matrix M , with entries mij

distributed according to:

mij ∼ i.i.d. , U[0,1]

an adjacency matrix A with entries:

aij =

{
1, if mij ≤ pij
0, otherwise

(47)

and the correspondent weight matrix W with entries wij = lij ;

• for each node we generate its second round net worth ηi,2; with prob-
ability P I = pii0 it will be:

ηi,2 = η0
i − fi0 lii0 −

n∑
j=1

θ(pij −mij)θ(pji0 −mji0)θ(P1(aj)− εj)lijfj

(48)
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with probability P II :

ηi,2 = η0
i −

n∑
j=1

θ(pij −mij)θ(pji0 −mji0)θ(P1(aj)− εj)lijfj (49)

and with probability 1− P I − P II :

ηi,2 = η0
i (50)

where εi are i.i.d. variables distributed according to a uniform pdf,
εi ∼ U[0,1], and P1(ai) is the probability that bank i has failed in the
first round, computed according to eq. (28). In general, to generate
the equity levels for higher rounds, one needs to build equations like
(48) - (50) the losses coming from the banks in the lower shells of the
system.

In this way the two contributions can be separated, and the output is shown
in Fig. 5. The advantage of working with state functions instead of Monte
Carlo realizations of the system is that we get closer to an analytical solution
and can decompose the overall effects into their different elements.

The coefficients fi are obtained directly from the model:

fi ≡
min [pi · ei − ηi; li]

li
= min

[
1, Ai[piθ− γ]

li

]
(51)

where λi is the size of the shock, according to notation presented in Sec. 2,
and we can compute a mean-field approximation to li as:

li = n ·
∫ b

a

1
cj
(1− θ)Aj · pji · ρ (Aj) dAj (52)

which brings us to:

fi = min

1, (λiθ− γ)
(1− θ)

Ai∑
j

AjP 2
ji∑

k
P 2
jk

 (53)

Note that fi represents the limited liability condition, which through
the minimum functions in eq. (51) complicates the problem of finding an
analytical solution for the state function at each event time t higher than
1. Since the cis are random variables, the expectation of li is obtained by
substituting cj with its expectation value, computed using eq. (43). Note
that, in case the shock consists in wiping out all external assets from the
balance sheets of the biggest bank i0, it is easy to see that fi0 = 1 if θ is
higher than a certain threshold value: in this case no damping factor will
enter in eq. (36).
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B Mean and variance for the marginal Φ-function

In this section we show how to compute the mean and variance for the state
function (28). Our goal is therefore to compute mean and variance of the
variable (44), given that ci is distributed according to (43). In general, given
a random variable x, distributed according to ρx(x), and a variable y defined
as a function of the former, y = f(x), it is possible to find an approximation
for the mean and the variance of y through the following method. As regards
the mean, we have:

< y >=< f(x) >=< f(µx + (x− µx) > (54)

where we call µx the mean value of the variable x. A Taylor expansion
around µx leads to:

< f(µx)+ f ′(µx)(x−µx)+
1
2f
′′(µx)(x−µx)2 +

1
3!
f ′′′(µx)(x−µx)3 + · · · >

(55)
In case of a Gaussian variable, the above equation reduces to:

< y >= f(µx) +
1
2f
′′(µx)σ

2
x (56)

In our case, we know the distribution of the function ci, which is approxi-
mated by a Gaussian distribution, and we want to know the distribution of
ηi, defined as:

ηi = a− b

ci
(57)

We have, after some algebra:

< ηi >= η0
i − pii0

[
bi
mi

+
bi
m3
i

σ2
i

]
(58)

and

< η2
i > − < ηi >

2= pii0b
2
i

[
1
m2
i

(1− pii0) +
σ2
i

m4
i

(3− 2pii0)− pii0
σ4
i

m6
i

]
(59)

It is easy to see that the above expression approaches zero if all the ele-
ments pij tend to one or to zero: the full information regarding the network
structure will restore the determinism and remove all uncertainty about the
extent of contagion.

C Computation of the degree distribution and the density via
the probability function

We provide here the derivation of the equations stated in sec. 3. Starting
from a particular probability function PS(Ai,Aj), and a distribution for the
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size parameter ρ(Ai), we can write the mean in-degree of a vertex as:

kin(Ai) = N

∫ b

a
PS(t,Ai)ρ(t)dt = N · Fin(Ai) (60)

and, similarly, for the out-degree we can write:

kout(Ai) = N

∫ b

a
PS(Ai, t)ρ(t)dt = N · Fout(Ai) (61)

where N is the number of nodes of the network. Assuming the function
Fin(Ai) and Fout(Ai) to be monotonous in Ai, and for N large enough,
we can invert the functions Fin and Fout in order to find the relationships
between the size parameter Ai and the the out-and in-degree of the node:

Ai = F−1
in

(
kin
N

)
(62)

Ai = F−1
out

(
kout
N

)
(63)

The transformation of the parameter in the size-distribution ρ(Ai), from Ai
to kin/out, leads us to:

P (kin) = ρ

[
F−1
in

(
kin
N

)]
· d

dkin
F−1
in

(
kin
N

)
(64)

P (kout) = ρ

[
F−1
out

(
kout
N

)]
· d

dkout
F−1
out

(
kout
N

)
(65)

The density Dl of a network generated according to probability function Pl
is computed as follow:

Dl =
2 · 〈nl〉

N(N − 1) =
2 ·
∑N
i,j=1〈H(P lij − εij)〉
N(N − 1) =

2 ·
∑N
i,j=1 P

l
ij

N(N − 1) (66)

where 〈nl〉 is the expectation value of the number of links generated by
probability function Pl, εij are i.i.d. random variables distributed uniformly
over the interval [0, 1], and H(·) is the Heaviside function.


