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ABSTRACT 

 
This paper estimates a common component in many price series that has an 
equiproportional effect on all prices.  Changes in this component can be interpreted as 
changes in the value of the numeraire since, by definition, they leave all relative prices 
unchanged.  The first aim of the paper is to measure these changes.  The paper provides a 
framework for identifying this component, suggests an estimator for the component based 
on a dynamic factor model, and assesses its performance relative to alternative 
estimators.  Using 187 U.S. time-series on prices, we estimate changes in the value of the 
numeraire from 1960 to 2006, and further decompose these changes into a part that is 
related to relative price movements and a residual ‘exogenous’ part.  The second aim of 
the paper is to use these estimates to investigate two economic questions.  First, we show 
that the size of exogenous changes in the value of the numeraire helps distinguish 
between different theories of pricing, and that the U.S. evidence argues against several 
strict theories of nominal rigidities. Second, we find that changes in the value of the 
numeraire are significantly related to changes in real quantities, and discuss 
interpretations of this apparent non-neutrality.  
 
 
JEL codes: E31, C43, C32  
Keywords: Inflation, Money illusion, Monetary neutrality, Price index   
 
 
 
 
 
 
*We are grateful to Marc Giannoni, Alan Kackmeister, David Lopez-Salido, Ulrich Müller, Brad Strum, 
and Michael Woodford for useful comments. Reis thanks the Hoover Institution at Stanford University for 
its support and hospitality under a Campbell national fellowship. Support was provided by the National 
Science Foundation through grant SES-0617811. Data and replication files for this research can be found at 
http://www.princeton.edu/~rreis  or at http://www.princeton.edu/~mwatson. Contact:  rreis@princeton.edu 
or mwatson@princeton.edu. 



 1

1. Introduction 

 

This paper measures the common component in price changes that has an 

equiproportional effect on all prices.  By construction, changes in this component leave 

all relative prices unchanged.  They are changes in the absolute level of prices, separated 

from relative-price changes, so they are a measure of “pure” inflation. They are also the 

changes in the value of the special good that serves the role of the unit of account in 

which all prices in the economy are denominated. This good is the numeraire and 

changes in pure inflation are changes in the value of the numeraire.1 

The numeraire plays a central role in most economic models.  A basic principle 

from rational economic behavior states that relative, but not absolute, prices matter for 

determining real quantities.  Regardless of whether consumers have non-standard 

preferences, of whether they face constraints on borrowing, of how they perceive trade-

offs between the present and the future, or of whether they have full information or not, 

as long as consumers behave optimally and can shift expenditure between two goods, 

they will equate the marginal rate of substitution between these goods to their relative 

prices.  Likewise, regardless of the features of technology or corporate control, firms that 

minimize costs equate the relative marginal product of two inputs to their relative prices, 

and a proportional increase in all input and output prices leaves production unchanged.  

In choosing how much to consume or produce, agents consider relative benefits and 

relative costs, regardless of the unit of account in which these are denominated.  

Therefore, regardless of how markets clear or how equilibrium is defined, changes in 

units should have no effect on any real quantity, so pure inflation should be neutral with 

respect to quantities.  There is no “money illusion” in almost all economic models. 

This key result follows from the thought experiment: “what if the value of the 

numeraire changed?”  But, as an empirical matter, does it ever change and what drives 

these changes? Changes in social convention or currency reforms are clear cases of 

changes in the unit of account. When Turkey in 2005 decided to drop 6 zeroes from its 

currency or when many European countries in 1999 adopted the Euro, the value of the 

numeraire changed in these countries.  These events are rare, so they do not provide a 

consistent measure of pure inflation over time for a country.  Moreover, these events 

typically come with many other changes in policy and institutions, so it is difficult to 
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separately identify their effects. 

This paper aims to answer two questions: first, does the value of the numeraire 

ever change?  That is, are there changes in the value of the numeraire in the post-war U.S. 

that are unrelated to relative price changes?  And second, are these changes neutral?  That 

is, are changes in real variables unrelated to these changes in the value of the numeraire?  

David Hume was perhaps the first to ask these questions.  In the essay “Of Interest” 

(1752), he first posed the thought experiment of changing the value of the numeraire: 

“Were all the gold in England annihilated at once, and one and twenty shillings 

substituted in the place of every guinea, would money be more plentiful or interest 

lower?”  Hume answered by affirming the neutrality of the numeraire: “No surely:  We 

should only use silver instead of gold.  Were gold rendered as common as silver, and 

silver as common as copper; would money be more plentiful or interest lower?  We may 

assuredly give the same answer.  Our shillings would then be yellow, and our halfpence 

white; and we should have no guineas.  No other difference would ever be observed; no 

alteration on commerce, manufactures, navigation, or interest; unless we imagine, that the 

colour of the metal is of any consequence.”  Hume moved further and combined the 

irrelevance of the numeraire with another proposition—that changes in money lead to 

changes in the value of the numeraire—to conclude that money itself is neutral.  Ever 

since then, this has been of the most hotly debated issues in economics.  

The first part of this paper spans sections 2, 3 and 4 and it is dedicated to 

estimating changes in the value of the numeraire.  Section 2 begins with a framework that 

relates prices to the value of the numeraire, describes estimators for the change in the 

value of the numeraire, and discusses identification.  We use the term NPI, for numeraire 

price index, for an estimator for the value of the numeraire that is based on goods prices; 

section 2 discusses several NPIs, and proposes a particular one, a dynamic NPI based on 

a dynamic factor model for relative prices that captures the salient serial and cross 

correlation patterns in a large panel of prices.  

Section 3 applies this estimator to U.S. data from 1959 to 2006 on the prices of 

the different components of personal consumption expenditures (PCE) in the national 

income accounts.  This provides an estimate of changes in the value of the numeraire in 

the United States, which, while broadly similar to other measures of inflation in their 

decade-to-decade movements, have some interesting differences.  The correlation of 

                                                                                                                                            
1 Since prices are denominated in units of the numeraire, the price of the numeraire is always one, but its 
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changes in NPI inflation with those in the PCE deflator is only 0.64 and it is less volatile 

and more persistent.  

Section 4 extracts exogenous movements in the numeraire, that is movements in 

the NPI that are unrelated to relative price movements.  The dynamic model that 

motivates the NPI suggests a straightforward decomposition to isolate these exogenous 

shocks.  Applying this decomposition to the U.S. data, we find that exogenous changes in 

the numeraire are reasonably large: on average, they account for 7% of the variance of 

individual price changes and 30% of the variance in the NPI.  Section 4 also considers the 

problem of how to compare different estimators of changes in the value of the numeraire. 

We measure the performance of an estimator by its accuracy measured by mean squared 

error (mse) and develop an approach to estimate the mse. We compare alternative 

estimates of the NPI to find that simple unweighted averages are inaccurate, 

appropriately weighted averages are more accurate, and our dynamically weighted 

estimator yields additional increases in accuracy.  

The second part of this paper, in sections 5 and 6, applies the estimates of the 

changes in the value of the numeraire to shed light on two issues. The first application, in 

section 5, is to assess the validity of different models of pricing.  We show that different 

assumptions on pricing imply different predictions on whether there should be exogenous 

changes in the numeraire.  The quantitatively large exogenous movements in the 

numeraire that we find in the data cast suspicion on strict theories of nominal rigidities in 

which some sectoral prices are always sticky, and support instead softer versions of these 

theories where all prices can change with respect to some shocks.  We compare our 

estimates with artificial data generated by different models of pricing and find further 

support for this conclusion.  

Section 6 answers the question of whether exogenous changes in the numeraire 

are related to changes in measures of real activity.  We find that they are, since we 

typically reject the null hypothesis that changes in several measures of real activity are 

independent of exogenous changes in the numeraire.  To interpret this result, we show 

that in general-equilibrium models, exogenous movements in the numeraire can be due to 

one of two possible shocks that we cannot separately identify.  The first is the Hume-

shock described above that should be neutral (changes in the units); the second is a 

particular aggregate shock that changes the total amount of goods while leaving all 

                                                                                                                                            
value, in terms of all other goods, can change. 
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relative prices unchanged (changes in the total account).  If we assume that there are only 

Hume-shocks, then our findings suggest that there is money illusion.  If we assume that 

there is no money illusion, then our findings suggest the existence of the non-neutral 

aggregate shocks described above, although as it turns out, the empirical analysis 

suggests these shocks cannot explain a large fraction of the variance of both real 

quantities and the NPI.  

 

1.1. Related literature 

The question of whether there is money illusion dates back at least to John 

Maynard Keynes (1936) and Irving Fisher (1928).  Shafir, Diamond and Tversky (1998) 

and Fehr and Tyran (2001) presented micro-evidence based on surveys and experiments 

that changes in the value of the numeraire affect real choices.  It is an open question how 

prevalent is this behavior, and how significant it is for economic aggregates. At the macro 

level, the absence of measures of changes in the value of the numeraire has precluded 

tests of money illusion.  There is a large literature, going back at least to Phillips (1958), 

that relates movements in output to movements in inflation.  This literature measures 

inflation typically using the consumer price index (CPI), which measures changes in the 

cost of living, or the GDP or PCE deflators, which were built to obtain real quantities.  

By construction, each of these price indices reflects relative-price changes so, in 

principle, they are not good measures of pure inflation. 

Our use of large scale dynamic factor models draws on the literature on their 

estimation by maximum likelihood (e.g., Quah and Sargent, 1993, and Doz, Giannone 

and Reichlin, 2006) and principal components (e.g., Forni, Hallin, Lippi and Reichlin, 

2000, Bai and Ng, 2002, and Stock and Watson, 2005). We provide a new set of 

questions to apply these methods.  Cristadoro, Forni, Reichlin and Veronesi (2005) use 

these methods to estimate a common factor on a panel with price and quantity series and 

ask a different question: whether it forecasts inflation well. Amstad and Potter (2007) 

address yet another issue, using dynamic factor models to build measures of the common 

component in price changes that can be updated daily. The common factor in both of 

these papers is not a measure of changes in the value of the numeraire, since it affects 

different prices differently. Closest to the approach in this paper is Bryan and Cecchetti 

(1993), who estimate changes in the value of the numeraire as a common component in a 

panel of 36 price series assuming that relative prices are independent across goods and 

use it to forecast future inflation.  The goal of this paper is not forecasting, but rather to 
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estimate the changes in the value of the numeraire and the part of these that is unrelated 

to relative price changes, and we impose less restrictive assumptions than Bryan and 

Cecchetti (1993).2  

Our approach of testing pricing theories by using a factor model to extract a 

common shock is shared with Boivin, Giannoni and Mihov (2007).  They extract a 

macroeconomic shock using many series that include prices and real quantities, estimate 

the impulse response of individual prices to this shock, and then compare their shape to 

the predictions of different models of nominal rigidities.  In our model, the response of 

any individual price of the numeraire is, by construction, an immediate jump of the same 

proportional size as the shock.  Thus, the mere existence of a shock with this particular 

common pattern of responses across all prices provides a test of theories of nominal 

rigidities.  Moreover, in contrast to the Boivin, Giannoni and Mihov, we use only price 

data (and no quantity data) to build a price index so that we can later ask if it is neutral 

with respect to quantities. 

There is a large literature on measuring inflation and building price indices, and 

the NPI fits into the class of stochastic price indices described in Selvanathan and Rao 

(1994).  However, there have been very few attempts to measure changes in the value of 

the numeraire.  Jevons (1865) considered this problem and proposed calculating the 

arithmetic mean of the change in price of each good. Edgeworth replied that it would be 

better to weight each individual price change by the inverse of its sample standard 

deviation.3  The relative efficiency of these estimators is discussed in section 4.  Finally, 

the NPI is a member of the recent family of dynamic price indices that use dynamic 

models to measure inflation.  Other members in this family are the measures of the cost 

of living in Reis (2005), the deflators to obtain measures of quantities and welfare in 

Weitzman (1976) and Basu and Fernald (2002), the optimal inflation target for central 

banks with nominal rigidities in Mankiw and Reis (2003), Huang and Liu (2005), and 

Strum (2006), and the inflation index for bonds to create a safe real asset in Geanakoplos 

(2005).  

 

                                                 
2Bryan, Cecchetti and O’Sullivan (2002) use a version of the Bryan-Cecchetti (1993) model to study the 
importance of asset prices for an inflation index. 
3Diewert (1995) traces Edgeworth’s proposal, which he scattered across several writings. Diewert (1995) 
and Wynne (1999) criticize these as well as other stochastic price indices for typically imposing strong 
arbitrary assumptions on the correlation of relative prices and for not being suited to measure the cost of 
living.  The NPI proposed here imposes less structure on the dynamics of relative price shocks, and is not 
intended to measure the cost of living, but rather to measure the numeraire. 
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2.  Measuring the numeraire 

 

2.1 A framework for measuring the numeraire 

Consider an economy with M + 1 goods, indexed by i = 0, 1, … , M,  where i = 0 

corresponds to the numeraire good and prices (in units of the numeraire good) are given 

by Pi.  A fall in the value of the numeraire good by 1%  means that Pi increases by 1%  

for i = 1, … , M.  This suggests writing πit = nt + rit, where πit = ln(Pit/Pit−1) is the rate of 

price change for the i’th good, nt is the rate of change of the value of numeraire good, and 

rit is the rate of change of the price of the i’th good relative to other non-numeraire goods.  

Throughout this paper we refer to nt as the “numeraire” instead of the more long-winded 

“change in the value of the numeraire good.”  The numeraire is identified by the 

condition that relative price changes must add up to zero, so that the model relating the 

numeraire to prices is:4 
 

 πit = nt + rit (1) 

 1

1

0
M

it
i

M r−

=

= .∑  (2) 

 

These two equations statistically define the numeraire.  Two questions naturally 

arise: how do numeraire and relative-price changes relate to shocks in economic models?  

And, do (1) and (2) suffice to identify the numeraire? 

To answer the first question, consider a simple Walrasian economy with a 

representative consumer deriving utility u(Ct) from the consumption of M goods Ct = 

{ }M
itiC

1, =
, which trade at prices Pt = { }M

itiP
1, =
.  Optimal behavior implies equating the 

marginal rate of substitution between goods i and j to their relative price.  The consumer 

receives exogenous endowments Et = { }M
itiE

1, =
, that are subject to idiosyncratic exogenous 

shocks.  The endowments cannot be stored over time so, for markets to clear, Ct = Et.  

Finally, there is an exogenous endowment E0t of a good that yields no utility, call it sea 

shells, but which the consumer uses to denominate its prices.  Since Eit is the available 

amount of good i and Pit its unit-price in shells, then PitEit is how many shells the 

endowment of good i is worth.  Since consumers can exchange goods for shells, the total 

                                                 
4 Allowing for the possibility of an infinite number of goods, (2) should be interpreted as a limit with M → 
∞. 
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worth of all goods in shells, it iti
P E∑ , must equal the amount of available shells, E0t.  

The M prices in this economy are determined by the system of M equations:  

 

 
t

it

t

it

Cu
Cu

P
P

11 /)(
/)(
∂∂
∂∂

=
t

t

C
C

  for i = 2,…,M (3) 

 t

M

i
itit EEP 0

1
=∑

=

 (4) 

 

If the endowment of shells increases, these equations imply that all prices increase by 

exactly the proportion of this increase.  This is an example of a change in the value of the 

numeraire as described by Hume.  If the endowments of all goods except the numeraire 

change between t-1 and t by the proportions { }M
ii 1=∆  that average to zero  0

1
=∆∑ =

M

i i  and 

the utility function is Cobb-Douglas, then the changes in log prices add up to zero, giving 

an example of a pure change in relative prices.  Finally, general changes in endowments 

will lead to both changes in the numeraire and relative prices, with each identified by 

conditions (1)-(2).5 

This leads us to the second question, on identification.  First note that the 

formulation of the model in terms of price inflation eliminates the units of the goods.  

That is, the perennial issue of comparing apples and oranges (here, literally, in their 

prices) is taken care of.  A more subtle problem involves re-bundling of goods.  If in the 

data, we observe fruit salad, we would not want the estimate of changes in the numeraire 

to depend on whether the salad includes more or less apples relative to oranges.  This 

problem can be formalized as follows: let πt = (π1t  … πMt)′ denote the vector of inflation 

rates for the M goods, so that πt = ntl + rt  where l is an M×1 unit vector and rt is the 

vector of relative inflation rates rit.  Consider rearranging these goods into M bundles. 

The inflation rates for the new bundles are tπ% = Ωπt, where Ωij is the value share of good j 

in bundle i.  Because the rows of Ω sum to one, Ωl = l, so that tπ%  = ntl + tr% , where tr%  = 

Ωrt.  Note that 1
iti

M r− ∑ %  = 1
ij jti j

M r− Ω∑ ∑ = 1
j jtj

M r− Ω∑ , where Ωj = iji
Ω∑ .  

Therefore, 1
iti

M r− ∑ % =0 as long as the arrangement of bundles is uncorrelated with the 

changes in relative prices, that is 1 0j jtj
M r− Ω =∑ .  
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It is not clear whether this condition holds in the data.  It is possible that when the 

relative price of apples and oranges changes, makers of fruit salad change the amount of 

each fruit in the salad in a way that is missed by the statistical agency’s price collectors.  

If they mistakenly record the change in price as if the salad was the same, then the task of 

separating changes in the numeraire from changes in relative prices is impossible.  To 

make any progress, we must assume (or hope) that this is not the case.  

 

2.2. Estimating the numeraire and the NPI 

Were prices on all M goods available, equations (1) and (2) imply that the average 

change in prices would exactly measure nt.  We suppose instead that data are available 

for a subset of N goods over T time periods.  The sampling of these N goods from the 

population of M goods introduces statistical uncertainty in the data motivating estimators 

other than the arithmetic average.6 

We define a numeraire price index (NPI) as an estimator of nt constructed from 

data on individual prices alone and focus on estimators that are linear functions of the 

inflation rates.  A “static” NPI can then be defined by a set of weights ω = {ωi}, so that 

the NPI is: 

 

 1

1

ˆ ( )
N

t i i t
i

n Nω ωπ−
,

=

= .∑  (5) 

 
Combining (5) with (1), ˆ ( )tn ω = ω nt + 1

1

N
i iti

N rω−
=∑ , where ω  is the sample mean of  ωi.  

Evidently, ˆ ( )tn ω  will be a consistent estimator of nt (as N → ∞) if ω  = 1, and if the 

weights and relative inflation rates are asymptotically uncorrelated, so 

that 1
1

0
pN

i iti
N rω−

=
→∑ , where the randomness in this quantity is associated with the 

selection of the N goods from the population of M goods and, potentially, from the choice 

of weights ωi.7 

A dynamic NPI is similarly defined as:  

 

                                                                                                                                            
5 Buiter (2007) discusses the role of the numeraire in new Keynesian models.  
6We will ignore the introduction of new goods (an increase in M) and assume that the statistical 
assumptions about the N goods remain satistified throughout the sample period under study. 
7 Bryan and Cecchetti (1993) discuss the correlation between relative price changes and the weights used to 
construct the CPI and PCE deflator. 
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 ˆ ( )tn ω = 1
ij it j

i j

N ω π−
− .∑∑  (6) 

 

In this case, ˆ ( )tn ω  = ω(L)nt +  1
ij it ji j

N rω−
−∑ ∑  where ω(L) = 1

1
LN j

iji
N ω − 

 = 
∑  and L is 

the lag operator.  This dynamic estimator will be consistent for ω(L)nt  (which may not 

equal nt) if 1 0
p

ij it ji j
N rω−

− →∑∑ .  

These conditions define NPIs that consistently estimate the numeraire or filtered 

versions of the numeraire (ω(L)nt), but they still allow for many alternative estimators.  

One natural way to compare different NPIs and choose among them is by their accuracy, 

which we will measure by the mean square error (mse), E[ ˆ ( )tn ω − nt]2.  Section 4 

estimates the mse for a variety of static estimators (including the estimators proposed by 

Jevons and Edgeworth), and compares the efficiency of these estimators to a dynamic 

estimator that we now describe.   

 

2.3. A dynamic estimator  

Different efficient NPIs can be motivated by different statistical assumptions on 

the behavior of the relative prices used to form the index.  For example, suppose that {rit} 

are serially and cross-sectionally uncorrelated and homoskedastic, and there are no 

restrictions on nt.  In this case, the Gauss-Markov theorem implies that the arithmetic 

mean of πit is the best linear unbiased estimator of nt; that is, the Jevons estimator is 

efficient.  If {rit} are heteroskedastic, but the other Jevons assumptions are satisfied, then 

the Edgeworth NPI that weighs each good by the inverse of its variance corresponds to 

the GLS estimator and dominates the Jevons NPI.  

Of course, these assumptions underlying the efficiency of the Jevons and 

Edgeworth estimators are implausible.  Given a large number of price series, it is 

infeasible to allow for arbitrarily general covariance properties of the relative prices. Yet, 

it is certainly the case that changes in relative prices are serially and cross-sectionally 

correlated, and nt is plausibly serially correlated.  These characteristics of the inflation 

process suggest that dynamic estimators may be more accurate than the Jevons and 

Edgeworth or other static estimators, raising the challenge of choosing the appropriate 

weights for the dynamic estimator.   

Our approach is to use optimal weights implied by a particular parametric model 
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of inflation.  The assumptions underlying this parametric model, while not as strong as 

the Jevons-Edgeworth assumptions, are also open to challenge.  That said, the purpose of 

the model is not to capture all of the subtleties of the large number of inflation series used 

in the analysis but rather to provide a set of weights that lead to an accurate NPI.  Put 

differently, the parametric model is meant to capture the key properties of the inflation 

series as they pertain to estimation of nt, even though the model is surely misspecified in 

other respects.  As we proceed, we will attempt to guard against faulty inference by using 

econometric procedures that are robust to this misspecification or, when this is 

impossible, by investigating the robustness of our conclusions to alternative formulations 

of the model.  

The parametric model is the dynamic factor model: 

 

 πit = nt + rit (7) 

 rit = λi′ft + uit (8) 

 ( ) t

t

n
L

f
 

Φ  
 

 = εt (9) 

 ρi(L)uit = αi +  eit  (10) 

with restrictions 

 
1

N

i
i

λ
=
∑  = 0 (11) 

 E(eit) = 0, var(eit) = 2
iσ ,  E(εt) = 0, var(εt) = Q (12) 

and 

 {eit},{ejt}j≠i,{εt} are mutually and serially uncorrelated sequences (13) 
 

Equation (8) uses a factor model to represent changes in relative prices where ft is 

a k×1 vector of common factors and uit denotes good-specific changes in relative prices.  

The factors ft capture aggregate shocks that lead to relative price changes.  These could 

be shocks that affect all sectors, like changes in aggregate productivity, government 

spending, and monetary policy, or shocks that affect many but not all sectors (so λij = 0 

for some i and j) like changes in energy prices, shocks to the weather that affect many 

goods in the food sector but not manufacturing, or perhaps changes in exchange rates if 

they affect the prices of tradables but not of non-tradables.  Past research focusing on the 

output of different sectors found that this factor structure for the covariance between 
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shocks can flexibly account for the main features of the economic data (Stock and 

Watson, 1989, 2005, Forni et al, 2000).  Restriction (11) imposes the constraint that the 

common relative-price shocks ft do not affect average inflation and identifies nt as in (2).  

Equation (9) allows nt and ft to evolve jointly through a parsimonious VAR.  If 

changes in the numeraire may be at least partially related to changes in monetary policy, 

it is likely that these occur in response to developments in the rest of the aggregate 

economy.  

The good-specific shocks uit are allowed to be serially correlated via (10), but are 

mutually uncorrelated and uncorrelated with nt and ft (see (13)).  The restriction that they 

are uncorrelated with nt means that changes in the numeraire are not allowed to respond 

to changes in the price of a single good (say canned tuna) and no other good.  The 

assumption that uit are mutually uncorrelated means that all of the joint correlation 

between rit is explained by the common factors ft.  This is a strong (and arguably 

unrealistic) assumption, but a large literature on approximate factor models (Forni et al, 

2000, Bai, 2003, Stock and Watson, 2005, Doz et al, 2006) suggests that estimates of nt 

and ft are robust to sufficiently small correlation in these terms.  And, as we have already 

noted, we will use inference methods that are robust to this specification. 

Given values of the parameters in (7)-(13), the dynamic NPI is constructed as the 

minimum mean square error estimator of nt using the observations on ,
1, 1{ }i N T

i i
τ

τ τπ = =
= = .  Given 

a set of parameters, this estimator can be computed using standard signal extraction 

techniques (e.g., the Kalman filter and smoother). 

 

2.4 Estimating the dynamic factor model 

Conditional on the number of factors (a problem discussed below), values of the 

unknown parameters in (7)-(12) can be estimated by Gaussian maximum likelihood, and 

these are the estimates that we use.  There are two concerns with these MLEs.  First, as 

documented in Ball and Mankiw (1995), Bryan and Cecchetti (1994), and Bryan, 

Cecchetti and Wiggins (1997), disaggregated inflation rates are skewed and fat-tailed.  In 

general, skewness is not a major concern for Gaussian MLEs in models such as this (see 

Watson, 1989), but excess kurtosis is more problematic.  To mitigate the problem we 

follow Bryan, Cecchetti and Wiggins (1997), by pre-treating the data to eliminate large 

outliers (see section 3 for more details). 

The second concern is the computational complexity of MLEs in models of this 
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size.  For example, our benchmark model includes nt and two additional relative price 

factors, a VAR(4) for (9), univariate AR(1) models for (10), and N = 187 price series.  

There are 971 parameters to be estimated.8  Despite its complexity, the linear latent 

variable structure of the model makes it amenable to estimation using an EM algorithm 

with the “E-step” computed by Kalman smoothing and the “M-step” by linear regression.  

See Watson and Engle (1983) and Shumway and Stoffer (1982) for a general discussion 

of the EM algorithm in models such as this and the appendix for specific discussion of 

the implementation used here.  

 

3. The U.S. NPI (1960-2006) 

 

3.1 The data 

The price data are monthly chained price indices for personal consumption 

expenditures by major type of product and expenditure from 1959:1 to 2006:6.9  Inflation 

is measured in percentage points at an annual rate using final month of the quarter prices: 

πit = 400×ln(Pit/Pit−1), where Pit are prices for March, June, September, and December.10  

Prices are for goods at the highest available level of disaggregation that have data for the 

majority of dates, which gives 214 series.  We then excluded series with unavailable 

observations (9 series), more than 20 quarters of 0 price changes (4 series), and series j  

if there is another series i  such that Cor(πit, πjt) > 0.99 and Cor(∆πit, ∆πjt) > .99  (14 

series).  This left N = 187 price series.  Large outliers were evident in some of the 

inflation series, and these observations were replaced with local medians.  A detailed 

description of the data and transformations are given in the appendix.11 

 

 

3.2. Choosing the order of the model 

                                                 
8The number of unknown parameters is 186 + 185 (λi) + 187 (ρi) + 187 (αi) + 187 (var(ei)) + 36 (Φ) + 3 
(Q) = 971, where these values reflect the normalizations used for identification. 
9 In principle, any price denominated in dollars could be a part of the sample, including financial prices or 
the price of labor.  We look at these series because they  are consistent for a long period of time, but future 
research could include many more prices.  Section 6 will consider financial prices more explicitly. 
10We considered using monthly, rather than quarterly, price changes, but found that the extra idiosyncratic 
error in monthly price changes outweighed the benefit of more observations. 
11 The level of aggregation, both over time and across goods, affects the interpretation of the results. In the 
time dimension, if we looked at century price changes it would be hard to believe that there is money 
illusion, while if we looked at minute-by-minute price changes, it is hard to believe that prices are not very 
sticky. In the goods’ dimension, we ignore relative-price changes for goods within a sector. It is important 
to keep in mind that our findings refer to quarterly sectoral prices. 
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There are three integer parameters that govern the order of the model: the number 

of lags in the VAR in (9), the number of lags in the univariate autoregressions in (10), 

and the number of latent factors (nt and ft) to include in the model.  The benchmark 

specification uses a VAR(4) model in (9) and AR(1) models in (10); diagnostic tests (not 

reported) suggested that these lag lengths were adequate, and sections 5 and 6 discusses 

the robustness of the results to these choices. 

Determining the appropriate number of factors is less clear cut.  The Bai and Ng 

(2002) criteria provide consistent (as min(N,T) → ∞) estimators of the number of the 

number of factors in models such as this.  These estimators are based on the number of 

dominant eigenvalues of the covariance (or correlation) matrix of the data.  Panel (a) of 

figure 1 shows the largest twenty eigenvalues of the sample correlation matrix.  Evidently 

there is one large eigenvalue, but the figure suggests that it is unclear how many 

additional factors are necessary.  This uncertainty is evident in the Bai-Ng estimates: their 

ICP1, ICP2 and ICP3 estimates are 2 factors, 1 factor, and 11 factors respectively. 

Because of this uncertainty, we estimated models with 1 through 4 factors.  These 

models were unrestricted versions of (7)-(13) that do not impose the restrictions on the 

factor loadings (unity on the first factor and the restriction (11)).  Panel (b) of figure 1 

summarizes the fraction of variance explained by the factors for each of these models and 

for each of the 187 inflation series.12  To make the figure easier to read, the series have 

been ordered by the fraction of variance explained by the 1-factor model.  The 

uncertainty in the appropriate number of factors is evident here as well: the second factor 

improves the fit for several series, but it unclear whether a third, fourth or fifth factor is 

necessary.  In our benchmark model we will use 3 factors (nt and two relative price 

factors in ft).  We summarize the key results for other choices in sections 5 and 6. 

Finally, we must address the issue of unit roots in the model.  Several authors (see 

Pivetta and Reis, 2007, for a detailed discussion) have noted that aggregate inflation is 

persistent and consistent with a process that contains a unit root in its autoregressive 

representation.  In the models that we have estimated, this persistence is evident by an 

estimated root in Φ(L) in (9) that is very close to unity and a few other large roots.  In 

contrast, the estimated roots of ρi(L) in (10) are not large.  In our benchmark model, we 

impose two unit roots in Φ(L); that is, nt and one of the relative price factors are treated 

                                                 
12 These measures were computed as �2 21 [var( ) / ]

ii iR u sπ= − , where �var( )iu  is the estimated variance of ui 

implied by the estimated model and 2
i

sπ is the sample variance of πi. 
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as I(1) processes.  Results in which these unit roots are not imposed turn out to be very 

similar, and we summarize results for these models in sections 5 and 6. 

 

3.3. Estimates of the U.S. NPI 

Figure 2 shows estimates of the NPI constructed from (7)-(13) using the MLEs of 

the parameter estimates (these are given in the appendix).  Also plotted is the more 

familiar measure of inflation associated with the PCE deflator.  The figure shows that the 

broad movements in the NPI are similar to those of most measures of inflation: after 

being low in the 1960s, the NPI rose in the 1970s, peaking twice in 1974 and 1980, and 

then declined throughout the 1980s, remaining low in the 1990s and 2000s.  There are a 

few interesting differences, however.  The NPI is smoother and its quarter-to-quarter 

changes can often go in the opposite direction of those in the PCE deflator.  In two 

episodes, the two differed substantially: in 1986 when the PCE deflator fell sharply while 

the NPI barely moved, and between 1997 and 1999, when inflation was significantly 

higher according to the NPI than according to the PCE deflator. 

Table 1 displays summary statistics for the NPI and the PCE deflator.  The sample 

correlation between the levels of the two series is high (0.93), but the NPI is less volatile 

and more persistent than the PCE deflator and the correlation of the changes in the two 

measures is only 0.64.  Table 1 also compares the NPI with the core PCE deflator that 

excludes food and energy prices. The correlation of its changes with those in the NPI is 

even lower (0.48), and while the core PCE deflator is less volatile than the PCE deflator, 

the standard deviation of its changes is still 85% larger than that of the NPI.  The last two 

columns of table 1 compare the NPI with the Jevons and Edgeworth estimates of nt.  

Again, the NPI is less volatile and more persistent than these series.  As we discuss in 

section 4, this is consistent with less measurement error in the NPI. 

 

3.4. Comparison with the unrestricted factor model 

The NPI model imposes the restrictions that the loading on the first factor must be 

one for all goods (7), while the loadings on the other factors must each add up to zero 

across goods (11).  We now investigate how restrictive are these conditions. 

Figure 3 summarizes the fit of unrestricted factor models without these 

restrictions.  Panel (a) of figure 3 shows the increase in fit, measured as the fraction of 

(sample) variance of πi explained by the factors.  The median (across the 187 price series) 
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increase in R2 is less than 1%, and 80% of the series show increases in fit that are less 

than 3%.  The unrestricted model appears to fit better only for a small number of price 

series: for 10 series the increase in R2 exceeds 10%. 

Panel (b) of figure 3 plots the NPI from the restricted model (previously shown in 

figure 2) with the estimated first factor from the unrestricted model after the factors were 

rotated to mimic the factors in the restricted model.13  The NPI and the first factor from 

the unrestricted model are essentially identical. 

Panels (c) and (d) summarize results from estimating the value of θi in the 

regression: 

 

 πit = θint + λi′ft + uit. (14) 

 

When θi = 1, this corresponds to the model used to construct the NPI.  One cannot 

estimate this regression because nt and ft are not observed, but as noted in Watson (1986) 

and discussed in section 6 below, inference can be carried out by estimating a regression 

that replaces nt and ft with their Kalman smoothed estimates.  Panel (c) shows the ordered 

values of the OLS estimates of θi, and panel (d) shows the ordered values of the (4-lag 

Newey-West) t-statistic testing that θi =1.  While most of the estimated values of θi are 

close to 1, panel (d) shows far more rejections of the restriction than would be expected 

by sampling error.  For example, over 30% of the t-statistics fall outside the standard 5% 

critical values and over 20% fall outside the 1% critical values.  These results suggest 

that, as a formal matter, the unit factor loading restriction in (7) appears to be rejected by 

the data.  That said, the results in panels (a) and (b) suggest that little is lost by imposing 

this restriction. 

 

4. Exogenous movements and measures of performance 

 

4.1. Defining the exogenous component of the NPI  

Some, perhaps even all, of the movements in the value of the numeraire are 

associated with current, past, or perhaps future changes in relative prices.  Because 

relative prices movements are inherently non-neutral, it is useful to decompose the NPI 

                                                 
13The factors were rotated so that the factor loadings on the first factor average to unity, the loadings on the 
other factors average to zero, and the factor loadings are orthogonal. 
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into a component that is correlated with relative price changes and a component that is 

uncorrelated with these changes.  This latter component is associated with what might be 

called “pure” numeraire shocks, and is given by:  

 

 vt = nt - { }[ ]TN
iit rnE ,

1,1 == ττ  (15) 

 
where E is the expectations operator.  

In the model (7)-(13), linearity implies that the expectations operator E is the 

linear projection operator Ê  and nt and ft are uncorrelated with idiosyncratic changes in 

sectoral prices (uit), so that { }[ ]TN
iit rnE ,

1,1 == ττ  = { } 1
ˆ | T

tE n fτ τ =
 
  .  Furthermore, because 

( )'t tn f  follows the VAR in (9), the estimated stochastic process for vt is readily 

calculated from the estimated VAR coefficients, as is the estimated realization of vt.14 

 

4.2. Estimates of exogenous movements in the NPI 

Figure 4 plots estimates of nt – nt–8 and its decomposition into exogenous shocks 

(vt – vt–8) and relative-price components. (The figure shows 2-year changes because these 

are smoother and easier to interpret than quarter-to-quarter changes.15)  Often nt and its 

two components move together.  For example, the two spikes in the NPI in the mid and 

late 1970s came with both large exogenous and relative-price shocks.  Likewise, the 

disinflation of the early 1980s has a large relative-price component, but it is also the 

largest exogenous contraction in the NPI in the sample.  Sometimes though, the two 

components of the NPI move in different directions.  The disinflation of 1991-92 is 

almost exclusively due to changes in the exogenous component, while the disinflation of 

the early 2000s comes in spite of the exogenous component being relatively high, and is 

due to large relative-price contractions.  

The estimated VAR implies a standard deviation of ∆nt of 0.75 percent, and a 

standard deviation of ∆vt of 0.40 percent.  This implies that 30% of the variance of nt is 

associated with exogenous (non-relative price) factors and the remaining 70% is 

associated with changes in relative prices.  Results analogous to those shown in panel (b) 

of figure 1, suggests that on average across the 187 series, nt explains 23% of the sample 

                                                 
14 The appendix describes how these calculations can be performed. 
15 We show the changes in nt and its decomposition instead of the levels because nt is an I(1) variable. 



 17

variance of changes in individual prices, so that 7% (0.30×0.23) of the variance of 

individual inflations is associated with exogenous changes in nt. 

Evidently, there are large exogenous changes in the numeraire in the post-war 

U.S. that account for a significant share of the overall variance of the numeraire and of 

the variance of prices.  

 

4.3. Estimating the MSE of estimators of nt. 

So far we have focused on the NPI constructed using the optimal signal extraction 

weights associated with the estimated dynamic factor model in (7)-(13).  But how well 

does this estimator perform relative to other, perhaps simpler, estimators of nt?   

We assess performance of an estimator by its accuracy, measured by its mean 

squared error (mse). As discussed in section 2, static estimators of nt have the form 
1

1
ˆ ( ) N

t i i ti
n Nω ωπ−

,=
= ∑ , where the ωi are weights that determine the estimator.  If the 

weights average to unity,  1
1

ˆ ( ) N
t t i iti

n n N rω ω−
=

= + ∑ , so the mse of the estimator is 

( )2
1

1

N
i iti

E N rω−
=∑ .  The mse will depend on the weights ωi (which are known) and the 

variances and covariances of rit (which are unknown).  Because relative price changes are 

cross-correlated, the covariance terms are likely to be a large component in the mse. 

Accounting for these covariances presents a challenge. 

Our approach uses the decomposition rit = λi´ft + uit, where
1

N
ii
λ

=∑ = 0 identified 

the f factors as relative price shocks.  Suppose that 1
1

N
i ii

N ω λ−
=∑  is sufficiently small so 

that the mse is dominated by the term ( )2
1

1

N
i iti

E N uω−
=∑ .  If the good-specific shocks uit  

are mutually uncorrelated (as assumed, for example, in the parametric factor model), then 

it would be reasonably straightforward to estimate the mse using weighted averages of 

squared residuals.  However, while the ft factors may successfully capture the important 

aggregate movements in relative prices, they are unlikely to capture all of the variability 

in relative prices.  That is, the elements of uit are likely to be weakly cross-correlated, and 

this cross-correlation may be quantitatively important for the mse.  We use an estimator 

of the mse that allows for quite general patterns of cross correlation, by exploiting the 

ability to form uncorrelated groups of prices. 

The details for this mse estimator are provided in the appendix, but the basic idea 
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behind it is straightforward, and can be described using the Jevons estimator ˆ J
tn = tπ , 

where tπ  is the cross-sectional average of πit.  The sampling error in ˆ J
tn  is 1

1

N
iti

N u−
=∑ , so 

that the mse of ˆ J
tn  is given by the usual “long-run” variance of uit, but where “long-run” 

refers to the cross-section dimension.  A variety of cross-sectional long-run variance 

estimators have been proposed, and we use an estimator based on grouping that is 

particularly flexible for panel data such as ours.   

To see how the estimator works, consider breaking the data into two groups; for 

simplicity suppose that the groups are of equal size with the first N/2 prices in the first 

group and the final N/2 prices in the second group.  Let 1̂
J
tn  denote the estimator 

constructed using data in the first group and 2ˆ J
tn  denote the estimator constructed from 

data in the second group, and suppose for simplicity that there are no relative-price 

factors ft.  In this case, 1̂
J
tn – 2ˆ

J
tn  = / 21 1

1 / 2 1
2( )N N

it iti i N
N u N u− −

= = +
−∑ ∑ .  The key grouping 

assumption is that average error in the first group is uncorrelated with the average error in 

the second group, which means two terms on the right-hand side of the equality are 

uncorrelated. In this case the variance of their difference is the same as the variance of 

their sum: E( 1̂
J
tn – 2ˆ

J
tn )2 = 4 / 21 1 2

1 / 2 1
( )N N

it iti i N
E N u N u− −

= = +
+∑ ∑ = 4E( 1

1

N
iti

N u−
=∑ )2 = 

4×mse( ˆ J
tn ).  This suggests that the mse of ˆ J

tn can be estimated by the time-series average 

of the ( 1̂
J
tn – 2ˆ

J
tn )2.  Importantly, this calculation makes no assumption about the 

covariance of uit terms within groups.  It only assumes that the average value across 

groups is uncorrelated, and thus is allows potentially rich cross-section correlation 

patterns.  The appendix discusses this grouping  mse estimator in detail. 

 

4.4. The accuracy of different estimators of nt. 

Table 2 shows the estimated mse of six estimators of nt: the Jevons estimator, the 

Edgeworth estimator, a static estimator that uses weights equal to the PCE expenditure 

shares in 2005, two principal components estimators, and the dynamic estimator 

associated with the estimated dynamic factor model.  The expenditure-share estimator is 

a version of the PCE deflator using fixed weights in place of chained weights.  The first 

principal components estimator (labeled PC-Covariance in the table) constructs an NPI as 

the first principal component of the sample covariance matrix of the inflation data, where 

the principal component is scaled so that the weights sum to unity.  The second principal 
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components estimator (labeled PC-Correlation) is constructed in the same way, but using 

the sample correlation matrix of the inflation rates.  

The simple average used by the Jevons estimator produces an estimator with a 

large root mean square error (rmse): it is nearly 1 percentage point for the annual change 

in inflation, and is only slightly smaller for the level of nt.  The Edgeworth estimator is 

considerably more accurate.  The expenditure share estimator performs very poorly even 

relative to Jevons estimator.  The reason is the expenditure share estimator puts 

considerably weight on a small number of series: over 50% of the weight is placed on 

only 18 price series, and 1 series (owner-occupied housing) receives over 10% of the 

weight.  The principal components estimator based on the covariance matrix performs 

very poorly, but the analogous estimator based on the correlation matrix is the most 

accurate static estimator.  The dynamic NPI estimator improves upon all of the static 

estimators.  It is over five times more efficient the Jevons estimator (where efficiency is 

measured by the ratio the mean squared errors) and over 50% more efficient than the 

Edgeworth estimator. 

There are two additional points to note about the dynamic estimator’s mse.  First, 

this estimator would necessarily be more accurate than other estimators if all of the 

assumption of (7)-(13) were satisfied and the parameters of the model were accurately 

estimated.  However, as we stressed when we introduced the model, this is unlikely to be 

the case.  Importantly, the estimates of the rmse shown in table 2 are based on 

assumptions much weaker than the assumptions underlying (7)-(13), and the rmse shown 

in table 2 differs from the estimate computed under (7)-(13). For example, the Kalman 

smoother associated with (7)-(13) reports a rmse of 0.22 for the level of nt, which is 

considerably smaller than the value of 0.32 reported in table 2.  The difference between 

the two estimates suggests, as expected, that the there is positive correlation among the uit 

terms.  The second point is that because the dynamic estimator puts weights on leads and 

lags of πit, it is biased in the sense that its error includes the component ω(L)nt – nt (see 

section 2 and the appendix).  This component accounts for roughly 15% of the 

estimator’s mse.  

Sections 2-4 have considered statistical issues related to the NPI.  The next two 

sections discuss some of the implications of the resulting NPI. 
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5. Application 1: Assessing pricing theories 

 

Different theories of how firms set prices give different answers to the question: 

does the numeraire ever exogenously change? Estimates of the exogenous component of 

the numeraire can therefore provide valuable information on what theories of pricing are 

consistent with the data. This section shows how to use the information in our estimates 

of the numeraire. 

In flexible-price models, prices equal whatever the firms wish them to be at any 

time.  Some aggregate shocks affect the desired prices of all firms equally, so all prices 

move in tandem, and the numeraire can change exogenously in these models.  For 

example, exogenous monetary policy shocks lead to exogenous changes in the numeraire 

in these models.  

In models with nominal rigidities, there is a discrepancy between desired and 

actual prices.  For our purposes, theories of nominal rigidities can be grouped into two 

sets.  Strict theories of rigid prices assume that, at any date, there are always some prices 

in the economy that cannot respond to current conditions.  In this group are the time-

dependent models of sticky prices of Taylor (1980) and Calvo (1983) as well as the state-

dependent model of Sheshinski and Weiss (1977), since in these models there are always 

some firms that keep their prices fixed.  Also in this group are the sticky-contracts model 

of Fischer (1977) and the sticky-information model of Mankiw and Reis (2002), which 

assume that there are always some firms that cannot contract on or are not aware of the 

current news and so cannot respond to them.  In these strict models of pricing, there are 

no exogenous changes to the numeraire.  It is never the case that, in response to a shock, 

all firms change their prices in exactly the same proportion at the same time since there 

are always some firms that do not adjust at all.  

Soft theories of price rigidity instead assume that prices respond imperfectly to 

some shocks, leading to nominal rigidities and monetary non-neutrality, but are able to 

respond immediately to some other shocks.  The classic example is the Lucas (1972) 

model where all firms respond immediately to anticipated money changes, but 

differentially with respect to unanticipated money shocks. This may also be the case in 

the inattention model of Mackowiak and Wiederholt (2007), if firms choose to monitor 

closely changes in the numeraire so they can react almost instantly to them, whereas they 

only slowly become aware of other shocks. Models with sticky but indexed prices like in 

Yun (1996) also belong in this group if there are shocks to the anchor to which prices are 
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indexed. As long as one of the shocks to which all prices can respond immediately affects 

all firms equally, then soft theories predict that there will be exogenous changes in the 

numeraire. 

In the U.S. data, we found that there are exogenous changes in the numeraire that 

are quantitatively large and account for a large share of the variance of the numeraire and 

individual price changes.  We take this as prima facie evidence against strict theories of 

pricing rigidities. We elaborate on this conclusion further by considering in turn: (i) the 

role of the relative-price common shocks in estimating exogenous changes in the 

numeraire, (ii) the role of heterogeneity in using our quarterly sectoral results, (iii) 

alternative specifications of the empirical model, and (iv) the quantitative implications of 

our results against the models. 

 

5.1. The numeraire in a simple model of staggered prices 

Consider a simple economy with one firm producing each good i. There is one 

I(1) shock mt that makes all optimal prices rise by the same proportion, but firms adjust 

their prices only every two periods, so that when a shock hits, some firms react to it 

instantly while others do so one period later.  In this case, inflation for good i is: πit = Iit 

mt + Iit–1 mt–1 + uit, where Iit is an indicator function that equals one if firm i adjust at t 

and is zero otherwise.  Because firms adjust every two periods, Iit + Iit–1 = 1, so 

rearranging the expression above: 

 

 πit = mt + Iit–1 ∆mt–1 + uit. (16) 

 

Data generated by this model would fit the setup in (7)-(8) and (11) with a relative-price 

factor that is function of ∆mt.  Projecting mt on leads and lags of the relative price factor  

∆mt gives a perfect fit so νt is zero. 

This simple example illustrates a more general point.  If firms staggeredly update 

prices to a common shock that eventually (but not instantly) moves all prices in the same 

proportion, then all of the changes in the numeraire are associated with relative-price 

movements.  Therefore, there will be no “pure” numeraire shocks as long as we allow for 

stationary relative-price factors, as we did in our benchmark specification. 
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5.2. The numeraire in simple general-equilibrium models 

Consider a standard general-equilibrium model with a representative consumer 

that receives utility from consuming goods from each of N sectors indexed by i, where 

there is a continuum of differentiated goods in each sector.  The consumer obtains utility 

from a constant-elasticity aggregator of the consumption of each sector, which in turn is a 

Dixit-Stiglitz aggregator.  There is a continuum of firms hiring labor from the consumer, 

each a monopolist for each variety of a good, and all engaging in monopolistic 

competition.  This setup has become the standard workhorse to study models of pricing, 

inflation, and monetary policy, as surveyed in Woodford (2003).  It implies the following 

log-linear approximate equilibrium relation: 

 

 *
,it t t i tp p y aα= + +  (17) 

 

where *
itp  is the desired price set by any firm in sector i at date t, pit is the actual price set, 

1
1

N
t iti

p N p−
=

= ∑ is the static cost-of-living price index, yt is output, α is the elasticity of 

marginal costs with respect to output, and ait are idiosyncratic productivity shocks that 

average to zero across sectors.  All variables are in logs.  We assume that nominal 

income, mt = pt + yt,  follows an exogenous process and the productivity in sector i has 

two exogenous components: ait = θigt + zit, one common to all but with different impact 

across sectors and another that is good-specific.  For concreteness, we assume that mt,  gt, 

and zit all follow independent random-walks. 

Different models of pricing imply different relations between actual and desired 

prices.  In this section, we consider three simple versions of the most popular alternatives 

to see what they imply for the numeraire.  The first model, flexible prices, assumes that 

desired and actual prices are the same.  The second model has sticky prices as in Taylor 

(1980).  A fraction ω > 0 of the N sectors have flexible prices, but in a fraction 1 - ω of 

the sectors, half of the prices can only change at even dates and half at odd dates.  Given 

this constraint, if a firm in sector i adjusts at date t, it optimally chooses the 

price * *
10.5( )it t itp E p ++ , whereas if it doesn’t adjust then its price is the same as in the last 

period.  The third model has sticky contracts or information as in Fischer (1977).  In a 

fraction 1 - ω of sectors, half of the firms update their information at even dates and the 

other half at odd dates.  If a firm updates information at date t, then it chooses price *
itp ; 



 23

otherwise, it uses its 1-period old information to set *
1t itE p− . 

Given these assumptions, the appendix shows that: 

 

Proposition 1:  All three models of pricing imply that: 

 πit = nt + λi′ft + uit   with  
1

N

i
i

λ
=
∑  = 0,  

as in our dynamic NPI models.  With flexible prices, nt = vt  = ∆mt.  With sticky prices, nt  

= γ1nt–1 + γ2∆mt + γ3∆mt–1 where the γi depend on α and ω and one of the factors, f3t = 

γ1f3t–1 + α (1 – γ2) mt – α (γ1 + γ3) mt–1 with λ3i = Ii – (1 – Ii) ω / (1 + ω) where Ii is an 

indicator equal to 1 if the sector has flexible prices. Therefore, vt  = 0.  With sticky 

information, nt = β1∆mt + β2∆mt–1 where the βi depend on α and ω, f3t = α(1 – β1) ∆mt – 

αβ2∆mt–1 and λ3i is the same as in the sticky-price model. Therefore, vt  =  0. 

 

In these models, only mt shocks do not average to zero across sectors and move the 

numeraire.  In flexible-price models, all prices increase immediately in response to them 

by the same amount so no relative-price changes.  In both the sticky-price and sticky-

information models, only a share of firms adjust their prices, so the change in the 

numeraire comes with a change in the relative-price between these firms and the 

remaining.  Therefore, there are no pure numeraire shocks.16 

 If all sectors are equally sticky (ω = 0), then it will still be the case that only some 

of the firms adjust to the shock on impact, so changes in the numeraire come with 

changes in the relative-prices across goods.  However, we do not observe the prices of 

goods, but that of sectors, and in each sector exactly half of the firms adjust to the shock 

and half do not.  Therefore, all sectoral prices increase in exactly the same proportion, so 

there are no sectoral relative-price changes and we identify exogenous changes in the 

numeraire.  Formally, a corollary of the proposition is that with ω = 0 then λ3i = 0 so that 

vt  =  nt.  In other words, strict pricing theories may be consistent with exogenous changes 

in the numeraire, but only because we observe prices at the sectoral and not good level, 

and only if all sectors are exactly symmetric and identical in their degree of stickiness. 

In summary, strict models of sticky prices imply that there are no exogenous 

movements in the numeraire except under the implausible homogeneity assumption 

described in the last paragraph.  That said, these models might still be consistent with the 
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empirical analysis showing a large exogenous component of the numeraire if (i) the 

empirical model is misspecified (containing the wrong number of relative price factors, 

unit roots, and so forth), or (ii) the sampling uncertainty in the estimated model is 

sufficiently large to account for a large estimated exogenous component even when the 

true component is zero.  The next two subsections address these possibilities. 

 

5.3 Results for alternate specifications of the empirical model 

Table 3 presents results from estimating models using different assumptions on 

the number of factors, their order of integration, and the order of the VAR.  The first row 

of table 3 presents results from the benchmark model with three factors, an assumption 

that nt and one of the relative price factors follow I(1) processes, and a VAR(4) for these 

factors.  The next block of rows show results for models with different treatment of unit 

roots and with different numbers of factors. The benchmark model is labeled as “(1,1,0)” 

because it has three factors and the first two factors (nt and the first ft) are I(1).  The 

second model in the table, labeled (0,0,0), is also a three-factor model but without unit 

roots imposed, and so on for the other models.  The final two rows of table 3 shows 

results for models with VAR lag lengths that differ from the benchmark model.  The first 

set of results in the table shows the correlation of ˆtn∆  from the model with the 

corresponding estimate for benchmark model and the rmse of the estimates of nt using the 

procedure described in the last section. The second set shows the model’s implied 

standard deviation of the change in nt and the change the exogenous component vt.  

With a few notable exceptions, the results in table 3 are similar to the results for 

the benchmark model.  That is, the models produce estimates of nt that look like the 

estimates shown in figure 2, the standard deviation of ∆n is roughly 0.75%, roughly 30% 

of the variance of ∆n is unrelated to relative price changes, and the models produce 

estimators for nt with an rmse of approximately 0.3.  The two notable exceptions are the 

four factor model with no unit roots (the “0,0,0,0” model), which produces a very volatile 

∆nt and an rmse that is roughly twice as large as the benchmark model; and the VAR(6) 

model, in which ∆n behaves like the benchmark model, but a smaller fraction of ∆n is 

associated with the exogenous component.   

 

                                                                                                                                            
16 As the intuition indicates, the result on vt in the proposition extends to fixed prices and information for 
more than two periods and to most linear stochastic processes for the exogenous variables. 
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5.4. Monte Carlo experiments using standard general-equilibrium models 

 To evaluate the potential for large sampling error in the estimated exogenous 

components of the numeraire we conducted a small Monte Carlo experiment using 

variants of the flexible price, sticky-price, and sticky-information models outlined above.  

Parameter values in these models were chosen to roughly match the sample data, and 187 

sectoral inflation rates were generated for 190 time periods (as in our sample data). Using 

the notation in section 5.2 the details of the models are as follows:  ∆mt followed a 

random walk, ∆gt followed an AR(1) model with coefficient 0.8, ∆zit was white noise, θi 

were i.i.d. uniformly distributed random variables with a mean of zero, and the relative 

variance of ∆m, ∆g, and ∆z were chosen to approximately match the fraction of the 

variance explained by the first two factors in the empirical model.  The sectoral sticky-

price model follows Carvalho (2006), in which each sector contains a large number of 

firms with prices that adjust as in Calvo (1983) with sector-specific probability φi.  In our 

experiments, the φi were i.i.d. and uniformly distributed on [0,1].  The sectoral sticky-

information follows Carvalho and Schwartzman (2006) in which each sector contains a 

large number of firms, each of which sets its price optimally given its information, and 

the firm is allowed to update its information each period with probability φi as in Mankiw 

and Reis (2002).  As in the sticky-price model, the probability is the sector-specific 

parameter and in our experiments φi ~ i.i.d. U[0,1]. 

The flexible price model contains the numeraire (∆mt) and one relative price 

factor (gt), so in our experiments we used the simulated flexible price data to estimate a 

2-factor models, where the factors followed a VAR(1).  In the sticky-price and sticky-

information model, staggering induces a large number of ‘static’ factors in the 

formulation (7)-(8).  In our experiments with simulated data from the sticky-price or 

sticky-information we estimated factor models as in our benchmark empirical model 

allowing for 3 relative price factors and a VAR(4) for the evolution of the factors.  

Because each Monte Carlo replication was computationally demanding – we 

carried out over 5000 EM iterations for each simulated dataset – the experiment involved 

only 10 simulated data sets from each model.  In spite of the small number of 

replications, the conclusions are sharp and are summarized Table 4.  In the flexible-price 

model, all of the variation in the numeraire is associated with exogenous variation, and 

each of the empirical models reached this conclusion.  In the sticky-price and sticky-

information models, none of the variation in the numeraire is associated with exogenous 
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variation. In the simulations, the average fraction of exogenous variation was small for 

both of these models (2% and 7%), while the largest amount of variation found in any of 

the simulations was somewhat larger (15% and 19%).  Thus, it appears that sampling 

error cannot reconcile these formulations of the sticky-price and sticky-information 

models with the large exogenous variation in the numeraire evident in the U.S. inflation 

data (30%). 

 

6. Application 2: Are exogenous changes in the value of the numeraire neutral? 

 

We will say that exogenous changes in the value of the numeraire (as defined in 

(15)) are neutral if they are uncorrelated with real economic quantities.  Specifically, let 

qt denote a series representing a real quantity such as the rate of growth of GDP, and 

consider the linear regression 

 qt = γ0 + γ(L)∆vt + ηt. (18) 

where γ(L) is two-sided.  We say that ∆vt is neutral for qt if γ(L) = 0, so qt is uncorrelated 

with shocks to prices that are unrelated to changes in relative prices.  Put differently, we 

define neutrality as the proposition that any correlation between qt and nominal inflation 

rates arises from the correlation of qt with changes in relative prices.  

The regression in (18) cannot be computed directly because ∆vt is not observed.  

However, as discussed in Watson (1986), inference about γ(L) can be carried out in a 

suitably modified version of the regression using estimates of vt in place of the true 

regressors.  Consider the regression:  

 qt = γ0 + γ(L)∆vt  + θ(L)ft + bt. (19) 

where θ(L) is two-sided (and generally non-zero) and bt represents changes in qt that are 

unrelated to ∆vt and ft. Let t̂v  and t̂f  denote the estimates of vt and ft computed using the 

Kalman smoother, that is t̂v  and t̂f  are projections of vt and ft onto ,
1, 1{ }i N T

i i
τ

τ τπ = =
= = .  Then: 

 

 qt = γ0 + γ(L)∆ t̂v  + θ(L) t̂f  +  tb%  (20) 

 

where tb%  = bt + γ(L)(∆vt – ∆ t̂v ) + θ(L)(ft – t̂f ).  Assuming that the signal extraction model 
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is well specified, t̂v∆  and t̂f  are uncorrelated with the signal extraction errors (∆vτ – 

∆ v̂τ ) and (fτ – f̂τ ) for all t and τ.  Thus, if the regression error bt in (19) is uncorrelated 

with ,
1, 1{ }i N T

i i
τ

τ τπ = =
= = (the series used to construct t̂v  and t̂f ), then the regressors in (20) are 

uncorrelated with the error term tb% , and inference about γ(L) can be carried out using 

OLS regression methods.17 

Table 5 summarizes results from regressions of the form (20) using several 

measures of qt: the rates of growth of real GDP, real PCE, aggregate (non-agricultural) 

employment, the index of industrial production, and changes in the civilian 

unemployment rate.  Panel (a) shows detailed results for the regression that includes one 

lead/lag of ∆ t̂v  and five leads/lags of t̂f , and panel (b) summarizes results for different 

lead/lag lengths.18  Looking at panel (a), the partial R2 for ∆ t̂v  is small in all of the 

regressions, but the estimated regression coefficients are reasonably large and statistically 

significant.  For example, in the real GDP regression, the partial R2 is only 5%, but the 

point estimates suggest that a one standard deviation change in ∆vt is associated with a  

0.5% cumulative increase in real GDP ( γ(1)×0.40/4 ), and the estimated coefficients and 

sum of coefficients are statistically significant at the 1% level.  Panel (b) indicates that 

these results are generally robust to the number of leads and lags included in the 

regression, although the standard error for the estimated value of γ(1) is large when p = 4.  

Thus, the neutrality hypothesis is rejected.  

There are at least four important specification errors that might explain the 

rejection of neutrality.  First, perhaps the determinants of quantities include other 

relative-price shocks not captured by the tf  shocks, but which are correlated with the 

numeraire.  Natural candidates are intertemporal relative prices, since the NPI estimates 

used only static goods’ prices.19  To investigate this, Panel (c) adds leads and lags of three 

financial variables (stock returns, short-term interest rates, the spread between long and 

short rates) as additional controls in the regression.  These controls reduce the estimated 

sum of coefficients by roughly 40% and the partial R2 falls to less than .03.  Yet, while 

                                                 
17 To see why bt would be uncorrelated with πiτ, note that equation (5.2) already includes the common-
factor determinants of prices, and it is unlikely that the idiosyncratic shocks uit affect the aggregate real 
quantity qt.    
18 The number of leads and lags of t̂f  was set to equal the number of leads and lags of t̂v  plus four to guard 
against truncation bias in θ(L) that might induce correlation between t̂v  and the error term. 
19 However, our data include the prices of several durable goods that depend on intertemporal prices. 
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the estimated effects are smaller, they remain statistically significant. 

A second potential misspecification is associated with errors in measuring real 

GDP and real consumption caused by inappropriate price deflators.  There may be a 

correlation between ∆vt and the deflated values of nominal GDP and PCE despite no 

relation between their true quantity counterparts and ∆vt.  To investigate this potential 

problem, we repeated that analysis using the NPI as the deflator for GDP and PCE.  

These results are shown in panels (a)-(c) for the series labeled GDP† and PCE†.  This 

change leads to a reduction in the estimated coefficients and partial R2 values, and now 

neutrality cannot be rejected for GDP for many of the specifications. 

A third explanation follows from potential misspecification of the factor model 

used to estimate the numeraire and its exogenous component. To investigate this, we 

repeated the analysis using the alternative factor model specifications discussed in Table 

3.  Panel (d) of table 5 summarizes the results from these alternative specifications, and 

the results indicate the non-neutrality results are robust to these changes in the factor 

model specification.  

A fourth explanation for the neutrality rejection is that nt is affected by real 

shocks that are not reflected in relative prices, and we now turn to this explanation. 

 

6.1. Interpreting the non-neutrality of the numeraire 

To see what determines exogenous movements in the numeraire, go back to the 

simple Walrasian economy of section 2 where equilibrium prices solve equations (3)-(4).  

As we showed there, an increase in the endowment of the numeraire good changes the 

value of the numeraire with no changes in relative prices.  We also noted that most 

changes in the relative endowment of all other goods come with relative-price changes 

so, even if they affect the numeraire, they lead to no “pure” numeraire shocks.  But now 

consider a very specific aggregate endowment shock, At.  If this shock raises the 

endowment of all goods but the numeraire proportionally, and if the utility function is 

homothetic, then all prices fall by exactly the proportion At.  Thus, special shocks that 

induce changes in consumption without changing the marginal rate of substitution (as in 

the case of proportional shocks to the endowment of all goods, no storage, and 

homothetic utility) are also “pure” numeraire shocks. 

Given data on a subset of the prices in this Walrasian economy, our statistical-

measurement model recovers nt =  e0t + at, where e0t and at are the rates of growth of E0t 
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and At.  Changes in e0t are neutral with respect to quantities, while changes in at are not.  

This conclusion—that the numeraire can change due to changes in units or in response to 

a very particular type of aggregate shock—extends to many general-equilibrium models.  

Thus, the non-neutrality of the numeraire can be interpreted in two ways.  One 

interpretation assumes that there are no at shocks, so all exogenous movements in the nt 

correspond to Hume’s thought experiment.  In this case, the non-neutrality of the nt 

implies that there is money illusion in the world.  The second interpretation assumes that 

Hume was right and there is no money illusion.  In this case, non-neutrality indicates the 

presence of at shocks. 

Unfortunately, the relative variances of e0t and at cannot be separately identified 

from the price and quantity data used in the neutrality regressions.  However, the small 

values of the partial R2’s from these regressions implies that at cannot be a quantitatively 

important determinant of both qt (one of the real aggregates used in the neutrality 

regressions) and nt.  That is, if at is an important determinant of qt, the small partial R2 

implies that most of the variance of nt is associated with e0t.  Alternatively, if at is an 

important determinant of nt, then at cannot explain much of the variance of qt.   

 

7. Conclusion 

 

There are many measures of inflation, at least as many as there are uses for it.  

Whether to measure the cost of living, to deflate nominal quantities into real counterparts, 

or to guide monetary policy, there are several available measures of the overall increase 

in prices.  From the perspective of economic theory, one particularly interesting use of a 

measure of inflation is to understand changes in the value of the numeraire.  Economists 

sometimes refer to these as pure inflation, changes in the unit of account, in the absolute 

level of prices, or in the overall price level, and economic theories predict whether and 

when the numeraire’s value should change and what the effects of these changes are. 

Measuring the value of the numeraire is naturally difficult, since the concept itself 

is more a fruit of thought experiments and theoretical exercises than something easily 

observed.  As a result, there have been few systematic attempts to measure it in the data.  

The goal of this paper was to make some progress on measuring changes in the value of 

the numeraire and understanding their effects.  

Our approach was akin to some of the work on Solow (1957) residuals.  Solow 

started from a simple theory, the aggregate production function, linking raw inputs to 
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capital to measure shifts in this function as residuals; we started from a simple dynamic 

factor model of relative prices, to measure changes in the value of the numeraire as 

statistical estimates.  The size of Solow residuals put in question the role of factor 

accumulation on economic growth; the size of our estimated changes in the value of the 

numeraire put in question strict theories of nominal rigidities.  Assuming that Solow 

residuals measure only technical progress, there are large enough technological changes 

to generate sizeable business cycles; assuming that all changes in the value of the 

numeraire are due to Hume-shocks, there is money illusion.  Without this assumption, 

models and data on capital utilization and the quality of inputs provide some information 

on the quantitative properties of shocks to technology; without the assumption that all 

numeraire changes are Hume-shocks, models and information from regressions of 

quantities on the numeraire provide some information on the quantitative properties of 

shocks to the numeraire. 

We specified the problems of measuring the numeraire, extracting its exogenous 

components, assessing their neutrality, and measuring the performance of different 

estimators.  We proposed a dynamic numeraire price index based on a factor model for 

relative price changes and estimated it in the U.S. data from 1959 to 2006.  This produced 

time-series for the numeraire and its exogenous shocks and we described some of their 

properties.  We hope that future research will look deeper into these time-series in the 

same way that past research has looked at shocks to technology, monetary policy, and 

fiscal policy, among others.  

Our estimates shed some light on two issues.  First, the large exogenous changes 

in the value of the numeraire that we found are hard to square with strict models of price 

rigidities but are more favorable to their soft alternatives.  Second, we found that 

exogenous changes in the value of the numeraire were not neutral with respect to real 

quantities, and noted that this could be interpreted as a sign of either money illusion or of 

the presence of a particular type of aggregate shocks. 

Our estimates of the changes in the value of the numeraire are certainly not 

perfect.  We hope, however, that by stating the challenges and putting forward a 

benchmark, we can motivate future research to come up with better estimators.  Likewise, 

we are sure that our findings will not settle the debates on what is the best theory of 

pricing, whether there is money illusion or monetary neutrality, or what aggregate shocks 

are more important.  Our more modest hope is that they offer a new perspective on how 

to bring data to bear on these long-standing questions.
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Appendix 
 
All price series are from NIPA Table 2.4.4U available from 

http://www.bea.gov/national/nipaweb/nipa_underlying/SelectTable.asp.  Quarterly 
inflation rates were computed using the first difference of logarithms of the price indices 
for the last month of the quarter.  Inflation observations that differed from the series 
median by more that six times the interquartile range were replaced by the local median 
computed using the six adjacent observations.  The table below shows the price index 
from the NIPA table, the series description, the standard deviation of the (outlier-
adjusted) series over 1959:2-2006:2 and the 2005 PCE expenditure share.  To save space, 
the final four columns of this table are used to show the estimated parameters from the 
benchmark 3-factor model. 
 

Table A1: Series Descriptions, Summary Statistics,  
and Parameter Estimates from the Benchmark 3-factor Model 

 
Benchmark Model ParametersNum. 

 
Label Description sπ 2005 

Share λ1 λ2 ρ σe 
001 P1NFCG D New foreign autos   4.5   0.5 1.14 0.00 -0.13 0.88 
002 P1NETG D Net transactions in used autos   1.8    0.4 2.35 0.42 0.15 2.71 
003 P1MARG D Used auto margin   6.9    0.3 1.09 0.18 0.02 4.22 
004 P1REEG D Employee reimbursement    7.5   0.0 1.11 0.15 -0.19 1.68 
005 P1TRUG D Trucks, new and net used    4.8   2.4 1.25 -0.09 -0.12 0.96 
006 P1TATG D Tires and tubes    5.8   0.3 0.15 0.57 0.12 1.27 
007 P1PAAG D Accessories and parts    5.5   0.4 -0.21 -0.04 0.26 1.15 
008 P1FNRG C Furniture, incl. matt. and bedsprings     4.1   0.9 0.53 0.30 -0.29 0.77 
009 P1MHAG D Major household appliances    4.0   0.4 0.84 0.13 0.09 0.73 
010 P1SEAG D Small electric appliances    5.0   0.1 1.06 0.35 0.12 0.93 
011 P1CHNG C China, glassware, tableware, and utensil    6.7   0.4 1.32 0.93 -0.28 1.25 
012 P1TVSG D Television receivers    5.4   0.2 1.16 0.47 0.42 0.99 
013 P1AUDG D Audio equipment    5.2   0.3 0.57 0.06 -0.17 1.17 
014 P1RTDG D Records, tapes, and disks    4.9   0.2 -0.21 0.07 -0.06 1.17 
015 P1MSCG D Musical instruments    4.0   0.1 0.41 0.22 -0.13 0.85 
016 P1FLRG D Floor coverings    5.8   0.2 0.60 0.09 -0.24 1.27 
017 P1CLFG D Clocks, lamps, and furnishings    6.0   0.4 1.22 0.45 -0.04 1.29 
018 P1TEXG D Blinds, rods, and other    8.6   0.1 1.54 1.07 -0.28 1.81 
019 P1WTRG D Writing equipment    5.1   0.0 0.18 -1.01 -0.28 1.06 
020 P1HDWG D Tools, hardware, and supplies    4.7   0.1 0.56 0.14 -0.04 1.05 
021 P1LWNG D Outdoor equipment and supplies    5.1   0.0 0.73 0.13 -0.16 1.11 
022 P1OPTG C Ophth. prd, and orthopedic appliances     2.8   0.3 0.29 -0.05 -0.07 0.55 
023 P1CAMG D Photographic equipment    6.0   0.1 1.26 0.04 0.34 1.25 
024 P1BCYG D Bicycles    4.3   0.1 -0.09 0.30 -0.15 0.90 
025 P1MCYG D Motorcycles    4.7   0.2 1.18 -0.11 0.01 1.00 
026 P1AIRG D Pleasure aircraft    7.2   0.0 0.05 0.57 0.06 1.64 
027 P1JRYG C Jewelry and watches (18)    7.3   0.7 0.15 0.33 -0.21 1.67 
028 P1BKSG C Books and maps (87)    5.8   0.5 1.00 -0.37 -0.25 1.23 
029 P1GRAG D Cereals    6.3   0.4 -1.34 -0.19 0.45 1.34 
030 P1BAKG D Bakery products    4.6   0.6 -0.22 0.25 0.14 1.01 
031 P1BEEG D Beef and veal  13.0   0.4 -4.16 -0.28 -0.16 2.88 
032 P1PORG D Pork   6.9    0.3 -3.52 -0.91 0.19 3.96 
033 P1MEAG D Other meats    8.3   0.2 -2.72 -0.74 0.17 1.84 
034 P1POUG D Poultry   7.0    0.5 -2.23 0.03 -0.20 4.06 
035 P1FISG D Fish and seafood    5.7   0.2 -0.69 0.01 0.18 1.22 
036 P1GGSG D Eggs   7.4    0.1 -5.34 -0.42 -0.03 6.63 
037 P1MILG D Fresh milk and cream    6.9   0.2 -1.10 0.04 -0.03 1.63 
038 P1DAIG D Processed dairy products    6.2   0.5 -1.19 0.08 0.28 1.32 
039 P1FRUG D Fresh fruits   4.5    0.3 -0.89 0.21 -0.07 3.55 
040 P1VEGG D Fresh vegetables   9.3    0.4 -2.70 -0.21 -0.41 6.59 
041 P1PFVG D Processed fruits and vegetables    5.7   0.2 0.40 0.15 0.38 1.21 
042 P1JNBG D Juices and nonalcoholic drinks    6.4   0.8 0.16 0.64 0.32 1.22 
043 P1CTMG D Coffee, tea and beverage materials   1.8    0.2 1.49 0.89 0.58 2.31 
044 P1FATG D Fats and oils    9.3   0.1 -0.60 1.33 0.52 1.71 
045 P1SWEG D Sugar and sweets    6.3   0.5 -0.97 0.36 0.27 1.37 
046 P1OFDG D Other foods    4.1   1.3 0.11 0.05 0.11 0.76 
047 P1PEFG D Pet food    3.9   0.3 -0.19 0.04 -0.04 0.79 
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048 P1MLTG D Beer and ale, at home    3.6   0.7 0.42 0.18 0.13 0.66 
049 P1WING D Wine and brandy, at home    3.9   0.2 -0.51 0.14 -0.02 0.79 
050 P1LIQG D Distilled spirits, at home    2.1   0.2 -0.17 -0.40 0.25 0.54 
051 P1OPMG D Other purchased meals    2.8   4.5 -0.15 0.09 0.30 0.32 
052 P1APMG C Alcohol in purchased meals    3.7   0.6 0.45 -0.06 -0.16 0.79 
053 P1MFDG D Food supplied military    3.0   0.0 -0.20 0.10 0.25 0.40 
054 P1FFDG C Food produced and consumed on farms   0.9    0.0 -4.86 -1.37 -0.09 4.98 
055 P1SHUG C Shoes (12)    3.8   0.6 -0.01 0.41 0.01 0.78 
056 P1WGCG D Clothing for females    4.5   1.8 -0.14 0.30 0.02 1.10 
057 P1WICG D Clothing for infants    8.9   0.1 1.40 0.58 -0.33 1.88 
058 P1MBCG D Clothing for males    3.5   1.2 0.30 0.34 0.11 0.74 
059 P1MSGG D Sewing goods for males    6.4   0.0 0.28 0.25 -0.29 1.46 
060 P1MUGG D Luggage for males   2.6    0.0 1.29 1.25 -0.21 2.82 
061 P1MICG C Std. clothing issued to military personnel    2.8   0.0 0.28 0.16 0.15 0.43 
062 P1GASG D Gasoline and other motor fuel   4.2    3.2 -6.30 1.54 -0.13 5.37 
063 P1LUBG D Lubricants    5.5   0.0 -0.37 0.47 0.37 1.09 
064 P1OILG D Fuel oil   3.7    0.1 -7.75 2.55 0.21 4.84 
065 P1FFWG D Farm fuel   6.0    0.0 -3.91 1.84 0.14 3.38 
066 P1TOBG C Tobacco products    7.5   1.0 0.36 -0.70 0.06 1.83 
067 P1SOAG D Soap    4.9   0.1 1.21 0.25 -0.13 0.92 
068 P1CSMG D Cosmetics and perfumes    4.3   0.2 1.07 0.17 -0.24 0.78 
069 P1SDHG C Semidurable house furnishings    7.4   0.5 1.76 0.64 -0.44 1.40 
070 P1CLEG D Cleaning preparations    4.2   0.4 0.66 0.13 0.09 0.75 
071 P1LIGG D Lighting supplies    7.2   0.1 0.87 0.53 -0.13 1.59 
072 P1PAPG D Paper products    5.6   0.3 0.36 0.40 0.04 1.17 
073 P1RXDG D Prescription drugs    4.0   2.6 0.33 -0.62 0.67 0.55 
074 P1NRXG D Nonprescription drugs    4.0   0.3 0.91 -0.45 0.10 0.64 
075 P1MDSG D Medical supplies    3.7   0.1 0.77 -0.58 -0.13 0.64 
076 P1GYNG D Gynecological goods    4.2   0.0 1.02 0.24 -0.08 0.68 
077 P1DOLG D Toys, dolls, and games    5.4   0.6 1.04 0.47 0.10 1.08 
078 P1AMMG D Sport supplies, including ammunition    4.7   0.2 0.35 0.15 -0.16 1.06 
079 P1FLMG D Film and photo supplies    4.6   0.0 0.62 -0.25 0.10 1.06 
080 P1STSG D Stationery and school supplies    4.7   0.1 0.91 0.50 -0.04 0.95 
081 P1GREG D Greeting cards    4.8   0.1 0.92 0.50 -0.04 0.97 
082 P1ABDG C Expenditures abroad by U.S. residents  16.8   0.1 0.28 0.54 0.18 4.02 
083 P1MGZG D Magazines and sheet music    5.5   0.3 0.66 -0.44 -0.31 1.17 
084 P1NWPG D Newspapers    3.8   0.2 0.87 0.24 0.14 0.78 
085 P1FLOG C Flowers, seeds, and potted plants     6.7   0.2 0.57 0.29 -0.12 1.54 
086 P1OMHG D Owner occupied mobile homes    2.5   0.4 0.03 -0.74 -0.30 0.24 
087 P1OSTG D Owner occupied stationary homes    2.4  10.7 0.00 -0.75 -0.17 0.19 
088 P1TMHG D Tenant occupied mobile homes    3.8   0.1 0.07 -0.75 -0.26 0.77 
089 P1TSPG D Tenant occupied stationary homes    2.4   2.8 -0.04 -0.77 -0.31 0.17 
090 P1TLDG D Tenant landlord durables    3.8   0.1 0.45 -0.51 0.25 0.66 
091 P1FARG C Rental value of farm dwellings (26)    4.3   0.2 -0.27 -0.15 0.70 0.84 
092 P1HOTG D Hotels and motels    6.3   0.6 0.19 -0.01 -0.10 1.38 
093 P1HFRG D Clubs and fraternity housing    2.9   0.0 0.03 -0.65 -0.33 0.43 
094 P1HHEG D Higher education housing    3.0   0.2 -0.15 -0.78 0.04 0.54 
095 P1HESG D El. and secondary education housing    8.9   0.0 0.16 -0.84 -0.36 2.01 
096 P1TGRG D Tenant group room and board    3.4   0.0 -0.12 -0.70 -0.38 0.60 
097 P1ELCG C Electricity (37)    5.7   1.5 0.43 -0.16 0.23 1.15 
098 P1NGSG C Gas (38)   2.6    0.8 0.35 0.19 0.44 2.71 
099 P1WSMG D Water and sewerage maintenance    3.9   0.6 0.88 -0.50 0.20 0.75 
100 P1REFG D Refuse collection    4.1   0.2 1.02 -0.56 0.29 0.75 
101 P1LOCG D Local and cellular telephone    4.5   1.3 0.41 -0.84 0.05 0.98 
102 P1OLCG D Local telephone    4.4   0.6 0.05 -1.00 0.00 1.00 
103 P1LDTG D Long distance telephone    5.3   0.3 0.15 -0.31 0.33 1.24 
104 P1INCG D Intrastate toll calls    5.1   0.1 -0.08 -0.66 0.36 1.17 
105 P1ITCG D Interstate toll calls    6.3   0.2 0.38 0.09 0.23 1.52 
106 P1DMCG D Domestic service, cash    4.3   0.2 0.27 0.10 0.24 0.98 
107 P1DMIG D Domestic service, in kind    6.0   0.0 -1.76 -0.21 -0.03 1.24 
108 P1MSEG D Moving and storage    3.7   0.2 0.15 0.09 -0.03 0.69 
109 P1FIPG D Household insurance premiums    3.7   0.2 0.13 -0.49 0.32 0.84 
110 P1FIBG D Less: Household insurance benefits paid    3.3   0.1 0.86 0.38 -0.28 0.40 
111 P1RCLG D Rug and furniture cleaning    4.4   0.0 0.33 0.06 -0.36 0.79 
112 P1EREG D Electrical repair    3.8   0.1 0.06 0.12 0.17 0.79 
113 P1FREG D Reupholstery and furniture repair    3.2   0.0 -0.11 -0.20 0.13 0.74 
114 P1MHOG D Household operation services, n.e.c.    3.7   0.2 0.03 0.09 -0.02 0.73 
115 P1ARPG D Motor vehicle repair    2.9   1.7 0.17 0.06 0.30 0.34 
116 P1RLOG D Motor vehicle rental, leasing, and other    4.9   0.6 0.82 0.15 -0.16 0.96 
117 P1TOLG C Bridge, tunnel, ferry, and road tolls    6.2   0.1 0.00 -0.75 -0.19 1.42 
118 P1AING C Insurance   4.2    0.7 0.84 -0.73 0.13 3.61 
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119 P1IMTG C Mass transit systems     5.4   0.1 0.09 -0.45 0.09 1.35 
120 P1TAXG C Taxicab     5.7   0.0 0.05 0.22 0.02 1.27 
121 P1IBUG C Bus     9.2   0.0 -0.10 -0.37 -0.20 2.13 
122 P1IAIG C Airline   15.0   0.4 -0.64 0.75 -0.04 3.60 
123 P1TROG C Other     9.1   0.1 -0.23 -0.04 -0.05 2.11 
124 P1PHYG C Physicians     3.3   4.0 0.63 -0.09 0.50 0.42 
125 P1DENG C Dentists     2.7   1.0 0.39 -0.22 0.17 0.48 
126 P1OPSG C Other professional services     3.2   2.7 0.61 0.04 0.25 0.50 
127 P1NPHG C Nonprofit    3.1   4.4 0.05 -0.02 0.03 0.48 
128 P1GVHG C Government    4.3   1.4 -0.10 -0.06 0.51 0.76 
129 P1NRSG C Nursing homes    3.3   1.3 0.05 0.11 -0.30 0.62 
130 P1MING C Medical care and hospitalization   0.3    1.4 -0.90 -0.95 0.29 4.89 
131 P1IING C Income loss   5.7    0.0 0.70 -1.74 0.64 4.86 
132 P1PWCG C Workers' compensation    8.1   0.2 -0.55 0.26 0.80 1.16 
133 P1MOVG C Motion picture theaters    4.1   0.1 0.05 0.08 0.15 1.07 
134 P1LEGG C Leg. theaters and opera,     4.2   0.1 0.13 0.11 0.16 1.10 
135 P1SPEG C Spectator sports    4.1   0.2 -0.15 -0.34 -0.08 1.03 
136 P1RTVG C Radio and television repair    3.1   0.1 0.28 -0.52 0.33 0.62 
137 P1CLUG C Clubs and fraternal organizations    4.2   0.3 -0.13 0.42 -0.27 0.77 
138 P1SIGG D Sightseeing    5.3   0.1 0.04 0.00 -0.07 1.21 
139 P1FLYG D Private flying    9.8   0.0 0.48 0.19 -0.28 2.27 
140 P1BILG D Bowling and billiards    4.1   0.0 0.46 -0.31 0.05 0.96 
141 P1CASG D Casino gambling    2.9   0.9 -0.28 0.10 -0.22 0.32 
142 P1OPAG D Other com. participant amusements    2.8   0.3 0.27 0.06 0.16 0.59 
143 P1PARG C Pari-mutuel net receipts    4.8   0.1 -0.66 -0.09 0.51 0.99 
144 P1PETG D Pets and pets services excl. vet.     3.6   0.1 -0.12 -0.07 0.00 0.76 
145 P1VETG D Veterinarians    3.0   0.2 -0.18 -0.23 0.13 0.67 
146 P1CTVG D Cable television    7.0   0.7 0.18 -0.21 0.08 1.76 
147 P1FDVG D Film developing    3.8   0.1 0.76 -0.08 0.39 0.85 
148 P1PICG D Photo studios    3.8   0.1 0.12 -0.12 0.09 0.89 
149 P1CMPG D Sporting and recreational camps    3.4   0.0 0.09 -0.04 -0.07 0.81 
150 P1HREG D High school recreation    4.7   0.0 0.05 -0.14 -0.22 1.12 
151 P1NECG D Commercial amusements n.e.c.    3.4   0.6 0.25 0.00 -0.05 0.80 
152 P1NISG D Com. amusements n.e.c. except ISPs    3.3   0.4 0.12 -0.05 -0.04 0.80 
153 P1SCLG D Shoe repair    3.3   0.0 0.04 -0.27 0.12 0.64 
154 P1DRYG D Drycleaning    3.6   0.1 0.30 0.18 0.24 0.52 
155 P1LGRG D Laundry and garment repair    3.6   0.1 -0.03 0.07 0.12 0.57 
156 P1BEAG D Beauty shops, including combination    3.9   0.5 0.08 -0.09 0.17 0.76 
157 P1BARG D Barber shops    2.8   0.0 0.01 0.08 0.11 0.56 
158 P1WCRG D Watch, clock, and jewelry repair    3.3   0.0 -0.01 -0.30 -0.03 0.66 
159 P1CRPG D Miscellaneous personal services    3.8   0.5 0.17 0.11 -0.02 0.62 
160 P1BROG C Brokerage charges and inv. couns.    1.2    1.0 0.30 0.50 0.01 5.18 
161 P1BNKG C Bnk srv. chges, trust serv.,  s-d box rental    5.7   1.2 1.81 -0.70 0.39 1.02 
162 P1IMCG D Commercial banks   2.4    1.0 -0.18 0.76 0.18 2.93 
163 P1IMNG D Other financial institutions 15.0   1.4 0.19 -0.32 0.58 3.05 
164 P1LIFG C Exp. of handl. life ins. and pension plans     2.3   1.2 -0.37 -0.24 0.49 0.45 
165 P1GALG C Legal services (65)    4.4   1.0 0.60 -0.41 0.14 0.91 
166 P1FUNG C Funeral and burial expenses     3.2   0.2 0.47 -0.61 0.35 0.57 
167 P1UNSG D Labor union expenses    4.1   0.2 -0.32 0.29 0.07 0.74 
168 P1ASSG D Profession association expenses    6.5   0.1 -0.23 0.03 -0.37 1.33 
169 P1GENG D Employment agency fees    5.5   0.0 1.40 -0.11 -0.04 1.03 
170 P1AMOG D Money orders    5.3   0.0 1.12 -0.24 -0.21 1.09 
171 P1CLAG D Classified ads    5.4   0.0 1.15 -0.23 -0.16 1.09 
172 P1ACCG D Tax return preparation services    5.2   0.1 0.97 -0.31 -0.11 1.12 
173 P1THEG D Personal business services, n.e.c.    7.1   0.1 0.61 -0.55 -0.03 1.66 
174 P1PEDG D Private higher education    4.4   0.7 -0.25 -0.13 0.02 0.89 
175 P1GEDG D Public higher education    4.1   0.7 0.52 -0.27 0.07 0.89 
176 P1ESCG D Elementary and secondary schools    4.3   0.4 -0.47 0.20 -0.02 0.84 
177 P1NSCG D Nursery schools    4.8   0.1 -0.63 0.01 0.02 1.05 
178 P1VEDG D Commercial and vocational schools    4.1   0.4 -0.96 -0.38 0.20 0.88 
179 P1REDG D Foundations and nonprofit research    4.5   0.2 -0.37 -0.27 -0.03 1.05 
180 P1POLG D Political organizations    8.2   0.0 0.04 0.39 -0.32 1.83 
181 P1MUSG D Museums and libraries    5.7   0.1 -0.70 0.08 -0.13 1.18 
182 P1FOUG D Foundations to religion and welfare    5.4   0.2 -0.54 0.09 0.01 1.11 
183 P1WELG D Social welfare    3.3   1.7 -0.39 0.12 -0.01 0.54 
184 P1RELG D Religion    5.0   0.7 0.17 0.19 -0.09 1.11 
185 P1AFTG D Passenger fares for foreign travel    9.8   0.5 -0.95 0.39 -0.08 2.32 
186 P1USTG D U.S. travel outside the U.S.    9.6   0.6 -2.04 0.50 0.15 2.16 
187 P1FTUG D Foreign travel in U.S.    3.6   1.0 -0.20 0.00 0.04 0.62 
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A.2 State-space representation of the dynamic factor model, the log-likelihood 

function, and the EM algorithm. 

Let πt, ut, and et be N×1 vectors containing {πit}, {uit}, and {eit}, Λ be an N×k 

matrix with λj as its j’th column, α an N×1 vector, and let R and ρ denote N×N diagonal 

matrices.  Then, then the dynamic factor model (7)-(13) can be written as20 

 

 πt = nt l + Λft + ut (A.1) 

 ut = α + ρut–1 + et (A.2) 
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where ρ is a diagonal matrix with diagonal elements ρi and we have assumed an AR(1) 

model for uit.  It is convenient to write the model in state-space form as:  

 

 yt = Hst + et (A.5) 

 st = Fst–1 + Gεt (A.6) 
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The Gaussian log-likelihood for the unknown parameters conditional on 2{ }T
t ty =  can be 

computed using the Kalman filter innovations and their variances as described in 

Hamilton (1993, Chapter 13). 

The EM algorithm is a well-known approach (Watson and Engle, 1983) to 

maximize the Gaussian log-likelihood function for state-space problems.  The method is 

                                                 
20We use l to denote the N×1 vector of 1s, Ij to denote an identity matrix of size, and 0i,j to denote an i×j 
matrix of zeros. For any matrix X, X(i:j,k:l)  is the block with its ith to jth  row and kth to lth  column. 
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convenient here because it straightforward to compute the expected value of the 

“complete data” ({yt, st}) sufficient statistics conditional on the observed data ({yt}), and 

because maximization of the complete data Gaussian likelihood follows from familiar 

regression formulae.  The standard linear regression formulae are modified in two ways 

to estimate the parameters in (A.5)-(A.6).  First, Gauss-Seidel/Cochrane-Orcutt iterations 

are used to estimate ρ conditional on α and Λ, and α and Λ conditional on ρ.  Second, Λ 

is estimated subject to the constraint l´Λ = 0 in (11) using the standard restricted least 

squares formula. 

While the model contains a large number of unknown parameters (971 in the 

benchmark model), there are two features of the model that make estimation feasible.  

First, while N is large, because R is diagonal, the sufficient statistics for the complete data 

likelihood can be computed in O(Tm) calculations, where m is the dimension of the state 

vector s.  Second, because N and T are large, the principal component estimators of (nt  ft) 

are reasonably accurate and regression based estimators of the model parameters can be 

constructed using these estimates of the factors.  These principal component based 

estimates serve as useful initial values for the MLE algorithm. (See Doz, Giannone and 

Reichlin, 2006, for further discussion.)  Results reported in the text are based on 40,000 

EM iterations, although results using 5,000 iterations are essentially identical. 

 

A.3 MLEs for the benchmark model 

Table A1 includes the estimates of Λ, ρ, and σe for the benchmark 3-factor model.  

The estimated parameters in the VAR(4) state transition equation are  
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A.4 Estimating vt 

Recall that vt = nt – 1
ˆ ( |{ } )T

tE n fτ τ = , where Ê denotes the linear projection operator.  

The projection 1
ˆ ( |{ } )T

tE n fτ τ =  can be computed from the Kalman smoother from a state 
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space system with state equation given by (A.6) and observation equation given by ft = [0 

Ik 0(k, (k+1)p)]st.  The covariance matrix from the Kalman smoother yields the variance of vt.  

Finally, letting qt/T = Ê (qt | ,
1, 1{ }N T

i iτ τπ = = ) for any variable qt, the law of iterated expectations 

implies that vt/T can be computed from the formula vt = nt – 1
ˆ ( |{ } )T

tE n fτ τ =  by replacing nt 

by nt/T and fτ by fτ/T. 

 

A.5. Grouping MSE estimator for the NPI 

First consider the static estimator 1
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We will assume that the last term dominates this expression.  Specifically, we assume 

that 
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where π = N1/N.  Again, assume the term involving ft is negligible (that is, the weighted 

average of the λ’s are sufficiently close to zero in both groups), let aN = π−1, bN = 

1ω /[ 2 (1 )ω π− ], c1t = 11/ 2
1

N
i iti

N uω−
=∑ , c2t = 

1
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∑ , and note that the goal is to 
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estimate 
2
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 ∑ = E[c1t + c2t]2.  The key assumption for the mse estimator 

that we use is that E(c1tc2t) → 0 as N grows large, that is, that the weighted average of the 

uit’s in the first group is asymptotically uncorrelated with the weighted average uit in the 

second group.  In this case 
2

1/ 2
1

N
i iti

E N uω−
=

 
 ∑ = E( 2

1tc ) + E( 2
2tc ) + o(1).  To see why this 

assumption is useful write  

 

( )

[ ]

1

1

2
2 1/ 2 1/ 21

1 1 2 2 1
12

2
1 2

2 2 2 2
1 2

2 2 2 2
2 2 2 2
1 2 1 2

1ˆ ˆ( / ) (1)
(1 )

(1)

( ) ( ) (1)

( ) ( ) ( ) ( )
2 2

N
N

tt t i it i iti
i N

N t N t

N t N t

N N N N
t t t t

E N n n E N u N u o

E a c b c o

a E c b E c o

a b a bE c E c E c E c o

ωω ω ω ω
π ω π

− −
=

= +

 
 − = − +   − 

= − +

= + +

   + −   = + + − +      
   

∑ ∑

(1)

 

where the first equality follows from (A.8) and the assumption that the term involving  ft 

is negligible, the second line uses the definition of aN, bN, c1t , and c2t, the third line uses 

the assumption that c1t and c2t are asymptotically uncorrelated, and the final line follows 

by rearranging terms.  

To complete the argument, assume either that (i) 2 2
1 2( ) ( )t tE c E c=  (so that the 

weighted average uit’s in the two groups have the same variance), or that (ii)  aN = bN (so 

that the groups have comparable weights).  Under either assumption   
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which suggests the estimator 
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which is the estimator used in Table 2 for the static estimators. 

The mse estimator for the dynamic estimator is formed similarly, but with two 

key differences.  First, ωi, ω , 1ω , 2ω  and so forth are now lag polynomials.  The 
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calculations above are then interpreted as yielding spectra or autocovariance generating 

functions.  These yield the mse of 
2

1/ 2
1

( )N
i iti

E N L uω−
=

 
 ∑ .  The second difference is that 

the first term on the right hand side of (A.7) is now (ω (L) − 1)nt; in general ω (L) ≠ 1, so 

that the mse of ˆ ( )tn ω  must include the variance of (ω (L) − 1)nt, and this variance 

depends on the assumed process for nt.  We have computed this variance using the 

estimated VAR in (9). 

The results shown in table 2 are computed using the estimators described above 

with the first 94 prices used to form the first group and the remaining 93 prices in the 

second group.  This grouping was suggested by the ordering of the prices listed in table 

A1.  Table A2 below shows results in which prices were randomly assigned to the two 

groups.  These estimates are somewhat lower than the estimates shown in table 2. One 

interpretation of these results is that with random assignment, c1t and c2t are positively 

correlated and this is positive correlation results in a downward biased estimate of the 

rmse.   

 

Table A2. Root Mean Square Error of NPI Estimators (Random Grouping) 
 

Estimator nt nt – nt–1 nt – nt–4 

Jevons 0.61 0.80 0.90 

Edgeworth 0.32 0.38 0.42 

Expenditure Share 0.93 1.34 1.35 

Dynamic 0.27 0.35 0.40 

 
 

A.6. Proof of Proposition 1 

With flexible prices, pit = αmt + (1 - α)pt + θigt + zit. Adding over i shows that pt 

= mt. Replacing back and taking first differences gives: πit = ∆mt + θi∆gt + ∆zit. This 

maps into a dynamic factor NPI model with nt = ∆mt, λi = θi, ft = ∆gt and uit = ∆zit. 

With sticky prices, first note that prices in a sector with stickiness are: 4pit = pit
* + 

pit-1
* + Et-1pit

* + Etpit+1
*. In sectors with flexible prices, pit = pit

*. Summing over all firms 

over all sectors, gives an expectational difference equation in pt. The solution to this 

equation is pt  = γ1pt-1 + γ2mt + γ3mt-1, where γ1, γ2, and γ3 are messy functions of α and ω. 

Then, note that pit = pt + Ii(pit
* - pt) + (1- Ii)0.25(pit

* + pit-1
* + Et-1pit

* + Etpit+1
*), where Ii 

is an indicator function equal to 1 if sector i has flexible prices and 0 if it has sticky 
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prices. Substituting the expressions for pit
* and rearranging shows that this maps into a 

dynamic factor NPI model with numeraire nt  = γ1nt-1 + γ2∆mt + γ3∆mt-1. The first two 

factors are λ1i = θi, f1t = 0.5(∆gt + ∆gt-1) and λ2i = Iiθi, f2t = 0.5(∆gt - ∆gt-1). The third 

factor is λ3i = Ii - (1 - Ii) ω / (1 + ω), f3t = γ1f3t-1 + α (1 - γ2)∆mt – α (γ1 + γ3)∆mt-1. The 

idiosyncratic shocks are: uit = Ii∆zit + 0.5(1 - Ii)(∆zit + ∆zit-1). 

With sticky information, prices in a sector with stickiness are 2pit = pit
* + Et-1pit

*, 

while in a flexible sector pit = pit
*. Aggregating shows that pt = β1mt + β2mt-1, where β1 

and β2 are functions of α and ω. Prices in a sector are: pit = pt + Ii(pit
* - pt) + (1- Ii)0.5(pit

* 

+ Et-1pit
*). Substituting the expressions for pit

* and rearranging gives a model as in (7), (8) 

and (11) with numeraire nt = β1∆mt + β2∆mt-1. The other factors and idiosyncratic shocks 

are exactly as in the sticky price model with only one exception: now f3t = α(1 - β1)∆mt – 

αβ2∆mt-1. 
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Table 1. Sample Moments of the NPI and of alternative measures of inflation 
 
 

 NPI PCE 
deflator 

Core PCE 
deflator Jevons Edgeworth 

Correlation with 
level of NPI − 0.93 0.92 0.96 0.98 

Correlation with 
change in NPI − 0.64 0.48 0.76 0.89 

Standard deviation 
of levels 2.20 2.63 2.25 2.27 2.14 

Standard deviation 
of changes 0.68 1.90 1.26 1.35 0.93 

First Autocorrelation 
of levels 0.95 0.74 0.84 0.82 0.91 

 
Notes: Sample Period 1960:1 – 2006:2.  
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Table 2. Root Mean Square Error of NPI Estimators 
 
 

Estimator nt nt – nt–1 nt – nt–4 

Jevons 0.74 0.93 0.99 

Edgeworth 0.40 0.49 0.50 

Expenditure Share 1.01 1.39 1.45 

PC-Covariance 2.11 2.85 3.13 

PC-Correlation 0.38 0.45 0.49 

Dynamic 0.32 0.38 0.41 

 
Notes: Root MSE is in percentage points at annual rate of the level of the NPI, its quarterly 
change and its annual change. See the text for the definition of the estimators. 

 



 46

 
 

Table 3. The numeraire’s variance with alternative dynamic specifications 
 
 

Specification Cor(∆ n̂ ) RMSE Var(∆n) Var(∆v) 
Baseline 

(1,1,0) 1.00 0.32 0.74 0.41 
Alternative number of factors and I(1) or I(0) specifications 

(0,0,0) 1.00 0.33 0.75 0.41 
(1,0,0) 1.00 0.32 0.75 0.42 

(1,1,0,0) 0.99 0.35 0.74 0.41 
(0,0,0,0) 0.99 0.59 3.05 0.50 
(1,0,0,0) 0.91 0.40 0.81 0.30 

(1,1) 0.96 0.42 1.62 0.47 
(1,0) 0.96 0.31 0.75 0.45 
(0,0) 0.96 0.42 1.58 0.46 

Alternative VAR lag length 
VAR(2) 0.99 0.32 0.74 0.47 
VAR(6) 0.99 0.33 0.74 0.21 

 
Notes: Column 1 shows the model specification where the numbers in parentheses refer to 
I(1) or I(0) specifications for the factors.  For example, the (1,1,0) specification is the 
benchmark specification which includes three factors, where the first two factors (the NPI and 
the first relative price factor) are I(1) and the third factor is I(0); the (0,0,0,0) model has four 
factors (the NPI and three relative price factors), all of which are I(0).  The VAR(2) and 
VAR(6) models correspond the (1,1,0) model where the factors follow a VAR(2) and 
VAR(6).  The column labeled Cor(∆ n̂ ) shows the correlation of the model’s ∆ ˆtn  with the 
corresponding value from the benchmark (1,1,0) model.  The column labeled RMSE shows 
the rmse for nt computed as in table 2. The columns labeled Var(∆n) and Var(∆v) show the 
model’s implied standard deviation of ∆n and ∆v. 
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Table 4. Artificial data from models of pricing and exogenous changes in the numeraire 

 
 

Var(∆v)/Var(∆n) Flexible Price Sticky Price Sticky Information 

Population Value 1.00 0.00 0.0 

    

Smallest Value 0.97 0.00 0.00 

Average Value 0.99 0.02 0.07 

Largest Value 1.00 0.15 0.19 

 
Notes: This table shows the fraction of variance of ∆n attributed to the exogenous component ∆v. 
The first row shows the population value of this ratio for each of the three models.  The 
remaining rows of the table show summary results from estimates constructed from 10 simulated 
samples for each model.  Values shown are the smallest, average, and largest values of the ratios 
found in the 10 simulations. 
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Table 5. Neutrality Regressions 
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Panel (a). Results with p = 1 (one lead and lag of ∆vt) 

 

 Dependent variable (qt) 

 GDP PCE EMP UNMP IP GDP† PCE† 

Parameter estimates and standard errors 

γ−1 
1.65 

(0.68) 
1.99 

(0.46) 
1.11 

(0.34) 
-0.18 
(0.05) 

1.74 
(1.34) 

1.20 
(0.73) 

1.59 
( 0.47) 

γ0 
1.07 

(0.85) 
0.95 

(0.62) 
0.84 

(0.42) 
-0.23 
(0.06) 

4.40 
(1.77) 

1.16 
(0.91) 

1.01 
(0.61) 

γ1 
1.99 

(0.68) 
-0.42 
(0.61) 

0.74 
(0.45) 

-0.09 
(0.07) 

0.87 
(1.97) 

1.53 
(0.78) 

-0.41 
(0.62) 

γ(1) 4.71 
(1.38) 

2.53 
(0.92) 

2.68 
(0.85) 

-0.50 
(0.13) 

7.01 
(2.79) 

3.89 
(1.43) 

2.19 
(0.88) 

Statistical significance tests 

Fv 4.29** 8.01** 4.07** 6.42** 3.08* 2.71* 5.27** 

Ff 5.94** 8.35** 13.46** 9.65** 5.26** 7.14** 7.92** 

Share of variability explained 

R2
v 0.05 0.06 0.05 0.08 0.03 0.03 0.04 

R2 0.26 0.30 0.34 0.44 0.20 0.22 0.25 

 
Notes: The first block of results shows the estimated values of γj with (4-lag Newey-West) 
standard errors in parentheses, and the sum of coefficients γ(1). The second block shows the F-
statistic testing the null hypotheses that coefficients on  ∆v are zero (Fv) and that the coefficients 
on f are zero (Ff), where * and ** indicate significance at the 5% and 1% levels respectively. The 
final block shows the estimated partial R2 for v (R2

v)  and the overall R2.  The regressands GDP†
 

and PCE† are nominal GDP and PCE deflated by the NPI.  The regressand GDP, PCE, EMP, IP, 
GDP†

 and PCE† are growth rates shown in percentage at an annual rates. The regressand UNMP 
is the unemployment rate in percentage points.  
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Table 5. (continued) 
 

Panel (b). Results with different values of p 
 

 GDP PCE EMP UNMP IP GDP† PCE† 
 Leads and lags: p = 0 

γ(1) 1.35 
(0.90) 

1.03 
(0.59) 

0.97 
(0.42) 

-0.23 
(0.07) 

3.91 
(1.72) 

1.36 
(0.93) 

1.09 
(0.58) 

Fv 2.25 3.04 5.35* 12.36** 5.15* 2.15 3.51 
R2

v 0.01 0.01 0.02 0.05 0.02 0.01 0.01 
 Leads and lags: p = 2 

γ(1) 3.29 
(1.71) 

3.33 
(1.46) 

3.57 
(1.28) 

-0.52 
(0.17) 

7.29 
(4.51) 

1.92 
(1.83) 

3.05 
(1.41) 

Fv 2.95* 4.64** 2.69* 3.98** 1.91 2.85* 3.34** 
R2

v 0.04 0.05 0.05 0.07 0.01 0.03 0.03 
 Leads and lags: p = 3 

γ(1) 3.95 
(1.91) 

3.02 
(1.81) 

3.89 
(1.34) 

-0.54 
(0.18) 

0.48 
(3.84) 

2.07 
(2.01) 

2.27 
(1.71) 

Fv 2.07* 2.58* 2.59* 2.51* 1.59 1.84 2.14* 
R2

v 0.05 0.03 0.05 0.05 0.01 0.04 0.02 
 Leads and lags: p = 4 

γ(1) 2.61 
(2.39) 

2.52 
(2.05) 

6.03 
(1.34) 

-0.71 
(0.25) 

4.30 
(5.15) 

1.11 
(2.46) 

2.13 
(1.94) 

Fv 2.52** 2.43** 4.14** 3.08** 1.65 2.65** 2.40* 
R2

v 0.04 0.02 0.08 0.05 0.01 0.04 0.01 
 

Panel (c). Results with p=1 and additional controls x  added to regression  
 

 GDP PCE EMP UNMP IP GDP† PCE† 
 x = SP Returns 

γ(1) 3.98 
(1.29) 

2.31 
(0.89) 

2.56 
(0.80) 

-0.44 
(0.11) 

5.25 
(2.45) 

3.26 
(1.38) 

1.96 
(0.84) 

Fv 3.88** 6.44** 4.67** 6.25** 2.42 2.20 4.28** 
R2

v 0.03 0.04 0.05 0.06 0.01 0.01 0.03 
 x = ∆3Month Tbill Rate 

γ(1) 3.49 
(1.17) 

2.18 
(0.90) 

1.86 
(0.78) 

-0.34 
(0.10) 

3.80 
(2.65) 

2.54 
(1.24) 

1.79 
(0.87) 

Fv 3.39* 5.80** 2.85* 5.52** 1.87 1.80 3.65* 
R2

v 0.02 0.04 0.02 0.03 0.01 0.00 0.02 
 x = Term Spread 

γ(1) 4.21 
(1.33) 

2.09 
(0.86) 

2.27 
(0.79) 

-0.41 
(0.12) 

5.31 
(2.72) 

3.42 
(1.40) 

1.75 
(0.82) 

Fv 3.85** 6.82** 3.33* 5.86** 2.46 2.46 4.78** 
R2

v 0.03 0.04 0.03 0.05 0.02 0.02 0.03 
 x = SP Returns, ∆3Month Tbill Rate, Term Spread 

γ(1) 3.27 
(1.21) 

2.09 
(0.87) 

1.89 
(0.77) 

-0.32 
(0.10) 

2.88 
(2.44) 

2.43 
(1.29) 

1.77 
(0.85) 

Fv 3.49* 5.18** 3.42* 4.78** 1.23 1.69 3.38* 
R2

v 0.02 0.03 0.02 0.03 0.00 0.00 0.02 
 
Notes: Panel (b) presents values of Fv, Ff, R2

v and R2 for different values of p. Panel (c) shows 
results for regressions augmented with additional control variables and p = 1. 
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Panel (d). Results for alternative specifications 
 

GDP GDP† Specification 
γ(1) R2

v γ(1) R2
v 

Baseline 
(1,1,0) 3.27 (1.21) 0.02 2.43 (1.29) 0.00 

Alternative number of factors and I(1) or I(0) specifications 
(0,0,0) 4.06 (1.10) 0.04 3.07 (1.16) 0.01 
(1,0,0) 3.46 (1.19) 0.03 2.62 (1.25) 0.01 

(1,1,0,0) 3.36 (0.99) 0.02 2.48 (1.06) 0.00 
(0,0,0,0) 0.16 (0.39) 0.01 0.29 (0.39) 0.01 
(1,0,0,0) 4.44 (1.13) 0.03 3.13 (1.15) 0.01 

(1,1) 2.88 (1.10) 0.02 2.59 (1.13) 0.01 
(1,0) 2.98 (1.10) 0.02 2.41 (1.14) 0.01 
(0,0) 3.99 (0.84) 0.06 3.54 (0.83) 0.04 

Alternative VAR lag length 
VAR(2) 3.09 (1.14) 0.02 2.48 (1.19) 0.01 
VAR(6) 4.48 (1.80) 0.01 3.06 (1.91) 0.00 

 
The four columns show results from neutrality regressions for GDP and GDP† for the final 
specification in panel (c) (p = 1 and x =SP Returns, ∆3Month Tbill Rate, Term Spread). 

 
 



Figure 1. Determining the number of relative-price common shocks
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Notes: Panel 1 shows the eigenvalues of the N×N sample correlation matrix of inflation rates. Panel 2 shows the fraction of sample 
variance of inflation explained by k factors, where k varies from k=1 to k=4.



Figure 2. U.S. inflation according to the NPI and the PCE deflator
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Notes: The estimated NPI is adjusted to have the same mean as inflation in the PCE deflator over the 1960:1-2006:2 sample period. 
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Figure 3. Comparing NPI to unrestricted factor model
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Notes: Panel A shows the increase in R^2 from using the unrestricted 3-factor model instead of the restricted model. Panel B shows the 
estimates of the NPI from the restricted model and the estimated first factor from the unrestricted model. Panel C shows the distribution of
estimated values of theta_i from equation (3.1) and Panel D shows the distribution (4-lag Newey-West) t-statistics associated with the null 
hypothesis that theta_i = 1 along with the 5% and 1% critical values.



Figure 4. Eight-quarter changes in the NPI and its components 
 

A. 8ˆ ˆt tn n −−  

 
 
 

B. Relative-price component 

 
 

C. Exogenous component (vt − vt−8) 

 
 
Notes: Panel (a) shows the estimated value of nt − nt−8. Panel (b) shows the estimates of the 
projection of nt − nt−8  onto 1{ }Tfτ τ = .  Panel (c) shows the difference between the estimates in 
panel (a) and panel (b) which correspond to vt − vt−8.      
 




