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1 Introduction

In recent years, spatial computable general equilibrium (SCGE) models have
become a popular tool of regional impact analysis of policies, in particular in
the area of transport economics1 (Bröcker et al., 2010). The concept of an SCGE
model implies the distinction of commodities, factors, firms, and households by
location. This alone, however, is not the main distinguishing feature. Decisive
for the ability of the SCGE models to bring forward new insights about the
effects of policies is the incorporation of the fundamental principles of regional
and spatial economics: factor mobility, economies of scale, and the presence of
transport costs. These ideas are also central to modern trade and growth theory
and to new economic geography. The corresponding theoretical framework is
largely based on the work of Paul Krugman (1979, 1980, 1991).

A drawback of most existing SCGE models is that they are still static; dy-
namic extensions are rare and “recursive” (e.g., Ivanova (2007)), which means
to concatenate static equilibria for each period by ad-hoc saving and investment
functions. The development of consistent dynamic CGE models incorporating
several or many regions has been rather slow due to substantial analytical and
computational difficulties involved. In particular, a design fully consistent with
the neoclassical basis of SCGE modelling would require to derive saving as well
as investment behaviour from intertemporal optimization of households and
firms in all locations. Furthermore, an appropriate solution method preserving
the dynamic features of the model must be designed.

This paper sets up a dynamic SCGE framework by assuming households in
every region to maximise a utility functional over time, taking their respective
intertemporal budget constraints, prices and interest rates varying over time
and space into account. Similarly, firms maximise present firm values. Ad-
justment of capital stocks to shocks is smoothed by assuming the existence of
adjustment costs for the capital stock. The specification of the production and
household sectors as well as of the goods market is close to an earlier static
model (Bröcker, 1998) which has been widely applied under the brand name
CGEurope in transport policy evaluation (Korzhenevych and Bröcker (2009);
Bröcker et al. (2010)). Like in the earlier model, we assume monopolistic com-
petition in Dixit-Stiglitz style in the “modern sector”. Because of increasing
product diversity on the dynamic equilibrium path the model belongs to the
category of semi-endogenous growth models in the sense of (Jones, 2005).

In addition to distinction of goods, factors, firms, and households by loca-
tion, the spatial dimension in the model comes in through the costs for goods
movement depending on geography. The total trade costs for goods to be deliv-
ered from one region to another is asusmed to amount to a share in the traded
value. The model is thus applicable for studying the spatial effects arising due
to both, regional and transport policy measures. The way trade costs are mod-
elled resembles - but is not identical with - the “iceberg” approach (Samuelson,
1954).

1An SCGE model was probably first defined by Friesz et al. (1993), who thus denoted a
CGE model including an explicit representation of a transportation network.
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Two important issues arise when operationalizing a perfect foresight model
with multiple optimizing agents (e.g. one per region): the approximation of the
infinite horizon and asset ownership.

Two broad approaches to determine a finite-time alternative for the equilib-
rium conditions at infinity are compatible with the nonlinear solution strategy.
The first is stemming from Auerbach and Kotlikoff (1987) and suggests fixing
the terminal values of some of the variables at their steady-state values. As
this requirement would have to bind after certain time, there is no assurance,
however, that the system will thus converge to a point close to the steady state.
The majority of models in the literature use this method (e.g., Devarajan and
Go (1998) or Diao and Somwaru (2000)).

The second method is based on the use of the local stable manifold theorem of
dynamic systems theory, presented, for example by Irwin (1980). The theorem
says that, in general, what is true of the linearized system (in terms of deter-
minacy and stability of equilibrium) is true of the original nonlinear system in
some open neighbourhood of the steady state. It is applied, for example, in Ke-
hoe and Levine (1990) for the case of overlapping generations model. A useful
corollary of this theorem is that the stable subspace of the linearized system
is the best affine approximation to the stable manifold of the nonlinear system
around the steady state. Requiring a dynamic system to reach this stable sub-
space is therefore an instrument of choice for obtaining a precise approximation
of the model dynamics.2 The application of this theorem for the transformation
of the boundary conditions at infinity in the CGE models is computationally
more demanding than the first method. However, as we show, the use of mod-
ern solvers makes the exercise feasible. We operationalize this method in the
infinitely-lived agent setting.

Another major issue in a multiregional model that, however, is not given
appropriate attention in the modelling literature is the ownership of capital.
A precise approximation of the infinite horizon equilibrium requires the net
asset positions of the households to be determined endogenously within the
model (Lau et al., 2002). The existing multiregional models do not posess this
property, because imposing steady-state restrictions at an arbitrary time point
in the future requires ad-hoc assumptions about the value of terminal assets.
In contrast, in our model the only necessary constraint is that the total value
of capital stock must be always equal to the total value of asset holdings by
households.

In the next Section, we present all the steps of the model setup and the ac-
companying derivations. The resulting mathematical problem requires a tailor-
made solution algorithm, which we describe in Section 3. Section 4 studies
the predictions of the model using an experimental 3-region setup. Section 5
concludes.

2In-between these two methods there is also an approach to impose a balanced growth
constraint in the terminal period. It is applied e.g. in Bernstein et al. (1999) and Böhringer
and Welsch (2004). Although applicable to a wider class of models than the first method,
this approach however lacks the theoretical foundation provided by the local stable manifold
theorem.

2



2 Model formulation

The model we are going to describe is a dynamic version of the earlier static
model Bröcker (1998). Therefore, we will concentrate on the dynamic elements
of the model and only shortly describe other parts. Agents of the economy
are firms and households. The starting point is an open-economy version of
the Ramsey optimal savings model, combined with the adjustment costs for
investment framework (Abel and Blanchard, 1983). Thus both, households and
firms make intertemporal decisions and have perfect foresight. As in the static
model, the neoclassical structure is altered by the introduction of monopolistic
competition in the “modern sector”. The state is not modelled as an own sector.

The intertemporal problem is formulated in continuous time. All variables
refer to one region and are functions of time. Real quantities are denoted
by caligraphic letters, prices by lower-case Latins, and values (product of real
quantity and price) by upper-case Latins. Exogenous parameters mostly do
not have a regional index, are constant over time, and are denoted by Greek
letters. Exceptions are explicitly mentioned. If not needed for understanding,
the regional and time subscripts (r and t) are omitted to avoid notational clutter.

2.1 Firms

Two types of goods are distinguished in the model: local and tradable. Local
goods can only be sold within the region of production, while tradables are sold
everywhere in the world (whereby trade costs arise), including the own region.
Identical firms located in the region produce gross output M by combining
capital K, effective amount of labour service E , local goods L, and a CES
composite T of tradable goods coming from all regions, in a Cobb-Douglas
(CD) technology,

M = φKχEθLβT γ, (2.1)

with positive elasticities, where χ+ θ+ β + γ = 1. The level of productivity φr
may be different across regions, and no technological convergence is assumed.
The regional populaton is assumed to be immobile and constant at Ēr. Ef-
fective amount of labour input is assumed to grow with an exogenous rate of
technological progress, ξ̃, i.e.

Er(t) = Ēreξ̃t. (2.2)

Homogenous gross output serves a double purpose: first, it is one-to-one
transformed into the local good (without a price mark-up), and secondly, it is
used as the only input in the production of a variety of tradable goods under
increasing returns to scale. The market for local goods is perfectly competitive,
while monopolistic competition with free entry in Dixit-Stiglitz style pre-
vails in the tradables market. Each firm thus produces a different variety of a
tradable good. The number of varieties supplied by the region is endogenously
determined by the free entry condition, which means that all firms earn zero
profit in the equilibrium. By choice of units the mill price of tradable and local
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goods is the same and is denoted by p. A CES composite price of all tradables
available in the region is denoted by g.

Firms do not only produce, they also invest. The evolution of the capital
stock employed by firms is given by

K̇ = I − δK, (2.3)

where I is real gross investment, and δ is the depreciation rate. For the sake of
simplicity, the investment good is the same as the consumption bundle, a CD
composite of non-tradables and tradables, with expenditure shares ε and 1− ε,
respectively. However, investment is costly. Following the literature, we assume
quadratic adjustment costs,

J = hI
(

1 +
ζ

2

I
K

)
. (2.4)

J is nominal investment cost, h is the price of the consumption bundle, and ζ
is the adjustment cost parameter. By introducing adjustment costs of invest-
ment, we rule out an implausible outcome of the basic open-economy version
of the Ramsey model, where the adjustment of capital stock is done through
an instantaneous jump to other locations. The larger is ζ, the more sluggish
investment is going to respond to changes in capital returns.

The existence of investment costs implies that the stock of capital in a region
has a unit market price q that in general differs from the price of the investment
good, by which the stock is built up. Taking the stock price at any point in time
as given, firms invest until the marginal cost of investment equals its marginal
return q, leading to the investment function

I
K

=
q/h− 1

ζ
. (2.5)

q/h is called “Tobin’s Q” in the literature.
For using the capital stock, firms have to pay a rental rate v to their share-

holders that is equal to the marginal value product of capital. We assume
a perfect completely integrated asset market, such that nominal capital stocks
earn the same nominal interest rate ρ everywhere, constant by choice of dynamic
numéraire. Hence, a no-arbitrage condition has to hold, namely:

ρq = q̇ − δq + v, (2.6)

with rental rate

v = χM/K + h
ζ

2

(
I
K

)2

, (2.7)

where M is nominal output, i.e. M = pM. The first additive term on the
right-hand side of (2.7) is the marginal value product in production of goods.
The other is the marginal investment cost reduction brought about by an extra
unit of capital installed.
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The evolution of the capital stock is subject to two boundary conditions.
First, capital stock is inherited and thus given at t=0,

K(0) = K̄. (2.8)

Second, the transversality condition requires that the market value of a firms’s
capital stock must converge to zero, in present values,

lim
t→∞
K(t)q(t)e−ρt = 0. (2.9)

2.2 Consumers

The aggregate consumer in the region maximizes discounted CIES utility over
an infinite time horizon,

max
C

∫ ∞
0

C(t)1−1/ϕ − 1

1− 1/ϕ
e−ρtdt

subject to the flow budget constraint

Ȧ = θM + ρA− C, (2.10)

with real consumption C and nominal consumption C = hC. Real consumption
is a CD composite of loca land tradable goods with respective expenditure shares
ε and 1 − ε. θM is thus wage income. ϕ > 0 is the intertemporal elasticity of
substitution. We choose the time path of the numéraire such that the nominal
interest rate ρ equals the rate of time preference. The real interest rate in terms
of the consumption composite is thus rc = ρ− ĥ, hats denoting growth rates.

Solving household’s optimization problem yields the optimality condition for
consumption,

Ĉ = ϕ(rc − ρ), (2.11)

which is known as Keynes-Ramsey rule. Substituting for rc yields

Ĉ = −ϕĥ. (2.12)

The dynamics of the consumption is also subject to two boundary conditions.
At t = 0, households inherit predefined shares of the initial capital stocks,

Ar(0) =
∑
s

ωrsqs(0)Ks(0), (2.13)

where parameter ωrs gives the share of region r in the property of capital stock
in region s. Parameter restrictions

∑
s ωrs = 1 ∀r guarantee that, at t = 0,

the asset total in the entire economy equals the total value of capital stocks.
Interestingly, one can show (see Appendix A.1) that this condition automatically
holds for all times, if it holds for one point in time. This is Walras’ law. At
any time point, however, the value of assets held by the households in a region
is in general not restricted by the value of regional capital stock.

Finally, the transversality condition says that assets must have zero present
value in the long run,

lim
t→∞

A(t)e−ρt = 0. (2.14)
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2.3 Trade

Consumers and firms buy a CES composite of tradable varieties produced every-
where and sold under condition of Dixit-Stiglitz monopolistic competition.
The CES bundle of tradables is used as a production input, and as a compo-
nent of the composite consumption and investment good. As already mentioned
above, we assume investments to be composed of local and tradable goods just
in the same way as consumption. The corresponding price index h is given by

h = (p)ε(g)1−ε (2.15)

The tradables are also used to produce the transport service. Transport cost
is added to the sales price pr leading to the inclusive price prτrs in destination
s for a good coming from origin r. It is assumed that nominal transport cost
for a given origin-destination pair is a fixed share of the nominal value of the
good, valued at mill price. We call this the “modified iceberg assumption”.
It differs from the standard iceberg assumption in that we assume the CES
composite - not the variety itself - to be used for the trnasport service of an
individual variety. This is more plausible than the often criticised (McCallum,
1995) iceberg assumption, though the results differ only slightly.

The value of tradables supply equals the value of gross output less the total
value of demand for local goods (that is the local goods part of intermediate
demand, investment demand, and consumption demand):

S = (1− β)M − ε(C + J) (2.16)

The value of intermediate, investment, and consumption demand for tradables
(valued inclusive of transport costs) is equal to:

D = γM + (1− ε)(C + J) (2.17)

The CES form of demand implies a composite price of tradables in the des-
tination region s

gs = ψ

(
n∑
r=1

Srp
−σ
r τ 1−σ

rs

)1/(1−σ)

, (2.18)

with elasticity of substitution σ > 1 common for all regions. ψ is an arbitrary
scaler. The choice does not affect any result, but it offers a degree of freedom
to choose the average level of prices. From (2.18) and the above considerations
follows the trade equation

Trs =
Sr(prτrs)

−σ∑
i Si(piτis)

−σDs. (2.19)

2.4 Equilibrium

Due to CD technology and perfect competition on the input markets, firms
with sales value M spend θM for labour, βM for non-tradables, and γM for
composites of tradables. The remaining part χM goes to the shareholders as
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remuneration for the service of capital in goods production. The formula for
gross output can thus be rewritten as

p = µwθ(χM/K)χ(p)β(g)γ, (2.20)

with the wage rate w and inverse productivity parameter µr = (φrθ
θχχββγγ)−1.

Equilibrium on the labour market requires

θM = wE . (2.21)

Finally, equilibrium in the tradables market requires the value of supply, Sr in
the region to equal the value of demand of all regions for tradables from region
r, i.e.

Sr =
n∑
s=1

Trs. (2.22)

Equations (2.2)-(2.7), (2.10)-(2.12), and (2.15)-(2.22) give us 16 equations
to determine the 16 unknowns E , K̇, J , I, q̇, v, Ȧ, Ċ, h, S, D, g, T , M, w,
and p. Four of these equations ((2.3), (2.6), (2.10), and (2.12)) are differential
equations to determine K̇, q̇ Ȧ, and Ċ, respectively, the others are algebraic to
determine the remaining 12 unknowns. The price level is defined by setting a
GDP-weighted average of regional price indices at t = 0 equal to 1. According
to Walras’ law, one of the market clearing conditions in (2.22) can then be
dropped for t = 0.

We thus have a differential-algebraic equation (DAE) system to find the
time paths of all endogenous variables. The differential equations have to be
augmented by the boundary conditions for the dynamic variables. These are
given by the initial values of capital stock (2.8) and of households’ assets (2.13),
as well as by the transversality conditions (2.9) and (2.14).

The system has just the right number of equations and boundary conditions
to determine the equilibrium. To be sure, this is just a hint at a good chance
to be able to solve the model, no existence proof. In particular, it is not obvi-
ous whether the transversality conditions make sure that only one, not many
trajectories would converge in the way required. We shall return to this point
later.

A question we would like to address now is whether this dynamic system
possesses a steady state, in which all underlying variables grow at constant
rates. If that is the case, the next step would be to solve for this steady state.

2.5 Steady state growth rates

In the multiregional setup, the steady state should be a situation, in which
all variables grow at constant rates that are homogeneous across regions. We
can show that such a steady state for our model in fact exists by setting up a
system of linear relations between the growth rates that have to hold in this
equilibrium. Most of them are derived by taking log-derivatives of the model
equations and evaluating them at the (hypothetical) steady state. The detailed
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derivations are contained in Appendix A.2. The resulting system is (the stars
denote the steady-state values):

ĝ∗ =
1

1− σ
Ŝ∗ − σ

1− σ
p̂∗;

K̂∗ = (η + 1)p̂∗ − ηĝ∗ + αK̂∗ + (1− α)ξ̃ − ĥ∗;
q̂∗ = ĥ∗;

Ĉ∗ = K̂∗;
Ŝ∗ = Ĉ∗ + ĥ∗;

ĥ∗ = εp̂∗ + (1− ε)ĝ∗;
Ĉ∗ = −φĥ∗.

(2.23)

Above, we introduced α = χ
χ+θ

and η = γ
χ+θ

. This linear equation system
can be uniquely solved for the growth rates of the seven variables involved. In
particular, one gets K̂ = Ĉ = Î = ξ and ĥ = q̂ = −ξ/ϕ with

ξ =
θ(σ − ε)

σθ + χε+ β − 1
· ξ̃ (2.24)

being the rate of real growth of consumption, capital, and investment. Moreover,
ξ/ϕ is the rate of deflation, and the real interest rate is given by ρ + ξ/ϕ. All
nominal values, such as M,C or A, grow at the rate (1 − 1/ϕ)ξ. The nominal
wage per worker grows at this rate as well. The inequalities

σθ + χε+ β − 1 < σθ + χ+ β − 1 = σθ − θ − γ < θ(σ − ε) > 0

prove the denominator in (2.24)) to be less than the numerator. Thus, the frac-
tion is larger than one if the denominator is positive. The latter is guaranteed
with any sensible choice of parameters. θσ > 1 is already sufficient. The labour
share in the output value is usually in the order of 1/3, and σ is suggested to
be considerably larger than 3, so that the condition is satisfied. Note that if
this condition fails to hold and the denominator approaches zero, the factor
amplifying the rate of Harrod neutral technical growth, how small ever ξ̃ may
be, would let growth explode. We can thus interpret this restriction as a kind
of “no-black-hole” condition.

Real steady-state growth is faster in this economy than the rate of Harrod
neutral technical progress, unlike the standard Solow model, where both are
the same.3 The deviation is due to the fact that in our model there is an aggre-
gate economies of scale effect. If the economy grows, product diversity increases,
which makes production and investment more productive and consumers more
satisfied. The factor amplifying the rate of Harrod neutral technical progress
gets larger, if σ gets smaller or the share of tradables in production or consump-
tion and investment gets larger.

3However, note that limσ→∞ ξ = ξ̃. That is, if we drop the assumption of imperfect
substitution between the tradable goods, we will get the familiar result of the classical Ramsey
model.
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The existence of the scale effect allows us to link our model to the litera-
ture on semi-endogenous growth. As Li (2000) puts it, semi-endogenous growth
means that (i) technological change itself is endogenous, but (ii) long-run growth
is pinned down by exogenous parameters, the consequence being that straight-
forward policies do not affect the long-run growth rate. In our case, endogenous
technological change has the scale economies in the tradables sector as its source.
This is basically the same mechanism as in the famous model by Romer (1990),
an important difference being however the absence of an explicit R&D sector
in our model. In contrast, the expansion of product diversity is here driven by
the economies of variety on the consumer and producer side. The expression
in (2.24) is similar to the outcome of the models with “weak scale effects”, like
Jones (1995), Kortum (1997), and Segerstrom (1998) in that the productivity
growth is the growth of effective labour amplified by a factor larger than one.

Now knowing the steady state rates of growth of all variables, we introduce
new variables called stationary transforms of the original ones. For example the
transformed asset stock Ã is defined as

Ã(t) = A(t) exp(−(1− 1/ϕ)ξt).

As A grows at the steady state rate (1− 1/ϕ)ξ, Ã is stationary in steady state.
We thus replace A in all equations with Ã exp((1−1/ϕ)ξt), and do the same with
the other variables. In the non-dynamic equations of the model this just leads
to a replacement of all variables by their stationary transforms, because the
exponential expressions on both sides cancel. We thus dispense from rewriting
all equations with tilde symbols; from now on variables (including those plotted
in Section 4) are rather understood as being the stationary transforms. Only
the dynamic equations change. As A now denotes the stationary transform of
the asset value rather than the asset value itself, equation (2.10) becomes

Ȧ = θM − C +
(
ρ− ξ(1− 1/ϕ)

)
A. (2.10’)

Similarly, capital grows at rate ξ in steady state. As K now denotes the sta-
tionary transform of capital, (2.3) becomes

K̇ = I − (δ + ξ)K. (2.3’)

Finally, as the non-transformed share price grows at the steady state rate −ξ/ϕ,
(2.6) becomes

q̇ = (ρ+ δ + ξ/ϕ)q − v. (2.6’)

The dynamic equations all come in the standard form of an explicit differ-
ential equation, with time derivatives (“dotted variables”) on the left hand side
and levels on the right hand side, with one exception, equation (2.12) having
growth rates on both sides. Integrating it yields

C = mh1−ϕ. (2.12’)

m is an unknown that has to make sure that, given the start values of the
households’ assets A(0), the transversality condition (2.14) holds. This unknown
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in other words scales the regional consumption level in such a way that the
intertemporal budget constraint is not violated. After this modification there
is one differential equation less per region, but an additional vector of static
unknowns, one per region, gathered in vector m = {mr}.

Gathering the variables A, K, q in the vector x and all other (except m) in
the vector y, the system reads

ẋ = f̃(x, y), (2.25)

g(x, y,m) = 0. (2.26)

f̃ denotes the remaining three differential equations (after stationary transfor-
mation) (2.3’), (2.6’), and (2.10’) determining K̇, q̇, and Ȧ. g is the system of
algebraic equations determining y, given x and m.

3 Solution algorithm

Numerically (implicitly) solving (2.26) for y and inserting into (2.25) yields

ẋ = f(x,m) = f̃(x, y(x,m)). (3.1)

x ∈ R3n is the state vector with components A, K, and q, each of length n.
As m has also length n, there are 4n degrees of freedom. We have boundary
conditions at t = 0,

b(x(0),m) = 0, (3.2)

fixing initial values for A and K, thus closing 2n degrees of freedom. 2n degrees
of freedom are left to be closed by transversality conditions (2.9) and (2.14).

The mathematical problem is thus a two-point boundary value problem
(BVP), with the extra difficulty that one of the boundary points is at infinity.
We proceed by first transforming the boundary condition at infinity into one at
a finite horizon, and then solving the resulting nonlinear two-point boundary
value problem by a collocation method.

The first step is to linearize the original system around the steady state, and
then to fix a finite horizon t̄ far enough in the future, such that the linearized
version of the model can be used as a good approximation to the original system.
From that time point on, we will require the system to move along the stable
manifold of the linear approximation towards the steady state.

The linearized system is

ẋ = fx(x
∗,m)(x− x∗), (3.3)

where x∗(m) is the steady state vector solving

f(x,m) = 0.

x∗ thus depends on m, which we write explicitly when necessary. fx is the
jacobian of f . Due to the stationary transformation the steady state vector is
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actually stationary. (3.3) has the general solution (assuming full rank of the
eigenvector matrix)

x(t) = x∗(m) +
(
V · diag(exp(tλi))

)
w.

V is the (3n×3n)-matrix of eigenvectors of fx, λ1, . . . , λ3n are the corresponding
eigenvalues, and diag(exp(tλi)) is a diagonal matrix with components exp(tλi)
on the main diagonal. w ∈ R3n is a yet undetermined vector of weights. For
saddle-path stability, these weights must be zero for all components that have
positive real parts of their respective eigenvalues.

It is thus natural to force the system to attain a point x(t̄) that is on a
solution path of the linearised system converging to the steady state, that lies
in other words on the so-called stable manifold of the linearised system. The
stable manifold is the linear subspace spanned by the stable columns of V . The
stable columns are those that correspond to eigenvalues with non-positive real
parts. More formally, partitioning V into its stable und unstable columns V s

and V u such that V = [V s V u], we want there to be weights vs such that
x(t̄) − x∗(m) = V svs. This is to say that in the solution of the linear equation
system

x(t̄)− x∗(m) = V

(
vs

vu

)
we want to have vu = 0. This amounts to the restriction

(V −1)u(x(t̄)− x∗(m)) = 0.

(V −1)u must contain rows n + 1 to 3n of the inverse V −1. This delivers 2n
restrictions which, jointly with the 2n initial boundary conditions, close the 4n
degrees of freedom. If the number of rows in (V −1)u turned out to be more
than 2n, the system would be globally unstable, and if it were less than 2n, the
system would be underidentified, with undetermined properties. We have to rely
upon a computational argument (successful simulations in the next Section) to
demonstrate that the number of positive eigenvalues is exactly 2n.
V may be complex. Complex columns come in conjugate pairs. If this

happens to be the case, the respective columns of a complex conjugate pair
must be replaced with two real columns formed by the real and the imaginary
parts of one of these two complex columns. Note that it does not matter which
to take because they are the same, except for the sign of the imaginary part
which will only affect the sign of the respective weight.

To summarize, we now have the two-point boundary value problem
ẋ = f(x,m)

b(x(0),m) = 0
(V −1)u(x(t̄)− x∗(m)) = 0.

For the nonlinear solution we use a collocation method to solve two-point
boundary value problems, that are allowed to depend on unknown parameters
(m in our case). We use the matlab code bvp6c (Hale and Moore, 2008), a
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refinement of matlab’s original code b4p4c (Kierzenka and Shampine., 2001).
This collocation method finds a functional (piecewise cubic polynomial) approx-
imation of the time path of our system, which exactly satisfies the differential
equations at some chosen points in [0, t̄] (so-called mesh points). The solver
automatically chooses the mesh points, and extends or reduces its number, de-
pending on the size of the residual. This method provides a uniform prescribed
accuracy throughout the computational interval. Moreover, this method allows
to solve for the endogenous time-invariant parameter vector m, and to handle
discontinous changes in the values of exogenous parameters (as in the case of a
time lag between policy announcement and realization).

4 Applications

In the following we describe the calibration of a test three-region model and the
results of two simulation exercises. The first exersice involves a transport cost
shock between two regions. The second represents a shock on capital stocks.

4.1 Calibration

Table 1 lists the assumed values of elasticities and share parameters. Cobb-
Douglas parameters are calculated from the aggregate GTAP data. The default
value of the parameter of the adjustment cost function ζ is chosen taking ac-
count of the implications for the value of the Tobin’s Q and the convergence
speed. The econometric estimates of the Tobin’s Q (e.g. Blanchard et al.
(1993)) usually do not exceed 1.5, while the plausible speed of convergence for
the capital stock should not be higher than 0.05 per year. With chosen parame-
terization, both criteria are fulfilled for our test model. Furthermore, Barro and
Sala-i Martin (1995, p.122-125) point at the possibility of Tobin’s Q reaching
implausibly high transitional values if chosen adjustment cost parameter is too
large. We will verify whether this happens in the next Sections.

Parameter χ θ γ β ε δ σ ϕ ζ

Value 0.19 0.24 0.29 0.28 0.60 0.05 12.0 0.80 6.0

Table 1: Assumed parameter values for the test model

Iceberg costs τrs are in our test model set at 1.2 (20% trade cost mark-up) for
the interregional flows, and at 1.05 for intraregional flows. The scaling factor ψ
is set at unity for all regions. The rate of growth of the efficient labour stock ξ̃
is calibrated according to (2.24), where the real growth rate of consumption ξ
is set at 2% per year. The rate of time preference, ρ, is calibrated from (2.11),
assuming the real interest rate of 5% per year.

It remains to specify region-specific prodcutivity parameters and initial values
for assets and capital. This is done by inserting data characterizing the base
year (benchmark) into the model equations.

The majority of dynamic models are designed to initially start in the steady
state. For the implementation of an alternative approach - to start outside
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of the steady state (which may be regarded as more plausible for real-world
applications) - additional data requirements arise. In particular, the values of
households’ assets and the capital stocks must be known. This information is
usually not avaialble. Although our method is not bound to starting from the
steady state, we will thus describe the most frequently used calibration strategy.

All variables in the equations to follow have to be thought of as evaluated
at the initial steady state. We omit the notation with explicit time indices and
stars, however, for the clarity of exposition.

First, we can use the model equations to express the value of assets in a
convenient form. Specifically, equations (2.16)-(2.17) yield

D − S = C + J − (θ + χ)M. (4.1)

Next, the budget constraint (2.10), evaluated in the steady state, suggests

θM − C +
(
ρ− ξ(1− 1/ϕ)

)
A. (4.2)

At the time point t = 0, (D − S) is the benchmark regional trade deficit. For
any needed base year it can be computed from the trade data, which is regularly
available if the regions are countries.

Combining (4.1) and (4.2), we get

Ā =
1

ρ− ξ(1− 1/ϕ)
(D − S − J + χM). (4.3)

We assume that all regions initially hold shares in a perfectly deversified
global portfolio of assets, that is, ωrs = Ār/

∑
i Āi ∀r, s.

The productivity parameter (time-invariant) is determined from the require-
ment that, at t = 0, the base-year regional GDP value is reproduced, which is
equal to the primary factors’ income. No technological convergence is assumed.
Based on (2.20)-(2.21), we have

M =
GDP

θ + χ
= µ̃(K)α(p)η+1(g)−η, (4.4)

where µ̃r = Ē1−α
r (φrβ

βγγ)
1

θ+χ , α = χ
χ+θ

, η = γ
χ+θ

.

Inserting (4.3)-(4.4) into our DAE system evaluated at the initial steady
state, we then can solve for the initial values of all variables, as well as for
regional productivity parameter φ. The solution vector can be used to feed the
BVP solver with initial values.

4.2 Effects of a transport cost shock

We demonstrate the functioning of the model using a test setup with three
symmetric regions. We assume all regions to have initially equal values of
GDP = 1, and zero trade deficits. As a consequence, each region initially
holds 1/3 of global assets. The matrix of trade cost mark-ups is assumed to
have the following symmetric form:
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τ =

 1.05 1.2 1.2
1.2 1.05 1.2
1.2 1.2 1.05

 .

The first experiment that we perform is the simulation of an infrastructure
improvement, leading to a 50% trade cost reduction between regions 1 and 2
in both directions (the corresponding values of τrs thus reducing to 1.10). We
only look at the phenomena arising after the project completion, thus ignoring
the effects during the construction phase. The infrastructure improvement is
announced and realized at time t = 0 .

Due to the shock, the spatial symmetry is destroyed. We can use the dia-
grams of the time paths of stationary transformed variables to demonstrate the
subsequent adjustment process predicted by our model. The (equal) responses
of the variables in the two directly affected regions are plotted using the solid
lines, while the response of the indirectly affected third region is plotted using
the dashed lines. Moreover, we display the post-shock steady state positions of
the respective variables using the solid and dashed straight lines. The pre-shock
steady state values (common to all regions) are displayed using the dotted lines.

*-Figure 1 about here-*

In Figure 1, the results for consumption and capital stock are displayed. The
adjustment process of consumption and capital stock is characterized by smooth
convergence towards the steady state. As should be expected, the level of con-
sumption jumps at t = 0 (when the shock occurs), after which the convergence
process begins. In contrast, the time path of capital stock starts at the pre-
defined level K̄, which in our test setup is common to all regions. Under the
chosen parameterization, it takes about 20 years for consumption and capital
to cover half of the distance to the new steady state. Main parameters that
control the speed of convergence are the elasticity of intertemporal substitution
ϕ and the parameter of adjustment cost function ζ. The results of the sensi-
tivity analysis that we performed with respect to the values of ϕ and ζ (not
reported here) are straightforward. The speed of convergence is quite sensitive
to large changes in these parameters, which suggests that a search for the most
appropriate estimates for the study area under investigation (for the case of real
policy analysis) is desirable.

The simulated reduction of trade costs allows all regions to increase con-
sumption in the new steady state. However, immediately after the shock, the
consumption in the directly and indirectly affected regions jumps in the oppo-
site directions. In the case of directly affected regions 1 and 2, the biggest effect
comes through the reduced prices of tradable goods. For region 3, the initial
negative effect on consumption is due to the expectation of lower income flows
in the future (as more demand shifts towards the other two regions and more
output is produced there). In course of time, the expanding variety of products
available from regions 1 and 2 as well as higher returns from foreign assets lead
to some gains for region 3, and materialize in the higher long-run equilibrium
level of consumption there.
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In regions 1 and 2, the expansion in consumer demand does not come at
the cost of initially lower investment. The increased demand for the products
of these regions leads to higher production activity and to additional capital
accumulation, which is partly financed by region 3 through an increase in foreign
asset holdings. This increase of asset position in region 3 is accompanied by a
deficit in trade account. Own rate of investment in region 3, in contrast, goes
down, and also its output shrinks. In fact, the decrease in relative attractiveness
of region 3 for investment is big enough to make the new steady-state level of
capital stock fall below its pre-shock level.

*-Figure 2 about here-*

The effects on prices are displayed in Figure 2. As expected, the prices of
tradable goods in the directly affected regions go down the most. The decline
is however not too large in relative terms, because trade costs are only a small
fraction of trade value. In the indirectly affected region, the largest price change
concerns the local goods, the demand for which from the side of local consumers
and producers declines as cheaper products from the other two regions become
available.

The last panel in Figure 2 displays the smooth adjustment of Tobin’s Q.
At the steady state, Tobin’s Q is constant and uniform across regions (see
equations (2.5) and (2.3’)). The initial divergence in the regional values of the
Tobin’s Q illustrates the change in the relative attractiveness of the regions for
investment, with the region untouched by the infrastructure improvement being
a clear loser. The graph also suggests that the attained levels of Tobin’s Q are
plausible.

An issue of interest is the measurement of welfare impact. We use two ap-
proaches. First, we compare the before- and after-shock steady states, using the
indicators of real GDP and real consumption (equal to the consumption index
C). Second, we would like to calculate a measure of dynamic impact of the
policy on the consumers. For this, we calculate the relative equivalent variation
in consumption (denoted R) for each region, which is defined by

∫ ∞
t=0

(
C0
t (1 + R

100
)
)1−1/ϕ

− 1

1− 1/ϕ
exp−ρt dt =

∫ ∞
t=0

(C1
t )

1−1/ϕ − 1

1− 1/ϕ
exp−ρt dt (4.5)

Thus, this measure gives the percentage change in the time path of pre-shock
consumption {C0

t }, such that the discounted utility flows before and after the
shock are equalized.

The results are in Table 2. The difference between the “static” and “dy-
namic” consumption-based welfare measures has a direct relation to the con-
vergence process. The larger the adjustment of consumption during the initial
jump, and the faster the convergence, the more close will the two measures be to
each other. In our case, the convergence speed is quite moderate, and this leads
to substantially different results from the two methods. The new steady state
consumption levels for both regions lie above the old steady state. However,
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Indicators Real GDP
change, %

(comparative
steady state)

Real consumption
change, %

(comparative
steady state)

Equivalent
variation in

consumption, %

Regions 1 & 2 3.96 4.43 3.45
Region 3 -0.54 0.49 -0.40

Table 2: Effects of the transport cost shock: GDP and welfare

the initial jump in the directly and indirectly affected regions goes in different
directions. The consumption in the indirectly affected region initially falls short
of the old steady-state level. Because the future consumption is weighted less
in the lifetime utility, the equivalent variation measure thus turns out to be
slightly negative.

The difference between the real GDP and real consumption effects in the
comparative steady state calculations is due to different rates of investment,
and the changes in asset ownership. The transport cost reduction makes the
third region relatively less attractive for investment, and it ends up having lower
capital stock than in the pre-shock situation, which also reduces the output
and thus the payments to the primary factors. In case of the households, the
reduction of wage income is in course of time compensated by the additional
income from the assets purchased in the other two regions.

The welfare results are somewhat different if we assume that initially house-
holds own all capital stock of the domestic region, and not a share in the global
portfolio. In this case the households in the region without infrastructure im-
provement suffer the whole extent of falling domestic capital prices immediately
after the shock, which lowers their income. In turn, the households in the di-
rectly affected regions enjoy the full extent of their property appreciation. The
welfare impact is then slightly more positive in Regions 1 & 2, R1 = R2 = 3.63%,
and slightly more negative in Region 3, R3 = −0.75%.

4.3 Effects of a shock on the capital stock

As a second illustration of model performance, we simulate a 20% drop in the
initial capital stock in region 1. This may be regarded as not the most realistic
case, but it is quite a standard exercise to demonstrate the dynamic features
of the model. The shock is rather big, so the use of a solution method that
is more sophisticated than simple linearization approach is well justified. The
response of key variables is depicted in Figures 3 and 4. The adjustment process
is characterized by smooth convergence of all variables to new respective steady
states. Note that the solid lines now refer to region 1 and dashed lines to regions
2 and 3.

*-Figure 3 about here-*

*-Figure 4 about here-*
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The shock results in capital stock becoming a more scarce resource in region
1. With less capital available, the marginal productivity of labour falls, and so
does wage income. Local consumption drops and stays permanently below the
old steady state level. On the other hand, the marginal return on investment
in region 1, as represented by the Tobin’s Q, jumps up and stays high for a
long time. This gives the indirectly affected regions 2 and 3 an incentive to
invest in capital of region 1. In the short term, this stategy reduces capital
levels in the indirectly affected regions, but in the long term it allows them to
enjoy higher steady-state levels of consumption. In the new steady state, the
size of capital stock in all regions is the same as before the shock. The asset
distribution is however shifted in favour of indirectly affected regions. As an
effect, these regions import more than they export. The relative equalivalent
variation in consumption is negative for all regions and equals -3.50% for region
1 and -1.41% for regions 2 and 3.

The welfare impact of the assumption about capital ownership is even more
pronounced in the case where the shock directly affects the existing stock of
capital. If we consider the case of local ownership again, the impact on region
1 reaches -5.30%, while the indirectly affected capital owners in regions 2 and 3
suffer a limited welfare loss of -0.5%.

5 Conclusions

In this paper, we introduce and operationalise a dynamic spatial CGE frame-
work. To our knowledge, this is the first consistent dynamic SCGE model
incorporating forward-looking behaviour of firms and houselholds. The instan-
tenous equations with Dixit-Stiglitz structure in the modern sector stem from
the earlier static model of ours.

An interesting theoretical result here is that the expanding variety of prod-
ucts produced in the modern sector gives rise to semi-endogenous growth even
without an explicit R&D sector in our model. The dynamic adjustment is
characterized by smooth convergence towards the steady state. The terminal
condition is based on the stable local manifold theorem, and thus has a solid
theoretical foundation.

The distinction of goods, factors, firms, and households by location, and the
incorporation of trade costs in the model allow to study a variety of issues in
regional and transport economics. The inclusion of consistent capital market
and the flexibility in terms of choice of asset ownership scheme in particular
suggest the use of the model to study regional investment subsidies. Further-
more, the model can be connected to a transport network model, as in Bröcker
et al. (2010), to study the dynamic effects of transport infrastructure projects.

Some caveats must also be mentioned. It is known that under perfect com-
petition without externalities saddle path stability holds (Farmer, 1999), which
is a kind of local uniqueness condition, saying that any trajectory fulfilling the
constraint has no other one in its neighbourhood doing so as well, if the neigh-
bourhood is chosen small enough. This result can fail under increasing returns,
but local properties around the steady state found in our numerical experiments
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never show any such pathology. We highly trust in saddle path stability of the
solution of our model.

Furthermore, the assumption of perfect foresight can be viewed as completely
unrealistic. The introduction of stochastic rational expectations in the model is
regarded as a future task. In terms of deterministic framework, some modellers
prefer to impose deviations from optimizing behaviour in their CGE models
(e.g. McKibbin and Wilcoxen (1999)). However, for analysis of policies, the
latter approach makes the important aspect of welfare measument impossible.
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A Appendix

A.1 Constraint on total asset value

In equilibrium it must be guaranteed that the asset total in the entire economy
equals the total value of capital stocks. Misusing our notation for a moment,
let non-subscripted expressions denote sums over regions, like M :=

∑
rMr or

qK :=
∑

r qrKr. What we have so far then implies

Ȧ = θM + ρA− C, (A.1)

C + J = (θ + χ)M, (A.2)

vK − χM + J = q(K̇ + δK), (A.3)

q̇K = (ρ+ δ)qK − vK. (A.4)

(A.1) is just (2.10). (A.2) is from summing (2.16) and (2.17) up. (A.3) is
obtained as follows: multiply (2.7) by K, solve for vK − χM , and add J from
(2.4) to get for the left hand side hI(ζI/K+1), which by (2.5) equals qI, which is
q(K̇+δK), thus the right hand side. This holds for each region and therefore also
after summing over regions. Finally, (A.4) is just the non-arbitrage condition
(2.6) multiplied by K and summed up. Now take (A.1)−(A.2)+(A.3)−(A.4) to
obtain

−(q̇K + qK̇) + Ȧ = ρ(A− qK).

Hence, if the right hand side vanishes, so does the left hand side, which is to
say that, if A = qK at one point in time, it is so forever.

A.2 Steady state growth rates

We start by taking equation (2.3), dividing it through by K, and substituting
for I/K from (2.5). After rearranging this yields ζ(K̂ + δ) = q/h. Taking
now log-derivatives, and evaluating the resulting expressions at the steady state
(where all growth rates are constant by assumption) leads to

q̂∗ = ĥ∗. (A.5)

Thus, Tobin’s Q (q/h) is constant in the steady state. Note that the investement-
to-capital ratio I/K is then also constant in the steady state.

Inserting (2.7) into (2.6), dividing through by q, taking log-derivatives and
using previous results leads to

K̂∗ + q̂∗ = M̂∗ + p̂∗ = M̂∗, (A.6)

Next, taking log-derivatives in (2.20) and making use of (2.21) and (2.2) leads
to

(1− β)p̂∗ − γĝ∗ + χK̂∗ = (θ + χ)M̂∗ − θξ̃,

Dividing by (θ + χ) and using (A.6) yields:

(1 + η)p̂∗ − ηĝ∗ + αK̂∗ + (1− α)ξ̃ = K̂∗ + q̂∗. (A.7)
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We continue by rearranging (2.4) to get

J

Ih
=

(
1 +

ζ

2

I
K

)
As I/K is constant in the steady state, so is also the ratio J/Ih. Close inspection
also suggests that the ratio J/Kh is constant in the steady state, meaning

Ĵ∗ = Î∗ + ĥ∗ = K̂∗ + ĥ∗. (A.8)

Further, by construction of investment and consumption composites,

Ĉ∗ = Î∗. (A.9)

Now, taking time derivatives of equation (2.16) and switching to notation in
terms of growth rates we get

SŜ = (1− β)MM̂ − εC(Ĉ + ĥ)− εJĴ

Evaluating this expression at the steady state and using (A.5), (A.8), (A.9),
and (2.16), we obtain the following relationships:

Ŝ∗ = M̂∗ = K̂∗ + q̂∗ = Ĉ∗ + ĥ∗ (A.10)

By defition of the steady state, the same rates of growth should prevail in all
regions. The definitions of composite prices h and g in (2.15) and (2.18) thus
imply the following expressions for their steady-state growth rates:

ĝ∗ =
1

1− σ
Ŝ∗ − σ

1− σ
p̂∗ (A.11)

and
ĥ∗ = εp̂∗ + (1− ε)ĝ∗ (A.12)

One last equation is given by the Ramsey rule in (2.12):

Ĉ∗ = −φĥ∗. (A.13)

Summarizing (A.5)-(A.13), we get the system (2.23) with solution K̂∗ = Ĉ∗ =
Î∗ = ξ, ĥ∗ = q̂∗ = −ξ/ϕ, and M̂∗ = Ĉ∗ = Â∗ = (1− 1/ϕ)ξ, where

ξ =
θ(σ − ε)

σθ + χε+ β − 1
· ξ̃. (A.14)
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Figure 1: Effects of the transport cost shock: consumption and capital stock
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Figure 2: Effects of the transport cost shock: prices

23



0 10 20 30 40 50
−6

−5

−4

−3

−2

−1

0

1
Time path of consumption

Years

D
ev

ia
ti

o
n

 f
ro

m
 b

as
el

in
e,

 %

0 10 20 30 40 50
−20

−15

−10

−5

0

5
Time path of capital stock

Years

D
ev

ia
ti

o
n

 f
ro

m
 b

as
el

in
e,

 %
Figure 3: Effects of the capital stock shock: consumption and capital
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Figure 4: Effects of the capital stock shock: selected variables
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