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Introduction T. Lux and M. Segnon

1 Introduction

One of the most important tasks in �nancial economics is the modeling and

forecasting of price �uctuations of risky assets. For analysts and policy mak-

ers volatility is a key variable for understanding market �uctuations. Analysts

need accurate forecasts of volatility as an indispensable input for tasks such as

risk management, portfolio allocation, value-at-risk assessment, and option and

futures pricing. Asset market volatility also plays an important role in monetary

policy. Repercussions from the recent �nancial crisis on the global economy show

how important it is to take into account �nancial market volatility in conducting

e�ective monetary policy.

In �nancial markets, volatility is a measure for �uctuations of the price p of

a �nancial instrument over time. It cannot be directly observed, but has to be

estimated via appropriate measures or as a component of a stochastic asset pricing

model. As an ingredient of such a model, volatility may be a latent stochastic

variable itself (as it is in so-called stochastic volatility models as well as in most

multifractal models) or it might be a deterministic variable at any time t (as it

is the case in so-called GARCH type models). For empirical data, volatility may

simply be calculated as the sample variance or sample standard deviation. Ding et

al. (1993) propose using absolute returns for estimating volatility. Davidian and

Carroll (1987) demonstrate that this measure is more robust against asymmetry

and non-normality than others (cf. also Taylor, (1986); Ederinton and Guan,

(2005)). Another way to measure daily volatility is to use squared returns or any

other absolute power of returns. Indeed, di�erent powers show slightly di�erent

time-series characteristics, and the multifractal model is designed to capture the

complete range of behavior of absolute moments.

Recently, the concept of realized volatility (RV) has been developed by Ander-

sen et al. (2001b) as an alternative measure of the variability of asset prices (cf.

also Bandor�-Nielsen and Shephard (2002a)). The notion of RV means that daily

volatility is estimated by summing up intra-day squared returns. This approach is

based on the theory of quadratic variation which suggests that RV should provide

a consistent and highly e�cient non-parametric estimator of asset return volatility

over a given discrete interval under relatively parsimonious assumptions on the

underlying data generating process. Other methods used for measuring volatility

are: the maximum likelihood method developed by Ball and Torous (1984), or the

high-low method proposed by Parkinson (1980). All these measures of �nancial

market volatility show salient features which are well documented as stylized facts:

volatility clustering, asymmetry and mean reversion, comovements of volatilities

across assets and �nancial markets, stronger correlation of volatility compared to
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that of raw returns, (semi-) heavy-tails of the distribution of returns, anomalous

scaling behavior, changes in shape of the return distribution over time horizons,

leverage e�ects, asymmetric lead-lag correlation of volatilities, strong seasonality,

and some dependence of scaling exponents on market structure, cf. sec. 2.

During the last decades, an immense body of theoretical and empirical studies

has been devoted to formulate appropriate volatility models (cf. Andersen et al.

(2006) for a recent review on volatility modeling and Poon and Granger (2003) for

a review on volatility forecasting). With Mandelbrot's famous work on the �uc-

tuations of cotton prices in the early sixties (cf. Mandelbrot, (1963)), economists

had already learned that the standard Geometric Brownian motion proposed by

Bachelier (1900) is unable to reproduce these stylized facts. In particular, the

fat tails and the strong correlation observed in volatility are in sharp contrast to

the "mild", uncorrelated �uctuations implied by models with Brownian random

terms. A �rst step toward covering time-variation of volatility had been taken

with models using mixtures of distributions as proposed by Clark (1973) and Kon

(1984). Econometric modeling of asset price dynamics with time-varying volatil-

ity got started with the generalized autoregressive conditional heteroscedasticity

(GARCH) family and it numerous extensions (cf. Engle, (1982)). The closely

related class of stochastic volatility (SV) models adds randomness to the dynamic

law governing the time variation of second moments (cf. Ghysels et al. (1996)

and Shephard (1996) for a review on SV models and their applications).

In this chapter, the focus is on a new, alternative avenue for modeling and

forecasting volatility developed in the literature over the last �fteen years or so.

In contrast to the existing models the source of heterogeneity of volatility in these

new models stems from the time-variation of local regularity in the price path

(cf. Fisher et al. (1997)). The background of these models is the theory of

multifractal measures that has originally been developed by Mandelbrot (1974)

in order to model turbulent �ows. These multifractal processes have initiated

a broad current of literature in statistical physics re�ning and expanding the

underlying concepts and models (cf. Kahane and Peyrière (1976), Holley and

Waymire (1992), Falconer (1994), Arbeiter and Patzchke (1996), Barral (1999)).

The formal analysis of such measures and processes, the so-called multifractal

formalism, has been developed by Frisch and Parisi (1985), Mandelbrot (1989,

1990), and Evertz and Mandelbrot (1992), among others.

A number of early contributions have indeed pointed out certain similarities

of volatility to �uid turbulence (cf. Vassilicos et al. (1994), Ghashghaie et al.

(1996), Gallucio et al. (1997), Schmitt et al. (1999)), while theoretical modeling

in �nance using the concept of multifractality started with the adaptation to
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an asset-pricing framework of Mandelbrot's (1974) model by Mandelbrot et al.

(1997).

Subsequent literature has moved from the more combinatorial style of the Mul-

tifractal Model of Assets Returns (MMAR) of Mandelbrot, Calvet and Fisher

(developed in the sequence of Cowles Foundation working papers authored by

Calvet et al. (1997), Fisher et al. (1997), and Mandelbrot et al. (1997)) to

iterative, causal models of similar design principles: The Markov-Switching Mul-

tifractal (MSM) model proposed by Calvet and Fisher (2004) and the Multifractal

Random Walk (MRW) by Bacry et al. (2001) constitute the second-generation

of multifractal models that have more or less replaced the somewhat cumbersome

(see below) �rst generation MMAR in empirical applications.

The rest of this chapter is organized as follows. Section 2 presents an overview

over the salient stylized facts of �nancial data and discusses the potential of

the classes of GARCH and stochastic volatility models to capture these stylized

facts. In Section 3, we introduce the baseline concept of multifractal measures

and processes and provide an overview over di�erent speci�cations of multifractal

volatility models. Section 4 introduces the di�erent approaches to estimate MF

models and to forecast future volatility. Section 5 reviews empirical results on the

application and performance of MF models and Section 6 concludes.

2 Stylized Facts of Financial Data

With the availability of high-frequency time series for many �nancial markets

from about the sixties, their statistical properties became a topic explored in a

large strand of literature to which economists, statisticians and physicists have

contributed. The two main universal features or "stylized facts" characterizing

practically every series of interest at the high-end of the frequency spectrum

(daily or intra-daily) are known under the catchwords "fat tails" and "volatility

clustering". The use of multifractal models is motivated to some extent by both

of these properties, but multifractality (or, as it is sometime also called, multi-

scaling or multi-a�nity) proper is a more subtle feature that gradually started to

emerge as an additional stylized fact since the nineties. In the following we will

provide a short review of the historical development of our knowledge and the

quanti�cation of all these features capturing in passing also some lesser known

statistical properties typically found in �nancial returns. The data format of

interest is thereby typically returns, i.e. relative price changes, r̃t = pt−pt−1

pt−1
which

for high-frequency data are almost identical to log-price changes rt = ln(pt) −
ln(pt−1) with pt the price at time t (e.g., at daily or higher frequency).
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2.1 Fat tails

This property relates to the shape of the unconditional distribution of a time

series of returns. Historically, the �rst "hypothesis" on the distribution of price

changes has been formulated by Bachelier (1900) who in his PhD thesis titled

"Théorie de la Spéculation" assumed them to follow a Normal distribution. As

is well known, many applied areas of �nancial economics such as option pricing

theory (Black and Scholes, 1973) and portfolio theory (Markowitz, 1959) have

followed this assumption, at least in their initial stages. The justi�cation for

this assumption is provided by the law of large numbers: If price changes at the

smallest unit of time are independently and identically distributed random num-

bers (maybe driven by the stochastic �ow of new information) returns over longer

intervals can be seen as the sum of a large number of such i.i.d. observations,

and irrespective of the distribution of their summands should under some weak

additional assumptions converge to the Normal distribution. While this seemed

plausible and the resulting Gaussian distribution would also come very handy

for many applied purposes, Mandelbrot (1963) was the �rst to demonstrate that

empirical data are distinctly non-Gaussian exhibiting excess kurtosis and higher

probability mass in the center and in their tails than the Normal distribution. As

can be con�rmed with any su�ciently long record of stock market, foreign ex-

change or other �nancial data, the Gaussian distribution can always be rejected

with statistical signi�cance beyond all usual boundaries, and the observed largest

historical price changes would be so unlikely under the Normal law that one would

have to wait for horizons beyond at least the history of stock markets to observe

them occur with non-negligible probability.

Mandelbrot (1963) and Fama (1963), as a consequence, proposed the so-called

Lévy stable laws as an alternative for capturing these fat tails. This was motivated

by the fact that in a generalized version of the central limit law dispensing with the

assumption of a �nite second moment, sums of i.i.d. random variables converge to

these more general distributions (with the Normal being a special case of the Lévy

stable obtained in the borderline case of a �nite second moment). The desirable

stability property, therefore, indicates the choice of the Lévy stable which also

has a shape that -in the standard case of in�nite variance- is characterized by

fat tails. In a sense, the Lévy stable model remained undisputed for about three

decades (although many areas of �nancial economics would rather continue to

use the Normal as their working model), and economists indeed contributed to

the advancement of statistical techniques for estimating the parameters of the

Lévy distributions (Fama and Roll, 1971; McCulloch, 1986). When physicists

started to explore �nancial time series, the Lévy stable law was discovered again
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(Mantegna, 1991) although new developments in empirical �nance had already

allowed to reject this meanwhile time-honored hypothesis.

These new insights were basically due to a di�erent perspective: Rather than

attempting to model the entire distribution, one let "speak the tails for them-

selves". The mathematical foundations for such an approach are provided by

statistical extreme value theory (e.g., Reiss and Thomas, 1997). Its basic tenet

is that the extremes and the tail regions of a sample of i.i.d. random variables

converge in distribution to one of only three types of limiting laws. For tails,

these are: exponential decay, power-law decay and the behavior of distributions

with �nite endpoint of their support. Fat tails are often used as a synonym for

power-law tails, so that the highest realizations of returns would obey a law like

Prob(xt < x) ∼ 1−x−α after appropriate normalization (i.e. after some transfor-

mation xt = art+b). The universe of fat-tailed distributions can, then, be indexed

by their tail index α with α ∈ (0,∞). Lévy stable distributions are characterized

by tail indices α below 2 (2 characterizing the case of the Normal distribution).

All other distributions with a tail index smaller than 2 would converge under

summation to the Lévy stable with the same index while all distributions with

an asymptotic tail behavior with α > 2 would converge under aggregation to the

Gaussian. This demarcates the range of relevance of the standard central limit

law and its generalized version.

Jansen and de Vries (1991), Koedijk et al. (1990) and Lux (1996a) are exam-

ples of a literature that emerged over the nineties using semi-parametric methods

of inference to estimate the tail index without assuming a particular shape of the

entire distribution. The outcome of these and other studies is a tail index α in

the range of 3 to 4 that now counts as a stylized fact (cf. Guillaume et al. (1997),

Gopikrishnan et al. (1998)). Intra-daily data nicely con�rm results obtained for

daily records in that they provide estimates for the tail index that are in line

with the former (Dacorogna et al. (2001), Lux (2001b)), and, therefore, con�rm

the expected stability of the tail behavior under time aggregation as predicted by

extreme-value theory. The Lévy stable hypothesis, thus, can be rejected (con�-

dence intervals of α typically exclude the possibility of α < 2). This agrees with

the evidence that the variance stabilizes with increasing sample size and does not

explode. Falling into the domain of attraction of the Normal distributions, the

overall shape of the return distribution would have to change, i.e. get closer to

the Normal under time aggregation.3 This is indeed the case, as has been demon-

3While, in fact, the tail behavior would remain qualitatively the same under time aggregation,
the asymptotic power law would apply in a more and more remote tail region only, and would,
therefore, become less and less visible for �nite data samples under aggregation. There is, thus,
both convergence towards the Normal distribution and stability of power-law behavior in the tail
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strated by Teichmoeller (1971) and many later authors. Hence, the basic �nding

on the unconditional distribution is that it converges toward the Gaussian, but is

distinctly di�erent from it at the daily (and higher) frequencies. Fig. 1 illustrates

the very homogeneous and distinctly both non-Gaussian and non-Levy nature of

stock price �uctuations. The four major South-African stocks displayed in the

�gure could be replaced by almost any other time series of stock markets, foreign

exchange markets and a variety of other �nancial markets. Estimating the tail

index α by a linear regression in this log-log plot would lead to numbers very close

to the celebrated "cubic law".

The particular non-Normal shape then also motivates the quest for the best

non-stable characterization at intermediate levels of aggregation. From a huge

literature that has tried mixtures of Normals (Kon (1984)) as well as a broad

range of generalized distributions (Eberlein and Keller, 1995; Behr and Pötter,

2009; Fergussen and Platen 2006) it appears that the distribution of daily returns

is quite close to a Student−t with three degrees of freedom. However, while a tail

index between 3 and 4 is typically found for stock and foreign exchange markets,

some other markets are sometimes found to have fatter tails (e.g., Koedijk et al.

(1992)) for black market exchange rates, and Matia et al. (2002) for commodities).

Figure 1 about here

2.2 Volatility clustering

The slow convergence to the Normal might be explained by dependency in the

time series of returns. Indeed, while the limiting laws of extreme value theory

would still apply for certain deviations from i.i.d. behavior, dependency could

slow down convergence dramatically leading to a long regime of pre-asymptotic

behavior. That returns are characterized by a particular type of dependency has

also been well known for long time, and is mentioned, for instance, by Mandelbrot

(1969). This dependency is most pronounced and in fact, plainly visible in abso-

lute returns, squared returns, or any other measure of the extent of �uctuations

(volatility), cf. Fig. 2. In all these measure there is long lasting, highly signi�-

cant autocorrelation (cf. Ding et al. (1993)). With su�ciently long time series,

signi�cant autocorrelation can be found for time lags (of daily data) up to a few

years. This positive feedback is described as volatility clustering or "turbulent

(tranquil) periods being more likely to be followed by still turbulent (tranquil)

periods than vice versa". Whether there is (additional) dependency in the raw

under aggregation. While the former governs the complete shape of the distribution, the latter
applies further and further out in the tail only and would only be observed with a su�ciently
large number of observations.
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returns is subject to debate. Most studies do not �nd su�cient evidence for giv-

ing up the martingale hypothesis although a long-lasting but small e�ect might

be hard to capture statistically. Ausloos et al. (1999) is an example of a study

claiming to have identi�ed such e�ects. Lo (1991) has proposed a rigorous statis-

tical test for long term dependence that mostly does not indicate deviations from

the null hypothesis of short memory for raw asset returns, but strongly signi�-

cant evidence of long memory in squared or absolute returns. Similarly as for the

classi�cation of types of tail behavior, short memory comes along with exponen-

tial decay of the autocorrelation function while one speaks of long memory if the

decay follows a power-law. Evidence for the later type of behavior has also accu-

mulated over time. Documentation of hyperbolic decline in the autocorrelations

of squared returns can be found in Dacorogna et al. (1993), Crato and de Lima

(1994), Lux (1996a) and Mills (1997). Lobato and Savin (1998) �rst claimed

that such long-range memory in volatility measures is a universal stylized fact of

�nancial markets while Lobato and Velasco (2000) document similar long-range

dependence in trading volume. Again, particular market designs might lead to

exceptions from the typical power-law behavior. Gençay et al. (2001) as well as

Ausloos and Ivanova (2000) report untypical behavior in the managed �oating of

European currencies during the times of the European Monetary System. Pre-

sumably due to leverage e�ects, stock markets also exhibit correlation between

volatility and raw (i.e., signed) returns (cf. LeBaron, 1992), that is absent in

foreign exchange dates.

Figure 2 about here

2.3 Benchmark Models: GARCH and Stochastic Volatility

In �nancial econometrics, volatility clustering has since the eighties spawned a

voluminous literature on a new class of stochastic processes capturing the depen-

dency of second moments in a phenomenological way. Engle (1982) �rst intro-

duced the ARCH (autoregressive conditional heteroscedasticity model) which has

been generalized to GARCH by Bollerslev (1986). It models returns as a mixture

of Normals with the current variance being driven by a deterministic di�erence

equation:

rt = htεt with εt ∼ N(0, 1) (1)

and

ht = α0 +

p∑
i=1

αir
2
t−i +

q∑
j=1

βjht−j , α0 > 0, αi, βj > 0 (2)
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Empirical applications usually �nd a parsimonious GARCH(1,1) model (i.e., p =

q = 1) su�cient, and when estimated, the sum of the parameters α1 + β1 turns

out to be close to the non-stationary case (or, expressed di�erently, mostly only

a constraint on the parameters prevents them for exceeding 1 in their sum which

would lead to non-stationary behavior). Di�erent extensions of GARCH were

developed in the literature with the objective to better capture the stylized facts.

Among them there are: the Exponential GARCH (EGARCH) model proposed by

Nelson (1991) that accounts for asymmetric behavior of returns, the Threshold

GARCH (TGARCH) model of Rabemananjara and Zakoian (1993) which takes

into account the leverage e�ects, the regime switching GARCH (RS-GARCH)

developed by Cai (1994), and the Integrated GARCH (IGARCH) introduced by

Engle and Bollerslev (1986) that allows for capturing high persistence observed in

returns time series. Itô di�usion or jump-di�usion processes can be obtained as

a continuous time limit of discrete GARCH sequences (cf. Nelson (1990), Drost

and Werker (1996)).

To capture stochastic shocks to the variance process, Taylor (1986) introduced

the class of stochastic volatility models whose instantaneous variance is driven

by:

ln(ht) = k + ϕ ln(ht−1) + τξt, ξt ∼ N(0, 1). (3)

This approach as well has been re�ned and extended in many ways. The SV

process is more �exible than the GARCHmodel and provides more mixing because

of the co-existence of shocks to volatility and return innovations (cf. Gavrishchaka

and Ganguli (2003)). In terms of statistical properties, one important drawback

of at least the baseline formalizations (1) to (3) is their implied exponential decay

of the autocorrelations of measures of volatility which is in contrast to the very

long autocorrelations mentioned before. Both the elementary GARCH and the

baseline SV model are characterized by only short-term rather than long-term

dependence.

To capture long memory, GARCH and SV models have been expanded by

allowing for an in�nite number of lagged volatility terms instead of the limited

number of lags appearing in (2) and (3). To obtain a compact characterization of

the long memory feature a fractional di�erencing operator has been used in both

extensions leading to the fractionally integrated GARCH (FIGARCH) model of

Baillie et al. (1996) and the long-memory stochastic volatility model of Breidt et

al. (1998).4 An interesting intermediate approach is the so-called heterogenous

4The "self-excited multifractal model" proposed by Filimonov and Sornette (2011) appears
closer to this model rather than to models from the class of multifractal processes discussed
below.
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ARCH (HARCH) model of Dacorogna et al. (1998) that considers returns at

di�erent time aggregation levels as determinants of the dynamic law governing

current volatility. Under this model, eq. (2) would have to be replaced by

ht = c0 +
n∑
j=1

cjr
2
t,t−∆tj , (4)

where rt,t−∆tj = ln(pt)− ln(pt−∆tj ) are returns computed over di�erent frequen-

cies. The development of this model was motivated by the �nding that volatility

on �ne time scales can be explained to a larger extend by coarse-grained volatility

than vice versa (Müller et al. (1997)). Hence, the right-hand side covers local

volatility at various lower frequencies than the time step of the underlying data

(∆tj = 2, 3, . . . ). As we will see in the following, multifractal models have a

closely related structure but model the hierarchy of volatility components in a

multiplicative rather than additive format.

2.4 A New Stylized Fact: Multifractality

Both the hyperbolic decay of the unconditional pdf as well as the similarly

hyperbolic decay of the autocorrelations of many measures of volatility (squared,

absolute returns) would fall into the category of scaling laws in the natural sci-

ences. The identi�cation of such universal scaling laws in an area like �nance has

spawned the interest of natural scientists to further explore the behavior of �nan-

cial data and to develop models to explain these characteristics (cf. Mantegna

and Stanley (1996)). From this line of research, multifractality, multi-scaling or

anomalous scaling emerged gradually over the nineties as a more subtle char-

acteristic of �nancial data that motivated the adaptation of known generating

mechanisms for multifractal processes from the natural sciences in empirical �-

nance.

To de�ne multifractality or multiscaling, we start with the more basic concepts

of fractality or scaling. The de�ning property of fractality is the invariance of

some characteristic under appropriate self-a�ne transformations. The power-law

functions characterizing the pdf of returns and autocorrelations of volatility mea-

sures are scale-invariant properties, i.e., this behavior is preserved over di�erent

scales under appropriate transformations.5 In a most general way, some property

5e.g., from the limiting power law the cdf of a process with hyperbolically decaying tails obeys
Prob(xi < x) ≈ x−α and obviously for any multiple of x the same law applies: Prob(xi < cx) ≈
(cx)−α = c−αx−α.
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of an object or a process needs to ful�ll a law like

x(ct) = cHx(t) (5)

in order to be classi�ed as scale-invariant, where t is an appropriate measurement

of a scale (e.g., time or distance). Strict validity of (5) holds for many of the

objects that have been investigated in fractal geometry (Mandelbrot (1982)). In

the framework of stochastic processes, such laws could only hold in distribution.

In this case, Mandelbrot et al. (1997) speak of self-a�ne processes. An example

of a well-known class of processes obeying such a scale invariance principle is

fractional Brownian motion for which x(t) is a series of realizations and 0 <

H < 1 is the Hurst index that determines the degree of persistence (H > 0.5)

or anti-persistence (H < 0.5) of the process, H = 0.5 corresponding to Wiener

Brownian motion with uncorrelated Gaussian increments. Fig. 2 shows the scaling

behavior of di�erent powers of returns (raw, absolute and squared returns) of a

�nancial index as determined by a popular method for the estimation of the

Hurst coe�cient, H. The law (5) also determines the dependency structure of

the increments of a process obeying such scaling behavior as well as their higher

moments which show hyperbolic decline of their autocorrelations with an exponent

depending linearly on H. Such linear dependence is called uni-scaling or uni-

fractality. It also carries over asymptotically to processes that use a fractional

process as generator for the variance dynamics, e.g. the long memory stochastic

volatility model of Breidt et al. (1998).6

Multifractality or anamalous scaling allows for a richer variation of the behavior

of a process across di�erent scales by only imposing the more general relationship:

x(ct)
d
=M(c)x(t) ≡ cH(c)x(t), (6)

where the scaling factor M(c) is a random function with possibly di�erent shape

for di�erent scales and d denotes equality in distribution. The last equality of

eq. (6) illustrates that this variability of scaling laws could be translated into

variability of the index H which now is not constant anymore. One might also

note the multiplicative nature of transitions between di�erent scales: One moves

from one scale to another via multiplication with a random factor M(c). We will

see below that multifractal measures or processes are constructed exactly in this

way which implies a combinatorial, noncausal nature of these processes.

Multi-scaling in empirical data is typically identi�ed by di�erences in the scaling

6For the somewhat degenerate FIGARCH model, the complete asymptotics have not yet been
established, cf. Jach and Kokoska (2010).
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behavior of di�erent (absolute) moments:

E [|x(t,∆t)|q] = c(q)∆tqH(q)+1 = c(q)∆tτ(q)+1, (7)

with x(t,∆t) = x(t)−x(t−∆t), and c(q) and τ(q) being deterministic functions of

the order of the moment q. A similar equation could be established for uni-scaling

processes, e.g. fractional Brownian motion, yielding

E [|x(t,∆t)|q] = cH∆tqH+1. (8)

Hence, in terms of the behavior of moments, multifractality (anomalous scaling)

is distinguished by a non-linear (typically concave) shape from the linear scaling

of uni-fractal, self-a�ne processes. The standard tool to diagnose multifractality

is, then, inspection of the empirical scaling behavior of an ensemble of moments.

Such non-linear scaling is illustrated in Fig. 3 for three selected stock indices and

a stochastic process with multifractal properties (the Markov-switching multifrac-

tal model introduced below). The traditional approach in the physics literature

consists in extracting τ(q) from a chain of linear log-log �ts of the behavior of

various moments q for a certain selection of time aggregation steps ∆t. One,

therefore, uses regressions to the temporal scaling of moments of powers q:

lnE [|x(t,∆t)|q] = a0 + a1 ln(∆t) (9)

and constructs the empirical τ(q) curve (for a selection of discrete q) from the

ensemble of estimated regression coe�cients for all q. An alternative and perhaps

even more widespread approach for identi�cation of multifractality looks at the

varying scaling coe�cients H(q) in eq. (7). While the unique coe�cient H of eq.

(8) is usually denoted the Hurst coe�cient, the multiplicity of such coe�cients

in multifractal processes is denoted as Hölder exponents. While the unique H

quanti�es a global scaling property of the underlying process, the Hölder expo-

nents can be viewed as local scaling rates that govern various patches of a time

series leading to a characteristically heterogeneous (or intermittent) appearance

of such series. An example is displayed in Fig. 5 (principles of construction being

explained below). Focusing on the concept of Hölder exponents, multifractality

then amounts to identi�cation of the range of such exponents rather than a de-

generate single H as for uni-fractal processes. The so-called spectrum of Hölder

exponents (or multifractal spectrum) can be obtained by the Legendre transfor-

mation7 of the scaling function τ(q). De�ne α = dτ
dq , the Legendre transform f(α)

7The Legendre transformation is a mathematical operation that transforms a function of a

12



A New Stylized Fact: Multifractality T. Lux and M. Segnon

of the function τ(q) is given by

f(α) = argmin
q

[qα− τ(q)], (10)

where α is the Hölder exponent (the established notation for the counterpart of the

constant Hurst exponent, H) and f(α) the multifractal spectrum that describes

the distribution of the Hölder exponents. The local Hölder exponent quanti�es the

local scaling properties (local divergence) of the process at a given point in time,

in other words, it measures the local regularity of the price process. In traditional

time series models, the distribution of Hölder exponents is degenerate converging

to a single such exponent (unique Hurst exponent) while multifractal measures

are characterized by a continuum of Hölder exponents whose distribution is given

by the Legendre transform, eq. (10), for its particular scaling function τ(q). The

characterization of a multifractal process or measure by a distribution of local

Hölder exponents underlines its heterogeneous nature with alternating calm and

turbulent phases.

Empirical studies allowing for such a heterogeneity of scaling relations typi-

cally identify "anomalous scaling" (curvature of the empirical scaling functions

or non-singularity of the Hölder spectrum) for �nancial data as illustrated in

Fig. 3. Historically, the �rst example of such an analysis is Müller et al. (1990)

followed by more and more similar �ndings reported mostly in the emerging econo-

physics literature (due to the fact that the underlying concepts were well-known

in physics from research on turbulent �ows, but were completely alien to �nancial

economists). Examples include Vassilicos et al. (1994), Mantegna and Stanley

(1995), Ghashghaie et al. (1996), Fisher et al. (1997), Schmitt et al. (1999),

Fillol (2003), among others. Ureche-Rangau and de Rorthays (2009) show that

both volatility and volume of Chinese stocks appear to have multifractal proper-

ties, a �nding one should probably be able to con�rm for other markets as well

given the established long-term dependence and high cross-correlation between

both measures (cf. Lobato and Velsasco (2000), who among others, also report

long-term dependence of volume data). While econometricians have not been

looking at scaling functions and Hölder spectrums, the indication of multifractal-

ity in the mentioned studies has nevertheless some counterpart in the economics

literature: The well-known �nding of Ding et al. (1993) that (i) di�erent pow-

ers of returns have di�erent degrees of long-term dependence and that (ii) the

intensity of long-term dependence varies non-monotonically with q (with a maxi-

mum obtained around q ≈ 1) is consistent with concavity of scaling functions and

coordinate, g(x), into a new function h(y) whose argument is the derivative of g(x) with respect
to x, i.e., y = dg

dx
.
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provides evidence for "anomalous" behavior form a slightly di�erent perspective.

Multifractality, thus, provides a generalization of the well established �nding

of long-term dependence of volatility: Di�erent measures of volatility are char-

acterized by di�erent degrees of long-term dependence in a way that re�ects the

typical anomalous behavior of multifractal processes. Accepting such behavior as

a new stylized fact, the natural next step would be to design processes that could

capture this universal �nding together with other well-established stylized facts

of �nancial data. New models would be required because none of the existing

ones would be consistent with this type of behavior: baseline GARCH and SV

models have only exponential decay of the autocorrelations of absolute powers of

returns (short-range dependence), while their long memory counterparts (LMSV,

FIGARCH) are characterized by uni-fractal scaling.8

One caveat is, however, in order here: Whether the scaling function and Hölder

spectrum analysis provide su�cient evidence for multifractal behavior, is to some

extent subject to dispute. A number of papers show that scaling in higher mo-

ments can be easily obtained in a spurious way without any underlying anomalous

di�usion behavior. Lux (2004) pointed out that a non-linear shape of the empir-

ical τ(q) function is still obtained for �nancial data after randomization of their

temporal structure, so that the τ(q) and f(α) estimators are rather unreliable

diagnostic instruments for the presence of multifractal structure in volatility. Ap-

parent scaling has also been illustrated by Barndor�-Nielson and Prause (2001)

as a consequence of fat tails in the absence of true scaling. It is very likely that

standard volatility models would also lead to apparent multi-scaling that could be

hard to distinguish from "true" multifractality via the diagnostic tools mentioned

above.9 Formally, it will always be possible to design processes without a certain

type of (multi-)scaling behavior that are locally so close to "true" (multi-)scaling

that these deviations will never be detected with pertinent diagnostic tools and

restricted availability of data (cf. LeBaron, 2001; Lux, 2001a).

On the other hand, one might follow Mandelbrot's frequently voiced method-

ological premise to model apparently generic features of data by similarly generic

models rather than using "�xes" (Mandelbrot (1997a)). Introducing amendments

to existing models (e.g., GARCH, SV) to adapt those to new stylized facts might

lead to highly parameterized setups that lack robustness when applied to data

from di�erent markets, while simple generating mechanisms for multifractal be-

8For FIGARCH this is so far only indicated by simulations, but given that- as for LMSV-
FIGARCH consists of a uni-fractal ARFIMA process plugged into the variance equation, it
seems plausible that it also has uni-fractal asymptotics.
9There is also a sizeable literature on spurious generation of fat tails and long-term dependence,

cf. Granger and Teräsvirta (1999) or Kearns and Pagan (1997).
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havior are available that could, in principle, capture the whole spectrum of time

series properties highlighted above in a more parsimonious way. In addition, if

one wants to account for multi-scaling proper (rather than as a spurious property)

no avenue is known so far for equipping GARCH- or SV-type models with this

property in a generic way. Hence, adapting in an appropriate way some known

generating mechanism for multifractal behavior appears the only avenue available

so far to come up with models that generically possess such features, and jointly

reproduce all stylized facts of asset returns. The next section recollects the major

steps in the development of multifractal models for asset-pricing applications.

Figure 3 about here

3 Multifractal Measures and Processes

In the following, we �rst explain the construction of a simple multifractal mea-

sure and show how one can generalize it along various dimensions. We, then,

move on to multifractal processes designed as models for �nancial returns.

3.1 Multifractal Measures

Multifractal measures have a long history in physics dating back to the early

seventies when Mandelbrot proposed a probabilistic approach for the distribution

of energy in turbulent dissipation (e.g., Mandelbrot (1974)). Building upon earlier

models of energy dissipation by Kolmogorov (1941, 1962) and Obukhov (1962),

Mandelbrot proposed that energy should dissipate in a cascading process on a

multifractal set from long to short scales. In this original setting, the multifractal

set results from operations performed on probability measures. The construction

of a multifractal "cascade" starts by assigning uniform probability to a bounded

interval (e.g., the unit interval [0, 1]). In a �rst step, this interval is split up

into two subintervals receiving fractions m0 and 1−m0, respectively, of the total

probability mass of unity of their mother interval. In the simplest case, both

subintervals have the same length (i.e., 0.5), but other choices are possible as

well. In the next step, the two subintervals of the �rst stage of the cascade are

split up again into similar subintervals (of length 0.25 each in the simplest case)

receiving again fractions m0 and 1−m0 of the probability mass of their "mother"

intervals (cf. Fig. 4). In principle, this procedure is repeated ad in�nitum.

With this recipe, a heterogeneous, fractal distribution of the overall probability

mass results which even for the most elementary cases has a perplexing visual

resemblance to time series of volatility in �nancial markets. This construction
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clearly re�ects the underlying idea of dissipation of energy from the long scales

(the mother intervals) to the �ner scales that preserve the joint in�uence of all

the previous hierarchical levels in the built-up of the "cascade".

Many variations of the above generating mechanism of a simple Binomial mul-

tifractal could be thought of: Instead of always assigning probability m0 to the

left-hand descendent, this assignment could as well be randomized. Furthermore,

one could think of more than two subintervals to be generated in each step (leading

to multinomial cascades) or of using random numbers for m0 instead of the same

constant value. A popular example of the later generalization is the Lognormal

multifractal model which draws the mass assigned to new branches of the cascade

from a Lognormal distribution (cf. Mandelbrot, 1974; 1990). Note that for the Bi-

nomial cascade the overall mass over the unit interval is exactly conserved at any

preasymptotic stage as well as in the limit k →∞, while mass is preserved only in

expectation under appropriately normalized Lognormal multipliers, or multipliers

following any other continuous function. Another straightforward generalization

consists in splitting each interval on level j into an integer number b of pieces

of equal length at level j + 1. The grid-free Poisson multifractal measure devel-

oped by Calvet and Fisher (2001) is obtained by allowing for randomness in the

construction of intervals. In this setting, a bounded interval is split into separate

pieces with di�erent mass by determining a random sequence Tn of change points.

Overall mass is then distributed via random multipliers across the elements of the

partition de�ned by the Tn. A multifractal sequence of measures is generated

by a geometric increase of the frequency of arrivals of change points at di�erent

levels j (j = 1, . . . , k) of the cascade. As in the grid-based multifractal measures,

the mass within any interval after the completion of the cascade is given by the

product of all k random multipliers within that segment.

Note that all the above recipes can be interpreted as implementations (or

examples) of the general form (6) that de�nes multifractality from the scal-

ing behavior across scales. The recursive construction principles are, them-

selves, directly responsible for the multifractal properties of the pertinent lim-

iting measures. The resulting measures, thus, obey multifractal scaling analo-

gous to eq. 7. Denoting by µ a measure de�ned on [0, 1], this amounts to10

E[µ(t, t+ ∆t)q] ∼ c(q)(∆t)τ(q)+1. Exact proofs for the convergence properties of

such grid bound cascades have been provided by Kahane and Peyrière (1976).

The "multifractal formalism" that had been developed after Mandelbrot's pio-

neering contribution consisted in the generalization and analytical penetration of

10For example, for the simplest case of the Binomial cascade one gets τ(q) = − lnE[Mq] − 1
with M ∈ {m0, 1−m0} with probability 0.5.
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various multifractal measures following the above principles of construction (cf.

Tél, 1988; Evertsz and Mandelbrot, 1992; Riedi, 2002). Typical questions of in-

terest are the determination of the scaling function τ(α) and the Hölder spectrum

f(α), as well as the existence of moments in the limit of a cascade with in�nite

progression.

Figure 4 about here

3.2 Multifractal Models

3.2.1 Univariate Continuous-Time Multifractal Models

3.2.1.1 The Multifractal Model of Asset Returns

Multifractal measures have been adapted to asset-price modeling by using them as

a "stochastic clock" for transformation of chronological time into business (or in-

trinsic) time. Formally, such a time transformation can be represented by stochas-

tic subordination, with the time change represented by a stochastic process, say

θ(t) denoted the "subordinating process", and the asset price change, r(t), being

given by a subordinated process (e.g. Brownian motion) measured in transformed

time, θ(t). In this way, the homogenous subordinated process might be modu-

lated in a way to give rise to realistic time series characteristics such as volatility

clustering. The idea of stochastic subordination has been introduced in �nancial

economics by Mandelbrot and Taylor (1967). A well-known later application of

this principle is Clark (1973) who had used trading volume as a subordinator (cf.

Ané and Geman, 2000, for recent extensions of this approach).

Mandelbrot et al. (1997) seems to be the �rst paper that went beyond estab-

lishing phenomenological proximity of �nancial data to multifractal scaling. They

proposed a model, termed the Multifractal Model of Asset Returns (MMAR), in

which a multifractal measure as introduced in sec. 3.1 serves as a time transfor-

mation from chronological time to business time. While the original paper has

not been published in a journal, a synopsis of this entry and two companion pa-

pers (Calvet et al., 1997; Fisher et al., 1997) has appeared as Calvet and Fisher

(2002). Several other contributions by Mandelbrot (1997b, 1999, 2001a, b, c) con-

tain graphical discussions of the construction of the time-transformed returns of

the MMAR process and simulations of examples of the MMAR as a data generat-

ing process. Formally, the MMAR assumes that returns r(t) follow a compound

process:

r(t) = BH [θ(t)], (11)

in which an incremental fractional Brownian motion with Hurst index H, BH [·],
is subordinate to the cumulative distribution function θ(t) of a multifractal mea-
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sure constructed along the above lines. When investigating the properties of this

process, the (unifractal) scaling of the fractional Brownian motion has to be dis-

tinguished from the scaling behavior of the multifractal measure. The behavior

of the compound process is determined by both, but its multi-scaling in absolute

moments remains in place even for H = 0.5, i.e. Wiener Brownian motion. Under

the restriction H = 0.5, the Brownian motion part becomes uncorrelated Wiener

Brownian motion and the MMAR shows the martingale property of most standard

asset pricing models. This model shares essential regularities observed in �nancial

time series including long tails and long memory in volatility which both originate

from the multifractal measure θ(t) applied for the transition from chronological

time to "business time". The heterogenous sequence of the multifractal measure,

then, serves to contract or expand time and, therefore, also contracts or expands

locally the homogeneous second moment of the subordinate Brownian motion.

As pointed out above, di�erent powers of such a measure have di�erent decay

rates of their autocovariances. Mandelbrot et al. (1997) demonstrate that the scal-

ing behavior of the multifractal time transformation carries over to returns from

the compound process (11) which would obey a scaling function τr(q) = τθ(qH).

Similarly, the shape of the spectrum carries over from the time transformation to

returns in the compound process via a simple relationship: fr(α) = fθ(α/H). By

writing θ(t) =
∫ t

0 dθ(t), it becomes clear that the incremental multifractal random

measure dθ(t) (which is the limit of µ[t, t + ∆t] for ∆t → 0 and k (the number

of hierarchical levels) → ∞) can been considered as the instantaneous stochas-

tic volatility. As a result, MMAR essentially applies the multifractal measure to

capture the time-dependency and non-homogeneity of volatility. Mandelbrot et

al. (1997) and Calvet and Fisher (2002) discuss estimation of the underlying pa-

rameters of the MMAR model via matching of the f(α) and τ(α) functions, and

show that the temporal behavior of various absolute moments of typical �nancial

data squares well with the theoretical results for the multifractal model.

Any possible implementation of the underlying multifractal measure could be

used for the time-transformation θ(t). All examples considered in their papers

built upon a binary cascade in which the time interval of interest (in place of the

unit interval in the abstract operations on a measure described in sec. 3.1) is split

repeatedly into subintervals of equal length. The so obtained subintervals are

assigned fractions of the probability mass of their mother interval drawn from dif-

ferent types of random distributions: Binomial, Lognormal, Poisson and Gamma

distributions are discussed in Calvet and Fisher (2002) each of those leading to

a particular τ(α) and f(α) function (known from previous literature) and similar

behavior of the compound process according to the relations detailed above. Lux

18



Multifractal Models T. Lux and M. Segnon

(2001c) applies an alternative estimation procedure minimizing a Chi-square cri-

terion for the �t of the implied unconditional distribution of the MMAR to the

empirical one, and reports that one can obtain surprisingly good approximations

to the empirical shape in this way. However, Lux (2004) documents that τ(α) and

f(α) functions are not very reliable as criteria for determination of the parame-

ters of the MMAR as even after randomization of the underlying data, one still

gets indication of temporal scaling structure via non-linear τ(α) and f(α) shapes.

Poor performance of such estimators is also expected on the ground of the slow

convergence of their variance as demonstrated by Ossiander and Waymire (2000).

One might also point out in this respect, that both functions are capturing vari-

ous moments of the data, so using them for determination of parameters amounts

to some sort of moment matching. It is, however, not obvious that the choice

of weight of di�erent moments implied by these functions would be statistically

e�cient.

While MMAR has not been pursued further in subsequent literature, estimation

of alternative multifractal models has made use of e�cient moment estimators

as well as other more standard statistical techniques. The main drawback of

the MMAR is, that despite the attractiveness of its stochastic properties, its

practical applicability su�ers from the combinatorial nature of the subordinator

θ(t) and its non-stationarity due to the restriction of this measure to a bounded

interval. These limitations have been overcome by the analogous iterative time

series models introduced by Calvet and Fisher (2001, 2004). Leövey and Lux

(2012) have also recently proposed a re-interpretation of the MMAR in which an

in�nite succession of multifractal cascades overcomes the limitation to a bounded

interval, and the resulting overall process could be viewed as a stationary one.

It is interesting to relate the grid-bound construction of the MMAR to the

"classical" formalization of stochastic processes for turbulence. Building upon

previous work by Kolmogorov (1962) and Obukhov (1962) on the phenomenology

of turbulence, Castaing et al. (1990) has introduced the following approach to

replicate the scaling characteristics of turbulent �ows:

xi = exp(εi)ξi, (12)

with ξi and εi both following a Normal distribution ξi ∼ N(0, σ2) and εi ∼
N(ln(σ0), λ2), and ξi and εi mutually independent. This approach has been ap-

plied to various �uctuating phenomena in the natural sciences such as hadron

collision (Carius and Ingelman (1990)), solar wind (Sorriso-Valvo et al. (1999)),

and human heartbeat (Kiyono et al. (2004), (2005)). Replacing the uniform εi

by the sum of hierarchically organized components, the resulting structure would
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closely resemble that of the MMAR model. Models in this vein have been in-

vestigated in physics by Kiyono et al. (2007) and Kiyono (2009). Based on the

approach exempli�ed in eq. (12), Ghasghaie et al. (1996) elaborate on the simi-

larities between turbulence in physics and �nancial �uctuations, but do not take

into account the possibility of multifractality of the data generating process.

3.2.1.2 The MMAR with Poisson Multifractal Time Transformation

Already in Calvet and Fisher (2001), a new type of multifractal model has been

introduced that overcomes some of the limitations of the MMAR as proposed by

Mandelbrot et al. (1997) while -initially- preserving the formal structure of a

subordinated process. Instead of the grid-based binary splitting of the underlying

interval (or, more generally, the splitting of each mother interval into the same

number of subintervals), they assume that θ(t) is obtained in a grid-free way by

determining a Poisson sequence of change points for the multipliers at each hier-

archical level of the cascade. Multipliers themselves might again be drawn from

a Binomial, Lognormal (the standard cases), or any other distribution with pos-

itive support. Change points are determined by renewal times with exponential

densities. At each change point tin a new draw M i
tn of cascade level i occurs from

the distribution of the multipliers that is standardized in a way to ensure con-

servation of overall mass E[M i
tn ] = 1. In order to achieve the hierarchical nature

of the cascade, the di�erent levels i are characterized by a geometric progression

of the frequencies of arrival biλ. Hence, the change points tin follow level-speci�c

densities f(t
(i)
n ;λ, b) = biλ exp(−biλtin), for i = 1, ..., k. Similar grid-free construc-

tions for multifractal measures are considered in Cioczek-Georges and Mandelbrot

(1995) and Barral and Mandelbrot (2002). In the limit k →∞ the Poisson multi-

fractal exhibits typical anomalous scaling, which again carries over from the time

transformation θ(t) to the subordinate process for asset returns, BH [θ(t)] in the

way demonstrated by Mandelbrot et al. (1997).

The importance of this variation of the original grid-bound MMAR is that it

provides an avenue towards constructing multifractal models (or models arbitrar-

ily close to "true" multifractals) in a way that allows better statistical tractability.

In particular, in contrast to the grid-bound MMAR, the Poisson multifractal pos-

sesses a Markov structure. Since the t(i)n follow an exponential distribution, the

probability of arrivals at any instant t is independent from past history. As an

immediate consequence, the initial restriction upon its construction to a bounded

interval in time [0, T ] is not really necessary, as the process can be continued

when reaching the border t = T in the very same way by which realizations have

been generated within the interval [0, T ] without any disruption of its stochastic
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structure. This is not the case for the grid-based approach where one could, in

principle, append a new cascade after t = T which, however, would be completely

uncorrelated with the previous one. Lux (2013) shows that the Poisson MMAR

can also be interpreted as a regime-switching di�usion process with 2k di�erent

volatility states. This paper also derives the transient density of this process and

shows how it could be utilized for exact maximum likelihood estimation of its pa-

rameters. Except for this contribution, the continuous-time Poisson multifractal

has not been used itself in empirical applications, but it has motivated the de-

velopment of the discrete Markov-switching multifractal model (MSM) that has

become the most frequently applied version of multifractal models in empirical

�nance, cf. sec. 3.3.

3.2.1.3 Further Generalizations of Continuous-Time MMAR

In a foreword to the working paper version (2001) of their paper, Barral and Man-

delbrot (2002) motivate the introduction of what they call "multifractal products

of cylindrical pulses" by its greater �exibility compared to standard multifrac-

tals. They argue that this generalization should be useful in order to capture

particularly the power-law behavior of �nancial returns. Again, in the construc-

tion of the cylindrical pulses the renewal times at di�erent hierarchical levels are

determined by Poisson processes whose intensities are not, however, connected

via the geometric progression biλ (reminiscent of the grid size distribution in the

original MMAR), but are scattered randomly according to Poisson processes with

frequencies of arrival depending inversely on the scale s, i.e. assuming ri = s−1
i

(instead of ri = 2i−k at scales si = 2k−i over an interval [0, 2k] in the basic grid-

bound approach for multifractal measures). Associating independent weights to

the di�erent scales one obtains a multifractal measure for this construction by

taking a product of these weights over a conical11 domain in (t, s) space. The

theory of such cylindrical pulses (i.e., the pertinent multipliers M i
tn that rule one

hierarchical level between adjacent change points tn and tn+1) only needs the

requirement of existence of E[M i
tn ]. Barral and Mandelbrot (2002) work out the

"multifractal apparatus" for such more general families of hierarchical cascades

pointing out that many examples of pertinent processes would be characterized

by non-existing higher moments. Muzy and Bacry (2002) and Bacry and Muzy

(2003) go one step further and construct a "fully continuous" class of multifractal

measures in which the discreteness of the scales i is replaced by a continuum of

scales.

11The conical widening of the in�uence of scales being the continuous limit of the dependencies
across levels in the discrete case that proceeds with, e.g., a factor 2 in the case of binary cascades.
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Multiplication over the random weights is then replaced by integration over a

similar conical domain in (t, s) space whose extension is given by the maximum

correlation scale T (see below). Muzy and Bacry (2002) show that for this set-

up, nontrivial multifractal behavior is obtained if the conical subset Cs(t) of the

(t, s)-half plane (note that t ≥ 0) obeys:

Cs(t) = {(t′, s′), s′ ≥ s, −f(s′)/2 ≤ t′ − t ≤ f(s′)/2} (13)

with

f(s) =

s for s ≤ T

T for s > T,
(14)

i.e. a symmetrical cone around current time t with linear expansion of the included

scales s up to some maximum T . The multifractal measure obtained along these

lines involves a stochastic integral over the domain C(t):

dθ(t) = e
∫
(t′,s)∈C(t) dω(t′,s)

. (15)

If dω(t′, s) is a Gaussian variable, one can use this approach as an alternative way

to generate a Lognormal multifractal time transformation. As demonstrated by

Bacry and Muzy (2003) subordinating a Brownian motion to this process leads to

a compound process that has a distribution identical to the limiting distribution

of the grid-bound MMAR with Lognormal multipliers for k →∞. Discretization

of the continuous-time multifractal random walk will be considered below.

3.3 Multifractal Models in Discrete Time12

3.3.1 Markov-Switching Multifractal Model

Together with the continuous-time Poisson multifractal, Calvet and Fisher (2001)

have also introduced a discretized version of this model, that has become the most

frequently applied version of the multifractal family in the empirical �nancial lit-

erature. In this discretized version, the volatility dynamics can be interpreted as a

discrete-time Markov-switching process with a large number of states. In their ap-

proach, returns are modeled like in eq. (1) with innovations εt drawn from a stan-

dard Normal distribution N(0, 1) and instantaneous volatility being determined

12We note in passing that for standard discrete volatility models, the determination of the
continuous-time limit is not always straightforward. For instance, for GARCH(1,1) model Nelson
(1990) found a limiting "GARCH di�usion" under some assumptions while Corradi (2000) found
a limiting deterministic process under a di�erent set of assumptions. Also, while there exists
a well-known class of continuous-time stochastic volatility models, these do not necessarily
constitute the limit processes of their also well-known discrete counterparts.
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by the product of k volatility components or multipliersM (1)
t ,M

(2)
t , . . . ,M

(k)
t and

a constant scale factor σ:

rt = σtεt (16)

with

σ2
t = σ2

k∏
i=1

M i
t . (17)

The volatility componentsM i
t are persistent, non-negative and satisfy E[M i

t ] = 1.

Furthermore, it is assumed that the volatility components M (1)
t ,M

(2)
t , . . . ,M

(k)
t

at a given time t are statistically independent. Each volatility component is

renewed at time t with probability γi depending on its rank within the hierarchy

of multipliers and remains unchanged with probability 1 − γi. They show that

with the following speci�cation of transition probabilities between integer time

steps, a discretized Poisson multifractal converges to the continuous-time limit as

de�ned above for ∆t→ 0:

γi = 1− (1− γ1)(bi−1), (18)

with γ1 the component at the lowest frequency that subsumes the Poisson intensity

parameter λ, γ1 ∈ [0, 1], and b ∈ (1,∞). Calvet and Fisher (2004) assume a

Binomial distribution forM i
t with parameters m0 and 2−m0 (thus, guaranteeing

an expectation of unity for all M i
t ). If convergence to the limit of the Poisson

multifractal is not a concern, one could also use a less parameterized form such

as

γi = b−i. (19)

Here, volatility components in a lower frequency state will be renewed b times

as often as those of its predecessor. An iterative discrete multifractal with such

a progression of transition probabilities and otherwise identical to the model of

Calvet and Fisher (2001, 2004) has already been proposed by Breymann et al.

(2000).

For the distribution of the multipliers M i
t , extant literature has also used the

Lognormal distribution (cf. Liu, di Matteo and Lux, (2008); Lux, (2008)) with

parameters λ and s, i.e.

M
(i)
t ∼ LN(−λ, s2). (20)

Setting s2 = 2λ guarantees E[M i
t ] = 1. Comparison of the performance and sta-

tistical properties of MF models with Binomial and Lognormal multipliers shows

typically almost identical results (cf. Liu, di Matteo and Lux (2007)). It, thus,

appears that the Binomial choice (with 2k di�erent volatility regimes) has su�-
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cient �exibility and cannot easily be outperformed via a continuous distribution

of the multipliers.

In Fig. 5 the �rst three panels show the development of the switching behavior

of Lognormal MSM process at di�erent levels. The average duration of the second

highest component is equal to 2048. As a result one expects this component

to switch on average two times during the 4096 time-steps of the simulation.

Similarly, for the sixth highest component displayed in the second panel renewal

occurs about once within 25 = 32 periods. The last panel shows the product

of multipliers (displayed in the second from bottom) that plays the role of local

stochastic volatility as described by eq. (17). The resulting arti�cial time series

displays volatility clustering and outliers which stem from intermittent bursts of

extreme volatility.

Due to its restriction to a �nite number of cascade steps, the MSM is not charac-

terized by asymptotic (multi-) scaling. However, its pre-asymptotic scaling regime

can be arbitrarily extended by increasing the number of hierarchical components

k. It is, thus, a process whose multifractal properties are spurious. However, at

the same time it can be arbitrarily close to "true" multi-scaling over any �nite

length scale. This feature is shared by a second discretization, the multifractal

random walk, whose power-law scaling over a �nite correlation horizon is already

manifest in its generating process.

Figure 5 about here

3.3.2 Multifractal Random Walk

In the (econo-)physics literature, a di�erent type of causal, iterative process has

been developed more or less simultaneously, denoted the Multifractal Random

Walk (MRW). Essentially, the MRW is a Gaussian process with built-in multi-

fractal scaling via an appropriately de�ned correlation function. While one could

use various distributions for the multipliers as the guideline for construction of

di�erent versions of MRW replicating their particular autocorrelation structures,

the literature has exclusively focused on the Lognormal distribution.

Bacry et al. (2001) de�ne the MRW as a Gaussian process with a stochastic

variance as follows:

r∆t(τ) = eω∆t(τ)ε∆t(τ), (21)

with ∆t a small discretization step, ε∆t(·) a Gaussian variable with mean zero

and variance σ2∆t and ω∆t(·) the logarithm of the stochastic variance and τ a

multiple of ∆t along the time axis. Assuming that ω∆t(·) also follows a Gaussian

distribution, one obtains Lognormal volatility draws. For longer discretization
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steps (e.g. daily unit time intervals), one obtains their returns as:

r∆t(t) =

t/∆t∑
i=1

ε∆t(i) ∗ eω∆t(i). (22)

To mimic the dependency structure of a Lognormal cascade, these are assumed

to have covariances:

Cov(ω∆t(t)ω∆t(t+ h)) = λ2 ln ρ∆t(h), (23)

with

ρ∆t(h) =

 T
(|h|+1)∆t , for |h| ≤ T

∆t − 1

0, otherwise
(24)

Hence, T is the assumed �nite correlation length (a parameter to be estimated)

and λ2 is called the intermittency coe�cient characterizing the strength of the

correlation.

In order for the variance of r∆t(t) to converge, ω∆t(·) is assumed to obey:

E(ω∆t(i)) = −λ2 ln(T/∆t) = −Var(ω∆t(i)). (25)

Assuming a �nite decorrelation scale (rather than a monotonic hyperbolic decay

of the autocorrelation) serves to guarantee stationary of the multifractal random

walk. Similar as the MSM introduced by Calvet and Fisher (2001), the MRW

model does, therefore, not obey an exact scaling function like eq. (7) in the limit

t → ∞ or divergence of its spectral density at zero, but is characterized by only

"apparent" long-term dependence over a bounded interval. The advantage of both

models is that they possess "nice" asymptotic properties that facilitate application

of many standard tools of statistical inference.

As shown by Muzy and Bacry (2002) and Bacry et al. (2008) the continuous-

time limit of MRW (mentioned above in 3.2.1.3) can also be interpreted as a time

transformation of a Brownian motion subordinate to a log-normal multifractal

random measure. For this purpose, the MRW can be reformulated in a similar

way like the MMAR model.

r(t) = B [θ(t)] , for all t ≥ 0, (26)

where θ(t) is a random measure for the transformation of chronological to "busi-

ness time" and B(t) is a Brownian motion independent of θt. "Business time" θt
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is obtained along the lines of the above exposition of the MRW model as

θ(t) = lim
∆→ 0

∫ t

0
e2ω∆(u)du. (27)

Here ω∆(u) is the stochastic integral of Gaussian white noise dW (s, t) over a

continuum of scales s truncated at the smallest and largest scales ∆ and T which

leads to a cone-like structure de�ning ω∆(u) as the area delimited in time (over

the correlation length) and a continuum of scales s in the (t, s) plane:

ω∆(u) =

∫ T

∆

∫ u+s

u−s
dW (v, s) (28)

To replicate the weight structure of the multipliers in discrete multifractal models,

a particular correlation structure of the Gaussian elements dW (v, s) needs to

be imposed. Namely, the multifractal properties are obtained for the following

choices of the expectation and covariances of dW (v, s):

Cov
(
dW (v, s), dW (v′, s′)

)
= λ2δ(v − v′)δ(s− s′)dvds

s2
(29)

and

E (dW (v, s)) = −λ2dvds

s2
. (30)

Muzy and Bacry (2002) and Bacry and Muzy (2003) show that the limiting

continuous-time process exists and possesses multifractal properties. Interest-

ingly, Muzy et al. (2006) and Bacry et al. (2013) also provide results for the

unconditional distribution of returns obtained from this process. They demon-

strate that it is characterized by fat tails and that it becomes less heavy tailed

under time aggregation. They also show that standard estimators of tail indices

are ill-behaved for data from a MRW data-generating process due to the high

dependency of adjacent observations. While the implied theoretical tail indices

with typical estimated parameters of the MRW would be located at unrealisti-

cally large values (> 10), taking the dependency in �nite samples into account

one obtains biased (pseudo-)empirical estimates indicating much smaller values of

the tail index that are within the order of magnitude of empirical ones. A similar

mismatch between implied and empirical tail indices applies to other multifrac-

tal models as well (as far as we can see, this is not explicitly reported in extant

literature, but has been mentioned repeatedly by researchers) and can be likely

explained in the same way.
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3.3.3 Asymmetric Univariate MF Models

All previous models are designed in a completely symmetric way for positive

and negative returns. However, it is well known that price �uctuations in as-

set markets exhibit a certain degree of asymmetry due to leverage e�ects. The

discrete-time skewed multifractal random walk (DSMRW) model proposed by

Pochart and Bouchaud (2002) is an extended version of the MRW, that takes

account of such asymmetries. The model is de�ned similarly as the MRW of eq.

(21) but incorporates a direct in�uence of past realizations on contemporaneous

volatility

ω̃∆t(i) ≡ ω∆t(i)−
∑
k<i

K(k, i)ε∆t(k), (31)

where Pochart and Bouchaud propose to use K(k, i) = K0

(i−k)α∆tβ
is a positive de�-

nite kernel for the in�uence of returns on subsequent volatility. Bacry et al. (2012)

proposed a continuous-time skewed multifractal model that also incorporates the

leverage e�ect.

Eisler and Kertész (2004) expand the MSM model in a similar way. They

consider a re�ned version of the model in which asymmetry comes in via the

renewal probabilities and, in addition, use a term inspired by eq. (31) to account

for leverage autocorrelations.

An asymmetric MSM model has also been introduced by Calvet et al. (2013).

They embed a multifractal cascade into a stochastic volatility model where the

product of multipliers enters as a time-varying long-run anchor for the volatility

dynamics while at the same time governing a jump component in returns that

relates positive volatility shocks to negative return shocks.

3.3.4 Bivariate Multifractal Models

A bivariate MF model has �rst been introduced by Calvet et al. (2006). Con-

sider a portfolio of two assets α and β. Let now denote rt the vector of log-returns

of the portfolio, and rαt and rβt the individual log-returns of the two assets, re-

spectively. Following Calvet et al. the return of the portfolio is modeled as:

rt = [g(Mt)]
1/2 ∗ εt, (32)

where g(Mt) denotes a 2 × 1 vector M1,t ∗M2,t ∗ · · · ∗Mk,t, ∗ denotes element

by element multiplication and the column vectors εt ∈ R2 are i.i.d. Gaussian
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N(0,Σ) with covariance matrix

Σ =

[
σ2
α ρεσασβ

ρεσασβ σ2
β

]
. (33)

ρε represents the unconditional correlation between the residuals as the �rst source

of correlation between both returns. The period t volatility state is characterized

by a 2×k matrixMt = (M1,t;M2,t; . . . ;Mk,t) and the vector of the components at

the ith frequency isMi,t = (Mα
i,t M

β
i,t). The volatility vectorsMi,t are non-negative

and satisfy E[Mi,t] = 1, where 1 = (1, 1)′. Economic intuition behind the choice

of the dynamics for each vector Mi,t is that volatility arrivals are correlated but

not necessarily simultaneous across markets. For this reason Calvet and Fisher

allow arrivals across series to be linked by a correlation coe�cient λ. Consider two

random variables Iαi,t and I
β
i,t which are equal to 1 if each series c ∈ {α, β} is hit

by an information arrival with probability γi, and equal to zero otherwise. Calvet

and Fisher speci�ed the arrival vector to be i.i.d. and assumed its unconditional

distribution to satisfy three conditions. First, the arrival vector is symmetrically

distributed: (Iαi,t, I
β
i,t)

d
= (Iβi,t, I

α
i,t). Second, the switching probabilities of both

series are equal for each level i: P (Iαi,t = 1) = P (Iβi,t = 1) = γi, with γi following

eq. (18) as for univariate MSM. Third, there exists λ ∈ [0, 1] such that

P (Iαi,t = 1|Iβi,t = 1) = (1− λ)γi + λ.

These three conditions de�ne a unique distribution of (Iαi,t, I
β
i,t) whose joint switch-

ing probabilities can be easily determined. Note that the univariate dynamics of

each series coincides with a univariate MSM model. Idier (2011) proposed an ex-

tension of the bivariate MSM model by considering a time dependent covariance

for the vector of residuals ρε(t).

Liu (2008) considered a closely related bivariate multifractal model built upon

the assumption that two time series have a certain number of joint cascade levels

in common, while the remaining ones are chosen independently. The returns are,

then, modeled as:

rq,t =

[(
k∏
i

Mi,t

)(
n∏

l=k+1

Ml,t

)]1/2

∗ εt, (34)

where q = 1, 2 refers to the two time series, both having an overall number of n

levels of their volatility cascades, and they share a number k of joint cascade lev-

els which govern the strength of their volatility correlation. Obviously, the larger
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k, the more correlation between the volatility dynamics of both series. After k

joint multiplicators, each series has separate additional multifractal components.

εt is de�ned as in eq. (32) to follow a bivariate standard Normal distribution

with correlation parameter ρε. This model can be seen as a special case of a

slightly generalized version of Calvet et al. (2006) allowing for heterogeneity of

the correlation of volatility innovations, λi, across hierarchical levels and choos-

ing an extreme speci�cation in that part of the λi(1 ≤ i ≤ k) are equal to 1

and the remaining ones are equal to 0. Liu and Lux (2013) show that the dis-

tinction between di�erent degrees of correlation between volatility innovations

indeed improves the �t and performance of the bivariate MSM, but the extreme

speci�cation of Liu (2008) with alternation between full dependence and lack of

correlation is dominated by a more �exible approach. Interestingly, whether high

or low frequency components are more correlated di�ers between markets.

3.3.5 Higher dimensional multifractal models

The bivariate models presented above can be generalized for more than two

assets in various ways. Liu (2008)'s approach can be generalized in a straightfor-

ward way to an N -dimensional asset returns process. If one assumes that the N

time series share a number of j joint cascades that govern the strength of their

volatility correlation, the correlation of volatility arrivals could be generalized to

the case of an arbitrary number of assets without having to add new parameters

in the volatility part of the model. Additional parameters would, then, only come

in via the correlation of the Gaussian innovations. If such a speci�cation appears

insu�cient to capture the heterogeneity in return �uctuations across assets, one

could consider a generalized framework with asset-speci�c multifractal parameter,

m0 or λ in the Binomial or Lognormal setting, respectively.

A generalization of the MRW in a similar vein had already been proposed by

Bacry et al. (2000). They suggest to extend the MRW model to a multivariate

Multifractal Random Walk (MMRW) in order to model portfolio behavior. Let

Xt be a MMRW, then following Bacry et al. Xt is de�ned as:

X(t) = lim
t→ 0

X∆t(t) = lim
t→ 0

t/∆t∑
k=1

ε∆t[k] ∗ eω∆t[k], (35)

where ε∆t is now a vector of Gaussians with zero mean and variance-covariance

function at lag τ Cov(εi,∆t(t), εj,∆t(t + τ)) = δ(τ)Σij∆t. The magnitude

process ω∆t(·) is also Gaussian with covariance Cov(ωi,∆t(t), ωj,∆t(t + τ)) =

Λij ln(Tij/(∆t+ |τ |)) for (∆t+ |τ | < Tij) and 0 elsewhere. The matrix Λ, labeled
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"multifractal matrix ", controls the non-linearity of the multifractal spectrum, and

Tij are di�erent correlation lengths for the autocovariances and cross-covariances

characterizing the process.

4 Estimation and Forecasting

Availability of e�cient estimation procedures is essential for the application of

theoretical asset-pricing models for practical purposes. The non-standard format

of multifractal models has initially cast doubts on the applicability of many well-

known statistical tools to this new family of volatility models. Fortunately, the

members of the second generation multifractal models (MSM and MRW) seemed

to be much more well-behaved (and have partially be designed to be so) in terms

of asymptotic statistical behavior. Most e�ort has been spent so far to �nd stable

and e�cient inference methods for the discrete time MSM model with discrete

or continuous distributions for multipliers or volatility components. In the fol-

lowing we present the estimation methods most often applied for MF models.

We dispense with the traditional f(α) and τ(q) approach to inference which has

been covered in detail in sec. 2.4. As it soon turned out in the pertinent litera-

ture when starting to adapt multifractal models to �nance, the scaling-approach

provides potentially very biased and volatile estimates in applications to �nan-

cial data, and due to their fat tails, would even indicate existence of multifractal

structure after randomization of such time series. The quest for more appropri-

ate statistical methods has been motivated to a large extent by these de�ciencies.

The development of the Markov-switching multifractal model and the multifractal

random walk have brought forward stochastic processes with more "convenient"

asymptotic properties than their predecessors. As a consequence, they allow ap-

plication of many established tools of inference. Nevertheless, their proximity to

genuine long-memory might still be a concern and motivates to exert caution in

empirical applications (e.g., while theoretical convergence of estimates might be

trivially guaranteed, the pre-asymptotic regime might be much more extended

than with other models).

4.1 Maximum Likelihood Estimation

Exact ML estimation has been primarily developed for the discrete-time MSM

model with a discrete distribution for the volatility components or multipliers.

Calvet and Fisher (2004) introduced an ML estimation approach for the Binomial

Markov-switching multifractal (BMSM) model. To show how to perform ML

estimation in this context, note that the log-likelihood function for a series of
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observations {rt}Tt=1 in its most general form may be expressed as:

L(r1, . . . , rT ;ϕ) =

T∑
t=1

lng(rt|r1, . . . , rt−1;ϕ), (36)

where g(rt|r1, . . . , rt−1;ϕ) is the likelihood function of the Markov-switching

multifractal model, and ϕ is the vector of parameters. For Markov-switching

models, the likelihood function can be decomposed in the following way:

g(rt|r1, . . . , rt−1;ϕ) = ωt(rt|Mt = mi, ϕ)(πt−1A). The three components are de-

�ned as follows: ωt(rt|Mt = mi, ϕ) is a vector of dimension 2k of conditional

densities of any observation rt for volatility regimesmi and A is the transition ma-

trix which has components Aij = P (Mt+1 = mj |Mt = mi). The last component

within the likelihood function above is πt, which is the vector of conditional prob-

abilities of the volatility states given observations πit = P (Mt = mi|r1, . . . , rt;ϕ).

The conditional probabilities can be recursively obtained through Bayesian up-

dating

πt =
ωt(rt|Mt = mi, ϕ) ∗ (πt−1A)∑
ωt(rt|Mt = mi, ϕ) ∗ (πt−1A)

. (37)

Di�erent distributional assumptions for innovations could be embedded in this

framework. The parameter vector of the BMSM with Gaussian innovations would

be given by ϕ = (m0, σ)′, while the parameter vector of a BMSM with Student-

t innovations would be ϕ = (m0, σ, ν)′ where ν ∈ (2,∞) is the distributional

parameter accounting for the degrees of freedom in the density function of the

Student-t distribution. The Student−t distribution for return innovations has

been used by Lux and Morales-Arias (2010) in order to enhance out-of-sample

forecasts of the MSM model because it may allow the MSM model to better

distinguish between volatility dependence and fat-tailed innovations.

An advantage of the ML procedure is that, as a by-product, it allows one

to obtain optimal forecasts via Bayesian updating of the conditional probabil-

ities πt = P (Mt = mi|r1, . . . , rt;ϕ) for the unobserved volatility states mi,

i = 1, . . . , 2k. ML estimation provides good precision in �nite samples (cf. Calvet

and Fisher (2004)). The closed-form solutions obtained in Lux (2013) for the

transient density of the continuous-time Poisson MMAR would also enable one to

estimate its parameters via exact ML as long as the distribution of the multipliers

is discrete.

Although the applicability of the ML algorithm greatly facilitates estimation

of MSM models, it is restrictive in the sense that it is practically feasible only

for discrete distributions of the multipliers and, therefore, is not applicable for

e.g., the case of a Lognormal distribution. Due to the potentially large state
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space (we have to take into account transitions between 2k distinct states), ML

estimation also encounters practical bounds of its computational demands for

speci�cations with more than about k = 10 volatility components in the Binomial

case. For multivariate MF models, the applicability of the ML approach is even

more constrained from the computational side: in the bivariate case the evaluation

of its transition matrix with size 4k × 4k becomes unfeasible for choices of about

k > 5. There has also been a recent attempt to estimate the MRW model via

a likelihood approach. Løvsletten and Rypdal (2012) develop an approximate

maximum likelihood method for MRW using a Laplace approximation of the

likelihood function.

4.2 Simulated Maximum Likelihood

This approach is more broadly applicable to both discrete and continuous distri-

butions for multipliers. To overcome the computational and conceptional limi-

tation of exact ML estimation, Calvet et al. (2006) developed a simulated ML

approach. They propose a particle �lter to numerically approximate the likelihood

function. The particle �lter is a recursive algorithm that generates independent

draws M (1)
t , . . . ,M

(N)
t from the conditional distribution of πt. At time t = 0, the

algorithm is initiated by draws M (1)
0 , . . . ,M

(N)
0 from the ergodic distribution π̄.

For any t > 0, the particles {M (n)
t }Nn=1 are sampled from the new belief πt. To

this end, the formula (37) within the ML estimation algorithm is replaced by a

Monte Carlo approximation in SML. This means that the analytical updating via

the transition matrix, πt−1A, is approximated via the simulated transitions of the

particles. Disregarding the normalization of probabilities (i.e., the denominator),

the formula (37) can be rewritten as

πit ∝ ωt(rt|Mt = mi;ϕ)
4k∑
j=1

P
(
Mt = mi|Mt−1 = mj

)
πjt−1, (38)

and due to the fact that M (1)
t , . . . ,M

(N)
t are independent draws from πt−1, the

Monte Carlo approximation has the following format:

πit ∝ ωt(rt|Mt = mi;ϕ)
1

N

N∑
n=1

P
(
Mt = mi|Mt−1 = M

(n)
t−1

)
. (39)

The approximation, thus, proceeds by simulating each M (n)
t−1 one step forward to

obtain M̂ (n)
t given M (n)

t−1. This step only uses information available at date t− 1,

and must therefore be adjusted at time step t to account for the information
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contained in the new return. This is achieved by drawing N random numbers q

from 1 to N with probability

P (q = n) ≡ ωt(rt|Mt = M̂
(n)
t ;ϕ)∑N

n′=1 ωt(rt|Mt = M̂
(n′)
t ;ϕ)

(40)

The distribution of particles is, thus, shifted according to their importance at time

t. With simulated draws M (n)
t the Monte Carlo (MC) estimate of the conditional

density is

ĝ(rt|r1, . . . , rt−1;ϕ) ≡ 1

N

N∑
n=1

ωt(rt|Mt = M̂
(n)
t ;ϕ), (41)

and the log-likelihood is approximated by
∑T

t=1 ln ĝ(rt|r1, . . . , rt−1;ϕ). The sim-

ulated ML approach makes it feasible to estimate MSM models with continuous

distribution of multipliers as well as univariate and multivariate Binomial models

with too high a number of states for exact ML. Despite this gain in terms of

di�erent speci�cations of MSM models that can be estimated, the computational

demands of SML are still considerable, particularly for high numbers of particles

N .

4.3 GMM Estimation

Again, this is an approach that is, in principle, applicable for both discrete and

continuous distributions for multipliers. To overcome the lack of practicability of

ML estimation, Lux (2008) introduced a Generalized Method of Moments (GMM)

estimator that is also universally applicable to all speci�cations of MSM processes

(discrete or continuous distribution for multipliers, Gaussian, Student−t or vari-
ous other distributions for innovations). In particular, it can be used in all those

cases where ML is not applicable or computationally unfeasible. Its computational

demands are also lower than those of SML and independent of the speci�cation

of the model. In the GMM framework for MSM models, the vector of parame-

ters ϕ is obtained by minimizing the distance of empirical moments from their

theoretical counterparts, i.e.

ϕ̂T = argmin
ϕ∈Φ

fT (ϕ)′AT fT (ϕ), (42)

with Φ the parameter space, fT (ϕ) the vector of di�erences between sample mo-

ments and analytical moments, and AT a positive de�nite and possibly random

weighting matrix. Moreover, ϕ̂T is consistent and asymptotically Normal if suit-

able "regularity conditions" are ful�lled (cf. Harris and Mátyás (1999)) which are
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satis�ed routinely for Markov processes.

In order to account for the proximity to long memory characterizing MSM

models, Lux (2008) proposed to use log di�erences of absolute returns together

with the pertinent analytical moment conditions, i.e.

ξt,T = ln|rt| − ln|rt−T |. (43)

The above variable only has nonzero auto-covariances over a limited number of

lags. To exploit the temporal scaling properties of the MSM model, covariances

of various moments over di�erent time horizons are chosen as moment conditions,

i.e.

Mom(T, q) = E
[
ξqt+T,T · ξ

q
t,T

]
, (44)

for q = 1, 2 and di�erent horizons T together with E[r2
t ] = σ2 for identi�cation of

σ in the MSM model with Normal innovations. In the case of the MSM-t model,

Lux and Morales-Arias (2010) consider additional moment conditions in addition

to (44), namely, E[|rt|], E[|r2
t |], E[|r3

t |] , in order to extract information on the

Student−t's shape parameter.

Bacry et al. (2008) and Bacry et al. (2013) also apply the GMM method

for estimating the MRW parameters (λ, σ, and T ) using similar moments as in

Lux (2008). Sattarho� (2010) re�nes the GMM estimator for the MRW using a

more e�cient algorithm for the covariance matrix estimation. Liu (2008) adopts

the GMM approach to bivariate and trivariate speci�cations of the MSM model.

Leövey (2013) develops a simulated method of moments (SMM) estimator for the

continuous-time Poisson multifractal model of Calvet and Fisher (2001).

Related work in statistical physics has recently also considered simple moment

estimators for extraction of the multifractal intermittency parameters from data

of turbulent �ows (Kiyono et al., 2007). Leövey and Lux (2012) compare the per-

formance of a GMM estimator for multifractal models of turbulence with various

heuristic estimators proposed in the pertinent literature, and show that the GMM

approach typically provides more accurate estimates due to its more systematic

exploitation of information contained in various moments.

4.4 Forecasting

With ML and SML estimates, forecasting is straightforward: With ML esti-

mation, conditional state probabilities can be iterated forward via the transition

matrix to deliver forecasts over arbitrarily long time horizons. The conditional

probabilities of future multipliers given the information set =t, π̂t,n = P (Mn|=t),
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are given by

π̂t,n = πtA
n−t, ∀n ∈ {t, . . . , T}. (45)

In the case of SML, iteration of the particles provides an approximation to

the predictive density. Since GMM does not provide information on conditional

state probabilities, Bayesian updating is not possible and one has to supplement

GMM estimation with a di�erent forecasting algorithm. To this end, Lux (2008)

proposes best linear forecasts (cf. Brockwell and Davis (1991), ch. 5) together with

the generalized Levinson-Durbin algorithm developed by Brockwell and Dahlhaus

(2004). Assuming that the data of interest (e.g., squared or absolute returns)

follow a stationary process {Yt} with mean zero, the best linear h-step forecasts

are obtained as

Ŷn+h =
n∑
i=1

φ
(h)
ni Yn+1−i = φ(h)

n Y n, (46)

where the vectors of weights φhn = (φhn1, φ
h
n2, . . . , φ

h
nn)′ can be obtained from the

analytical auto-covariances of Yt at lags h and beyond. More precisely, φ(h)
n are

any solution of Ψnφ
(h)
n = κ

(h)
n where κ(h)

n = (κ
(h)
n1 , κ

(h)
n2 , . . . , κ

(h)
nn )′ denote the auto-

covariances of Yt and Ψn = [κ(i−j)]i,j=1,...,n is the variance-covariance matrix. In

empirical applications, eq. (46) has been applied for forecasting squared returns

as a proxy for volatility using analytical covariances to obtain the weights φhn.

Linear forecasts have also been used by Bacry et al. (2008) and Bacry et al.

(2013) in connection with their GMM estimates of the parameters of the MRW

model. Duchon et al. (2012) develop an alternative forecasting scheme for the

MRW model in the presence of parameter uncertainty as a perturbation of the

limiting case of an in�nite correlation length T →∞.

5 Empirical Applications

Calvet and Fisher (2004) compare the forecast performance of the MSM model

to those of GARCH, MS-GARCH, and FIGARCH models across a range of in-

sample and out-of-sample measures of �t. Using four long series of daily exchange

rates they �nd that at short horizons MSM shows about the same and some-

times a better performance than its competitors. At long horizons MSM more

clearly outperforms all alternative models. Lux (2008) combines the GMM ap-

proach with best linear forecasts and compares di�erent MSM models (Binomial

MSM and Lognormal MSM with various numbers of multipliers) to GARCH and

FIGARCH. Although GMM is less e�cient than ML, Lux (2008) con�rms the

tendency of superior performance of MSM models over GARCH and FIGARCH

in forecasting volatility of foreign exchange rates. Similarly promising perfor-
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mance in forecasting volatility and value-at-risk is reported for the MRW model

by Bacry et al. (2008) and Bacry et al. (2013). Bacry et al. (2008) �nd that

linear volatility forecasts provided by the MRW model outperform GARCH(1, 1)

models. Furthermore, they show that MRW forecasts of the VaR at any time-

scale and time-horizon are much more reliable than GARCH(1, 1) (Normal or

Student−t) forecasts for both foreign exchange rates and stock indices.

Lux and Kaizoji (2007) investigate the predictability of both volatility and

volume for a large sample of Japanese stocks. Using daily data of stock prices

and trading volume available over 27 years (from 01/01/1975 to 12/31/2001),

they examine the potential of time series models with long memory (FIGARCH,

ARFIMA, multifractal) to improve upon the forecasts derived from short-memory

models (GARCH for volatlity, ARMA for volume). For both volatility and vol-

ume, they �nd that the MSMmodel provides much safer forecasts than FIGARCH

and ARFIMA and does not su�er from occasional dramatic failures as is the

case with the FIGARCH model. This higher degree of robustness of MSM fore-

casts compared to alternative models is also con�rmed by Lux and Morales-Arias

(2013). They estimate the typical parameters of GARCH, FIGARCH, SV, LMSV

and MSM models from a large sample of stock indices and compare the empirical

performance of each model when applied to simulated data of any other model

with typical empirical parameters. As it turns out, the MSM almost always

comes in second best (behind the true model) when forecasting future volatility

and even dominates combined forecasts from many models. It, thus, appears to

be relatively safe for practitioners to use the MSM even if it were misspeci�ed

and another standard model were the "true" data-generating process.

Lux and Morales-Arias (2010) introduce the MSM model with Student-t in-

novations and compare its forecast performance to those of MSM models with

Gaussian innovations, and (FI)GARCH. Using country data on all-share equity

indices, government bonds and real estate security indices, they �nd that the MSM

model with Normal innovations produces forecasts that improve upon historical

volatility, but are in some cases inferior to FIGARCH with Normal innovations.

By adding fat tails to both MSM and FIGARCH, they obtain improvements

by MSM models for forecasting volatility while the forecast performance by FI-

GARCH deteriorates. They �nd also that one can obtain more accurate volatility

forecasts by combining FIGARCH and MSM.

Lux et al. (2011) apply an adapted version of the MSM model to measurements

of realized volatility. Using �ve di�erent stock market indices (CAC 40, DAX,

FTSE 100, NYSE Composite and S&P 500), they �nd that the realized volatility-

Lognormal MSM model (RV-LMSM) model performs better than non-RV models
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(FIGARCH, TGARCH, SV and MSM) in terms of mean-squared errors for most

stock indices and at most forecasting horizons. They also point out that similar

results are obtained in a certain number of instances when the RV-LMSM model

is compared to the popular RV-ARFIMA model and forecast combinations of al-

ternative models (non-RV and RV) could hardly improve upon forecasts of various

single models.

Calvet et al. (2006) apply the bivariate model to the comovements of volatil-

ity of pairs of exchange rates. They �nd again that their model provides better

volatility and value-at-risk (VaR) forecasts compared to the constant correlation

GARCH (CC-GARCH) of Bollerslev (1990). Applying the re�ned bivariate MSM

to stock index data, Idier (2011) con�rms the results of Calvet et al. (2006). Ad-

ditionally, he �nds that his re�ned model shows signi�cantly better performance

than the baseline MSM and DCC models for horizons longer than ten days. Liu

and Lux (2013) apply the bivariate model to daily data for a collection of bi-

variate portfolios of stock indices, foreign currencies and U.S. 1 Year and 2 Year

Treasury Bonds. They �nd that the bivariate multifractal model generates better

VaR forecasts than the CC-GARCH model, especially in the case of exchange

rates, and that an extension allowing for heterogeneous dependency of volatility

arrivals across levels improves upon the baseline speci�cation both in in-sample

and out-of-sample.

Chen et al. (2013) propose a Markov-switching multifractal duration (MSMD)

model. In contrast to the traditional duration models inspired by GARCH-type

dynamics, this new model uses the MSM process developed by Calvet and Fisher

(2004),and thus can reproduce the long memory property of durations. By apply-

ing the MSMD model to duration data of twenty stocks randomly selected from

the S&P 100 index and comparing it with the autoregressive conditional duration

(ACD) model both in- and out-of-sample, they �nd that at short horizons both

models yield about the same results while at long horizons the MSMD model

dominates over the ACD model.

Baruník et al. (2012) independently developed a Markov-switching multifrac-

tal duration (MSMD) model whose speci�cation is slightly di�erent from that

proposed by Chen et al. (2013). They also use the MSM process introduced by

Calvet and Fisher (2004) as basic ingredient in the construction of the model.

They apply the model to price durations of three major foreign exchange futures

contracts and compare the predictive ability of the new model with those of the

ACD model and long-memory stochastic duration (LMSD) model of Deo et al.

(2006). They �nd that both LMSD and MSMD forecasts generally outperform the

ACD forecasts in terms of the mean square error and mean absolute error. MSMD
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and LMSD models sometimes exhibit similar forecast performances, sometimes

the MSMD model slightly dominates the LMSD model.

Segnon and Lux (2012) compared the forecast performance of Chen et al.'s

(2013) MSMD model to those of the standard ACD and Log-ACD models with

�exible distributional assumptions about innovations (Weibull, Burr, Lognormal

and generalized gamma) using density forecast comparison suggested by Diebold

et al. (1998) and the likelihood ratio test of Berkowitz (2001). Using data from

eight stocks traded on the NYSE their empirical results speak in favor of superi-

ority of the MSMD model. They also �nd that, in contrast to the ACD model,

using �exible distributions for the innovations does not exert much of an in�uence

on the forecast capability of the MSMD model.

Option price applications of multifractal models have started with Pochart and

Bouchaud (2002) who show that their skewed MRW model could generate smiles

in option prices. Leövey (2013) proposed a "risk-neutral" MSM process in order

to extract the parameters of the MSM model from option prices. As it turns out,

MSM models backed out from option data add signi�cant information to those

estimated from historical return data and enhance the forecast ability of future

volatility.

Calvet et al. (2013a) proposed an extension of the continuous-time MSM pro-

cess which in addition to the key properties of the basic MSM process also in-

corporates the leverage e�ect and dependence between volatility states and price

jumps. Their model can be conceived as an extension of a standard stochastic

volatility model in which long-run volatility is driven by shocks of heterogenous

frequency that also trigger jumps in the return dynamics, and, so are responsible

for negative correlation between return and volatility. They also develop a particle

�lter that permits the estimation of the model. By applying the model to option

data they �nd that it can closely reproduce the volatility smiles and smirks. Fur-

thermore, they also �nd that the model outperforms a�ne jump-di�usions and

asymmetric GARCH-type models in- and out-of-sample by a sizeable margin.

Calvet et al. (2013b) developed a class of dynamic term structure models in

which the number of parameters to be estimated is independent of the number

of factors selected. This parsimonious design is obtained by a cascading sequence

of factors of heterogenous durations that is modeled in the spirit of multifractal

models. The sequence of mean reversion rates of these factors follows a geometric

progression which is responsible for the hierarchical nature of the cascade in the

model. In their empirical application to a bandwidth of LIBOR and swap rates,

a cascade model with 15 factors provides a very close �t to the dynamics of the

term structure and outperforms random walk and autoregressive speci�cations in
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interest rate forecasting.

Taken as a whole, the empirical studies summarized above provide mounting

empirical evidence of the superiority of the MF over traditional GARCH models

(MS-GARCH, FIGRACH) in terms of forecasting of long-term volatility and re-

lated tasks such a VaR assessment. In addition, the model appears quite robust,

and has found successful applications in modeling of �nancial durations, the term

structure of interest rates and option pricing.

6 Conclusion

The motivation for studying multifractal models for asset price dynamics derives

from their built-in properties: since they generically lead to time series with fat

tails, volatility clustering and di�erent degrees of long-term dependence of power

transformations of returns, they are able to capture all the universal "stylized

facts" of �nancial markets. In the overview of extant applications above, MF-

type models typically exhibit a tendency to perform somewhat better in volatility

forecasting and VaR-assessment than the more traditional toolbox of GARCH-

type models. Furthermore, multifractal processes appear to be relatively robust

to misspeci�cation, they seem applicable to a whole variety of variables of interest

from �nancial markets (returns, volume, durations, interest rates) and are very

directly motivated by the universal �ndings of fact tails, clustering of volatility

and anomalous scaling. In fact, multifractal processes constitute the only known

class of models in which anomalous scaling is generic while all traditional asset-

pricing models have a limiting uni-scaling behavior. Capturing this stylized fact

may, therefore, well make a di�erence - even if one can never be certain that

multiscaling is not spuriously caused by an asymptotically unifractal model and

although those multifractal models that have become the workhorse in empirical

applications (MSM, MRW) are characterized themselves by only preasymptotic

multiscaling.

Obviously, the introduction of multifractal models in �nance did not unleash as

much research activity as that of the GARCH or SV families of volatility models

in the decades before. The overall number of contributions in this area is still rel-

atively small and comes from a relatively small group of active researchers only.

The reason for this abstinence might be that the �rst generation of multifrac-

tal models might have appeared clumsy and unfamiliar to �nancial economists.

Their non-causal principles of construction along the dimension of di�erent scales

of a hierarchical structure of dependencies might have appeared too di�erent from

known iterative time series models hitherto applied. In addition, the underlying
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multifractal formalism (including scaling functions and distribution of Hölder ex-

ponents) had been unknown in economics and �nance, and application of standard

statistical methods of inference to multifractal processes appeared cumbersome

or impossible. However, all these obstacles have been overcome with the advent

of the second generation of multifractal models (MSM and MRW) that are sta-

tistically well-behaved and of an iterative, causal nature. Besides their promising

performance in various empirical applications they even provide the additional ad-

vantage of having clearly de�ned continuous-time asymptotics so that applications

in dicrete- and in continuous-time can be embedded in a consistent framework.

While the relatively short history of multifractal models in �nance has already

brought about a variety of speci�cations and di�erent methodologies for statis-

tical inference, some areas can be identi�ed in which additional work should be

particularly welcome and useful. These include: multivariate MF models, appli-

cations of the MF approach beyond the realm of volatility models such as the MF

duration model, and its use in the area of derivative pricing.
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Figure 1: Cumulative distribution for daily returns of four South African stocks
(from 1973 until 2006). The solid lines correspond to the Gaussian and
Levy distributions. The tail behavior of all stocks is di�erent from that
of both the Gaussian and Levy distribution (for the latter, a charac-
teristic exponent α = 1.7 has been chosen that is a typical outcome of
estimating the parameters of this family of distributions for �nancial
data).
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Figure 2: Illustration of the long-term dependence observed in the absolute and
squared returns of the Standard & Poor's 500 index (S&P 500) (left
upper and central panel). In contrast, raw returns (lower left panel)
are almost uncorrelated. The determination of the corresponding Hurst
exponent H via the so-called Detrended Fluctuation Analysis (DFA, cf.
Chen et al. (2002) ) is displayed in the right-hand panels. Note that we
obtain the following scaling of the �uctuations (volatility): < F (t) >∼
tH . H = 0.5 corresponds to absence of long-term dependency while
H > 0.5 indicates a hyperbolical decay of the ACF, i.e. long-lasting
autoregressive dependency.
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Figure 3: Scaling exponents of moments for three selected �nancial time series and
an example of simulated returns from an MSM process. The empirical
samples run from 1998 to 2007, and the simulated series is the one
depicted in the lower panel of Fig. 5. The broken line gives the expected
scaling H(q) = q/2 under Brownian motion. No �t has been attempted
of the simulated to one of the empirical series.
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Figure 5: Simulation of a Markov-switching multifractal model (MSM) with Log-
normal distribution of the multipliers and k = 13 hierarchical levels.
The location parameter of the Lognormal distribution has been cho-
sen as λ = 1.05. The �rst panel illustrates the development of the
second multiplier (with average replacement probability of 2−11), the
second panel shows the sixth level, while the third panel shows the
product of all 13 multipliers. Returns in the lowest panel are simply
obtained by multiplying multifractal local volatility by Normally dis-
tributed increments.
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