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Abstract

We consider a portfolio optimization problem in a Black-Scholes model
with n stocks, in which an investor faces both fixed and proportional trans-
action costs. The performance of an investment strategy is measured by the
average return of the corresponding portfolio over an infinite time horizon.
At first, we derive a representation of the portfolio value process, whhich
only depends on the relative fractions of the total portfolio value that the
investor holds in the different stocks. This representation allows us to con-
sider these so-called risky fractions as the decision variables of the investor.
We show a certain kind of stationarity (Harris recurrence) for a quite flexi-
ble class of strategies (constant boundary strategies). Then, using renewal
theoretic methods, we are able to describe the asymptotic return by the
behaviour of the risky fractions in a “typical” period between two trades.
Our results generalize those of [4], who considered a financial market model
with one bond and one stock, to a market with a finite number n > 1 of
stocks.

Keywords: portfolio theory, transaction costs, Harris recurrence, renewal theory
JEL classification: G11, C61

1



1 Introduction

In this paper we consider a financial market model with one bond S0 and n stocks
S1, . . . , Sn which follow geometric Brownian motions.
We measure the performance of an investment strategy by its asymptotic return

R = lim inf
t→∞

1

t
E(logXt).

In a version without transaction costs, the problem of maximizing R among all
trading strategies was solved in [9]. It turned out that the solution can be found
quite easily by describing the dynamics of the portfolio value by the fractions of
total wealth held in the different stocks instead of using the absolute values. The
optimal strategy is to keep these “risky fractions” constantly equal to a certain
vector η̂, which requires continuous trading (of infinite variation on arbitrary
small time intervals) to balance out the fluctuations of the stock market. Of
course, this kind of behaviour of an investor is not realistic, especially not, if one
includes transaction costs, in which case such a strategy would lead to immediate
ruin.
To get a more realistic scenario, the basic model as described above was extended
by introducing various kinds of transaction costs in a variety of papers, starting
point usually being the case of n = 1 stock. Costs are often defined in three
different ways: proportionally to the volume of trade (proportional costs), pro-
portionally to the portfolio value (fixed costs), or consisting of a combination
of proportional and fixed costs. The research has shown that the structure of
optimal strategies depends essentially on the type of transaction costs and only
to a lesser amount on the optimization criterion.
[8] considered the problem of maximizing a discounted consumption criterion for
proportional costs in the case of one stock and made a conjecture for the struc-
ture of the optimal solution, which was rigorously proved to be valid in [3]. [12]
provide a numerical method to tackle the same problem in the general case with
n stocks.
The problem of maximizing the asymptotic return in the case of proportional
transaction costs in the one-stock case is examined in [14]. The optimal invest-
ment strategy consists in keeping the fraction of wealth invested in the stock in
a fixed interval [a, b]. The investor does not trade at all, as long as the risky
fraction is in (a, b). Whenever the risky fraction hits the boundary of this in-
terval, infinitesimal trading occurs, which just keeps the risky fraction inside the
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interval. [1]study the corresponding problem in the n-stock case. In this paper,
the problem is traced back to a variational inequality, and a numerical solution
is provided for the case of n = 2 stocks.
For fixed costs, an optimal strategy for the problem of maximizing the asymp-
totic growth rate in the one-stock case is given in [11]. Again, there is an interval
(a, b) for the risky fraction, where it is optimal not to trade at all. But when the
boundary of this interval is reached, due to the fixed costs the investor chooses a
certain point (constant over time) inside the interval as the new risky fraction. [2]
perform an asymptotical analysis (around the solution without transaction costs)
in the n-stock case to get approximate solutions.
[4] consider the one-stock case under a combination of fixed and proportional
costs. In this paper the analysis is restricted to so called constant boundary
strategies, which can be described by four parameters a < α < β < b. The
investor does not trade at all, as long as the risky fraction is in the interval (a, b).
When it hits the boundary at a resp. b, he chooses the new risky fraction as α
resp. β. It is shown in the paper that the asymptotic return of such a strategy
can be traced back to the behaviour of the risky fraction in a “typical” period
between two trades. This result is then used to get an explicit expression for
the asymptotic return, which allows a (nearly) explicit computation of the opti-
mal strategy within the class of constant boundary strategies. [5] show that this
strategy is in fact even optimal in the class of all trading strategies.
[7] treats the general case with n stocks under fixed and proportional costs for the
problem of maximizing a discounted consumption criterion and gives a solution
for the case of uncorrelated stock returns.
In this paper we consider a natural generalization of constant boundary strategies
to the case of n stocks, and we the extend the result of [4], which traces back the
asymptotic return to a typical period between two trades, to this general case.
The main result is stated as theorem 3.7.
In section 2 we introduce the model with fixed and proportional transaction
costs and show that there is a one-to-one correspondence between impulse control
strategies (specifying the absolute values of a transaction) and new risky frac-
tion strategies (specifying the fractions of wealth invested in the different stocks
after a transaction). Furthermore, we provide a factorization of the wealth into
the wealth gained in the periods between two trades, which leads to an additive
structure of the logarithmized wealth. In section 3 we introduce constant bound-
ary strategies and use the additive structure of the logarithmized wealth to adapt
renewal theoretic methods to the logarithmized wealth process, which allows us
to trace back the asymptotic return to a typical period between two trades.
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2 Fixed and proportional transaction costs

We consider a financial market model with one bond S0 and n stocks S1, . . . , Sn.
The prices (St)t∈[0,∞) = ((S0

t , . . . , S
n
t )T )t∈[0,∞) are given by the SDEs

dS0
t = rS0

t dt,

dSit = µiS
i
tdt+

n∑
j=1

σijS
i
tdW

j
t , i ∈ {1, . . . , n}, (1)

with starting values Si0 = 1, interest rate r ∈ R, trend µ = (µ1, . . . , µn)T ∈ Rn,
positive definite volatility matrix σ = {σij}i,j∈{1,...,n} and an n-dimensional Brow-
nian motion W = (W 1, . . . ,W n)T with standard filtration (Ft)t.
An investor faces a combination of costs proportional to the portfolio value (fixed
costs) and costs proportional to the trading volume in each stock (proportional
costs). The cost function c is therefore given by

c : (0,∞)× Rn 7→ (0,∞), (x,∆) 7→ δx+
n∑
i=1

γi|∆i|, (2)

where δ ∈ (0, 1), γ1, . . . , γn ∈ [0, 1 − δ). δ denotes the fraction of the portfolio
value and γi the fraction of the transaction volume in the i-th stock that has to
be paid for every transaction.
We do not allow short selling, so the range of admissible fractions of the total
portfolio value held in the stocks is given by

M = {π = (π1, . . . , πn)T ∈ [0, 1]n :
n∑
i=1

πi ≤ 1}. (3)

By the definition of c we immediately get

|c(x,∆)− c(x,∆′)| <
n∑
i=1

|∆i −∆′i| (4)

for all x > 0,∆,∆′ ∈ Rn with ∆ 6= ∆′ and

c(x,−π1x, . . . ,−πnx) < x (5)

for all x > 0, π ∈M.

From the fractions of wealth held in the stocks we can directly calculate the
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fraction of wealth held in the bond, so the following notation will be useful: For
every π = (π1, . . . , πn)T ∈M let

π0 = 1−
n∑
i=1

πi. (6)

As the cost structure in our model includes a fixed component, infinitesimal
trading of an investor automatically leads to immediate ruin. So it is sensible to
describe the trading of an investor by an increasing sequence of stopping times
(the times when trading occurs) and a sequence of Rn-valued random variables,
whose i-th entries are the amounts of money, for which the i-th stock is bought
(positive sign) or sold (negative sign) at the trading times, see e.g. [11]. Such
strategies are often called impulse control strategies.
We are now in the position to introduce the most important notions to formalize
the trading in our model. This is done as in [4], [5].

2.1 Definition
(i) An impulse control strategy K̃ = (τk,∆k)k∈N0 is given by stopping times
0 = τ0 ≤ τ1 ≤ . . . ≤ ∞ with P (τk → ∞) = 1 and by Fτk-measurable Rn-valued
random variables (∆k)k∈N0 .

(ii) In the following we consider a fixed starting wealth X0 = x > 0. We de-
fine (0,∞)-valued processes

• (Xt)t∈[0,∞) (wealth process),

• (Vk)k∈N0 (new wealth process)

and M-valued processes

• (πt)t∈[0,∞) = ((π1
t , . . . , π

n
t )T )t∈[0,∞) (risky fraction process),

• (ηk)k∈N0 = ((η1
k, . . . , η

n
k )T )k∈N0 (new risky fraction process)

by setting for all k ∈ N0 on {τk <∞}
Vk = Xτk − c(Xτk ,∆k), (7)

ηik =
πiτkXτk + ∆i

k

Vk
, i ∈ {1, . . . , n}, (8)

Xt =
n∑
i=0

ηik
Sit
Siτk

Vk, t ∈ (τk, τk+1], (9)

πit =
ηikVkS

i
t

SiτkXt

, t ∈ (τk, τk+1], i ∈ {1, . . . , n}. (10)
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An impulse control strategy is called admissible, if for all starting values π0 =
π ∈M of the risky fractions we have Vt > 0 and πt ∈M for all t > 0.
In the following we denote

Pπ = P (·|π0 = π) (11)

for all π ∈M, and we write Eπ for the expectation with respect to Pπ .
It is frequently useful to indicate which strategy K̃ is used. For this, we write
XK̃
t (instead of Xt).

(iii) For any admissible impulse control strategy K̃ the asymptotic return for
a starting risky fraction π ∈M is given by

RK̃(π) = lim inf
t→∞

1

t
Eπ(logXK̃

t ). (12)

In the portfolio optimization problem of [9] without transaction costs, it proved
essential to consider risky fractions instead of the absolute trading volumes as the
decision variables of an investor. Motivated by this fact, we shall now describe
the trading of an investor by “new risky fraction strategies” (as defined below)
instead of impulse control strategies, which will be justified by establishing a
one-to-one relationship between these classes of strategies.

2.2 Definition
A New Risky Fraction strategy (NRF strategy) (τk, ηk)k∈N0 is given by stopping
times 0 = τ0 ≤ τ1 ≤ . . . ≤ ∞ with P (τk → ∞) = 1, and by Fτk-measurable
M-valued random variables ηk.

The following lemma is the main step to prove the one-to-one relationship of
NRF strategies and impulse control strategies. It basically states that given any
portfolio value x and any vector of risky fractions π, the absolute trading volumes
of a transaction can be recovered by the new risky fractions (after the transac-
tion) and vice versa. This is easily shown in the case of only one stock (see [4],
Lemma 3.5), but it is non-trivial in the general case.

2.3 Lemma
Let x > 0 and π ∈M.
(i) Let

D(x, π) = {∆ ∈ Rn : πix+ ∆i ≥ 0 for all i ∈ {1, . . . , n},

π0x− c(x,∆)−
n∑
i=1

∆i ≥ 0}. (13)
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Then D(x, π) 6= ∅, and for all ∆ ∈ D(x, π) we have x− c(x,∆) > 0.
An impulse control strategy (τk,∆k)k∈N0 is admissible, if and only if for all k ∈ N0

we have ∆k ∈ D(Xτk , πτk).
(ii) The mapping

fx,π : D(x, π) 7→ M, ∆ 7→ (
π1x+ ∆1

x− c(x,∆)
, . . . ,

πnx+ ∆n

x− c(x,∆)
)T . (14)

is a bijection.

Proof:
(i) Note first that for all ∆ ∈ Rn it holds that

x− c(x,∆) =
n∑
i=1

(πix+ ∆i) + (π0x− c(x,∆)−
n∑
i=1

∆i). (15)

Let ∆ = (−π1x, . . . ,−πnx)T . By (5) we get x − c(x,∆) > 0, so (15) shows
∆ ∈ D(x, π), hence D(x, π) 6= ∅.
Now let ∆ ∈ D(x, π). By (13), all n+ 1 addends on the right hand side are ≥ 0.
If all of the first n addends are equal to 0, we have ∆ = ∆, hence the (n+ 1)-th
addend is > 0, which shows x− c(x,∆) > 0.
The last claim now follows directly from (7) and (8).

(ii) We denote the i-th coordinate function of fx,π by fi (i.e. fx,π = (f1, . . . , fn)T ).
At first we show that fx,π is injective.
We assume that there exist ∆, ∆̃ ∈ D(x, π) with fx,π(∆) = fx,π(∆̃) and ∆ 6= ∆̃.
Without loss of generality we may assume that there exists an i with ∆i > ∆̃i.

Case 1: There exists a j with ∆j < ∆̃j.
Then

fi(∆)fj(∆̃) =
(πix+ ∆i)(πjx+ ∆̃j)

(x− c(x,∆))(x− c(x, ∆̃))

>
(πix+ ∆̃i)(πjx+ ∆j)

(x− c(x,∆))(x− c(x, ∆̃))

= fi(∆̃)fj(∆), (16)

which is a contradiction.
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Case 2: It holds ∆j ≥ ∆̃j for all j.
Then we get (using (4))

(
n∑
j=1

fj(∆))(1−
n∑
j=1

fj(∆̃)) =
(
∑n

j=1(πjx+ ∆j))(π0x− c(x, ∆̃)−
∑n

j=1 ∆̃j)

(x− c(x,∆))(x− c(x, ∆̃))

>
(
∑n

j=1(πjx+ ∆̃j))(π0x− c(x,∆)−
∑n

j=1 ∆j)

(x− c(x,∆))(x− c(x, ∆̃))

= (
n∑
j=1

fj(∆̃))(1−
n∑
j=1

fj(∆)), (17)

which is again a contradiction.
Hence fx,π is injective.

We now show that fx,π is surjective.
Let b = (b1, . . . , bn)T ∈ M. As fx,π(∆) = 0, we can assume b 6= 0 and without
loss of generality even b1 > 0.
For i ∈ {1, . . . , n} let

β : [−π1x,∞) 7→ Rn, y 7→ (y,
b2

b1
(y+ π1x)− π2x, . . . ,

bn

b1
(y+ π1x)− πnx)T , (18)

and β1, . . . , βn the coordinate functions of β. Furthermore let

h : [−π1x,∞) 7→ R, y 7→ π0x− c(x, β(y))−
n∑
i=1

βi(y). (19)

h is continuous, strictly decreasing (according to (4)) and, using (5), we get

h(−π1x) > 0, lim
y→∞

h(y) = −∞. (20)

Thus by the intermediate value theorem of elementary calculus there exists a
unique m ∈ (−π1x,∞) with h(m) = 0, and we have

{y : h(y) ≥ 0} = [−π1x,m]. (21)

As all mappings βi are strictly increasing, it now directly follows from (13) that

{y : β(y) ∈ D(x, π)} = [−π1x,m]. (22)

Because of
n∑
i=1

fi(β(−π1x)) = 0,
n∑
i=1

fi(β(m)) = 1 (23)
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there exists (by the intermediate value theorem again) y∗ ∈ [−π1x,m] with

n∑
i=1

fi(β(y∗)) =
n∑
i=1

bi. (24)

Then we have ∆∗ = β(y∗) ∈ D(x, π), and the following equations hold:

fi(∆
∗) =

bi

b1
f1(∆∗) for all i ∈ {1, ..., n}, (25)

n∑
i=1

fi(∆
∗) =

n∑
i=1

bi. (26)

This shows fi(∆
∗) = bi for all i ∈ {1, . . . , n}, hence fx,π(∆∗) = b, so the claim is

proved.

2.4 Theorem
The mapping

f : {K̃ : K̃ admissible impulse control strategy} 7→ {K : K NRF strategy},
K̃ 7→ ((τ K̃k )k∈N0 , (η

K̃
k )k∈N0) (27)

is a bijection.

Proof:
Let K = (τKk , η

K
k )k∈N0 be an NRF strategy, and let fx,π be defined as in (14). We

define
∆K

0 = f−1
X0,π0

(ηK0 ), (28)

and recursively
∆K
k = f−1

X
τK
k
,π
τK
k

(ηKk ), (29)

where XτKk
, πτKk are defined as in (7)-(10) (hence these random variables are

uniquely determined by ∆K
0 , . . . ,∆

K
k−1). By Lemma 2.3 the process

δ(K) = (τKk ,∆
K
k )k∈N0 (30)

is an admissible impulse control strategy.
Using the fact that ηK̃k = fXK̃

τk
,πK̃τk

(∆k) for all admissible impulse control strategies

K̃ and all k ∈ N0, it follows by induction that the function δ defined by (30) is
an inverse function to f .
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Theorem 2.4 justifies to use NRF strategies instead of impulse control strate-
gies to describe trading strategies. We will now express the wealth process of a
portfolio in terms of the risky fractions.
In the following let for any t ∈ [0,∞)

Mt = sup{k ∈ N0 : τk < t}. (31)

2.5 Theorem
Let (τk,∆k)k∈N0 be an admissible impulse control strategy with ηik > 0 for all
k ∈ N0, i ∈ {1, . . . , n}.
(i) For all k ∈ N0, i ∈ {1, . . . , n} we have

Aik = sign(∆i
k) = sign(ηik(1− δ −

n∑
j=1

γj|
ηjk
ηik
πiτk − π

j
τk
|)− πiτk). (32)

(ii) For all k ∈ N0 we have

Vk =
1− δ +

∑n
i=1 γiA

i
kπ

i
τk

1 +
∑n

i=1 γiA
i
kη

i
k

Xτk . (33)

(iii) If ηk ∈ int(M) for all k ∈ N0 (and hence πt ∈ int(M) for all t ∈ (0,∞)),
then for all t ∈ (0,∞) we have

Xt = X0e
rtη

0
Mt

π0
t

1− δ +
∑n

i=1 γiA
i
0π

i
0

1 +
∑n

i=1 γiA
i
0η
i
0

Mt∏
k=1

η0
k−1

π0
τk

1− δ +
∑n

i=1 γiA
i
kπ

i
τk

1 +
∑n

i=1 γiA
i
kη

i
k

. (34)

Proof:
(i) Let k ∈ N0, i ∈ {1, . . . , n}. From (7), (8) and (2) it follows that

∆i
k = ηik(Xτk(1− δ)−

n∑
j=1

γj|∆j
k|)− π

i
τk
Xτk

= ηik(Xτk(1− δ)−
n∑
j=1

γj|
ηjk
ηik

(πiτkXτk + ∆i
k)− πjτkXτk |)− πiτkXτk . (35)

For any x > 0, η, π ∈M with ηi > 0 we now define

gx,π,η : R 7→ R, z 7→ ηi(x(1− δ)−
n∑
j=1

γj|
ηj

ηi
(πix+ z)− πjx|)− πix. (36)
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A simple calculation shows gx,π,η(−πix) > −πix, furthermore gx,π,η is continuous
and concave, and for the right-hand side derivative we have

lim
z→∞

g′x,π,η(z) < 0. (37)

It follows that gx,π,η has a uniquely determined fixed point z∗ on (−πix,∞) with

sign(z∗) = sign(gx,π,η(0)) = sign(ηi(1− δ −
n∑
j=1

γj|
ηj

ηi
πi − πj|)− πi). (38)

Using ∆i
k = gXτk ,πτk ,ηk(∆

i
k) the claim follows.

(ii) From (7), (8) and (2) we get

Vk = (1− δ)Xτk −
n∑
i=1

γiA
i
k(η

i
kVk − πiτkXτk), (39)

solving for Vk proves (33).

(iii) By using (9) and (10) we get

Xt = (η0
k−1e

r(t−τk−1) +
n∑
i=1

πitXt

Vk−1

)Vk−1 (40)

for all k ∈ N and t ∈ (τk−1, τk] and hence

Xt =
η0
k−1

π0
t

er(t−τk−1)Vk−1. (41)

Plugging into (33) and using induction yields

VMt = V0e
rτMt

Mt∏
k=1

(
η0
k−1

π0
τk

1− δ +
∑n

i=1 γiA
i
kπ

i
τk

1 +
∑n

i=1 γiA
i
kη

i
k

). (42)

Now the claim follows from (33) and (41).

11



We are now in the position to describe (as announced above) the trading in our
model by NRF strategies.

2.6 Definition
(i) Let f be the bijection of Theorem 2.4. For a given NRF strategy K we de-
fine the risky fraction process (πKt )t∈[0,∞), the wealth process (XK

t )t∈[0,∞) and the
asymptotic return RK (resp. RK(x)) by the corresponding processes/variables of
the impulse control strategy K̃ = f−1(K).
(ii) The type of transaction in stock i ∈ {1, . . . , n} is defined by

Ai(π, η) = sign(ηi(1− δ −
n∑
j=1

γj|
ηj

ηi
πi − πj|)− πi). (43)

for all π, η ∈M with ηi > 0.
(iii) For all π, η ∈ int(M) we define the gain function g by

g(π, η) = log(
η0

π0
) + log(

1− δ +
∑n

i=1 γiA
i
k(π, η)πi

1 +
∑n

i=1 γiA
i
k(π, η)ηi

). (44)

For the rest of this section we take an NRF strategy with ηk ∈ int(M) for all
k ∈ N0 as given.

2.7 Remark
Taking logarithms and changing indices in Theorem 2.5 (iii) immediately yields

logXt = logX0 + rt+ log(
π0

0

π0
t

) +
Mt∑
k=0

g(πτk , ηk). (45)

If furthermore lim supt→∞
1
t
E(log π0

t ) = 0, it follows that

RK = r + lim inf
t→∞

1

t
E(

Mt∑
k=0

g(πτk , ηk)). (46)

The representation (46) will be the starting point for our considerations in Sec-
tion 3. Additionally, we need some technical results on the dynamics of the risky
fraction process between two transactions.
For this, it proves useful to introduce the wealth process without trading (X t)t∈[0,∞)

and the risky fraction process without trading (πt)t∈[0,∞), which are defined by

X t =
n∑
i=0

ηi0V0S
i
t , πit =

ηi0V0S
i
t

X t

. (47)
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The dynamics of the wealth process without trading can be described by a sys-
tem of stochastic differential equations stated in the following lemma, which is
the same as Lemma 3.1 of [11].

2.8 Lemma
The process (πt)t∈[0,∞) solves the stochastic differential equations

dπit = (πit((ei − πt)T (µ− r1− σσTπt)))dt+ (πit(ei − πt)Tσ)dWt (48)

for all i ∈ {1, . . . , n}, where ei denotes the i-th unit vector.
The infinitesimal generator L of (πt)t∈[0,∞) is thus given by

Lu(x) =
n∑
i=1

xi(ei − x)T (µ− r1− σσTx)
∂u(x)

∂xi

+
1

2

n∑
i=1

n∑
j=1

xixj(ei − x)TσσT (ej − x)
∂2u(x)

∂xi∂xj
(49)

for all u ∈ C2(int(M)).

We conclude this section with a technical result, crucially required in Section
3, which states that the infinitesimal generator of the risky fraction process is
uniformly elliptic on closed subsets of int(M). We omit the elementary proof.

2.9 Lemma
For all x ∈ Rn let

Σ(x) = (xixj(ei − x)TσσT (ej − x))i,j∈{1,...,n}. (50)

Let A ⊆ Rn with A ⊆ int(M). Then there exist λ,Λ with 0 < λ < Λ, such that
for all x ∈ A and all v ∈ Rn we have

λvTv ≤ vTΣ(x)v ≤ ΛvTv. (51)

3 Constant boundary strategies

In the model without transaction costs the main benefit of considering risky frac-
tions instead of the absolute sizes of transactions was the result that the optimal
behaviour of an investor did not change over time. The representation (46) of
the asymptotic return given in the last section suggests that a certain kind of
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stationarity should also be existent in the model with transaction costs.
Hence, the following behaviour of an investor seems reasonable: Starting with
a favourable portfolio, the investor intervenes, whenever the risky fractions have
(caused by the fluctuations of the stock prices) left a fixed set (of favourable risky
fractions) A. The portfolio has then become just unfavourable enough that he
accepts the costs for a transaction to rearrange his portfolio. He then chooses
his new portfolio in such a way that the new risky fractions are in a subset B
of the favourable set A. As our cost structure includes proportional costs, his
choice φ(x) will depend on the point x ∈ ∂A, where the risky fraction process
leaves A. Starting with the chosen new risky fractions the investor now iterates
this procedure.
Any of such so called constant boundary strategies is determined by the sets A,B
and the “choice function” φ : ∂A 7→ B. The examination of constant boundary
strategies is additionally motivated by the fact that (as mentioned in the intro-
duction) the solution to the problem of maximizing the asymptotic return in the
special case of only one stock can be found in this class of strategies as was shown
in [5].
We start by giving a formal definition of constant boundary strategies.

3.1 Definition
An NRF-strategy (τk, ηk)k∈N0 is called constant boundary strategy (CB strategy),
if there exist an open, connected set A with Ā ⊆ int(M), a closed set B ⊆ A
and a measurable function φ :M 7→ B with

ηk = φ(πτk), τk+1 = inf{t ≥ τk|πt 6∈ A} (52)

for all k ∈ N0.
We denote a CB strategy by (A,B, φ). Note that we define φ on the domain M
in order to get a well-defined starting value for the new risky fraction process;
for the future behaviour of the process only φ|∂A is relevant. As the asymptotic
return does not depend on the costs for the first transaction, we may assume
without loss of generality π0 ∈ ∂A.
Furthermore, in the following let

h : ∂A 7→ R, x 7→ g(x, φ(x)), (53)

where g is the function defined in Remark 2.7.
According to (46), for any CB strategy K = (A,B, φ)

RK(x) = r + lim inf
t→∞

1

t
Ex(

Mt∑
k=0

h(πτk)). (54)
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For the rest of this paper we take a CB strategy (A,B, φ) as given. According
to (54), the asymptotic return does not depend on the starting value π0, so we
may assume without loss of generality π0 ∈ ∂A. The strong Markov property of
the price process of the stocks implies that (πτk)k∈N0 is (with respect to any mea-
sure Px) a time-homogeneous Markov chain with state space (∂A,B(∂A)), where
B(∂A) denotes the Borel-σ-algebra. Let Q be the transition kernel of (πτk)k∈N0 .
The following theorem, which reveals a technical property of Q that will be very
useful in constructing a renewal scheme, is an adaption of Theorem 7.4.3 in [13]
to our situation.

3.2 Lemma
Q is a strictly aperiodic Harris kernel with regeneration set ∂A, i.e. there exist a
probability measure Ψ on (∂A,B(∂A)) and an α ∈ (0, 1) such that for all x ∈ ∂A,
C ∈ B(∂A)

Q(x,C) ≥ αΨ(C). (55)

Proof:
Lemma 2.9 ensures that the conditions of Theorem 7.4.3 in [13] are fulfilled.
Applying this theorem to our situation yields that for any x, y ∈ ∂A the measures
Q(x, ·) and Q(y, ·) are equivalent and there exists α > 0 with

dQ(x, ·)
dQ(y, ·)

≥ α. (56)

By choosing an arbitrary x∗ ∈ ∂A and setting Ψ = Q(x∗, ·), we get the desired
result.

3.3 Remark
The Harris property established above for Q could directly be used to construct a
renewal scheme for (πτk)k∈N0 . But for the the asymptotic return, in addition the
times between two trades τk−τk−1 are of relevance. We thus have to examine the
process (πτk , τk − τk−1)k∈N0 (where we use the convention τ−1 = 0). To simplify
the notation, we set

(Zk, tk)k∈N0 = (πτk , τk − τk−1)k∈N0 .

In the following let α and Ψ be chosen as in Lemma 3.2. To exploit the Harris
property of Q, we introduce a transition kernel Q̂ by

Q̂(x,C) =
Q(x,C)− αΨ(C)

1− α
. (57)
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Without loss of generality, we may assume that the underlying probability space
of our model is rich enough to admit a sequence (ηk)k∈N0 of {0, 1}-valued random
variables with the following properties: For all k ∈ N0 we have P (ηk = 0) = α,
ηk is independent of (Zl, tl, ηl−1)l≤k, and

P (Zk+1 ∈ C, tk+1 ∈ D|(Zl, tl, ηl−1)l≤k, ηk = 0)

= Ψ(C)

∫
PZk(τ1 ∈ D|πτ1 = y)Ψ(dy|C), (58)

P (Zk+1 ∈ C, tk+1 ∈ D|(Zl, tl, ηl−1)l≤k, ηk = 1)

= Q̂(Zk, C)

∫
PZk(τ1 ∈ D|πτ1 = y)Q̂(Zk, dy|C), (59)

where these integrals are defined to be 0 if the specified elementary conditional
probability measures do not exist.
Hence if ηk = 0 (“renewal”), Zk+1 is generated by Ψ and tk+1 is generated by the
corresponding conditional distribution. If ηk = 1, (Zk+1, tk) is generated in such
a way that the unconditional distribution of (Zk+1, tk+1) (prior to the knowledge
of ηk) remains unchanged.
In the following, for any x ∈ ∂A, t ∈ [0,∞), η ∈ {0, 1} let P(x,t,η) = P (·|Z0 =
x, tk = t, ηk = 0). For x ∈ ∂A let Px = P (·|Z0 = x) as introduced in (11), and
for any probability measure µ on B(∂A) let

Pµ =

∫
Px(·)µ(dx). (60)

Furthermore, we consider two different filtrations, which are defined by Ak =
σ((Zj, tj)0≤j≤k) and Ck = σ((Zj, tj, ηj)0≤j≤k).
Finally, we define random variables (Tk)k∈N by

T0 = 0, Tj = inf{k > Tj−1 : ηk−1 = 0}. (61)

The following lemma shows, how the Harris property of the Markov chain (πτk)k∈N0

can be used to construct a renewal scheme “delayed by one period” for the Markov
chain (Zk, tk)k∈N0 .

3.4 Lemma
(i) Tj − 1 is a stopping time with respect to (Ck)k∈N0 for every j ∈ N, and Tj is a
randomized stopping time with respect to (Ak)k∈N0 for every j ∈ N0 , i.e. for all
k ∈ N0 we have

P (Tj > k|Ak) = P (Tj > k|A∞). (62)

16



(ii) For all C ∈ B((∂A× [0,∞)× {0, 1})N0) and all j ∈ N

P ((ZTj+k, tTj+k, ηTj+k)k≥1 ∈ C|CTj−1) = PΨ((Zk, tk, ηk)k≥1 ∈ C). (63)

(iii) For all C ∈ B((∂A× {0, 1})N0) and all j ∈ N

P ((ZTj+k, ηTj+k)k≥0 ∈ C|CTj−1) = PΨ((Zk, ηk)k≥0 ∈ C). (64)

Proof:
(i) Let j, k ∈ N. We have

{Tj > k} = {|{m ≤ k − 1 : ηm = 0}| ≤ j − 1} ∈ Ck−1, (65)

thus Tj − 1 is a stopping time with respect to (Ck)k∈N0 .
The second assertion is trivial for j = 0 or k = 0, so we have to show

P (Tj > k|Ak) = P (Tj > k|A∞) (66)

for j, k ∈ N. Note that for all C ∈ B((∂A× [0,∞)× {0, 1})N0)

P ((Zk+l, tk+l, ηk+l)l≥1 ∈ C|Ck−1,Ak)

= E(P ((Zk+l, tk+l, ηk+l)l≥1 ∈ C|Ck)|Ck−1,Ak)

= E(P(Zk,tk,ηk)((Yl, tl, ηl)l≥1 ∈ C)|Ck−1,Ak)

= αP(Zk,tk,0)((Yl, tl, ηl)l≥1 ∈ C) + (1− α)P(Zk,tk,1)((Yl, tl, ηl)l≥1 ∈ C),

where we used the independence of ηk and σ(Ck−1,Ak) in the last equality. Let

Ck+1,∞ = σ((Zk+l, tk+l, ηk+l)l≥1). (67)

The calculation above shows that for all F ∈ Ck+1,∞

P (F |Ck−1,Ak) = P (F |Ak), (68)

i.e. Ck+1,∞ and Ck−1 are independent given Ak. So for all G ∈ Ck−1 we have

P (G|Ak, Ck+1,∞) = P (G|Ak), (69)

which implies (setting G = {Tj > k})

P (Tj > k|A∞) = P (Tj > k|Ak). (70)
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(ii) Let C ∈ B((∂A× [0,∞)× {0, 1})N0) and j ∈ N. We have

P ((ZTj+k, tTj+k, ηTj+k)k≥1 ∈ C|CTj−1)

= E(P ((ZTj+k, tTj+k, ηTj+k)k≥1 ∈ C|CTj)CTj−1)

= E(P(ZTj ,0,ηTj )((Zk, tk, ηk)k≥1 ∈ C)|CTj−1)

= E(ZTj−1,0,0)(P(Z1,0,η1)((Zk, tk, ηk)k≥1 ∈ C))

= α

∫
P(x,0,0)((Zk, tk, ηk)k≥1 ∈ C)Ψ(dx)

+(1− α)

∫
P(x,0,1)((Zk, tk, ηk)k≥1 ∈ C)Ψ(dx)

= PΨ((Zk, tk, ηk)k≥1 ∈ C). (71)

(iii) This assertion can be proved analogous to (ii).

With respect to PΨ, T1 is geometrically distributed with parameter α, hence
EΨ(T1) = 1

α
<∞. So the unique invariant distribution of (Zk)k∈N0 is given by

ξ(C) = αEψ(

T1−1∑
k=0

1{Zk∈A}) (72)

for all C ∈ B(∂A) (see [10], Theorems 10.4.9, 10.4.10). By the usual approxi-
mation procedure, we can conclude that for any positive or bounded measurable
function f : ∂A 7→ R ∫

f(x)ξ(dx) = αEΨ(

T1−1∑
k=0

f(Zk)). (73)

Part (iii) of the lemma above shows that the future behaviour of the process
(Zk)k∈N0 starting at any point in time Tj (j ∈ N) depends neither on j nor on
the history of the process. For this reason, the variables (Tj)j∈N are called regen-
eration times of (Zk)k∈N0 .
Lemma 3.4 will enable us in Theorem 3.7 to trace back the asymptotic return
to the behaviour of the process (Zk, tk)k∈N0 in a cycle between two regeneration
times. The following Lemma 3.5 will then allow us to trace back the asymptotic
return to the behaviour in a “typical” period between two trades.
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3.5 Lemma
(i) We have

sup
x∈∂A

Ex(

T2−1∑
k=0

tk) <∞ (74)

and

Eξ(t1) = αEΨ(

T2−1∑
k=T1

tk). (75)

(ii) For all bounded, measurable functions f

sup
x∈∂A

Ex(

T1−1∑
k=0

|f(Zk)|) <∞ (76)

and

Eξ(f(Z1)) = αEΨ(

T1−1∑
k=0

f(Zk)). (77)

Proof:
(i) At first we show

sup
x∈∂A

Ex(τ1) <∞. (78)

Let L be the infinitesimal generator of (πt)t∈[0,∞) (see (49)). Furthermore, let
u : A 7→ R be a continuous function which solves Lu = 1 on A (for the existence
of u see [13], Theorem 3.3.1). By the Feynman-Kac-formula we get for all x ∈ ∂A
and all m ∈ N

Ex(u(πτ1∧m)) = u(φ(x)) + Ex(

τ1∧m∫
0

Lu(πs)ds), (79)

hence
Ex(τ1 ∧m) ≤ 2 sup

y∈A
|u(y)|. (80)

Taking the limit m → ∞, we obtain the desired result (78) by the monotone
convergence theorem.
In the following let

M =

sup
x∈∂A

Ex(τ1)

min{α, 1− α}
. (81)
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For all x ∈ ∂A, t ∈ [0,∞) and D ∈ B([0,∞)) we have

P(x,t,0)(t1 ∈ D) =

∫
Px(τ1 ∈ D|πτ1 = y)Ψ(dy)

≤ 1

α

∫
Px(τ1 ∈ D|πτ1 = y)Q(x, dy)

=
1

α
Px(τ1 ∈ D), (82)

hence E(x,t,0)(t1) ≤ M , and with identical arguments we get E(x,t,1)(t1) ≤ M . So
we have shown that

E(x,t,η)(t1) ≤M (83)

for all (x, t, η) ∈ S. Now for all x ∈ ∂A we get

Ex(

T2−1∑
k=0

tk) = Ex(
∞∑
k=0

tk1{T2>k})

=
∞∑
k=0

Ex(Ex(tk1{T2>k}|Ck−1))

=
∞∑
k=0

Ex(1{T2>k}Ex(tk|Ck−1))

=
∞∑
k=0

Ex(1{T2>k}E(Zk−1,tk−1,ηk−1)(tk))

≤ M
∞∑
k=0

Px(T2 > k)

= MEx(T2) < ∞, (84)

which proves (74).
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We now show equation (75).
Using the fact that P (T1 > k|A∞) is Ak-measurable, we get

Eξ(t1) =

∫
Ex(t1)ξ(dx) = αEΨ(

T1−1∑
k=0

EZk(t1))

= αEΨ(

T1−1∑
k=0

EΨ(tk+1|Ak)) = αEΨ(
∞∑
k=0

EΨ(tk+1|Ak)1{T1>k})

= α
∞∑
k=0

EΨ(EΨ(EΨ(tk+1|Ak)1{T1>k}|A∞))

= α
∞∑
k=0

EΨ(PΨ(T1 > k|A∞)EΨ(tk+1|Ak))

= α
∞∑
k=0

EΨ(EΨ(EΨ(tk+11{T1>k}|A∞)|Ak))

= α
∞∑
k=0

EΨ(tk+11{T1>k}) = αEΨ(

T1−1∑
k=0

tk+1)

= α(EΨ(tT1) + EΨ(

T1−1∑
k=1

tk))

= α(EΨ(tT1) + EΨ(EΨ(

T2−1∑
k=T1+1

tk|CT1−1)))

= αEΨ(

T2−1∑
k=T1

tk). (85)

Here we used Lemma 3.4 (ii) to get the last but one equality.

(ii) Using the boundedness of f , (76) can be shown as (74). Furthermore, we
have

Eξ(f(Z1)) =

∫
Ex(f(Z1))ξ(dx) =

∫ ∫
f(y)Q(x, dy)ξ(dx)

=

∫
f(x)ξ(dx) = αEΨ(

T1−1∑
k=0

f(Zk)). (86)

In principle, we are now in the position to prove the main theorem of this paper,
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which allows to trace back the asymptotic return of a CB strategy by the be-
haviour of the risky fractions in a typical period. However, in the proof we will
use two renewal theoretic results (Wald’s equation, elementary renewal theorem)
for r-independent random variables, which are content of the following lemma.
Both of them are only slight modifications of those given in [6] and can be proved
similarly so we omit the proof.

3.6 Lemma
Let (Xj)j∈N0 be an integrable stochastic process, adapted to a filtration (Gj)j∈N0 ,
such that Xi and Xj are identically distributed for all i, j ≥ 1 and there exists
r ∈ N0, such that (Xj+i)i≥r+1 is independent of Gj for all j ∈ N0. Furthermore,
let

Sm =
m∑
j=0

Xj (87)

for all m ∈ N0.
(i) Let τ be an integrable stopping time (with respect to (Gj)j∈N0). Then we have

E(Sτ+r) = E(X0) + E(τ + r)E(X1). (88)

(ii) Let Xj ≥ 0 for all j ∈ N0, and E(X1) > 0. For all t ∈ [0,∞) we set

N(t) = inf{m ∈ N : Sm > t}. (89)

Then

lim
t→∞

E(N(t))

t
=

1

E(X1)
. (90)

3.7 Theorem
For all x ∈ ∂A we have

RK(x) = r +
Eξ(h(πτ1))

Eξ(τ1)
. (91)

Proof:
Let x ∈ ∂A. With Mt defined as in (31), we have

Mt = sup{k ∈ N0 :
k∑
l=0

tl ≤ t}. (92)
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As h is bounded, from (54) we get

RK(x) = r + lim inf
t→∞

1

t
Ex(

Mt+1∑
k=0

h(Zk)). (93)

For all j ∈ N0 let

Yj =

Tj+1−1∑
k=Tj

h(Zk), dj =

Tj+1−1∑
k=Tj

tk, (94)

and for all t ∈ [0,∞) let

N(t) = inf{m ∈ N :
m∑
j=0

dj > t}. (95)

We now show that

RK(x) = r + lim inf
t→∞

1

t
Ex(

N(t)∑
j=0

Yj). (96)

For this, note that Mt + 1 is a stopping time with respect to (Ck)k∈N0 due to

{Mt + 1 > k} = {
k∑
l=1

tl ≤ t} ∈ Ck. (97)

Setting K = supy∈∂A |h(y)|, the representation (96) now follows from

|Ex(
N(t)∑
j=0

Yj)− Ex(
Mt+1∑
k=0

h(Zk))|

≤ Ex(

TN(t)+1−1∑
k=Mt+2

|h(Zk)|)

≤ KEx((TN(t)+1 − 1)− (Mt + 1))

= KEx(inf{k ≥ 0 : ηk+Mt+1 = 0})
= KEx(E(ZMt+1,tMt+1,ηMt+1)(inf{k ≥ 0 : ηk = 0}))

≤ K

α
, (98)

For all m ∈ N0 we set
Gm = σ((Yj, dj)0≤j≤m). (99)
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It can be shown similarly to (97) that N(t) is a stopping time with respect to
(Gm)m∈N0 . According to Lemma 3.4 (iii), (Yj)j≥1 is a sequence of Px-i.i.d random
variables. Furthermore, we have P Y1

x = P Y0
Ψ , and for all j ≥ 1 Yj is independent

of Gj−1. Finally, according to Lemma 3.5 (ii), Yj is integrable for all j ∈ N0. This
ensures that we may apply the generalized Wald equation (Lemma 3.6 (i)) to get

RK(x) = r + lim inf
t→∞

1

t
Ex(

N(t)∑
j=0

Yj)

= r + lim inf
t→∞

1

t
(Ex(Y0) + Ex(N(t))Ex(Y1))

= r + lim inf
t→∞

1

t
Ex(N(t))EΨ(Y0). (100)

Now let

Gm = Gm+1 für alle m ∈ N0, (101)

d0 = d0 + d1, (102)

dj = dj+1 für alle j ∈ N, (103)

Sm = d0 + d1 +
m+1∑
j=2

dj (104)

=
m∑
j=0

dj für alle m ∈ N0. (105)

According to Lemma 3.4 (ii), (dj)j≥1 is a sequence of Px-i.i.d. random variables
and for all j ∈ N≥2 dj is independent of Gj−2. Furthermore, according to Lemma
3.5 (i), dj is Px-integrable for all j ∈ N0.
Noting that

N(t) + 1 = inf{m ∈ N0 : Sm > t}. (106)

we get by the generalized elementary renewal theorem (Lemma 3.6 (ii)) and
Lemma 3.4 (ii)

lim
t→∞

1

t
Ex(N(t) + 1) =

1

Ex(d1)
=

1

Ex(d2)
=

1

EΨ(d1)
. (107)

Finally, using Lemma 3.5 we get the desired result

RK(x) = r + lim inf
t→∞

EΨ(Y0)
Ex(N(t))

t
= r +

EΨ(Y0)

EΨ(d1)

= r +
Eξ(h(Z1))

Eξ(t1)
= r +

Eξ(h(πτ1))

Eξ(τ1)
. (108)
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Conclusion

The problem treated in this paper is the generalization of constant boundary
strategies from the case of one stock to the case of n stocks and the resulting
mathematical treatment. It is shown using methods from diffusion processes,
Harris chains, and renewal theory that the asymptotic return is described by the
behaviour of the risky fractions in a “typical” period between two trades. This
is the content of the foregoing Theorem 3.7 which essentially uses the technical
Lemmas 3.2 and 3.4 to 3.6.
Whereas for one stock constant boundary strategies are described by intervals
A = [a, b], B = [α, β] and choice function φ(a) = α, φ(b) = β, we now have in
the case of n > 1 stocks no restriction on the shape of A, B and φ except those
from definition 3.1. We conjecture that optimal strategies belong to the class of
constant boundary strategies, and it seems to be challenging to prove this and
obtain information on the shape of A and B for optimal strategies.
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