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ABSTRACT 
 

The problems related to the application of multivariate GARCH models to a market with a 

large number of stocks are solved by restricting the form of the conditional covariance 

matrix. It contains one component describing the market and a second simple component to 

account for the remaining contribution to the volatility. This allows the analytical calculation 

of the inverse covariance matrix. We compare our model with the results of other GARCH 

models for the daily returns from the S&P500 market. The description of the covariance 

matrix turns out to be similar to the DCC model but has fewer free parameters and requires 

less computing time. The model also has the advantage that it contains the calculation of 

dynamic beta values. As applications we use the daily values of beta coefficients available 

from the market component to confirm a transition of the market in 2006. Further we discuss 

properties of the leverage effect. 
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1 Introduction

The estimation of co-movement between stocks is an essential problem in the
analysis of asset returns, financial integration, and for portfolio management.
On the one side, the statistical properties of asset returns necessitate to treat
them in a setting where time-varying volatility has to be modeled. This is
mostly done within the setting of a GARCH model. Co-movement of asset
returns on the other side is often involved with problems where the dimension-
ality of the problem is large – a feature that is at odds with many multivariate
versions of GARCH models.

In the following we present a new multivariate version of a GARCH model
that can easily deal with a large number of assets from one market, and we show
that the estimation results do not differ much from those of existing models.
Hence our model provides a solution for the treatment of asset markets with a
large number of constituents.

For an index or a single stock the so-called GARCH(1,1) model (Engle,
1982) has turned out to be very successful despite of its simplicity. The return
rt at time t is written as a product of a factor

√
ht and an i.i.d. noise factor. ht

corresponds to the conditional expectation value Et−1[r
2
t ]. It obeys a linear re-

cursion formula with three parameters related to the unconditional expectation
value h̄ of r2t , a time constant and a shape parameter describing the deviation
from a Gaussian pdf for rt. The model accounts for the stylized facts of returns
(volatility clustering, fat tails) and allows to predict future volatility. Values of
the parameters can be obtained by maximum likelihood estimates (MLE).

This univariate GARCH model has been generalized for N stocks. The
multivariate version of the recursion for ht becomes a matrix relation for the
conditional covariance matrix Ht (see, e.g., Bauwens et al., 2006). These mul-
tivariate GARCH models face several difficulties in the case of large N . The
first one is related to the increase of the number of free parameters with N . For
example in the diagonal vector MGARCH model (Bollerslev et al., 1988) there
are N(N + 1) GARCH parameters to be determined by MLE. Their number
may be reduced to 2N assuming factorization as in the BEKK model (Engle
and Kroner, 1995) or to two as in the scalar MGARCH (Engle, 2009). However,
in addition N(N + 1)/2 parameters appear in the expectation value H̄ of Ht.
To avoid these ‘nuisance parameters’ (Engle et al., 2008) covariance targeting
has been proposed (Engle and Mezrich, 1996). In this case the matrix H̄ is set
to the time expectation value HT , which creates another problem. When one
analyzes HT for a time period of around T = 4 years or longer, one finds that it
can be described by one large eigenvalue in the order of N and a bulk of small
eigenvalues, which can be described qualitatively by the spectrum originating
from a random matrix (Marchenko and Pastur, 1967). The difference between
HT and the true covariance matrix H̄ = limT→∞HT is in the order of

√

N/T .
This makes HT not very reliable as estimator for H̄ for large N . A further
problem for multivariate GARCH models is the computing time Tcomp for large
N . In each step of MLE the inverse matrix H−1

t has to be calculated. This
implies an increase of Tcomp with N3.

Several methods have been proposed to solve these problems. In the
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CCC (Bollerslev, 1986) or the OGARCH model (Alexander, 2001) a restricted
time dependence of Ht is used. CCC uses a constant correlation matrix and
OGARCH time-independent eigenvectors of Ht. In both cases the problem re-
duces to N univariate GARCH estimates of the diagonal elements of Ht (CCC)
or the time-dependent eigenvalues (OGARCH). The necessary matrix operation
in the latter can be calculated outside MLE. Constant correlations in CCC or
a constant leading eigenvector in OGARCH disagree with the observed change
in the latter (Raddant and Wagner, 2017). Time-dependent correlations can be
obtained in the DCC model (Engle, 2002) using a scalar MGARCH model. The
problem with H−1

t allows only very modest N . Several extensions especially
of the DCC model have been proposed, for example by Franses and Hafner
(2009). In the modification proposed by Engle et al. (2008) only correlations,
resp. covariances between pairs of stocks are estimated. Using all pairs leads
to Tcomp ∝ N2. By selecting only N pairs one achieves Tcomp ∝ N . Aielli
(2013) however shows that certain inconsistencies can also arise in this case
and proposes a different modification.

In our solution of the problems we investigate a model that requires com-
puting time for powers of Hα

t in the order of N and involves only well defined
parts of HT . This is achieved by using a restricted form of Ht with one large
time dependent eigenvalue Nv0(t) and N−1 degenerate time dependent smaller
eigenvalues v1(t). The parameter problem is solved by applying the diagonal
vector MGARCH model not to Ht, but rather to Ht projected on its eigenvector
space.

A benefit of this approach is the possibility to interpret the eigenvector
belonging to the large eigenvalue as beta coefficients in the CAPM sense relative
to the market. Many approaches to describe beta coefficients in a way that
is consistent with varying covariances have been discussed in the literature,
starting with Bollerslev et al. (1988) and more recently Engle (2014). Hence,
here we show that it is also possible to combine the determination of beta values
with a restricted multivariate GARCH model.

The paper is organized in the following way. The derivation of the model
is given in section 2. We obtain two recursions for the eigenvalues. In addition
there is a GARCH type recursion for the leading eigenvector β(t). MLE fits
using our model are applied to the daily returns of 356 stocks from the S&P
market in the years 1995-2013 in section 3. In section 4 we compare our model
with other GARCH models and data. In section 5 we utilize the fact that our
model generates daily beta values and Ht for two applications: First we analyze
how the Hts have developed over time and we show transitions in the market.
As a second application we investigate the leverage effect, especially we look
for any correlation with β(t). The last section contains some conclusions.
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2 Multivariate GARCH with restricted covariance

matrix

In the univariate GARCH(1,1) model the returns rt (t = 1 . . . T ) of a single
stock or an index are written as

rt =
√

ht ηt (1)

with ηt a white noise with mean zero and variance one. ht is the conditional
expectation value of r2t or volatility factor. It obeys the recursion

ht+1 = ω + αr2t + b ht. (2)

We prefer a slightly different parametrization making the mean reverting prop-
erty of equation (2) more explicit by setting

b = 1− α− γ and ω = γ h̄ (3)

with h̄ the expectation value of r2t or ht. Equation (2) is changed to

ht+1 = ht + α(r2t − ht) + γ(h̄− ht). (4)

For N stocks of a financial market we have returns rti with i = 1 . . . N normal-
ized to

∑

t,i r
2
ti = TN . The relation (1) between noise and return is generalized

in matrix notation1 to
rt = Ht

1/2 · ηt (5)

The matrix Ht corresponds to the conditional expectation value of the covari-
ance matrix of rti. As generalization of the recursion (4) the vector MGARCH
model (Bollerslev et al., 1988) has been proposed. In its diagonal form (Engle,
2009) the recursion for Ht is written as

(Ht+1)ij = (Ht)ij + γij(H̄ −Ht)ij + αij(rt · r′t −Ht)ij (6)

Three problems restrict applications of (6) to only very modest N . The first

is the necessity to calculate H
−1/2
t or H−1

t for the likelihood which can be very
time consuming for large N . The second problem is related to the expectation
value H̄. Considered as parameter this amounts to N(N + 1)/2 parameters
leading again to long computing times. The alternative of determining H̄ from
the time average of rt · r′t suffers from the uncertainty of order

√

N/T as dis-
cussed in section 1. The third problem consists in the number N(N + 1) of
GARCH parameters α and γ. Even when we assume factorization of α and γ
as in the BEKK model (Engle and Kroner, 1995), the number of parameters is
too large for an application for example to the S&P500 market.

In our approach we solve the first two problems by restricting the form of
Ht. The last problem is solved by applying the recursion of the diagonal vector

1We use a′ for the transpose of vector a. a′
· b denotes the scalar and a · b′ the tensor

product. M · b denotes a matrix multiplication. rt describes a vector (of stock returns) unless
it is indexed otherwise.
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MGARCH model not to Ht itself, but rather to Ht projected on the eigenvector
space of Ht.

For the restriction we start from the spectral decomposition of a general Ht

Ht = W ′ · Λ(t) ·W (t) (7)

with Λ(t) the diagonal matrix of the eigenvalues λµ(t) µ = 1, . . . , N and Wµi

the matrix of eigenvectors. Motivated by the observation that rt · r′t averaged
over few years (Raddant and Wagner, 2017) has within our normalization one
large eigenvalue λ0 of order N and N − 1 eigenvalues of order 1, we keep the
large eigenvalue inHt and approximate the remaining by a degenerate spectrum
λ1(t). Using the normalization λ0(t) = Nv0(t) and λ1(t) = Nv1(t)/(N − 1) we
obtain the following decomposition for Ht

Ht = N

(

v0(t) P0(t) +
v1(t)

N − 1
P1(t)

)

(8)

with the projection matrices (P0)ij = W0iW0j and P1(t) = 1 − P0(t). v0
describes the market volatility and v1 the non-market volatility. The projec-
tors Pν are orthogonal and idempotent. This allows analytical computation of
functions f(Ht) by

f(Ht) = f
(

λ0(t)
)

P0(t) + f
(

λ1(t)
)

P1(t) (9)

thereby solving the first problem. Using Pν is preferable, since they are uniquely
determined, whereas W are not, especially in the case of degeneracy.

Another advantage is a possible economical interpretation of P0. The com-
ponent of the large eigenvalue can be interpreted as a market component
(Laloux et al., 1999). One can define a market return by projecting rt on
the λ0 component

rMt =
1√
N

∑

i

W0irti. (10)

The beta coefficients in a CAPM approach (Sharpe, 1964; Lintner, 1965) relative
to rMt are given by

βi(t) =
Et−1(rtirMt)

Et−1(r2Mt)
(11)

With equation (10) the conditional expectations can be evaluated and leads to
time dependent β(t)

βi(t) =
√
N W0i (12)

with the normalization
∑

i β
2
i = N .

This is similar to the conditional betas that Engle (2014) derives for the
GARCH model

βi(t) = N
∑

j

(H−1
t )ij Et−1(rtjrMt) (13)

We apply an additional factor N due to the normalization of rMt. Inserting
equation (10) into equation (13) reproduces our result from (12). In term of β
the restricted form of H reads

Ht =

(

v0(t)−
1

N − 1
v1(t)

)

β(t) · β′(t) +
N

N − 1
v1(t) 1 (14)
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This expression is similar to the latent factor model (Diebold and Nerlove, 1989)
except that the term proportional to the unit matrix is replaced by a diagonal
matrix in the latter.

The restricted form (8) solves also the second problem. H̄ involves only the
leading eigenvalue Nv̄0, its time averaged eigenvector β̄ and its trace N(v̄0+v̄1).
As shown in Raddant and Wagner (2017) these can be estimated by covariance
targeting with an error of order 1/

√
T .

To reduce the number of GARCH parameters in the recursion we apply
the vector MGARCH model to H projected on eigenvector space of Ht. Using
(W (t)HtW (t)′ = Λ we write2

(

W (t)Ht+1W (t)′
)

µµ′
= Λµµ′ + aµµ′

(

W (t) · (rt · r′t) ·W (t)′ − Λ
)

µµ′

+ gµµ′

(

W (t)H̄W (t)′ − Λ
)

µµ′
(15)

In this equation only the transformed matrix ofHt is a diagonal matrix, whereas
those of Ht+1, rt · r′t and H̄ are not. Without any restriction on Ht we have the
same number of parameters as in (6). However, the parameter a and g have
to be compatible with a restricted Ht. For example equation (15) reproduces
the OGARCH model for time independent W . Then all matrices in equation
(15) are diagonal and the off diagonal elements of a and g have to vanish.
As a consequence equation (15) describes N univariate GARCH(1,1) models
depending on the projected data (W · rt)2. For our ansatz (8) a and g have to
respect the degeneracy of Ht. This leads to the conditions

a00 = α00 a0µ = α01 aµµ′ = α11 for µ, µ′ 6= 0 (16)

and an analogue relation between g and γ. With W · W ′ = 1 we can obtain
from equation (15) the recursion for H. With the help of the identity

∑

µ,µ′=0,N−1

aµµ′WµiWµkWµ′lWµ′j =
∑

ν,ν′=0,1

ανν′(Pν)ik(Pν′)lj (17)

we can express our final recursion in terms of the projectors

Ht+1 = Ht +
∑

ν,ν′

Pν(t)
(

ανν′(rt · r′t −Ht) + γνν′(H̄ −Ht)
)

Pν′(t) (18)

The restricted form of Ht reduces the number parameters in a maximum
likelihood estimate from N(N+1) to manageable number of six. With ανν′ = α
and γνν′ = γ we recover the scalar MGARCH or BEKK model and for α01 =
γ01 = 0 a two component OGARCH model with strictly positive Ht.

In the appendix we derive from (18) two recursions for the market volatility
v0(t) and the non-market volatility v1(t), as well a recursion describing the time
dependence of β(t). Since the result given in equations (31) and (33) is rather
complicated we illustrate them by quoting only the limit of large N and small
deviations of β(t) from its equilibrium value β̄:

vν(t+ 1) = vν(t) + γνν
(

v̄ν − vν(t)
)

+ ανν

(

ρ2ν(t)− vν(t)
)

(19)

2In this notation we use µ ranging from 0 . . . N − 1 to index all eigenmodes. ν = 0 , 1
indexes the two modes in the restricted form.
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Equation (19) corresponds to two univariate GARCH recursions depending on
the combinations

ρ20(t) = r2Mt and ρ21(t) =
1

N

∑

i

r2ti − r2Mt (20)

of the observed returns. For β we obtain a recursion for each component βi:

βi(t+ 1) = βi(t) +
α10 rMt

v0(t+ 1)

(

rti − rMtβi(t)
)

+
γ10 v̄0

v0(t+ 1)

(

β̄i − βi(t)
)

(21)

β(t) changes only for non zero α01, γ01. Its changes depend on the difference
between stock returns rti and market return rMt, and the deviation from the
equilibrium values β̄i.

3 Estimation of the parameters with S&P data

In this section we describe the maximum likelihood estimation with data of
daily returns of 356 stocks from the S&P market in the years 1995-2013. For
our analysis we use data from Thompson Reuters on the closing price of stocks
which were continuously traded with sufficient volume throughout the sample
period and had a meaningful market capitalization.3

We calculate the log likelihood L of our model as described in equations
(31) and (33) of the appendix. Initial values for ν and β have been determined
from a time average of the covariance matrix of the first 4 years. In a first fit we
use only two parameters with ανν′ = α00 and γνν′ = γ00. The noise is assumed
to be Gaussian.

The resulting log likelihood (divided by T ) and the parameter values are
given in table 1. When we invert equation (5) we can obtain the so-called
de-garched returns ηG(t).

ηG(t) = H
−1/2
t · rt (22)

If the GARCH model represents the data exactly, ηG(t) should be again Gaus-
sian distributed. This is not the case, as the pdf for all ηG(t)i given in figure 1
shows. The pdf for ηG(t) is well described by a Student’s t-distribution with a
tail index of ν = 3.32.

Also it has been observed from a non-parametric moment analysis that
stocks require a noise different from that of indices (Wagner et al., 2010). This
motivates to repeat the estimate with t-distributed noise. The estimated value
of ν = 3.25 agrees with the value obtained from figure 1 (lies within the errors).
The resulting L (2nd line in table 1) corresponds to an astronomical increase of
probability. Even the pessimistic evaluation using the probability change per t
given by exp(−∆L/T ) is highly significant. This sensitivity to the noise is not
observed in application of univariate GARCH models to indices. In the case of

3We excluded stocks which price did not change for more then 8 % of the trading days,
or which were exempt from trading or for which no trading was recorded for more than 10
days in a row. We manually deleted 15 stocks which price movements at some point showed
similarities to penny stocks and/or which market capitalization was very low.
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Npar L/T α00 · 102 γ00 · 102 α11 · 101 γ11 · 102 α10 · 102 γ10 · 102
2 -52.2 4.871 0.383 α00 γ00 α00 γ00

(0.068) (0.014)

2 -2.57 3.132 0.284 α00 γ00 α00 γ00
(0.048) (0.011)

4 -0.10 1.592 0.328 2.472 0.766 α00 γ00
(0.042) (0.016) (0.050) (0.078)

6 0.00 5.14 4.13 2.487 0.781 1.673 0.298
(0.16) (0.31) (0.041) (0.065) (0.044) (0.014)

Table 1: Maximum likelihood estimates of the parameters with the S&P market.
Column one gives the number of parameters, column two the values of the log
likelihood per time relative to the six parameter fit. Errors given in the row
below the values correspond to 5% confidence levels. They are taken from the
diagonal elements of the inverse Hessian. The results in the two top rows are
obtained with Gaussian noise, in rows 3-8 with t-distributed noise.

the S&P index a t-distributed noise leads to an improvement of ∆L/T = 0.02.
The large value of ν = 8 is due to outliers in the return and does not change
the GARCH parameters.

Another reason for the need t-distributed noise may be the restricted form
of our matrix GARCH model (hereafter called RMG). The parameters α and γ
do not depend on individual stocks. They cannot accommodate to the observed
very different behaviour of stock returns. To demonstrate the improvement one
can compare the Monte Carlo simulated pdf of stocks with the observed pdf.
Simulating RMG is not very meaningful since stocks enter only via the mean
values β̄. Instead we use the possibility of GARCH to predict returns from
equation (5) for given Ht with repeated noise factors η. These predicted pdf
should agree with the observed pdf.

In figure 1 two typical pdf’s of returns are compared with the predicted
density either using t-distributed (black line) or Gaussian (red line) noise. The
latter describes the tails but fails in the transition to the tail, which may be the
reason for the difference in probability. In all subsequent estimates we use the
value of ν = 3.25. Still the time dependence described by γ0 is not satisfactory.

The value γ−1
00

= 339 days exceeds the value needed from the autocorrelation
of |rMt| by an order of magnitude. A four parameter fit with α10 = α00 and
γ10 = γ00 improves the likelihood (third line in table 1), but does not solve
the problem. Only when all six parameters are varied (fourth line), the time
constant for β is much smaller than for v0,1 together with an again improved
probability. In each case the improvement ∆L/T > 0.02 is much larger than
the trivial value inferred from the fit to the index.

Our RMG rests on the simple form of equation (8). This leads for the
observed correlation matrix to an eigenvalue spectrum which is the sum of
one large eigenvalue of order N and a random matrix component described
by a Marchenko and Pastur (1967) spectrum. This describes qualitatively the
observations. The RMG is distinguished by a small number of parameters
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Figure 1: The left panel shows the pdf of all GARCH filtered returns ηG(t)i
obtained from the raw returns by equation (22). The red line corresponds to a
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Figure 4: Beta values from the RMG model. The top and the bottom left panel
show beta values for different stocks, averaged over a 60-day window. The
bottom right panel shows the dynamics of the distribution of beta values by the
quantiles, using a 20-day window.

and analytical calculation of H−1
t , which makes it applicable also for a large

number of stocks. It allows separation of a market component with economical
meaningful β coefficients and rt on the same time scale as v(t).

As in any GARCH model one finds volatilities much less noisy than the
absolute returns. This is shown in figure 2 where the market volatility

√

v0(t)
is compared with the underlying market return rMt. Another interesting effect
is shown in figure 3, where we compare the autocorrelation for the GARCH
filtered returns |ηG(ti)| with |rti| averaged over all stocks i. The former has
much smaller correlations on a time scale of years. The large statistics allow
even to resolve the peaks at multiple of three months due to the dividend pay
days. Some autocorrelation in the filtered returns remains visible. This is
mainly due to the restrictions on our covariance matrix.4

Figure 4 finally gives an overview about the beta values that can be obtained
within the RMG. Note that these betas are normalized as stated in equation
12. The top left panel shows the development of beta values for some financial
stocks, the bottom right shows the beta of IT related companies. Stocks from
both groups show strong similarity within their group. The bottom left panel
shows the beta for stocks from other sectors. They develop much more diverse.
The bottom right panel illustrates how the distribution of beta values has de-
veloped over time. In time of crisis we observe peaks for the beta values but

4It is also possible to calculate de-garched returns using only diag(Ht). The resulting acf
is practically identical to that of η.
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also a much wider distribution in general.

4 Comparison with other GARCH models

In the following we will compare the estimation results of our model with those
of other multivariate GARCH models. We start by comparing the predicted pdf
of stock returns with the six parameter model discussed in section 3 with the
CCC and OGARCH model (hereafter abbreviated with OG). The CCC model
uses a constant correlation matrix supplemented with N univariate GARCH
for rti. In OG we include all eigenmodes Pν · rt, where the constant projectors
Pν are obtained from H̄ by covariance targeting. In both we use i.i.d. Gaussian
η for the noise. The left part of figure 5 shows that the pdf for the same two
stocks as in figure 1 is in reasonable agreement with the three models. RMG
and OG fail in cases where the leading eigenvector does not dominate Ht, as
the third example for PG&E shows.

For a more comprehensive comparison we use the χ2/nd ratio equal to the
sum of quadratic deviation in units of the squared error divided by the number
nd of bins. A histogram of these ratios from the 356 stocks of the S&P market
is shown for RMG, OG and CCC in the right part of figure 5.

All three distributions exhibit a peak around a value of 4-5 which corre-
sponds to a 5% confidence level. Values between 10-20 lead still to a qualitative
description. In contrast to CCC both RMG and OG have a small fraction (5%)
of outliers mainly from the energy sector as PG&E. On average RMG performs
better than OG which may be due to the systematic error by covariance target-
ing. We stress that in CCC and OG 712 parameter have to be determined. The
only six parameter used in RMG lead to a much more parsimonious description
of the data.

Another way of assessing the results is of course the comparison of the
estimated Hts with those obtained from the other models. In the following we

11



use the DCC model as a benchmark and compare the resulting time series of
covariances. We use 10 day averages. For the DCC and the OG we estimate the
model repeatedly with 10 different stocks, since an estimation with the entire
data set is not possible.

Figure 6 shows a histogram of RMSDs of pairwise comparisons of time series
of estimated covariances. The figure shows similarities to the previous results,
but now the DCC model serves as a benchmark. The deviations between DCC
and our model are smallest, slightly better than the CCC model, the difference
between DCC and the OG model is much larger. Interestingly the constant
conditional correlations seems to work better than assuming constant principal
components, especially in the long run.

It is also interesting to analyze which stocks are responsible for most of the
deviations. A sectoral break-down of the results, shown in figure 7 reveals some
patterns. The RMG describes most of the stocks well, but has slight problems
with stocks from the energy sector, which are probably not always well described
by our model, since they are not very representative for the market trend. A
similar observation can be made for CCC. In this case however part of the
deviation also stems from the IT sector.

In the next section we will show that the average correlation in the IT
sector has slightly declined - against the general trend, which might explain
this finding. In fact the OG model seems to have problems with all stocks
that come from sectors where we have seen changes of relative importance or
volatility over time.

5 Applications

5.1 Market transition

The large number of stocks in our sample allows to search for group specific
regularities. An obvious question is if the correlations that can be extracted
from Ht differ for stocks from specific sectors, and more interestingly, how they
develop over time. Our sample period covers a time period during which we have
seen pronounced changes in the market, namely the IT bubble, the financial
crisis, and the growing importance of energy markets.

For this reason we use the estimatedHts and then derive correlation matrices
Ct such that

Ct = D−1HtD
−1 (23)

where D is the square root of the matrix with the main diagonal elements of
Ht. We can use these correlations to calculate the median correlation for pairs
of stocks from specific sectors (GICS classification).

Figure 8 shows some of these median correlations. We observe very high
average within sector correlation for stocks in the IT and financial sector. But
also some correlations between stocks of different sectors are rather high, for
example when the consumer or materials sectors are involved.

In general we observe two important changes. First, the overall level of
correlations has shifted upwards from 2002 until 2007. The second observation is
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Figure 6: Distributions of deviation of different Ht time series. We calculate
the RMSD for all pairs of time series of estimated covariances and plot the
histogram for the deviation of the time series derived from RMG, CCC, and
OG versus the DCC model. We observe that RMG and CCC produce Ht that
are relatively similar to DCC, while the difference to OG is large and more
heterogeneous among the different covariances.
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Figure 7: Deviation from DCC results by sector. We calculate the RMSD for
all pairs of Ht time series and calculate the average RMSD for covariances of
stocks from specific sectors. We plot these averages as color-coded values for
the deviation of the Ht time series for RMG, CCC, and OG versus the DCC
model. We observe that differences in the estimated covariances stem from
specific sectors, especially energy, IT, and the financial sector.
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Figure 8: Development of median correlation by sector, averaged over 50 days.
We show the average of all stock correlations (bold grey line), as well as some
of the sectors with the strongest correlations. The sector with the strongest
inter-sector correlation has for a long time been the IT sector (blue), later the
financial sector (red) has taken over this role.

that the ranking between the sectors has changed, the financial sector surpasses
the IT sector in terms of correlation around 2006.

These changes can be analyzed in more detail. In the analysis of Raddant
and Wagner (2017) of the US, the UK, and the German stock market the same
change has been found in the behavior based on the stock’s beta values. In
the years 1994-2006 trades of stocks with high beta and large volume were
concentrated in the information technology sector, whereas in 2006-2012 those
trades are dominated by stocks from the financial sector. The values of the
β have been derived under the assumption that the covariance matrix of the
returns have a large eigenvalue already at window sizes of 3 years. Since a β > 1
signals a risky investment, a market risk measure R(t, s) has been defined for
the sectors by multiplying βi > 1 with the number V (t, i) of traded shares in
each window.

R(t, s) = AS

∑

iǫs

θ(βi − 1.0)βi(t) V (t, i) (24)

The normalization constant AS is chosen to have
∑

s R(t, s) = 1. When
we apply this measure we see that before 2006 only the information technology
sector and after 2006 only the financial sector exhibit large values of the risk
measure.

However, the time and the duration of this transition had a systematic
error of 1.5 years due to the window size. Repeating R with the β from RMG
serves two purposes. Firstly it is a check whether in RMG the market property
can be reproduced and secondly the transition time can be determined more
accurately, since daily β are known from RMG. To reduce the noise on β we
average R(t, s) over one month. In figure 9 the risk parameters from equation
(24) for the S&P market is shown as a function of time. The agreement with
the previous determination (dashed lines) is good. With a time resolution of
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Figure 9: Time dependence of the risk parameter described in equation (24) for
the sectors of the S&P market. The dashed line shows the result of Raddant
and Wagner (2017). The solid lines (blue for the information technology and
red for the financial sector) use daily βs from the RMG.

one month we can now safely say that the transition happens during the year
2006.

5.2 Leverage effect

The leverage effect consists in a negative correlation between volatility and
future returns (Black, 1976). It is a relatively small effect (Schwert, 1989), but
important for estimation of risk. Since GARCH models provide a measurement
of the daily volatility they are well suited for an analysis of this effect.

In a first step we determine for each stock the time correlation Ci(t) between
the market volatility v0 and the observed returns rti:

Ci(t) =
1

NC

∑

t′

(

v0(t
′ − t)− v̄0

)

rt′i (25)

with the normalization factor N2
C = T · var(v0)

∑

t r
2
ti. The stocks lead to a

large variety of functions Ci(t), although they exhibit the leverage effect in the
sense of negative values of Ci(t) · sign(t). Therefore we use the asymmetry
defined by

Ai =
1

tm

tm
∑

t=1

(

Ci(t)− Ci(−t)
)

(26)

with a maximum of the time lag tm of two months. Ai corresponds to the
difference in the area under C(t) for positive and negative t.

It has been suggested by Black that the leverage effect is related to risk. To
test this suggestion we show in figure 10 the asymmetry as a function of the
mean value β̄i. Since β(t) changes around 2006 we use two time series in the
years from 1984 to 2005 and from 2007 to 2013. The asymmetries are clearly
negative and increase slightly with β̄ as indicated by the line connecting the
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stocks. Blue diamonds refer to techno-
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corresponds to average β̄ and stdev.

mean of A. If our RMG describes the data successfully the leverage effect should
disappear by replacing rti by the GARCH filtered returns ηG(t)i in equation
(25). As shown in figure 11 this is in fact the case. The GARCH filtered returns
have little autocorrelation and no significant leverage effect.

We conclude this section with a remark on predictions. These cannot be
made using our RMG. For prediction of future returns the leverage effect has
to be included in the recursion. Analogous to the GJR-Garch model (Glosten
et al., 1993) an additional matrix proportional to δijrti|rti| can be added on the
RHS of equation (18). For large N the recursions for v0 and β are unchanged.
Only v1 is affected. We repeated the fit including such a term. The likelihood
improves, however the values of α and γ are inside the errors the same. Also
the results contained in figures 10 and 11 remain the same.

6 Conclusions

In our GARCH model we use a two component form of the conditional co-
variance matrix H which avoids inversion of H and the problems of covariance
targeting. The resulting H turns out to be similar as that of the DCC model.
Apart from a small number of parameters and a computing time Tcomp ∝ N
our RMG has the advantage that daily β values relative to the market are de-
termined. As an application we study a possible transition of the S&P market
in 2006 observed earlier by (Raddant and Wagner, 2017). We repeated this
analysis with a better time resolution using the β(t) from RMG and found the
same result. A second application refers to the time correlation between returns
rti and the volatility (leverage effect). When one replaces rti by the de-garched
returns ηGi(t) the leverage effect disappears.

Some improvement of the model could probably be achieved by extending
the model to a three-factor version, in which the non-market volatility is de-
scribed in a bit more detail. This might also improve the acf of de-garched
returns.
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Appendix: Derivation of the Recursions

In the recursion equation (18) we separate the off-diagonal elements in α and γ

Ht+1 = Ht +
∑

ν=0,1

Pν(t) ·
[

ανν(rt · r′t −Ht) + γνν(H̄ −Ht)
]

· Pν(t) (27)

+ P0(t) ·
[

α10(rt · r′t + γ10H̄
]

· P1(t) + P1(t) ·
[

α10(rt · r′t + γ10H̄
]

· P0(t)

we notice that β(t+1) is obtained from β(t) by a rotation on the N dimensional
sphere with an angle ϕ

β(t+ 1) = cosϕ β(t) + sinϕ ∆ (28)

with ∆2 = N and ∆′ · β(t) = 0. Inserting (28) into Ht+1 we get

1

N
tr[Ht+1 · Pν(t)] = vν(t+ 1)− (−)ν sin2 ϕ A(t+ 1) (29)

and

1

N
[Ht+1 · β(t)]i = v0(t+ 1)βi(t) + sinϕ A(t+ 1)(cosϕ ∆i − sinϕβi(t)) (30)

with the abbreviation A(t + 1) = v0(t + 1) − v1(t + 1)/(N − 1). Applying
1

N tr[Pν(t) onto the r.h.s of equation (27) we obtain the recursions for vν(t+ 1)
with ᾱν = 1− ανν − γνν

vν(t+1)− (−)ν sin2 ϕ A(t+1) = ᾱν vν(t)+αννρ
2
ν(t)+γνν

1

N
tr[H̄ ·Pν(t)] (31)

where the observed returns appear in the combinations given by equation (20).
We denote application of β(t)i/N on the r.h.s. of equation (27) by Di. Di is
given by

Di = α10rMt(rti − βi(t)rMt) +
γ10
N

(

[H̄ · β(t)]i − βi(t)tr[H̄ · P0]
)

Setting Di equal to equation (30) and using equation (31) we find an expression
for ∆

sin 2ϕ A(t+ 1) ∆i = 2Di (32)

Due to ∆2 = N equation (32) allows to express ϕ in terms of A(t + 1) and
quantities known at t. Then from equation (31) vν(t+ 1) can be computed. It
is interesting to note that β(t)′ ·D holds. Therefore the recursion (27) preserves
the norm of β. For the recursion for β(t+ 1) we finally get

βi(t+ 1) = cosϕ βi(t) +
1

A(t+ 1) cosϕ
Di (33)

For the terms involving the unconditional expectation values H̄ we use a de-
composition analogues to Ht

H̄ =

(

v̄0 −
v̄1

N − 1

)

β̄ · β̄′ +
N

N − 1
v̄1 · 1 (34)
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Only the leading eigenvalue Nv̄0, its eigenvector β̄ and tr[H̄] = N(v̄0 + v̄1) are
needed. As shown in Raddant and Wagner (2017) these terms can be extracted
from the observed covariance matrix with statistical error of order 1/

√
T . In

the recursions the following expressions are required

1

N
tr[H̄ · Pν(t)] = v̄ν − (−)ν(1−m2)Ā (35)

1

N
[H̄ · β(t)]i = mĀβ̄i +

v̄1
N − 1

βi(t) (36)

with Ā = v̄0 − v̄1/(N − 1) and m = β̄′ · β(t)/N denoting the overlap between
β(t) and β̄. For the recursion initial values are needed. These are obtained in
a similar way as v̄ν and β̄ from the covariance matrix determined in the first
four years.

The log likelihood with noise distribution f(η) can be computed using

η = Ht
−1/2 · rt (37)

With the spectral decomposition for Ht we obtain

η =
rMt

√

Nv0(t)
β +

√

N − 1

Nv1(t)
(rt − rMtβ) (38)

The log likelihood L is given up to an uninteresting constant by

L =
1

2

∑

t

[

∑

i

ln f(ηi)− ln v0(t)− (N − 1) ln v1(t)

]

(39)

For Gaussian noise calculation of the ln(f) can be avoided. The complication
of using a Student’s t-distribution leads to an negligible increase of computing
time compared to the calculation of vn(t)) and β(t). In any case the computing
time increases only with T ·N .
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