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Abstract

Since the end of the Kyoto Protocol, global climate negotiations have shifted away
from setting binding short-run targets on emissions towards placing long-term lim-
its on global warming. We investigate how this alters the incentives for participation
in a technology-centred international environmental agreement (IEA) where coun-
tries choose between conventional abatement and a breakthrough abatement tech-
nology that exhibits a network externality. When switching technologies is costly,
we obtain that equilibrium adoption is indeterminate because the future adoption
rate is subject to strategic uncertainty. Participation in an IEA that mandates the
adoption of the breakthrough technology will be complete only if countries expect
that all other countries will adopt eventually. Long-run temperature targets can be
regarded as a device to coordinate countries’ expectations on that outcome.

JEL classifications: Q54, O33, H87.

1. Introduction

In recent years, a global consensus has emerged that explicit long-term targets for the emis-

sions of greenhouse gases (GHGs) are meaningful for promoting the mitigation of climate

change. For example, both the Copenhagen Accord in 2009 and the Paris Agreement in

2015 make explicit reference to a 2� long-term target for global warming.1 The European

Union currently pursues the target of reducing GHG emissions by 80% to 95% by 2050

(compared to 1990 levels), and the group of G7 countries agreed to reduce emissions by

40% to 70% by 2050 (compared to 2010 levels). Targets such as these can help pollution

abatement in the long-run by promoting large-scale investments in research and

1 In addition, the Paris Agreement also states the need for ‘pursuing efforts to limit the temperature

increase to 1.5�C above pre-industrial levels.’
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development of new technologies that will be deployed only in the (distant) future, such as

nuclear fusion or carbon capture from the air.

Does the mere existence of a long-term target make countries more willing to engage in

an international environmental agreement (IEA) in the near term? The answer to this ques-

tion is not clear because compliance with the target cannot be taken for granted. What

seems clear, however, is that meeting the long-term targets mentioned above will require a

series of technological breakthroughs to achieve a decoupling of economic growth and car-

bon emissions. In that sense, the existence of a long-term target—for as ambitious or ideal-

istic as it may seem—raises an expectation among the stakeholders that breakthroughs will

eventually occur. This feature of targets begs the question of how expectations about

cooperation in the future can influence the formation of IEAs in the present. The literature

on self-enforcing treaties has highlighted the role of coordination when participation in an

IEAs hinges upon a tipping point (Barrett, 2003, 2006)2 but little is known so far about

how coordination can be achieved when treaty formation takes place over time.

This study shows that expectations about collective pollution abatement in the future

can influence the formation of IEAs even in the near term. We model treaty formation as a

dynamic game of technology choice where country behaviour is conditioned by a network

externality associated with one of the abatement technologies, and by switching costs that

are convex in the number of countries that switch technologies. The model gives rise to two

types of equilibrium dynamics of technology adoption. In the first case, adoption follows a

determinate path which leads to either full cooperation or no cooperation, depending on

the initial state. In the second case, the dynamics are indeterminate, with stable paths lead-

ing to both full cooperation and no cooperation. The path chosen depends on countries’ ex-

pectations. That is, the size of a self-enforcing treaty is driven to some extent by subjective

beliefs that countries hold about their ability to coordinate policies. This case emerges

when countries are patient, face a low switching cost, and when there are high scale effects

of operational cost. In the case of climate change, such an indeterminacy in the adoption of

abatement technologies provides a rationale for negotiating long-term abatement targets

that align expectations of countries on mutually beneficial diffusion trajectories.

The paper is organized as follows. In Section 2, we set up a basic two-stage model with

frontrunner and follower countries of a new abatement technology to illustrate how inde-

terminate dynamics could emerge. Next, we generalize the model by allowing countries to

choose the timing of treaty adoption. We discuss both a two-period version of the model

(in Section 3.1) and an infinite-horizon game (in Section 3.2), and derive the equilibrium

dynamics in Section 3.3. Section 4 discusses the results of the model, and concluding re-

marks are given in Section 5.

2. A model of technology adoption with frontrunner
and follower countries

We consider the formation of an IEA that regulates pollution abatement by multiple

technological options. Here, we set the focus of the model discussions on the adoption of a

technology that involves a network externality. Network externalities are known to create

strategic complementarities that may lead to tipping points. Our model focuses on the

2 The concept of tipping points used in this context relates to the seminal work by Thomas Schelling

(1978). For a more recent, informal treatment, see the book by Malcolm Gladwell (2000).
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diffusion process of an abatement technology which is not instantaneous but occurs over

time. In combination with the network externality, the delay engenders strategic uncer-

tainty about future adoption decisions, transforming coordination on the good outcome

into a non-trivial problem.3

Network externalities have been alleged to play a role for various IEAs. For example,

Barrett (2003, Chapter 9) discusses the equipment standards for oil tankers set by the

International Convention for the Prevention of Pollution from Ships (MARPOL), which

aim to reduce oil discharge to the sea at the time of exchange of ballast water and oil in the

tank. With the equipment standards, tanker owners reap greater benefits from installing

new equipment as more ports comply with the agreement, hence favouring higher partici-

pation in the treaty after the group of participating countries reaches a critical size. Another

example is the development and production of substitute products for CFCs after the latter

were regulated by the Montreal Protocol. It is conceivable that, once the market size of the

substitutes became large, DuPont and others producers stood to gain more from producing

the substitutes than from producing CFCs and thus preferred a treaty with universal partici-

pation (e.g., Parson, 2003; Sunstein, 2007). In the context of climate change, network

externalities will likely arise in the deployment of hydrogen-based transportation systems,

specifically when combining a new automobile technology and a supporting infrastructure

of fuel supply. Moreover, in a network of carbon capture and storage (CCS) operations

whose capture and storage sites are linked to each other by pipelines for carbon dioxide,

the costs of accessing the CCS network facing an emitter are likely decreasing in the number

of other emitters using the network.

For an illustration of the problem we are interested in, we start by discussing a simple

case where countries are grouped into frontrunners and followers, and changing groups is

not allowed.4 Our model setup extends Barrett’s (2006) model of a treaty on technology

adoption. Countries have a choice between conventional abatement q and the adoption of

‘breakthrough technology’ labelled ‘Technology X’. The latter has the distinctive features

that it generates zero emissions and exhibits increasing returns to adoption. In Barrett’s

model, a one-shot game is played among N countries, where:

pi ¼ bx xi þ
XN
j 6¼i

xj

 !
� cx

N
N �

XN
j6¼i

xj

 !
xi

þ b ð1� xiÞqi þ
XN
j 6¼i

ð1� xjÞqj

" #
� c0ð1� xiÞ

q2
i

2

(1)

is the payoff function for country i, xi is the indicator of adoption of Technology X by

country i (xi 2 f0; 1g), qi is country i’s abatement rate by using the conventional technol-

ogy, and bx, cx, b, c0 are strictly positive coefficients representing the marginal benefit of

adopting Technology X, the total cost of using Technology X, the marginal benefit from

conventional abatement and the marginal cost of conventional abatement, respectively.

Barrett has shown that this one-shot game gives rise to a ‘tipping treaty’ as both universal

adoption and non-adoption of Technology X are Nash equilibria. If the equilibria are

3 Strategic uncertainty arises not due to stochastic elements in the payoff functions but due to the

uncertainty concerning the actions and beliefs of other players.

4 This assumption is relaxed in Section 3 below, where each country is allowed to switch between

technologies at any time.
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ranked, successful coordination among the countries in favour of technology adoption in-

creases the payoff for at least some of them.

Using functional forms similar to Barrett’s, we now show that the addition of a temporal

dimension limits the possibility of coordinated actions by countries and is conducive to a

pattern of indeterminate adoption dynamics. The prospects for successful coordination are

worse than in the one-shot game because some countries are unable to adopt the technology

at a given moment in time.

We consider a game in two stages where each country belongs to one of two groups,

technological frontrunners or followers. Decisions of technology choice by countries are

made sequentially. In period 1, group 1 (i ¼ 1; . . . ;M where M < N � 1) countries—

technological frontrunners with the technical capacity to use Technology X from the

beginning—make a decision about whether they introduce Technology X. Group 2 coun-

tries (i ¼Mþ 1; :::;N)—followers—acquire the ability to introduce Technology X only in

period 2. The assumption of sequential decisions is chosen for the sake of simplicity and to

reflect two types of costs, namely: (i) a prohibitive cost of reverting from a new abatement

technology to the conventional one; and (ii) a prohibitive cost facing some countries associ-

ated with the early adoption of a new technology. These assumptions will be relaxed in

Section 3 below where we consider a simultaneous-moves game and reversible technology

choices.

Group 1 countries (frontrunners) adopt Technology X in period 1 if the present value

expected payoff for individual countries favours adoption. That is, when deciding on adop-

tion or non-adoption, frontrunners seek to maximize their individual payoffs rather than

joint payoffs. The present value expected payoff for countries 1; . . . ;M evaluated in period

1 is given by:

Pi ¼ pt¼1
i ðx11; . . . ; xi1; . . . ;xM1Þ þ bE ½pt¼2

i ðx12; . . . ; xi2; . . . ; xN2Þ�

¼ bx xi1 þ
XM
j 6¼i

xj1

 !
� cx

N
N �

XM
j 6¼i

xj1

 !
xi1

þb ð1� xi1Þqi1 þ
XM
j6¼i

ð1� xj1Þqj1

" #

�c0ð1� xi1Þ
q2

i1

2
þ b bx xi2 þ

XN
j 6¼i

xj2

 !
� cx

N
N �

XN
j 6¼i

xj2

 !
xi2

" #

þb b ð1� xi2Þqi2 þ
XN
j6¼i

ð1� xj2Þqj2

" #
� cð1� xi2Þ

q2
i2

2

( )

(2)

where xjt 2 f0;1g is the indicator for country j’s adoption of Technology X in period

t 2 f1; 2g, and b 2 ð0;1Þ is the discount factor.

We now show that, in certain cases, rational decision-making by countries can lead to

more than one possible outcome. Which one of them will be realized depends on what

countries expect at present. Suppose that the adoption of Technology X in period 1 makes
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frontrunners better off only if Technology X is also adopted by followers in period 2. This

is true if the following conditions are satisfied:5

bx �
b2

2c0

� �
M� cx

N
ðN �Mþ 1Þ þ b2

2c0
þ b bx �

b2

2c0

� �
N � cx

N
þ b2

2c0

� �
�0 (3)

bx�
b2

2c0

� �
M�cx

N
ðN�Mþ1Þþ b2

2c0
þ b bx�

b2

2c0

� �
M� cx

N
ðN �Mþ1Þ þ b2

2c0

� �
< 0 (4)

Figure 1 depicts the payoff schedules corresponding to this case. Non-adoption by all

countries in both periods is one Nash equilibrium of the game, yet it is dominated by the

other Nash equilibrium in which all countries adopt by the end of period 2. However,

because the decision on technology adoption is taken sequentially, a coordination prob-

lem arises in both periods. For instance, even if frontrunners manage to coordinate on

adoption in period 1, coordination might fail in period 2 as followers might still choose

non-adoption of Technology X. Conversely, conditions (3) and (4) imply that adoption

of Technology X by frontrunners is not optimal if followers do not follow suit. And fol-

lowers have no incentive to adopt Technology X if frontrunners have not adopted

Technology X beforehand.

As the incentives of the two groups are interrelated in a circular fashion there is more

than one possible outcome. The outcome could in fact be determined by frontrunners’

expectations about future actions by followers. Success or failure of treaty coordination

in period 2—and hence the rate of technology adoption in the future—is subject to stra-

tegic uncertainty in period 1. That is, unless one places additional assumptions on the

structure of expectations, frontrunners decide on technology adoption based on their

beliefs about the future outcome. Despite the subjective nature of these beliefs, front-

runners determine the eventual adoption rate of Technology X by directly shaping the

followers’ incentive for technology adoption in period 2. As a consequence, the diffu-

sion of Technology X could be driven by a subjective factor, and followers have little in-

fluence in shaping such subjective beliefs. Previous analyses have given little attention

to this issue, as they have been based on a one-shot game of technology adoption where

the problem of coordination boils down to a matter of successful political negotiations

at one point in time. Such a framework rules out the intertemporal coordination prob-

lem we examine in this paper.

To be sure, the problem of multiplicity arising in the two-period model we consider here

could be avoided if countries had a way of committing themselves to technology adoption

in the long-run, or alternatively, if they firmly expect that the actions taken by other coun-

tries will be collectively rational responses to their own actions, even in the long-run. In

practice, however, countries may be hard-pressed to find such a commitment device given

5 Note that a country with the conventional technology abates q ¼ b
c0

. For the frontrunners’ payoff to

adoption we use that the payoff is given by: Pi ¼ bx M � cx

N ðN �M þ 1Þ þ b bx N � cx

N

� �
if in

period 2 all followers unanimously adopt Technology X, and by:

Pi ¼ bxM� cx

N
ðN �Mþ 1Þ þ b bxM� cx

N
ðN �Mþ 1Þ þ b2

2c0
ðN �MÞ

� �
if no follower adopts Technology X. Finally, payoffs are given by Pi ¼ b2

2c0
ðM � 1Þ þ b b2

2c0
ðN � 1Þ

h i
if no country adopts X throughout the two periods.
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that technology implementation covers a long time span and that political decision-makers

face uncertainty about future election outcomes, economic growth, and the pace of techno-

logical progress. Perhaps as a reflection of this fact, the Kyoto Protocol had a commitment

period of only five years.

The simple model discussed in this section shows that the outcome of a technology-

oriented treaty is partly determined by members’ subjective beliefs about future technology

adoption, or, more precisely, about the collective capacity to coordinate technology adop-

tion in the future. Countries’ perceptions might be influenced by visible commitments to

(a)

Fig. 1a. Adoption incentives under irreversibililty: payoff to frontrunners.

(b)

Fig. 1b. Adoption incentives under irreversibility: payoff to followers.
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solving an international environmental problem, in addition to adopting the breakthrough

technology, such as the voluntary adoption of a long-term emission target.

3. Indeterminate technology diffusion when countries

choose the time of adoption

This section extends the baseline model by dropping the assumptions of irreversibility and

of a fundamental asymmetry between frontrunners and followers. We rather allow for tech-

nology switching in both ways, i.e., both adoption and abandonment of Technology X are

possible at a cost. We show that the two-stage game can have multiple equilibria as in the

previous section, and that the solutions to the infinite-horizon game resemble those of the

two-period case. We also discuss the equilibrium dynamics of the infinite-horizon case.

3.1 Two-period case

We retain the assumption of two periods but now assume that M0 countries ð0 � M0 � NÞ
have adopted Technology X already before period 1, and that DM1 countries seek the intro-

duction of Technology X in period 1. Note that here we use a general formulation of M0

that does not require M0 to be zero (although it can be). In so doing, we account for the

possibility that Technology X has been adopted by some countries because of existing or

past treaties, or for reasons unrelated to climate change. By introducing an assumption of

switching cost, which is to be described below, we eliminate the distinction between front-

runners and followers used in Section 2. That is, the cost structure and technological cap-

acity are assumed to be identical for all countries, and all countries can adopt Technology

X from period 1.

In addition to the model primitives described in the previous section, we introduce a

term SC representing the marginal costs of switching the technology. We assume that SC in-

creases with the number of countries switching in the same time period. This assumption is

motivated by the observation that adopting a new technology often requires the installation

of new physical capital. If the industries that provide the new technology and installation

services operate with decreasing returns to scale (e.g., because some production factors are

fixed), the resulting supply curve of installation services is upward sloping, and hence mar-

ginal costs are increasing with the number of entities switching at a given time.6 A similar

logic is used by Mussa (1978) and Krugman (1991) for their modelling of cross-industry

switching costs.

We adopt this formulation to our case and assume that a switching country incurs costs

SC ¼ fDM1, where f is a positive constant and DM1 is the number of countries adopting

Technology X. Note that SC concerns pure adjustment costs for the adopting countries and

is independent of the existing adopters of the technology—hence, it is not a function of M0

6 For example, convex costs are likely to arise when countries switch from nuclear energy to other

forms of carbon-neutral electricity generation, as was decided by the German government after

the Fukushima nuclear accident (‘Energiewende’). Since Germany is the only country that has

taken this step so far, it will be able to import cheap nuclear power from other European countries

during the transition to a nuclear free electricity supply. However, if other European countries

adopt similar decisions, this is bound to drive up the initial cost of technology switching as coun-

tries would bid up the price of (nuclear) power. Moreover, unchecked growth in transnational elec-

tricity trade could lead to congestion on the European transmission grid.
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but only of DM1. We assume that f > cx

N ð1þ bÞ, i.e., the switching cost outweighs the (pre-

sent-value) externality effect on running costs for Technology X. For the sake of simplicity,

we assume that a symmetrical moving cost is incurred when �DM1 countries abandon

Technology X and switch to the conventional abatement.

Countries decide upon adoption taking into account the one-time switching cost as well

as the present-value gain associated with using Technology X instead of the conventional

abatement option. Let k denote this gain. Note that individual countries make decisions ac-

cording to their own expected payoffs, and thus k represents the gain for individual coun-

tries, not for all countries. k is a function of M0, DM1, and DM2 (the number of countries

that switch technologies in period 2) given by:

kðM0;DM1;DM2Þ ¼ ð1þ bÞk1ðM0Þ þ k2ðDM1;DM2Þ: (5)

where k1 and k2 are defined as:

k1ðM0Þ ¼ bx �
cx

N
ðN �M0 þ 1Þ � b2

2c0
(6)

k2ðDM1;DM2Þ ¼ ð1þ bÞDM1
cx

N
þ bDM2

cx

N
(7)

The balance of k and the switching cost determines the number of adoption or abandon-

ment of Technology X in period 1. Let us first consider the case of progressive technology

adoption, i.e., the number of adopters of Technology X increases over time. Then there is a

maximum value of DM1 (less than N �M0) such that the payoff gain from switching from

conventional abatement to Technology X is positive (recall that a larger DM1 reduces the

expected payoff of adoption because of the switching cost). In equilibrium, the number of

countries switching technologies in period 1, DMe
1, is given by the largest integer to satisfy:

kðM0;DM1;DM2Þ� fDM1 (8)

In other words:

kðM0;DMe
1;DM2Þ� fDMe

1 (9)

and:

kðM0;DMe
1 þ 1;DM2Þ < f � ðDMe

1 þ 1Þ: (10)

By contrast, countries might expect that others will abandon Technology X in period 2. As

Technology X is attractive only with a large number of adopters, the fear of collective aban-

donment gives those that have adopted Technology X an incentive to abandon it. As above,

switching costs limit the magnitude of abandonment in this period. For a set of negative

DM1 that satisfy:

�kðM0;DM1;DM2Þ � � fDM1 (11)

the number of countries that abandon Technology X in period 1, DMe
1, is given by the inte-

ger with the largest absolute value in this set.

It is straightforward to show possible cases in which the outcome is indeterminate, so

that expectations about future outcomes can influence the future outcomes themselves.

Figure 2 depicts the case where M0 is located to the left of the tipping point
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A—mathematically, k1ðM0Þ ¼ 0. We prove in Appendix A.1 that there is always at least

one combination of (DM1;DM2) satisfying (11) and DM1;DM2� 0 (Fig. 2b). Under certain

conditions, there may also be a combination of (DM1;DM2) satisfying (8) and DM1;DM2�
0 (Fig. 2a). To see this, notice that—by a logic similar to the one used to derive condition

(8)—the number of countries that adopt Technology X in period 2, DMe
2, is given by the

largest integer of DM2 to satisfy the inequality:

k1ðM0 þ DM1 þ DM2Þ� fDM2 (12)

(a)

Fig. 2a. Adoption incentives with costly technology switching: technology adoption.

(b)

Fig. 2b. Adoption incentives with costly technology switching: technology abandonment.
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The above conditions (8) and (12) are equivalent to:

N

cx
k1ðM0Þ þ 1� f N

cxð1þ bÞ

� �
DM1 þ

b
1� b

DM2� 0 (13)

N

cx
k1ðM0Þ þ DM1 þ 1� f N

cx

� �
DM2� 0 (14)

and can be satisfied by a set of weakly positive ðDM1;DM2Þ. For example, positive DM1

and DM2 exist if f N
cxð1þbÞ � 1 is very small (recall that, by assumption, f N

cxð1þbÞ � 1 > 0) and

there is a number DM2 that satisfies:

b
1� b

DM2 > �
Nk1ðM0Þ

cx

(note that k1ðM0Þ < 0). An analogous reasoning can be developed for the case in which

M0 is located to the right of the tipping point.

In summary, we have shown that the dynamics of technology switching may be uniquely

determined in the direction of either increasing adoption or abandonment, depending on

the initial state of technology adoption. However, the system may also have feasible solu-

tions for both directions of technology adoption and abandonment, in which case the out-

come is determined entirely by countries’ expectations.

3.2 Infinite-horizon game

Here we show that similar patterns to the ones described in the previous section emerge in

the case of an infinite-horizon game of technology adoption. In this setting, the effect of ac-

tions at any given stage is cumulative so that final outcomes differ drastically, depending on

both the model primitives and players’ expectations. There are two fundamentally different

scenarios. In the first one, the dynamics are determinate, in the sense that equilibrium play

always leads to a unique outcome, either a universal adoption or zero adoption. In the se-

cond scenario, the dynamics are indeterminate, so that expectations about future outcomes

influence the future outcomes themselves, akin to a self-fulfilling prophecy.

We analyse an infinite-horizon version of the game developed in the previous section.

Play starts in period 0 with an initial number M0 of adopters. As in the previous section, we

assume that 0�M0�N to allow for the possibility that some countries have already

adopted Technology X. Countries maximize the present value of cumulative expected fu-

ture payoffs associated with their chosen technology. We focus on subgame perfect equili-

bria with the feature that countries immediately begin an optimal transition to either full

adoption or no adoption—which one depends on M0, payoff parameters, and expectations.

Once this stage-game Nash equilibrium is reached, it will be repeated indefinitely as players

have no incentives to further deviate. Since indefinite Nash play is a subgame perfect equi-

librium of the continuation game, we can use backward induction to determine the indi-

vidually rational transition towards this state. In the following exposition, we first consider

the case in which all countries eventually become adopters of Technology X. An analogous

reasoning can be made for technology abandonment, as shown below.

Due to switching costs, universal adoption does not occur in a single period but will

take place in L batches DM1;DM2; . . . ;DML�1;DML where
XL

l¼1
DMl ¼ N �M0:

Consider the last batch of DML ¼ N �ML�1 of adopters. The relative payoff to adoption

for these countries is given by:
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kL ¼ 1

1� b
bx �

cx

N
ðN �M0 þ 1Þ � b2

2c0
þ cx

N

XL

l¼1

DMl

 !" #
(15)

A Nash equilibrium in this subgame requires that kL� fDML where DML ¼ N �ML�1.

Working backwards, in period L—1 a group of DML�1 countries adopting Technology X

earns relative payoffs:

kL�1 ¼ 1

1� b
bx �

cx

N
ðN �M0 þ 1Þ � b2

2c0
þ cx

N

XL�2

l¼1

DMl þ DML�1 þ bDML

 !" #
(16)

For there to be exactly DML�1 adopters in Nash equilibrium, adoption must make all of

them weakly better off, i.e.:

kL�1� fDML�1: (17)

However, any additional adopter of Technology X must be strictly worse off:

kL�1 þ cx

N
< f ðDML�1 þ 1Þ: (18)

Iterating backwards, we obtain the relative payoff to adoption on the equilibrium path for

the kth batch of adopters, k 2 f1;L� 1g:

kk ¼ 1

1� b
bx �

cx

N
ðN �M0 þ 1Þ � b2

2c0
þ cx

N

Xk�1

l¼1

DMl þ
XL

l¼k

bl�kDMl

 !" #
(19)

and the equilibrium conditions:

kk� fDMk (20)

^ kk < fDMk þ f � cx

N
(21)

For given kk; conditions (20) and (21) pin down the number of adopters in a Nash equilib-

rium at stage k. Once all countries have adopted in period L, the relative payoff to adoption

in all subsequent periods s is constant and given by kLþs ¼ 1
1�b bx � cx

N � b2

2c0

h i
for

s ¼ 0;1; . . .. Since this term is positive, no country has an incentive to unilaterally abandon

Technology X.

We use this property to characterize the evolution of the relative payoff to adoption

along the equilibrium path. The relative payoff to adoption for countries in the kth batch of

adopters is given by:

kk ¼
XL

s¼k

bs�k bx �
cx

N
ðN �Ms þ 1Þ � b2

2c0

� �
þ bL�kþ1

1� b
bx �

cx

N
� b2

2c0

� �
(22)

The difference in the relative payoffs to adoption for two subsequent batches of adopters k

and kþ1 can be written as:

kkþ1 � kk ¼ dkk � ð1þ dÞ bx �
cx

N
ðN �Mk þ 1Þ � b2

2c0

� �
(23)

where d � 1�b
b . See Appendix A.2 for a derivation of this equation. Along with the inequal-

ities (20) and (21), eq. (23) characterizes the dynamics of technology adoption in subgame
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perfect equilibrium. As in Section 3.1 above, the conditions for an equilibrium in which all

countries switch back to the conventional technology can be derived in an analogous

fashion.

3.3 Equilibrium dynamics

To analyse the dynamics of technology adoption along the equilibrium path, it is conveni-

ent to model the rate of technology adoption as a continuous variable c ð0� c�1Þ. The

number of countries adopting Technology X is thus given by dcNe. Similar to the case dis-

cussed in the previous section, the equilibrium level of countries switching at each time

period is one that balances the net present value of switching and the marginal switching

costs for all countries. Along the equilibrium path, the net present value of switching from

the conventional abatement to Technology X at period t is given by:

kt ¼
X1
s¼t

bs�t bx � cxð1� csÞ �
b2

2c0

� �
: (24)

Following the same logic as in the previous sub-sections, the marginal switching cost for

countries switching technologies between t and t þ 1 is proportional to ðctþ1 � ct) and

defined as Fðctþ1 � ct) where F is a constant. For kt continuous in c, conditions (20) and

(21) boil down to the difference equation:

Fðctþ1 � ctÞ ¼
1

1þ d
ktþ1: (25)

A second difference equation (derived in Appendix A.3) governs the evolution of kt:

ktþ1 � kt ¼ dkt � ð1þ dÞ bx � cxð1� ctÞ �
b2

2c0

� �
: (26)

As the length of a time period goes to zero, the system of difference eqs (25) and (26) can be

approximated by the differential equations:

F _c ¼ 1

1þ d
k (27)

_k ¼ dk� ð1þ dÞ bx � cxð1� cÞ � b2

2c0

� �
(28)

This representation allows for a more tractable analysis of the dynamics along the equilib-

rium path. Note that the system describes the dynamics of technology adoption following

the countries’ individual payoffs. A similar discussion for the social optimum is presented

in Appendix A.4. Eqs (27) and (28) define a system of linear differential equations the solu-

tion to which is given by a combination of exponential functions. If:

0 < �bx þ cx þ
b2

2c0
< cx (29)

the system has a tipping pattern, i.e., both universal adoption and zero adoption of X are

long-run (continuation) equilibria. In this case, the paths of k and c are obtained by tracing
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them backwards from two long-run equilibria where c¼0 or c¼1. The roots of the

exponential functions determining the system are given by:

q ¼ 1

2
d6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � 4cx

F

r" #
(30)

Note that the roots can be both real and complex depending on the parameter values, as

the term d2 � 4cx=F can be either positive or negative. The system dynamics exhibit re-

markable differences depending on which type of root prevails in eq. (30).

With a real root, the system is determinate and hence a sequence of countries’ decisions

always lead to a unique outcome. This case is depicted in Fig. 3a. Starting at the tipping

point A, either of the two long-run equilibria can be attained as the dynamics evolve

(a)

Fig. 3a. Equilibrium dynamics in the infinite horizon game: determinate case (real roots).

(b)

Fig. 3b. Equilibrium dynamics in the infinite horizon game: indeterminate case (complex roots).
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through a sequence of decisions governed by the equilibrium conditions (27) and (28).

The graph shows that each value of c other than A corresponds to at most one point on one

of the two trajectories. In other words, the initial state of adoption c0 uniquely determines

the long-run diffusion rate of Technology X. If c0 > A (c0 < A) universal (zero) adoption

results in long-run equilibrium.7

In contrast, expectations play a prominent role when eq. (30) has a complex root. In this

case, the trajectories show oscillatory patterns, and their arms could cover a wide range of pos-

sible values for c. When the two arms overlap over an interval of c—as is depicted in Fig. 3b—

the initial state does not determine the direction of the path. In fact, there is an infinite number of

feasible trajectories that the system can take. Thus, the model primitives do not condition coun-

tries to follow a unique equilibrium path. Rather, it is countries’ expectations about future adop-

tion of Technology X that pace the growth (or decline) of technology penetration. Even if there is

a feasible equilibrium path leading to the universal adoption of Technology X (for example, the

path through point Pc in Fig. 3b), an expectation held by non-adopters that diffusion will not

happen could prevent the initial group of adopters from taking this path. Instead, they might fol-

low the trajectory to the zero adoption (for example, the path through point Pd in Fig. 3b).

4. Discussion

4.1 Patterns of technology choice

The dynamic model highlights two distinct patterns of technology choice under a technol-

ogy treaty which deserve further discussion from a policy point-of-view. In the determinate

case, there is a unique equilibrium path leading to the long-run outcome. This outcome can

be either universal or zero adoption and is uniquely determined by the initial state of tech-

nology adoption c0 and by the tipping point:

c	 ¼ 1�
bx � b2

2c0

cx
: (31)

Only if the initial proportion of adopters is sufficiently large, c	 < c0, will the technology

be adopted by everyone in the long-run.8 Otherwise, all countries will switch back to the

conventional technology. The tipping point is likely to be lower the more affordable the

breakthrough technology, the more expensive the conventional technology and the larger

the relative benefits of Technology X compared to those associated with the conventional

technology. In this scenario, the earlier results by Barrett (2006) and Hoel and de Zeeuw

(2010) go through and the coordination problem is negligible.

However, this is not true if the technology is such that the long-run outcome is indeter-

minate and depends on expectations, akin to a self-fulfilling prophecy. Eq. (30) implies that

7 Adoption could take either of the trajectories if c0 ¼ A.

8 Conditions (30) and (31) characterize the outcomes of private decisions taken by individual coun-

tries that intertemporally maximize their cumulative payoffs. These outcomes do not necessarily

coincide with the social optimum because individual countries do not consider the external bene-

fits and costs of their switching decisions. However, similar conditions can be obtained for the so-

cial optimum, as shown in Appendix A.4. These conditions imply that the tipping point for the social

optimum (ĉ	) is always lower than the tipping point for private outcomes (c	). Intuitively, this prop-

erty derives from the fact that technology adoption by one country creates a positive externality

for other countries adopting Technology X.
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this case arises if d2 < 4cx=F and hence the system of differential equations has com-

plex roots. It is easily seen from this inequality that a higher discount rate d and a

higher switching cost F parameter both promote determinacy of the system. This is be-

cause both myopia and high costs of technology switching enhance the relative importance

of current over future payoffs, which are subject to strategic uncertainty. Conversely,

a large cx—which implies that the costs of technology adoption very much depend

on the total number of adopters—promotes indeterminacy of the system, as it makes

countries’ present-value expected payoff more susceptible to others’ technology choices in

the future.

4.2 Equilibrium refinements for coordination games

The issue of coordinating play on one of several possible equilibrium outcomes is at the

core of this and other papers on breakthrough technologies. In any coordination game,

players face strategic uncertainty about the decisions taken by other players. Our theoret-

ical model has shown how introducing dynamics exacerbates strategic uncertainty by creat-

ing indeterminacy. This result highlights the role of expectations that may affect future

technology adoption in a self-fulfilling fashion, leading to the implication that policymakers

may wish to coordinate expectations on an agreement with full adoption. An alternative

approach would have been to incorporate more structure on player’s expectations in the

model and hence to narrow the scope for multiplicity.9 In this subsection, we discuss the

available game theoretical concepts to resolve coordination issues and explain why we have

refrained from using them.

Schelling (1960) pointed out early on that beliefs and perceptions held by players can

help coordinate expectations on certain outcomes that are focal. This is particularly true of

real-life situations where agents’ decisions are embedded in a common temporal, spatial or

cultural context. In the description of the technology adoption game considered above,

however, there is little that would render a particular Nash equilibrium focal in Schelling’s

sense, so this concept is not pursued any further here.

Harsanyi and Selten (1988) defined the notion of risk dominance as an equilibrium re-

finement for (static) coordination games.10 This concept is nicely illustrated for the stage

game depicted in Fig. 2a. If all frontrunners expect followers to adopt Technology X, they

play a coordination game with payoffs represented by the solid lines. It is easily seen that

complete adoption by all frontrunners payoff-dominates the Nash equilibrium with no

adoption. However, notice that a deviation by one of the frontrunners imposes larger losses

on the other adopters than would be the case in the equilibrium with no adoption.

9 We thank an anonymous referee for making this suggestion.

10 For anti-coordination games such as the game of chicken, Aumann (1974) proposed the concept

of correlated equilibrium, where players coordinate expectations on equilibrium play via a third

party that privately instructs players which strategy to play after observing to a randomization de-

vice. We refrain from using correlated equilibria here because, in line with the previous literature,

we think that the choice of the abatement technology is best modelled as a coordination game ra-

ther than an anti-coordination game. Moreover, it would appear heroic to assume that an interna-

tional body such as the United Nations Framework Convention on Climate Change (UNFCCC)

could assign equilibrium actions to its member states in private. Rather, it seems that such assign-

ments should be considered public in a post-’Wiki leaks’ world. As a result, the UNFCCC could

only randomize over Nash equilibria of the game, but this is not very plausible.
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Therefore, if frontrunners don’t know for sure which Nash equilibrium is being played,

adopting Technology X is a risky choice whereas conventional abatement is safe. In other

words, the equlibrium without adoption risk-dominates the equilibrium with complete

adoption. Risk dominance seems particularly plausible if pre-play communication is inef-

fective at coordinating expecations, as was conjectured by Aumann (1990). However, at

least in two-player coordination games, lab experiments have shown that cheap talk com-

munication is very effective at enhancing efficiency of the outcome (Charness, 2000).

Moreover, a fair amount of international diplomacy can be considered cheap talk in a

game theoretical sense, and yet it is the prime method of enhancing the efficiency of inter-

governmental interactions. This (along with the lack of an extensive-form game definition),

is the reason why we do not use risk dominance to select among equilibria.

4.3 Social preferences

Our model has emphasized the scale effects of breakthrough technologies which induce

strategic complementarity in the adoption process. While the examples for such technolo-

gies given above are well known in the literature, it bears noting that the fundamental in-

sights of our analysis are much broader. In fact, they equally apply to any factor capable of

creating strategic complementarity in an international environmental treaty. For example,

Lange and Vogt (2003) show that the introduction of equity preferences �a la Bolton and

Ockenfels (2000) in Barrett’s (1994) model of self-enforcing environmental treaties can sus-

tain full cooperation in settings where regular preferences cannot. This finding is relevant in

our context because a large body of experimental evidence emphasizes the importance of

social preferences (Fehr and Schmidt, 1999; Bolton and Ockenfels, 2000), and because con-

cerns about fairness have been shown to matter for those actors involved in international

climate negotiations (Lange et al., 2007, 2010). Wagner (2016) presents empirical evidence

that concerns about reputation and fairness created strategic complementarity in the ratifi-

cation process of the Montreal Protocol on Substances that Deplete the Ozone Layer.

Similar to the scale effect of the breakthrough technology, inequality aversion engenders

strategic complementarity in the payoff to joining a treaty. In particular, when countries

care about a fair distribution of the gains of an international environmental treaty, the dy-

namic ratification path can be indeterminate even in the absence of technology external-

ities. Given this indeterminacy, participation in the treaty could be broadened if countries

believe that other countries will become adopters in the future (i.e., ratification becomes

the norm), and vice versa. The only difference is that in eq. (30), the technology term cx will

be replaced by a parameter measuring the inequality aversion. We leave a more detailed

analysis of such a model as a topic for future research.

5. Conclusion

Although the 2015 Paris Agreement prominently features a 2�C target for global warming,

it does not stipulate binding targets on carbon emissions. Rather, member states are called

upon to design and implement their own mitigation measures, cautiously referred to as

‘Intended Nationally Determined Contributions (INDCs)’. According to the EU commis-

sion, these INDCs ‘are not yet enough to keep global warming below 2�C, but the
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agreement traces the way to achieving this target.’11 The theoretical model developed in

this paper sheds light on the conditions under which this statement holds true.

Our analysis is based on a dynamic extension of Barrett’s (2006) model of treaty forma-

tion where countries choose between: (i) a conventional abatement technology that is sub-

ject to decreasing returns; and (ii) a ‘breakthrough technology’ that exhibits a network

externality such that the benefit to adoption increases with the number of other adopters.

Countries evaluate these choices taking into account the expected future benefits and an

increasing (in the number of other countries) cost of switching technologies. We have

shown that, under certain conditions, equilibrium technology choices are indeterminate as

they depend on the future adoption rate, which is subject to strategic uncertainty. An im-

portant implication of this is that expectations about the future outcomes could themselves

influence international cooperation under an IEA that mandates the adoption of a clean

technology.

Our analysis highlights the potential of strategic uncertainty to hinder treaty formation

and suggests two approaches by which policy can mitigate this problem. The first approach

is to reduce strategic uncertainty by managing expectations. This could be implemented,

for example, by setting long-term, non-binding targets for pollution emissions or other out-

comes, so as to coordinate expectations across countries on the path leading to full adop-

tion. As was pointed out above, the fact that limiting the global temperature increase to

2�C is the key provision of both the Copenhagen Accord and the Paris Agreement can be in-

terpreted in this way. This target does not require any country to reduce its emissions at

present, but it aligns countries’ expectations and thereby ‘tips’ a future technology treaty to-

wards adoption.

The second approach to reducing strategic uncertainty is by choosing technologies that

minimize the potential for indeterminacy of the dynamic system. Instead of choosing the

most efficient breakthrough technology, policymakers might favour a technology with high

switching cost as this locks the frontrunners into their decisions while also reducing stra-

tegic uncertainty of followers. This aspect of technology adoption arises only in our expli-

citly dynamic framework and thus constitutes an important extension of the second-best

argument by which technologies with scale effects are superior to alternative treaty designs

even if they come at a higher cost because they reduce the incentive to free ride (Barrett,

2006).

For the sake of clarity, we have kept the modelling and discussion deliberately simple.

Our analysis can be extended to consider expectation-driven dynamics that emerge because

of sources of strategic complementarities other than a network externality, e.g., inequality

aversion on the part of treaty participants or trade sanctions imposed on non-signatories.

What is more, our analysis could be extended to IEAs that concern both R&D investment

and technology diffusion, and this will require a proper treatment of irreversibilities.

Another relevant extension would examine the scope for expectations management in an

IEA involving the choice among many technologies that exhibit different cost structures.

These and other extensions are left as topics for future research.

11 Cf. https://ec.europa.eu/clima/policies/international/negotiations/paris/index_en.htm, last accessed

31 October 2016.
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Appendix

A.1 Proof

The given conditions imply �kðM0;0; 0Þ>0 and.�k1ðM0Þ > 0: Since: f > cx

N ð1þ bÞ, the

function:

�kðM0;DM1;DM2Þ � k1ð�DM1Þ

is increasing in DM1 (decreasing in �DM1) and decreasing in DM2 (increasing in �DM2).

As, this means that there is at least one feasible DM1�0 for all DM2 satisfying DM2�0.

Meanwhile, a negative DM2 satisfies the following inequality:

�k1ðM0 þ DM1 þ DM2Þ� f ð�DM2Þ

Since f > cx

N ð1þ bÞ, the function:

�k1ðM0 þ DM1 þ DM2Þ � f ð�DM2Þ

is increasing in DM2 (decreasing in �DM2). As �k1ðM1Þ > 0, this means that there is at

least one DM2�0 that satisfies the above inequality for all DM1 such that DM1� 0. The

above means that if M0 is located on the left of the tipping point, there is always a feasible

combination of ðDM1;DM2Þ such that DM1;DM2� 0.

A.2 Difference equation for k in the discrete game

To characterize the evolution of the relative payoff to adoption, we rewrite the relative pay-

off to adoption for adopters in the kth batch of adopters as follows:

kk ¼
XL

s¼k

bs�k bx �
cx

N
ðN �Ms þ 1Þ � b2

2c0

� �
þ bL�kþ1

1� b
bx �

cx

N
� b2

2c0

� �

The relative payoff to adoption for the subsequent batch of adopters kþ1 is given by:

kkþ1 ¼
XL

s¼kþ1

bs�ðkþ1Þ bx �
cx

N
ðN �Ms þ 1Þ � b2

2c0

� �
þ bL�k

1� b
bx �

cx

N
� b2

2c0

� �

Let d � 1�b
b and calculate:

kkþ1 � ð1þ dÞkk ¼ kkþ1 � kk

b

¼
XL

s¼kþ1

bs�ðkþ1Þ bx �
cx

N
ðN �Ms þ 1Þ � b2

2c0

� �

�
XL

s¼k

bs�k�1 bx �
cx

N
ðN �Ms þ 1Þ � b2

2c0

� �

¼ �1

b
bx �

cx

N
ðN �Mk þ 1Þ � b2

2c0

� �

Simple manipulation of this expression yields:

kkþ1 � kk ¼ dkk � ð1þ dÞ bx �
cx

N
ðN �Mk þ 1Þ � b2

2c0

� �
(32)
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A.3 Difference equation for k with a continuum of countries

kt ¼
X1
s¼t

bs�t bx � cxð1� csÞ �
b2

2c0

� �

and

ktþ1 ¼
X1

s¼tþ1

bs�t�1 bx � cxð1� csÞ �
b2

2c0

� �

Calculate:

ðktþ1 � ktÞ � dkt ¼
X1

s¼tþ1

bs�ðtþ1Þ bx � cxð1� csÞ �
b2

2c0

� �

�ð1þ dÞ|fflfflfflffl{zfflfflfflffl}
¼1=b

X1
s¼t

bs�t bx � cxð1� csÞ �
b2

2c0

� �

¼
X1

s¼tþ1

bs�ðtþ1Þ bx � cxð1� csÞ �
b2

2c0

� �

�
X1
s¼t

bs�t�1 bx � cxð1� csÞ �
b2

2c0

� �

¼ � 1

b
bx � cxð1� ctÞ �

b2

2c0

� �

Hence:

ktþ1 � kt ¼ dkt �
1

b
bx � cxð1� ctÞ �

b2

2c0

� �

¼ dkt � ð1þ dÞ bx � cxð1� ctÞ �
b2

2c0

� �

A.4 Social optimum (in the continuous-time case)

Taking the perspective of the global social planner, the Hamiltonian of the system is given

by:

H ¼ Nc½bx � cxð1� cÞ� þNð1� cÞ b2

2c0
�NF _c2

2
þNk̂ _c

where k̂ is the co-state variable representing the shadow value of having an adopter of

Technology X rather than a non-adopter. The control and state variables for the

Hamiltonian are _c and c. The first-order conditions are:

@H

@ _c
¼ �NF _c þNk̂ ¼ 0

dk̂
dt
¼ _̂k ¼ dk̂ � 2cxcþ bx � cx �

b2

2c0

� �
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Just as in the case of individual countries’ decision-making, this set of equations is solvable,
and now the roots are given by:

q̂ ¼ 1

2
d6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � 8cx

F

r" #

The tipping point now becomes:

ĉ	 ¼ 1

2
1�

bx � b2

2c0

cx

 !

Note that c	 > ĉ	.
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