KIENER
BEITRÄGE ZUR WIRTSCHAFTSPOLITIK

Produktivität in Deutschland – Messbarkeit und Entwicklung

Institut für Weltwirtschaft
Kiel Institute for the World Economy
ISSN 2567-6474
Diese Studie wurde im Auftrag des Bundesministeriums für Wirtschaft und Energie sowie des Bundesministeriums der Finanzen erstellt.

Abgeschlossen im Juni 2017.
Inhaltsverzeichnis

Tabellenverzeichnis ... 5
Abbildungsverzeichnis ... 6
Verzeichnis der Kästen ... 9
Executive Summary ... 10
Zusammenfassung .. 12

1 Problemstellung ... 19

2 Theoretische Grundlagen .. 22
 2.1 Produktion, Produktionsfaktoren und Wertschöpfung .. 22
 2.2 Wachstum, technischer Fortschritt und Produktivität .. 25
 2.3 Arbeitsproduktivität .. 31
 2.4 Kapitalproduktivität ... 33
 2.5 Totale Faktorproduktivität .. 34
 2.6 Produktivitätskerne und Wertproduktivität ... 36

3 Messproblematik .. 38
 3.1 Datenquellen und -verfügbarkeit .. 38
 3.2 Konzeptionsgerechte Erfassung der Wertschöpfung .. 41
 3.3 Wertschöpfung ohne Marktttransaktionen .. 43
 3.3.1 Selbstgenutztes Wohneigentum .. 43
 3.3.2 FISIM ... 45
 3.3.3 Versicherungsdienstleistungen .. 46
 3.3.4 Querfinanzierungsmodelle ... 48
 3.3.5 Öffentlicher Sektor ... 49
 3.4 Deflationierung ... 50
 3.4.1 Bedeutung ... 50
 3.4.2 Qualitätsverbesserungen ... 51
 3.4.3 Unikate .. 56
 3.5 Abgrenzung der Wirtschaftszweige ... 56
 3.5.1 Arbeitnehmerüberlassung (Zeitarbeit) .. 56
 3.5.2 Leasing ... 57
 3.6 Produktionsfaktoren ... 58
 3.6.1 Arbeitsvolumen ... 58
 3.6.2 Humankapital ... 60
 3.6.3 Sachkapital .. 60
 3.7 Revisionen ... 65
 3.8 Messunterschiede im internationalen Vergleich .. 69
 3.8.1 Ursachen .. 69
 3.8.2 Auswirkungen ... 71
 3.9 Zusammenfassung .. 74
<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Thema</th>
<th>Startseite</th>
<th>Ende Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Methoden der TFP-Berechnung</td>
<td>77</td>
<td>77</td>
</tr>
<tr>
<td>4.1</td>
<td>Methode der Europäischen Kommission</td>
<td>77</td>
<td>77</td>
</tr>
<tr>
<td>4.2</td>
<td>Index-Methode</td>
<td>79</td>
<td>79</td>
</tr>
<tr>
<td>5</td>
<td>Deskriptive Statistik</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>5.1</td>
<td>Entwicklung der Produktivität auf Länderebene</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Arbeitsproduktivität</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Totale Faktorproduktivität</td>
<td>92</td>
<td>92</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Kapitalproduktivität</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>5.1.4</td>
<td>Wachstumsbeiträge zur Arbeitsproduktivität</td>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td>5.2</td>
<td>Entwicklung der sektoralen Produktivität in Deutschland und anderen OECD-Ländern</td>
<td>99</td>
<td>99</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Sektorale Arbeits-, Kapital- und totale Faktorproduktivität in Deutschland</td>
<td>123</td>
<td>123</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Internationaler Vergleich</td>
<td>147</td>
<td>147</td>
</tr>
<tr>
<td>5.3</td>
<td>Zusammenfassung</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>6</td>
<td>Ökonomische Erklärungsansätze</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>6.1</td>
<td>Sektoraler Strukturwandel</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Motivation und Methodik</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>6.1.3</td>
<td>Entwicklung der Sektoralen Reallokationseffekte im Zeitverlauf</td>
<td>157</td>
<td>157</td>
</tr>
<tr>
<td>6.1.4</td>
<td>Intrasektoraler Strukturwandel (Produzierendes Gewerbe und Unternehmensdienstleister)</td>
<td>161</td>
<td>161</td>
</tr>
<tr>
<td>6.1.5</td>
<td>Fazit</td>
<td>163</td>
<td>163</td>
</tr>
<tr>
<td>6.2</td>
<td>Outsourcing</td>
<td>165</td>
<td>165</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Literaturübersicht</td>
<td>166</td>
<td>166</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Messung des Outsourcings</td>
<td>168</td>
<td>168</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Entwicklung des Outsourcings</td>
<td>169</td>
<td>169</td>
</tr>
<tr>
<td>6.2.4</td>
<td>Produktivitätseffekte des Outsourcings im Verarbeitenden Gewerbe</td>
<td>174</td>
<td>174</td>
</tr>
<tr>
<td>6.2.5</td>
<td>Arbeitnehmerüberlassung</td>
<td>176</td>
<td>176</td>
</tr>
<tr>
<td>6.2.6</td>
<td>Leasing</td>
<td>184</td>
<td>184</td>
</tr>
<tr>
<td>6.2.7</td>
<td>Fazit</td>
<td>188</td>
<td>188</td>
</tr>
<tr>
<td>6.3</td>
<td>Digitalisierung</td>
<td>189</td>
<td>189</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Empirischer Befund</td>
<td>190</td>
<td>190</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Ökonomische Gründe</td>
<td>196</td>
<td>196</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Fazit</td>
<td>205</td>
<td>205</td>
</tr>
<tr>
<td>6.4</td>
<td>Humankapital</td>
<td>205</td>
<td>205</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Empirischer Befund</td>
<td>206</td>
<td>206</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Einfluss auf die Entwicklung von TFP und Arbeitsproduktivität</td>
<td>214</td>
<td>214</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Fazit</td>
<td>219</td>
<td>219</td>
</tr>
<tr>
<td>6.5</td>
<td>Demografische Entwicklungen</td>
<td>205</td>
<td>205</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Effekte der Altersstruktur der Erwerbstätigen</td>
<td>220</td>
<td>220</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Vergleich mit den USA</td>
<td>223</td>
<td>223</td>
</tr>
</tbody>
</table>
6.5.3 Effekte der gesamtgesellschaftlichen Altersstruktur ... 223
6.5.4 Fazit ... 225
6.6 Arbeitsmarktspezifische Entwicklungen .. 226
6.6.1 Zuwanderung ... 227
6.6.2 Hartz-Reformen ... 230
6.6.3 Lohnmoderation ... 232
6.6.4 Fazit ... 242
6.7 Fehlallokation der Produktionsfaktoren .. 243
6.7.1 Finanzkrises ... 243
6.7.2 Kreditexpansionen ... 248
6.7.3 Niedrigzinsphasen ... 251
6.7.4 „Zombifizierung“ von Unternehmen .. 254
6.7.5 Fazit ... 255
7 Weiterführende und vertiefende Studien ... 257
7.1 Analysen auf der Mikroebene ... 257
7.1.1 Einleitung ... 257
7.1.2 Daten der statistischen Ämter ... 258
7.1.3 Daten des Instituts für Arbeitsmarkt- und Berufsforschung (IAB) 261
7.1.4 Mannheimer Innovationspanel ... 263
7.1.5 Vergleich AFiD, IAB und MIP Daten ... 264
7.1.6 Weitere Daten .. 265
7.1.7 Fazit ... 266
7.2 Alternative Arbeitsproduktivitätsmaße ... 266
7.2.1 Potenzialproduktivität .. 266
7.2.2 Wertproduktivität ... 268
Literatur .. 270
Anhang ... 285

Tabellenverzeichnis

Tabelle 3.1.1: Datensätze für international vergleichende sektorale Produktivitätsanalysen...... 39
Tabelle 3.8.1: Internationale Nutzung hedonischer Qualitätsbereinigungsverfahren............. 71
Tabelle 5.1.1: Korrelationsmatrix Arbeitsproduktivitäts-Veränderung 1991-2014 92
Tabelle 5.1.2: Korrelationsmatrix TFP-Veränderung 1991-2014 .. 94
Tabelle 5.1.3: Arbeitsproduktivität, TFP und Bruttoinlandsprodukt 1991-2014 94
Tabelle 5.1.4: Korrelationsmatrix Kapitalproduktivitäts-Veränderung 1991-2014 95
Tabelle 5.2.1: Entwicklung von Bruttowertschöpfung, Beschäftigung und Produktivität in Deutschland 1991-2015 (10 Sektoren) ... 103
Tabelle 5.2.2: Niveaus der Arbeits- und Kapitalproduktivität 2013 (10 Sektoren) 106
Tabelle 5.2.3: Sektorbeiträge zum aggregierten Arbeitsproduktivitätswachstum 1991-2013 (8 Sektoren) ... 109
Tabelle 5.2.4: Aggregierte Beiträge zum Arbeitsproduktivitätswachstum 1991-2013 (31 Branchen) .. 116
Tabelle 6.2.1: Ergebnisse einer Panelregression zum Zusammenhang zwischen Outsourcing und Produktivitätswachstum in den Wirtschaftszweigen des Verarbeitenden Gewerbes in Deutschland und Vergleichsländern 1995-2007 .. 175
Tabelle 6.3.1: IKT-Intensität IKT-intensiver Wirtschaftszweige in Deutschland und den Vereinigten Staaten 1995-2005 .. 192
Tabelle 6.6.1: Effekt der Zuwanderung auf die gesamtwirtschaftliche Arbeitsproduktivität 2011-2015 ... 229
Tabelle 6.6.2: Effekt der Hartz-Reformen auf die gesamtwirtschaftliche Arbeitsproduktivität ... 231
Tabelle A-5.2.1: Sektorbeiträge zum Arbeitsproduktivitätswachstum in Deutschland 1991-2013 (10 Sektoren) ... 286
Tabelle A-5.2.2: Branchenbeiträge zum gesamtwirtschaftlichen Arbeitsproduktivitätswachstum in Deutschland 1991-2013 (31 Branchen) .. 288
Tabelle A-5.2.3: Entwicklung von Arbeitsproduktivität und Totaler Faktorproduktivität in Deutschland 1991-2013 (31 Branchen) .. 292
Tabelle A-5.2.4: Branchen mit höchstem / geringstem Wachstum der Arbeitsproduktivität und der totalen Faktorproduktivität in Deutschland 1991-2013 ... 294
Tabelle A-5.2.5: Klassifikation der Wirtschaftszweige nach (10 Sektoren, 37 Branchen) ... 295
Tabelle A-5.2.6: Klassifikation der Wirtschaftszweige nach ISIC Rev.3 (9 Sektoren, 25 Branchen) ... 296
Tabelle A-6.3.1: IKT-Intensität IKT-intensiver Wirtschaftszweige in Deutschland und den Vergleichsländern 1995-2005 (Prozent) .. 297
Tabelle A-6.5.1: Schätzergebnisse Arbeitsproduktivität und Beschäftigungsanteile verschiedener Alterskohorten .. 298
Tabelle A-6.5.2: Schätzergebnisse TFP und Beschäftigungsanteile verschiedener Alterskohorten .. 298

Abbildungsverzeichnis

Abbildung 2.1.1: Produktionsfaktoren .. 23
Abbildung 2.1.2: Gesamtwirtschaftliches Güter- und Produktionskonto .. 24
Abbildung 2.2.1: Linear-Homogenität in der Produktion .. 26
Abbildung 2.2.2: Kapitalintensität und Arbeitsproduktivität .. 26
Abbildung 2.2.3: Induzierte Kapitalintensivierung .. 28
Abbildung 3.3.1: Wohnungswirtschaftliche Kennzahlen 1991-2015 .. 44
Abbildung 3.3.2: Wertschöpfung der Finanzdienstleister 1992-2014 .. 46
Abbildung 3.3.3: Wertschöpfung der Versicherungen und Pensionskassen .. 47
Abbildung 3.3.4: Markt für Online-Werbung in Deutschland 2005-2015 .. 49
Abbildung 3.4.1: Arbeitsproduktivität (Stundenkonzept) 1992-2014 ... 50
Abbildung 3.7.1: Ausmaß der Revisionen der Arbeitsproduktivität 2007-2016 .. 67
Abbildung 3.7.2: Mittlere Revision der Arbeitsproduktivität 2008-2016 .. 68
Abbildung 3.7.3: Revisionseinfuß der Komponenten der Arbeitsproduktivität 2008-2016 68
Abbildung 3.8.1: IKT-Kapitalintensitäten und Preisindex für IKT-Kapitaldienste im Ländervergleich 73
Abbildung 4.1.1: Entwicklung der Lohnquote in Deutschland und den USA 1970-2015 78
Abbildung 4.1.2: Alternative TFP-Berechnung für Deutschland und die USA 1970-2015 78
Abbildung 5.1.1: Arbeitsproduktivität 1990-2015 (Ländervergleich) .. 91
Abbildung 5.1.2: TFP 1990-2015 (Ländervergleich) ... 93
Abbildung 5.1.3: Kapitalproduktivität: Ländervergleich 1990-2015 ... 96
Abbildung 5.1.4: Wachstumsbeiträge zur Arbeitsproduktivität 1990-2010 ... 98
Abbildung 5.2.1: Produktivitätsentwicklung in Deutschland 1991-2015 (10 Sektoren) 101
Abbildung 5.2.2: Sektorbeiträge zum Arbeitsproduktivitätswachstum, Harberger-Diagramm 1991-2015 (8 Sektoren) ... 110
Abbildung 5.2.3: Sektorbeiträge zum Wachstum der Totalen Faktorproduktivität, Harberger-Diagramm 1991-2013 (8 Sektoren) ... 114
Abbildung 5.2.4: Branchenbeiträge zum Arbeitsproduktivitätswachstum, Harberger-Diagramm 1991-2013 (31 Branchen) ... 117
Abbildung 5.2.5: Branchenbeiträge zum Wachstum der Totalen Faktorproduktivität, Harberger-Diagramm 1991-2013 (31 Branchen) ... 117
Abbildung 5.2.6: Wachstumsbeiträge zur Arbeitsproduktivität in Deutschland und EU Vergleichsländern gemäß Eurostat 1991-2015 .. 124
Abbildung 5.2.7: Wachstumsbeiträge zur Arbeitsproduktivität in Deutschland und Vergleichsländern gemäß KLEMS 1991-2010 ... 125
Abbildung 5.2.8: Wachstumsbeiträge der Kapitalintensität zur Arbeitsproduktivität in Deutschland und Vergleichsländern 1991-2010 ... 133
Abbildung 5.2.9: Wachstumsbeiträge der TFP zur Arbeitsproduktivität in Deutschland und Vergleichsländern 1991-2010 ... 133
Abbildung 5.2.10: Wachstumsbeiträge zur Arbeitsproduktivität in Deutschland gemäß Daten des Statistischen Bundesamtes 1991-2013 .. 135
Abbildung 5.2.11: Branchenbeiträge zum Arbeitsproduktivitätswachstum, Harberger-Diagramme 1991-2005 (25/21 Branchen des Marktsektors) ... 141
Abbildung 6.1.1: Wachstumsbeiträge zur Arbeitsproduktivität in Deutschland und EU Vergleichsländern 1995-2015 (Marktsektor und Gesamtwirtschaft) ... 154
Abbildung 6.1.2: Wachstumsbeiträge zur Arbeitsproduktivität in Deutschland und EU Vergleichsländern 1995-2015 (Marktsektor) .. 158
Abbildung 6.1.3: Wachstumsbeiträge zur Arbeitsproduktivität des Produzierenden Gewerbes in Deutschland, Vereinigtem Königreich und Frankreich 1991-2015 .. 162
Abbildung 6.1.4: Wachstumsbeiträge zur Arbeitsproduktivität der Unternehmensdienstleistungen in Deutschland, Vereinigtem Königreich und Frankreich 1991-2015 ... 162
Abbildung 6.6.4: Effekt der Lohnmoderation auf die gesamtwirtschaftliche
Arbeitsproduktivität 2004-2015 ..238
Abbildung 6.6.5: Reale Lohnstückkosten und Arbeitsvolumen 1990-2015240
Abbildung 6.6.6: Kapitalausstattung, Arbeitsvolumen und Kapitalstock 1990-2015241
Abbildung 6.7.1: TFP im Anschluss an Bankenkrisen und normalen Rezessionen246
Abbildung 6.7.2: Zuwachsraten der TFP im Verlauf von Bankenkrisen und normalen
Rezessionen...247
Abbildung 6.7.3: Kreditvolumen in Relation zum Bruttoinlandsprodukt in Deutschland 1991-
2015 ..250
Abbildung 6.7.4: Anteil am Arbeitsvolumen der Erwerbstätigen in ausgewählten
Wirtschaftsbereichen 1991-2015 ..250
Abbildung 6.7.5: Auswirkungen eines Anstiegs der Realzinsen auf die Arbeitsproduktivität in
Deutschland ..253
Abbildung 6.7.6: Realzins in Deutschland 1991-2015 ...254
Abbildung 7.2.1: Tatsächliche und arbeitskräftepotenzialbezogene Pro-Kopf-Produktivität in
Deutschland ..267
Abbildung 7.2.2: Einfluss der Preisbereinigung auf die Arbeitsstundenproduktivität in
Deutschland 1992-2015 ..268
Abbildung 7.2.3: Einfluss der Preisbereinigung auf die sektorale Arbeitsstundenproduktivität in
Deutschland ..269

Verzeichnis der Kästen

Kasten 2.2.1: Kondratjew-Zyklen ..29
Kasten 3.7.1: Generalrevision 2014 ..66
Kasten 4.2.1: Zur Konsistenz von Bruttoproduktions- und Bruttowertschöpfungskonzept81
Kasten 4.2.2: Herleitung von Gleichung (4.2.10) und Definition des Reallokationseffekts86
Kasten 6.2.1: Wertschöpfungsauslagerung: Der Outsourcingindikator168
PRODUCTIVITY IN GERMANY – MEASUREMENT AND TRENDS

Executive Summary

Productivity is a key indicator of economic performance as well as a central precondition of economic growth, with labour productivity being the most important yardstick of success. Productivity growth is not spread evenly across the economy but is concentrated in specific sectors (productivity cores).

Evidence

In Germany, the trend rate of labour productivity growth has been declining over the past 25 years, although a pronounced weakness of productivity is evident only in recent years. Especially TFP growth was relatively stable until after the financial crisis whereas the contribution from capital intensity was relatively weak by international standards already before the crisis. A specific German feature is that productivity growth was concentrated in only three sectors (manufacturing; retail trade, wholesale trade, transport, and hotels and restaurants; information and telecommunication), and the weakness in productivity performance in recent years originated in the first two of these sectors.

Measurement problems

A number of measurement issues complicate the assessment of productivity over time and in cross-country comparison. Statistical uncertainties result for imperfect measurement of value added and inputs of labour and capital with respect to both their quantitative and qualitative dimension. Productivity figures from the System of National Accounts are particularly unreliable for large parts of the service sector, including public administration, financial services and real estate industries, as nominal value added is to substantial degree calculated using imputed transactions and implicit deflators are producing implausible volume developments. Quality adjustment is a major challenge, especially in sectors where technological progress is fast, such as in information and communication technologies, although it does not seem to be a major explanation for the weak productivity growth in recent years. Similarly, the absence of the volumes of cross-financed digital goods in the officially recorded national output in principle implies an underestimation of productivity growth but the quantitative importance of this phenomenon is negligible so far. Another problem, especially in the context of international productivity comparisons, is that the human capital content of labour is inappropriately accounted for. Measurement of capital inputs is imprecise and the capital stock accounts should be supplemented with an appropriate record of capital services used in production. The results of productivity analysis
at the sectoral level are distorted in those industries where agency workers and leasing play an important role. All in all, however, the conceptual and methodological measurement problems tend to affect more the level of measured productivity than the development over time, and there is little evidence that measured productivity developments are systematically biased to an extent that would challenge the diagnosis that trend productivity growth in Germany has declined since the early 1990s.

Economic explanations

There is a complex bundle of reasons behind the productivity slowdown, not a single driving factor. While the influence of individual factors can hardly be isolated, their relative importance can roughly be assessed. A part of the slowdown can be explained as normalisation from the elevated levels of the unification boom in the early 1990s which were due to catching up effects in Eastern Germany. In an international comparison digitization gave less of a boost to productivity in Germany than in countries such as the United States or the United Kingdom, which can be explained by more strongly regulated product and labour markets and the relative importance of SMEs in the German economy which tend to use modern technologies less efficiently than large enterprises. The positive impact of structural change from agriculture and industry to the service sector on productivity growth has declined over time, partly due to the dismal productivity performance of professional services in Germany. The demographic change has contributed to the productivity slowdown as the medium-age cohorts with highest age-specific productivity have relatively declined. The German “employment miracle” is a major factor behind the productivity slowdown in recent years. Since the mid-2000s, a large number of workers with relatively low qualifications have found jobs as a result of wage moderation and enhanced work incentives. As a result, the average endowment of German workers with both human capital and physical capital was reduced with an associated downward pressure on productivity. Other factors that are also cited as important in explaining the productivity slowdown, including fewer offshoring of production, changes in human capital, or the credit boom in the run-up to the financial crisis have not been found to be significant explanations for the development of productivity in Germany.

Conclusion

The trend decline of productivity growth in Germany is not due to a single cause but is the result of the interplay of multiple factors with time-varying relative importance. Notwithstanding severe measurement issues, the evidence is real and not a statistical artefact. As a major part of the explanation of the weak productivity performance in recent years is a temporary process of successful integration of relatively low qualified workers into the labour market, there is no reason to expect productivity growth in Germany to remain depressed in the longer term.
Zusammenfassung

Bestandsaufnahme

Die Wachstumsrate der Arbeitsproduktivität in Deutschland ist in der Tendenz in den letzten 25 Jahren gesunken, zunächst allerdings nur leicht; eine ausgeprägte Produktivitätsschwäche ist erst in der jüngsten Zeit zu beobachten. Seit der Wiedervereinigung haben sich die amtlich ausgewiesenen Produktivitätszuwächse in Deutschland im Trend verringernt. Wurden Anfang der 1990er Jahre noch Zuwächse bei der Arbeitsproduktivität von deutlich mehr als zwei Prozent pro Jahr verzeichnet, so lagen die Ra-

Die gesamtwirtschaftlichen Produktivitätszuwächse waren in Deutschland stärker als in anderen hochentwickelten Ländern auf nur drei Sektoren konzentriert. Die positiven Beiträge zur gesamtwirtschaftlichen Produktivität kommen in Deutschland ganz überwiegend aus den Sektoren „Produzierendes Gewerbe“, „Handel, Verkehr und Gastgewerbe“ (HVG) sowie „Information und Kommunikation“. Andere Sektoren sind entweder zu klein, um die gesamtwirtschaftliche Produktivität nennenswert zu beeinflussen (Landwirtschaft) oder weisen eine stagnierende oder gar rückläufige Produktivität auf (Bauwirtschaft, Finanz- und Versicherungsdienstleister, Unternehmensdienstleister). Die Produktivitätsschwäche in den vergangenen Jahren ist im Wesentlichen auf eine Verlangsamung des Wachstums im Produzierenden Gewerbe und im HVG-Sektor zurückzuführen. Die im internationalen Vergleich sehr schwache Entwicklung der Produktivität bei den Unternehmensdienstleistungen hat sich hingegen zuletzt eher verbessert.

Messproblematik

Qualitätsfortschritte, insbesondere in den Informations- und Kommunikationstechnologien, stellen die Preisbereinigung vor erhebliche Schwierigkeiten. Die mangelnde Volumenerfassung bei querfinanzierten digitalen Gütern hat die Produktivitätsmessung aber in Deutschland bislang nicht nennenswert verzerrt. Zum einen waren insbesondere Güter der Informations- und Kommunikationstechnologie in den vergangenen Dekaden besonders raschen, aber nur schwer quantifizierbaren Qualitätsverbesserungen

Bei der sektoralen Zuordnung können die Arbeitnehmerüberlassung und das Leasing zu Verzerrungen von sektoralen Produktivitätskennziffern führen. Bei diesen Aktivitäten werden die Produktionsfaktoren einschließlich ihrer Wertschöpfung in den VGR den Unternehmensdienstleistungen zugerechnet, obwohl sie zumeist in anderen Sektoren arbeiten. Konjunkturell oder strukturell bedingte Verände-
rungen in der Inanspruchnahme dieser Dienste kann die Entwicklung der Arbeitsproduktivität insbesondere in den Unternehmensdienstleistungen spürbar beeinflussen.

Ökonomische Faktoren

Der im Trend rückläufigen Arbeitsproduktivität in Deutschland liegt ein komplexes Ursachenbündel zugrunde; der Einfluss einzelner Faktoren ist kaum exakt zu separieren, jedoch lässt sich ihre Bedeutung grob abschätzen. Maßgeblich für die Produktivitätsentwicklung in Deutschland waren nach den in dieser Studie vorgenommenen Schätzungen und Modellrechnungen vor allem fünf Faktoren: die deutsche Wiedervereinigung, ein vergleichsweise schwacher Impuls durch die Digitalisierung, die demografische Entwicklung, der sektorale Strukturwandel und das deutsche „Arbeitsmarktwunder“. Allerdings berücksichtigt die Studie nicht alle Wechselwirkungen zwischen diesen Faktoren, sondern kann sie nur separat und unabhängig voneinander analysieren.

Arbeitsmärkten angesehen, die den Wettbewerbs- und Innovationsdruck auf Unternehmen verringert. Auch die größere Bedeutung kleiner und mittlerer Unternehmen, die diese neuen Technologien weniger effektiv einsetzen können als Großunternehmen, dürfte bremsend gewirkt haben.

Andere Faktoren, die in der öffentlichen und wissenschaftlichen Diskussion zuweilen für die abnehmende Dynamik der Arbeitsproduktivität in Deutschland verantwortlich gemacht werden, hatten dagegen einen nur sehr begrenzten Einfluss. So findet die vorliegende Studie keine Anhaltspunkte dafür,

Fazit

Der im Trend seit der Wiedervereinigung rückläufige Produktivitätsfortschritt lässt sich nicht auf eine isolierte Ursache zurückführen, sondern resultiert aus dem Zusammenspiel multipler und im Zeitverlauf unterschiedlich bedeutender Faktoren. Trotz mitunter erheblicher Messprobleme hat der Befund als solcher aber Bestand und ist nicht nur das Ergebnis eines statistischen Artefakts. Gleichwohl besteht kein Anlass zu einem säkularen Produktivitätsskeptizismus. In Deutschland wurde die Produktivitätsentwicklung durch eine Reihe von Faktoren getrieben, die temporären Charakter haben und auch nicht notwendigerweise negativ zu bewerten sind. Die Messunsicherheiten aufgrund konzeptioneller und methodischer Probleme sind beträchtlich. Sie erschweren die Diagnose und insbesondere internationale Vergleiche. Bei aller aus diesen Gründen gebotenen Vorsicht bei der Bewertung der statistischen Evidenz wird in dieser Untersuchung der Rückgang im Trendwachstum der Arbeitsproduktivität in Deutschland vor allem auf fünf Einzelentwicklungen zurückgeführt: die deutsche Wiedervereinigung, ein im internationalen Vergleich schwaches Ausmaß der Digitalisierung, die demografische Entwicklung, den sektoralen Strukturwandel und das deutsche „Arbeitsmarktwunder“.

Andere mögliche Ursachen wie die relativ schwache Zunahme des Humankapitalbestandes, Tendenzen im Zusammenhang mit dem Outsourcing von wirtschaftlicher Aktivität oder Auswirkungen der Finanzkrise lesten hingegen keinen nennenswerten Erklärungsbeitrag. Die Bestimmungsgründe sind in ihrer Auswirkung
PRODUKTIVITÄT IN DEUTSCHLAND –
MESSBARKEIT UND ENTWICKLUNG

1 Problemstellung

Diese Studie begutachtet die Produktivitätsentwicklung in Deutschland seit Anfang der 1990er Jahre. Sie umfasst eine Diskussion der Mess- und Berechnungsproblematiken, eine Diagnose der Produktivitätsentwicklung in Deutschland, die sowohl gesamtwirtschaftlich als auch nach Wirtschaftsbereichen (sektoral) erfolgt und in internationale Vergleichsstudien eingebettet wird, sowie eine umfangreiche Untersuchung verschiedener ökonomischer Erklärungsansätze für den empirischen Befund.

Zum Aufakt (Kapitel 2) werden zunächst die theoretischen Grundlagen in Bezug auf Produktion, Produktionsfaktoren und Wertschöpfung sowie Wachstum, technischen Fortschritt und Produktivität dargestellt. Darauf aufbauend werden die gängigen theoretischen Konzepte zur Messung von Produktivität und ihre Zusammenhänge dargestellt. Hierbei wird auch erörtert, welchen Einfluss verschiedener Inputmaße (Erwerbstätige oder Erwerbstätigenstunden bzw. qualitätsgewichtete Erwerbstätigenstunden; Kapitalstock oder Kapaltdienste) auf die Aussagekraft der Produktivitätsmaße haben und wie diese aus theoretischer Sicht idealerweise ausgestaltet sein sollten.

Der zweite Schritt (Kapitel 3) befasst sich ausführlich mit der wirtschaftsstatistischen Messproblematik der Output- und Inputgrößen und der Konsequenzen für die Produktivitätsindikatoren. Das Kapitel beginnt mit einem Überblick über verschiedene nationale und internationale Datenquellen und die jeweilige Verfügbarkeit von relevanten Daten. Danach wird einzeln auf verschiedene Messprobleme eingegangen. Dazu zählen die Probleme bei der Erfassung der Wertschöpfung, vor allem bei der Wertschöpfung ohne Markttransaktionen, bei der Abgrenzung der einzelnen Wirtschaftsbereiche, insbesondere im Hinblick auf Leasing und Arbeitnehmerüberlassung, bei der Erhebung der geleisteten Ar-

In einem vorbereitenden Zwischenschritt (Kapitel 4) werden verschiedene Methoden zur Berechnung der TFP auf gesamtwirtschaftlicher Ebene und auf der Sektorebene vorgestellt, welche die Grundlage für die Analysen in den darauffolgenden Kapiteln bilden. Ein besonderer Fokus liegt dabei auf der Index-Methode, die für die Analyse der TFP-Entwicklung auf der Sektorebene sowie für die Zerlegung der gesamtwirtschaftlichen Produktivitätsentwicklung in die Beiträge unterschiedlicher Sektoren und unterschiedlicher Produktionsfaktoren herangezogen wird.

Dem ausführlichen empirischen Befund schließt sich die Diskussion einschlägiger ökonomischer Erklärungsansätze für Produktivitätsveränderungen in den vergangenen 25 Jahren an (Kapitel 6). Hierbei stützen wir uns auf eine kritische Auswertung der Fachliteratur, auf theoretische Überlegungen sowie auf eine Vielzahl eigener empirischer Studien. Es werden sieben Erklärungsansätze behandelt:

- **Outsourcing.** Deutschland könnte im Produktivitätswachstum hinter anderen Ländern zurückgeblieben sein, weil es weniger stark von der Einbindung der inländischen Produktion in die globalen Wertschöpfungsketten profitiert hat.
- **Digitalisierung.** Deutschland und andere kontinentaleuropäische Länder könnten im Produktivitätswachstum gegenüber den Vereinigten Staaten und dem Vereinigte Königreich zurückgeblieben sein, weil sie die Chancen der Digitalisierung weniger konsequent genutzt haben.
• **Humankapital.** Deutschland könnte auch deshalb im Produktivitätswachstum zurückgeblieben sein, weil es seine Humankapitalbasis weniger stark ausgebaut oder diese weniger erfolgreich in effektives Produktivitätswachstum umgesetzt hat.

• **Demografische Entwicklungen.** Produktivitätsveränderungen in Deutschland und Unterschiede zu anderen Ländern könnten auch auf unterschiedliche Entwicklungen in der Altersstruktur der Erwerbstätigen oder der Bevölkerung zurückzuführen sein.

• **Arbeitsmarktspezifische Entwicklungen.** Deutschland verzeichnete in der jüngeren Vergangenheit einen starken Beschäftigungsaufbau. Für diesen sind vor allem die bis heute andauernde Lohnmoderation, die Hartz-Reformen und die seit 2011 stark gestiegene Zuwanderung von Bedeutung.

• **Fehlallokation von Produktionsfaktoren.** Ursächlich für die gedämpfte Produktivitätsentwicklung könnte die mehrjährige systematische Fehlallokation von Produktionsfaktoren sein. Untersucht wird, welche Rahmenbedingungen zu Fehlallokationen führen können, ob es in Deutschland im Zusammenhang mit der Finanzkrise zu starken Fehlallokationen gekommen ist und welche Auswirkungen diese auf die jüngere Produktivitätsentwicklung hatten oder zukünftig haben könnten.

2 Theoretische Grundlagen

2.1 Produktion, Produktionsfaktoren und Wertschöpfung

2 Eine Aktivität, die nicht direkt oder indirekt der heutigen oder zukünftigen Konsumgüterversorgung dient, ist im ökonomischen Sinne wertlos, weil sie kein Kanal zur finalen Wertquelle (Konsumgüter zur menschlichen Bedürfnisbefriedigung) gebahnt wäre. Die Bewertung der Eignung eines Gutes zur Bedürfnisbefriedigung erfolgt subjektiv durch die Konsumenten und äußert sich in deren Zahlungsbereitschaften, die idealerweise in Form von Marktpreisen widerspiegelt werden.
(Gravitation, Magnetismus, Photosynthese etc.) für den Produktionsprozess erschlossen werden, die dann ohne weiteres Zutun des Menschen wirken bzw. seine geistige oder physische Arbeitskraft ersetzen (und dafür keine Rechnung schicken). Der Aufbau von Humankapital (Bildungsleistungen) erhöht darüber hinaus unmittelbar die Fähigkeiten und damit die Produktivität des Faktors Arbeit. Allen produzierten Produktionsmitteln ist gemein, dass sie eine „Umwegproduktion“ (Böhm-Bawerk) darstellen, dass also Produktionsfaktoren nicht direkt in die Konsumgüterproduktion gelenkt werden, sondern zunächst den Bestand an nichtoriginären Produktionsfaktoren erhöhen. Da in den einzelnen Wirtschaftsbereichen typischerweise verschiedene Technologien zum Einsatz kommen (bzw. der Anteil der Nutzung aus dem gesamten bekannten Technologiespektrum erheblich variiert), fällt der Mix aus originären und produzierten bzw. aus Primär- und Sekundärfaktoren je nach betrachtetem Sektor in der Regel unterschiedlich aus. Allerdings ist die Differenzierung zwischen physischer Güterproduktion (industrieller oder sekundärer Sektor) und den Dienstleistungsbereichen (tertiärer Sektor) ökonomisch nur eingeschränkt belangvoll. Die in beiden Fällen ablaufenden Prozesse unterscheiden sich produktionstheoretisch nicht, weil jeweils originäre und produzierte Produktionsfaktoren in Güter umgewandelt werden, die der konsumfähigen Verwendung zeitlich näher sind. So ist die Kapitalintensität bei Dienstleistungen (Beispiel: Intensivmedizin) nicht zwangsläufig niedriger als im Verarbeitenden Gewerbe (Beispiel: Schreinererei). Auch sind Dienstleistungen als Güterkategorie nicht systematisch näher am finalen Konsumzweck, wie der Vergleich von Forschungslaboren mit Speiseisfabriken zeigt.

Abbildung 2.1.1: Produktionsfaktoren

Die Unterscheidung zwischen primären und sekundären Produktionsfaktoren ist eng mit dem Wertschöpfungs- und Einkommensbegriff der Volkswirtschaftlichen Gesamtrechnungen verknüpft (Abbildung 2.1.2). Produzierte Vorleistungsgüter (sekundäre Produktionsfaktoren) gehen in der nach-

3 In Abbildung 2.1.2 wurden indirekte Steuern aus Gründen der Übersichtlichkeit ausgespart (Faktorkostenkonzept), weil sie für die theoretischen Einkommenszusammenhänge unwesentlich sind. Um das gesamtwirtschaftliche Produktionskonto verwendungsseitig in Marktpreisen aufzustellen, sind aufkommensseitig Netto-

Abbildung 2.1.2: Gesamtwirtschaftliches Güter- und Produktionskonto

<table>
<thead>
<tr>
<th>Aufkommen</th>
<th>Güter- und Produktionskonto (zu Faktorkosten)</th>
<th>Verwendung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorleistungen</td>
<td>Vorleistungen</td>
<td></td>
</tr>
<tr>
<td>Abschreibungen</td>
<td>Konsumausgaben</td>
<td></td>
</tr>
<tr>
<td>Bruttowertschöpfung</td>
<td>Bruttoanlageinvestitionen</td>
<td></td>
</tr>
<tr>
<td>Arbeitnehmerentgelte</td>
<td>Vorratsveränderungen</td>
<td></td>
</tr>
<tr>
<td>Unternehmens- und Vermögenseinkommen</td>
<td>Nettokapitalexport</td>
<td></td>
</tr>
<tr>
<td>Einfuhr</td>
<td>Ausfuhr</td>
<td></td>
</tr>
<tr>
<td>Bruttoproduktionswert</td>
<td>Bruttoproduktionswert</td>
<td></td>
</tr>
</tbody>
</table>

Quelle: Eigene Zusammenstellung.

gütersteuern (Gütersteuern abzüglich Gütersubventionen, NGS) als weiterer Posten aufzuführen und die Bruttowertschöpfung um sonstige Produktionsabgaben abzüglich sonstiger Subventionen zu ergänzen. Zu Marktpreisen ergibt sich dann das Bruttoinlandsprodukt als Summe aus Bruttowertschöpfung (zu Herstellungspreisen) und Nettogütersteuern: BIP\(^M\) = BWS\(^H\) + NGS.\(^4\) Hieraus darf freilich nicht gefolgert werden, dass Vorleistungen für die Höhe der Wirtschaftsleistung und damit der Produktivität der übrigen Faktoren irrelevant seien. Vielmehr kommt in der Vorleistungsstruktur ein Spezialisierungsmuster (Arbeitsteilung) zum Ausdruck, das seinerseits das gesamte Produktionsergebnis mitbestimmt. Das Vorleistungsaufkommen und die Bruttowertschöpfung in einem Wirtschaftsraum sind daher nicht unabhängig voneinander.

2.2 Wachstum, technischer Fortschritt und Produktivität

(1) Das Pro-Kopf-Einkommen weist einen steigenden Trend auf ($y = Y/L$).
(2) Die Produktion vollzieht sich im Zeitablauf mit zunehmender Kapitalintensität ($k = K/L$).
(3) Die reale Verzinsung des Kapitals ist stationär ($r \approx \text{const.}$).
(4) Der Kapitalkoeffizient ist näherungsweise konstant ($K/Y \approx \text{const.}$).
(5) Die funktionale Einkommensverteilung variiert kaum ($w \cdot L/Y \approx \text{const. bzw. } r \cdot K/Y \approx \text{const.}$).

Hierbei bedeuten: Y (Produktionsergebnis bzw. Realeinkommen), y (Pro-Kopf-Einkommen), L (Absetzeinsatz), k (Kapitalintensität), K (Kapitalstock), r (Realzinssatz), w (Reallohnsatz).

Die hierin zum Ausdruck kommenden Zusammenhänge sind nicht unabhängig voneinander. So folgt aus (1) und (4) notwendig (2), und (5) ist das Ergebnis aus (3) und (4).

Über den Einsatz von Vorleistungs- und Kapitalgütern (Einschlagen von Produktionsumwegen) erhöht sich zwar die Produktivität der Originärfaktoren (insbesondere des Faktors Arbeit), jedoch kann durch eine immer weiter reichende reine Kapitalintensivierung (Erhöhung der Kapitalausstattung pro Arbeitseinheit) kein dauerhaftes Wachstum der Arbeitsproduktivität erzielt werden. Dieser Befund der Wachstumstheorie lässt sich durch ein einfaches Gedankenexperiment zur Linear-Homogenität der Produktionszusammenhänge plausibilisieren (Abbildung 2.2.1).
Betrachtet seien der Einfachheit halber nur die Produktionsfaktoren Arbeit (L), Kapital (K) und Technologie (A). Die exakte Kopie eines Wirtschaftsraumes würde zweifelsfrei auch die doppelte Wirtschaftsleistung (Y) ermöglichen. Hierzu wäre der gesamte Arbeitsbestand und der Kapitalbestand zu verdoppeln, während das technische Wissen beliebig skalierbar ist und daher sowohl in beiden Wirtschaftsräumen (Original und Kopie) genutzt werden könnte. Darin kommt die Linear-Homogenität der Produktionsverhältnisse in den akkumulierbaren Faktoren zum Ausdruck. Würde man nun hingegen nur den Faktor Kapital, nicht aber den Faktor Arbeit verdoppeln, so wäre die Zunahme des Produktionsergebnisses unterproportional zur Vermehrung des Faktors Kapital (andernfalls wäre der Faktor Arbeit bereits in der Ausgangssituation überflüssig). Eine immer höhere Kapitalintensivierung müsste sich demnach durch abnehmende partielle Grenzerträge früher oder später „totlaufen“, so dass die Zuwächse der Arbeitsproduktivität immer kleiner würden und schließlich nicht mehr wahrnehmbar wären (Abbildung 2.2.2).

Abbildung 2.2.2:
Kapitalintensität und Arbeitsproduktivität
In der Wachstumstheorie lässt sich zeigen, dass der technische Fortschritt der Tendenz abnehmender partieller Ertragszuwächse entgegenwirken kann (Acemoglu 2009). Der technische Fortschritt ersetzt hierbei die physische Vermehrung der übrigen Produktionsfaktoren und erhöht so deren in Effizienzeinheiten gemessene Volumina. Produktionstheoretisch lassen sich drei Formen eines solchen faktorvermehrenden technischen Fortschritts unterscheiden:

- Gleichmäßig faktorvermehrend (Hicks-neutral): \(Y(t) = A(t) \cdot F[L(t), K(t)] \)
- Arbeitsvermehrend (Harrod-neutral): \(Y(t) = F[A(t) \cdot L(t), K(t)] \)
- Kapitalvermehrend (Solow-neutral): \(Y(t) = F[L(t), A(t) \cdot K(t)] \)

Auf gesamtwirtschaftlicher Ebene entspricht die Harrod-neutrale Variante dem wachstumsempirischen Befund am besten. Das Grundmodell der neoklassischen Wachstumstheorie strebt bei konstanter Wachstumsrate des Technologieparameters \(A (g_a = \text{const.}) \) einem Wachstumsgleichgewicht der Pro-Kopf-Produktion \((g_y) \) zu, bei dem sich eine konstante Kapitalintensität (gemessen in Effizienzeinheiten des Faktors Arbeit) einstellt \((k = \text{const.}) \). Dies entspricht einer kontinuierlichen Erhöhung der Kapitalintensität (gemessen in physischen Einheiten des Faktors Arbeit) entsprechend der gleichgewichtigen Wachstumsrate, so dass im Gleichgewicht alle Produktionsfaktoren (gemessen in Effizienzeinheiten und die Pro-Kopf-Produktion mit derselben Rate wachsen \(g_y = g_a = g_k \)).

Ohne technischen Fortschritt \((g_a = 0) \) ist ein Gleichgewicht in diesem Modell durch eine konstante Kapitalintensität gekennzeichnet. Diese setzt voraus, dass die tatsächliche Pro-Kopf-Investition gerade ausreicht, um sowohl die Abschreibungen auf den bereits realisierten Kapitalstock je Erwerbstätigen \((d \cdot k; \text{mit } d \text{ als Abschreibungssatz}) \) auszugleichen als auch die bei einer Veränderung der Erwerbstätigen notwendige Kapitalausstattung der zusätzlichen Köpfe auf dem Niveau der bislang schon realisierten Kapitalintensität zu gewährleisten \((n \cdot k, \text{mit } n \text{ als Erwerbstätigenwachstumsrate}). Da sich im vereinfachten Modell einer geschlossenen Volkswirtschaft Investitionen und Ersparnis entsprechen, ist die tatsächliche Pro-Kopf-Investition identisch mit der Pro-Kopf-Ersparnis \((s \cdot y = s \cdot A \cdot k) \). Als Bedingung für ein Wachstumsgleichgewicht ergibt sich mithin: \(s \cdot A \cdot k = (d+n) \cdot k \). Sobald dieser Zustand erreicht ist, kommt das Wachstum des Pro-Kopf-Einkommens zum Stillstand.

Die Anpassung der Pro-Kopf-Kapitalausstattung ist daher im Wachstumsprozess kein eigenständiger Prozess, sondern eine induzierte Folge des technischen Fortschritts (Abbildung 2.2.3).
Ein Wachstumsgleichgewicht ist durch eine konstante Kapitalintensität (in Effizienzeinheiten) charakterisiert (Frenkel und Hemmer 1999: 126-131). Verbessertes technisches Wissen führt somit nicht nur zu einem unmittelbaren statischen Effizienzgewinn durch eine ergiebigere Kombination der vorhandenen Primärfaktoren (höhere Pro-Kopf-Produktion bei bisheriger physischer Kapitalintensität k0), sondern setzt bei unveränderter Sparquote einen weiteren Kapitalakkumulationsprozess in Gang, der durch eine zusätzliche Kapitalintensivierung die Arbeitsproduktivität weiter erhöht („Wachstumsbonus“).

Dieses Ergebnis ist von überragender Bedeutung für die Identifikation der treibenden Faktoren der Produktivitätsentwicklung, die demnach im Zuwachs des technischen Wissens (und seiner Bestimmunggründe) zu suchen sind. Hierbei ist zu berücksichtigen, dass die technische Fortschrittsrate gA in wachstumstheoretischen Modellen typischerweise als konstant angenommen bzw. modelliert wird, um so Aussagen über das Wachstumsgleichgewicht ableiten zu können. Diese Annahme muss wachstumsemirisch nicht vorliegen, sondern die technische Fortschrittsrate kann ihrerseits Schwankungen unterliegen, etwa im Zuge von Basisinnovationen, wie sie in Form von Kondratjew-Zyklen interpretiert werden (Kasten 2.2.1). Die Wachstumstheorie ist insofern eine Bedingungstheorie für konstante Pro-Kopf-Produktionszuwachsraten (Steady-State-Gleichgewicht). Dabei ist zu beachten, dass die Wachstumsraten der Pro-Kopf-Produktion (und der sich daraus ableitenden Produktivitätsmaße, s.u.) im Anpassungsprozess hin zu einem Wachstumsgleichgewicht nicht konstant sind, so dass auch Änderungen aller übrigen Größen (z.B. Sparquote, Bevölkerungswachstum) selbst im einfachen Wachstumsmodell das Pro-Kopf-Produktionswachstum mitbestimmen, indem sie den Verlauf von Anpassungsprozessen beeinflussen bzw. diese überhaupt erst auslösen.
Kasten 2.2.1: Kondratjew-Zyklen

Nach Schumpeter sind sogenannte Basisinnovationen, also grundlegende technische Innovationen, die sich auf breiter Front durchsetzen, die Grundlage der langen Wellen. Dies führt zu einer weitgehenden Umwälzung der wirtschaftlichen Produktions- bzw. Organisationsstruktur, die von erheblichen Effizienzsteigerungen begleitet ist. Letztlich spiegeln sich diese schubweisen Effizienzsteigerungen in längeren Phasen hohen Produktivitäts- und Wirtschaftswachstums. Sobald die Wirtschaftsstruktur weitgehend auf die neue Grundagententechnologie umgestellt ist, folgt entsprechend eine weniger dynamische Phase der wirtschaftlichen Entwicklung.

Abbildung K-2.2.1: Kondratjew-Zyklen (Abgrenzung 1)

Es zeigt sich, dass selbst bei Gültigkeit einer im Zeitablauf konstanten technischen Fortschrittsrate die Anpassungsprozesse an ein neues Gleichgewichtswachstum ("transitional dynamics") erhebliche Zeit beanspruchen. So ergibt sich als Konvergenzgeschwindigkeit λ im einfachen Solow-Wachstumsmodell:

$$\lambda = (1 - \beta) \cdot (gL + gA + d)$$

mit:

- β = Produktionselastizität des Faktors Sachkapital
- d = Abschreibungssatz

Bei gängigen Parametrisierungen erhält man eine Konvergenzgeschwindigkeit von $\lambda = 0,02$, was einer Halbwertzeit (Abbau der halben Distanz zum Steady-State-Gleichgewicht) von 35 Jahren entspräche Hemmer und Lorenz (2004: 41, 146).

Im Modell mit Humankapital erweitert sich der Ausdruck zu:

$$\lambda = (1 - \beta - \gamma) \cdot (gL + gA + d)$$

mit:

- γ = Produktionselastizität des Humankapitals

Dementsprechend wäre hier die Konvergenzgeschwindigkeit noch geringer und die Halbwertzeit höher als im Modell ohne explizite Berücksichtigung des Humankapitals.

Die vorstehenden Überlegungen zu den produktions- und wachstums theoretischen Grundlagen machen deutlich, dass der wertschöpfende Prozess in einem Wirtschaftsraum aus dem Zusammen-

2.3 Arbeitsproduktivität

Im Wachstumsgleichgewicht nimmt die Stundenproduktivität bei technischem Fortschritt und gegebener Arbeitszeit kontinuierlich zu (Abschnitt 2.2). Ausgehend von einer geringeren (höheren) als der gleichgewichtigen Kapitalintensität ergeben sich im Anpassungsprozess Zuwachsraten, die größer (kleiner) sind als die gleichgewichtige Wachstumsrate.

Die Arbeitsproduktivität wird nicht nur durch die Arbeitsintensität (Anstrengung, Mühe) der Arbeitskraft beeinflusst, sondern auch und insbesondere durch die Ausstattung der Arbeitskraft sowohl mit physischem als auch mit Humankapital, sowie durch alle Faktoren, die die Effizienz der Produktion beeinflussen, wie Produktionstechnologie, Betriebsorganisation oder Regulierung.

2.4 Kapitalproduktivität

Der Kapitalstock stellt aus theoretischer Sicht eine Hilfsgröße dar, die nur verwendet werden sollte, wenn zwischen Kapitalstock und Kapitaldiensten eine im Zeitalauf annähernd proportionale Beziehung unterstellt werden kann. Dies ist nur dann der Fall, wenn die Struktur der den Kapitalstock ausmachenden Kapitalgüter hinsichtlich ihrer Nutzungsdauern weitgehend konstant bleibt.

2.5 Totale Faktorproduktivität

Die Totale Faktorproduktivität (TFP) beschreibt die Effizienz des Zusammenwirkens sämtlicher am Produktionsprozess beteiligter Faktoren. Ihre Veränderung wird zuweilen als technische Fortschrittsrate interpretiert (gA). Da die TFP nicht direkt beobachtbar ist, muss sie im Rahmen des Growth Accounting als Residuum bestimmt werden (Abschnitt 4.2). Diese Residualmethode ist allerdings mit erheblichen Unwägbarkeiten verbunden, die die Interpretation des TFP-Wachstums als Effizienzindikator oder gar Fortschrittsrate beeinträchtigen.

Produktionstheoretisch wird das TFP-Wachstum als derjenige Teil der Outputwachstums bestimmt, der sich nicht auf den rein mengenmäßigen Mehreinsatz der explizit betrachteten Produktionsfaktoren zurückführen lässt. Ausgehend von einer allgemeinen Produktionsfunktion der Form (vgl. auch Abschnitt 2.2)

\[Y_t = F(A_t, L_t, K_t) = A_t F'(L_t, K_t), \]

(2.5.1)

in der \(Y \) die Wertschöpfung, \(L \) und \(K \) die Arbeits- und Kapitaleinsatzmengen, \(A \) die – annahmegemäß von den Produktionsfaktoren separierbare – TFP und \(F \) bzw. \(F' \) die (optimale) Technologie für das Zusammenwirken der Produktionsfaktoren Arbeit und Kapital bezeichnen, kann die TFP als das Verhältnis von Wertschöpfung und kombinierten Faktoreinsatzmengen interpretiert werden:

\[A_t = \frac{Y_t}{F'(L_t, K_t)}. \]

(2.5.2)

Im Fall der Cobb-Douglas-Produktionsfunktion mit konstanten Skalenerträgen, \(Y_t = A_t L_t^a K_t^{1-a} \), ergibt sich die periodische Veränderungsrate der TFP, \(gA_t \), residual als Differenz aus dem Wachstum der Wertschöpfung, \(gY_t \), und dem gewogenen Durchschnitt der Wachstumsraten der Produktionsfaktoren:

\[gA_t = gY_t - \alpha \cdot gL_t - (1 - \alpha)gK_t. \]

(2.5.3)

Die Wachstumsrate der TFP erfasst mithin alle Veränderungen in der Wertschöpfung, die nicht direkt aus Veränderungen der Faktoreinsatzmengen resultieren.

\(^5\) Diese wird zuweilen auch als Multi-Faktor-Produktivität (MFP) bezeichnet. Sofern das betrachtete Inputbündel sämtliche Produktionsfaktoren umfasst, sind TFP und MFP identisch.

Selbst wenn das TFP-Wachstum um alle möglichen Störeinflüsse bereinigt und damit als Rate des technischen Fortschritts angesehen werden könnte, bliebe weiterhin unklar, ob der technische Fortschritt faktorunabhängig (Hicks-neutral) oder faktorabhängig (z.B. Harrod-neutral, arbeitsvermehrend) wäre. Der Grund liegt darin, dass diese Formen des technischen Fortschritts beobachtungsäquivalent sind – zumindest bei vielen gängigen Typen von Produktionsfunktionen. Im Cobb-Douglas-Fall beispielsweise lautet die Produktionsfunktion bei Harrod-Neutralität \(Y_t = (A_t^L L_t + A_t^K K_t)^{1-\alpha} \), wobei \(A_t^L \) die Leistungsfähigkeit des Faktors Arbeit beschreibt. Das mit Growth Accounting berechnete TFP-Wachstum ist entsprechend

\[
g_{\text{TFP}}(t) = \alpha \cdot g_{A_t^L} = g_Y - \alpha \cdot g_L - (1-\alpha) g_K. \tag{2.5.4}
\]

Bei Hicks-Neutralität \(Y_t = A_t^Y L_t K_t^{1-\alpha} \) ergibt sich dagegen

\[
g_{\text{TFP}}(t) = \alpha \cdot g_{A_t^Y} = g_Y - \alpha \cdot g_L - (1-\alpha) g_K. \tag{2.5.5}
\]

Der Hicks-neutrale Fortschritt, \(g_{A_t^Y} \) ist mithin um den Faktor \(\alpha \) \((\alpha < 1)\) kleiner als der Harrod-neutrale Fortschritt. Letztlich ist also die Art des technischen Fortschritts nicht empirisch bestimmbar.

Freilich könnte man – wiederum unter Rückgriff auf die Theorie – versuchen, anderweitige Indizien zu suchen, die eher für die eine oder die andere Form von Neutralität sprechen. So wäre zu erwarten, dass die Kapitalintensität, das Einsatzverhältnis von Kapital und Arbeit \((K/L)\), bei Harrod-neutralem technischen Fortschritt fortwährend steigt, während sie bei Hicks-neutralem Fortschritt konstant bleibt. Wenn nur Arbeit im Zeitablauf produktiver wird, so das Argument, werden Unternehmen jede ihre Arbeitskräfte mit fortwährend mehr Kapital ausstatten. Die Wachstumszerlegung, bei der das Wachstum der Arbeitsproduktivität in die Beiträge der Kapitalintensität und der TFP zerlegt wird (vgl. Abschnitt 4.2),

\[
g_{AP}(t) = g \left(\frac{Y_t}{L_t} \right) = (1-\alpha) g \left(\frac{K_t}{L_t} \right) + g_{\text{TFP}}(t). \tag{2.5.6}
\]

müsste entsprechend bei Harrod-Neutralität einen positiven Beitrag der Kapitalintensität ergeben, bei Hicks-Neutralität aber einen Beitrag von nahe null. Entsprechend müsste die Arbeitsproduktivität – bei gegebener Rate des TFP-Wachstums \((g_{\text{TFP}}(t) = \alpha \cdot g_{A_t^L} \text{ oder } g_{\text{TFP}}(t) = g_{A_t^Y})\) – bei Harrod-Neutralität im Zeitablauf schneller wachsen als bei Hicks-Neutralität. In der Tat wird in Kapitel 5 anhand derartiger Wachstumszerlegungen gezeigt, dass die Kapitalintensität in Deutschland und anderen Ländern einen deutlich positiven Beitrag zum Wachstum der Arbeitsproduktivität geleistet hat. Dies könnte darauf hindeuten, dass technischer Fortschritt möglicherweise eher vom Harrod-neutralen Typ war. Bei derartigen Schlussfolgerungen ist jedoch Vorsicht geboten. Zum einen haben viele der oben genannten Störeinflüsse, darunter Messfehler bei den Faktoreinsatzmengen, das Potenzial, dieses Ergebnis zu
verzerren. Zum anderen können die bislang vorliegenden theoretischen Konzepte die sehr komplexen Formen des technischen Fortschritts nur unvollständig abbilden.

Aus diesen Gründen wird in der vorliegenden Studie nicht der Versuch unternommen, TFP-Wachstum in irgendeiner Form mit technischem Fortschritt in Verbindung zu bringen, oder gar die dominierende Art des technischen Fortschritts zu identifizieren.

2.6 Produktivitätskerne und Wertproduktivität

Dies sei am Beispiel der Automobilproduktion und Friseurleistungen für Herrenhaarschnitte illustriert. Während die Arbeitsproduktivität in der Automobilindustrie im Zeitablauf zunimmt, dürfte der Arbeitseinsatz je Herrenhaarschnitt seit Jahrzehnten weitgehend unverändert sein. Gleichwohl ist die reale Kaufkraft auch von Herrenfriseuren im Zeitablauf gestiegen, so dass sie für ihre Leistungen heute auch mehr bzw. qualitativ höherwertige Fahrzeuge eintauschen können als früher. Grund hierfür ist, dass die Erwerbstätigen in der Automobilindustrie aufgrund ihres Produktivitätsfortschritts höheren Opportunitätskosten gegenüberstehen. Würden sie sich selbst oder untereinander die Haare schnei-
den, büßten sie einen entsprechend hohen Produktionsausfall in ihrer Tätigkeit als Arbeitskräfte der Fahrzeugindustrie ein. Aufgrund dieser mit steigender Volumenproduktivität einhergehenden höheren Opportunitätskosten nimmt die Zahlungsbereitschaft für Friseurleistungen zu, was in einer relativen Preisverschiebung zwischen Fahrzeugen und Friseurleistungen zum Ausdruck kommt.

Verwendungsseitig lässt sich der intersektorale Terms-of-Trade-Effekt auch so erklären, dass bei gleichem Faktoreinsatz in allen Wirtschaftsbereichen die Produktion in den Produktivitätskernen überproportional zunimmt, so dass deren Güter relativ weniger knapp werden, was sich in einem marktwirtschaftlichen Gefüge ceteris paribus in einer geringeren Wertschätzung in Form eines relativen Preissrückganges äußert. Die isoliert gemessene Volumenproduktivität des Friseurhandwerks bleibt davon freilich unberührt. Die höheren Umsätze für Friseurleistungen würden aufgrund des relativen Preisanstiegs durch einen entsprechend höheren Deflator wieder herausgerechnet.

Unabhängig von der wirtschaftspolitischen Bewertung ist damit gleichwohl der theoretische Zusammenhang aufgezeigt, der die gesamtwirtschaftliche Produktivitätsentwicklung über Kompositionseffekte abhängig macht von der sektoralen Wirtschaftsstruktur. Dies motiviert die empirische Identifikation von Produktivitätskernen und -brachen und damit die sektorale Produktivitätsanalyse (Abschnitt 6.1). Das Konzept der Wertproduktivität wird in Abschnitt 7.2.2 aufgegriffen.
3 Messproblematik

3.1 Datenquellen und -verfügbarkeit

Maßgeblich für die Bestimmung von Produktivitätsmaßen sind die Ergebnisse der Volkswirtschaftlichen Gesamtrechnungen (VGR). Diese sind konzeptionell unmittelbar auf die Ermittlung sämtlicher für die Produktivitätsermittlung relevanter Größen ausgerichtet. So werden im Rahmen der Entstehungsrechnung die Produktion und Wertschöpfung (aggregiert und nach Wirtschaftsbereichen) als zentrale ökonomische Ergebnismaße ausgewiesen, denen der zugrundeliegende Einsatz von Arbeits-, Kapital- und Vorleistungen für direkte Produktivitätsbezüge bzw. als Bestimmungsfaktoren im Rahmen von Produktionsfunktionsansätzen zugeordnet wird. Schließlich wird im Rahmen der Verwendungsrechnung nicht nur die ultimative wirtschaftliche Zielgröße (Konsum), sondern auch die Investitionstätigkeit nachgewiesen, wodurch prinzipiell eine intertemporale stimmige Kapital(stock)rechnung angelegt ist. Schließlich erlaubt die Einkommensrechnung die Bestimmung von Faktorengrenzanteilen zur Abschätzung von Produktionselastizitäten. Die Ergebnisse der VGR liegen sowohl entstehungs- wie verwendungsseitig in nominaler wie in preisbereinigter Rechnung vor, wobei die jeweiligen Deflatoren generisch auf die jeweilige ökonomische Aktivität abgestimmt sind.

Daten für Deutschland

Ein Großteil der gesamtwirtschaftlichen Ergebnisse sowie der nach zehn Wirtschaftsbereichen gegliederten Daten (Produktion, Wertschöpfung, Arbeitseinsatz) sind quartalsweise (außer Kapitalstockdaten) und zeitnah verfügbar (2 Monate nach Periodenabschluss). Angaben zum Kapitalstock (Jahreswerte) liegen zwar für die Gesamtwirtschaft zeitnah vor, weisen aber für die Wirtschaftsbereiche einen Publikationslag von ca. 20 Monaten auf.

gen, Bauten) untergliedert, nicht aber weiter nach dem Technologiegehalt (z.B. Informations- und Kommunikationstechnologie, Software etc.).

Internationale Datengrundlagen

Für internationale Vergleiche der Produktivitätsentwicklungen sind verschiedene sektoral disaggregierte Datensätze verfügbar. Tabelle 3.1.1 gibt einen Überblick über die wesentlichen, für die vorliegende Studie relevanten Charakteristika dieser Datenbanken. Zum Vergleich werden in der letzten Spalte auch die Charakteristika der oben bereits angesprochenen Daten des Statistischen Bundesamts aufgeführt.

Tabelle 3.1.1:
Datensätze für international vergleichende sektorelle Produktivitätsanalysen

<table>
<thead>
<tr>
<th>Eurostat</th>
<th>EU KLEMS</th>
<th>OECD STAN</th>
<th>OECD Productivity Statistics</th>
<th>Statistisches Bundesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wirtschaftszweig-Klassifikation</td>
<td>ISIC Rev.4</td>
<td>ISIC Rev.4, ISIC Rev.3</td>
<td>ISIC Rev.4, ISIC Rev.3</td>
<td>ISIC Rev.4, ISIC Rev.3</td>
</tr>
<tr>
<td>Länder</td>
<td>GER, UK, FRA, ITA, ESP</td>
<td>GER, USA, UK, FRA, ITA, ESP, JPN</td>
<td>Rev.4: GER, USA, FRA, ITA, Rev.3: + ESP, JPN, UK</td>
<td>ESP, FRA, UK, USA</td>
</tr>
<tr>
<td>Zeitraum</td>
<td>00-13</td>
<td>Rev.4: 70-10</td>
<td>Rev.4: 70-11</td>
<td>95-15</td>
</tr>
<tr>
<td>Reale Kapitalstock / nach ... Arten</td>
<td>Ja / div.</td>
<td>Rev.4: Ja / 8</td>
<td>Ja / –</td>
<td>Ja / 2</td>
</tr>
<tr>
<td>Reale Kapitaldienste / nach ... Arten</td>
<td>Nein</td>
<td>Ja / 2</td>
<td>Nein</td>
<td>Nein</td>
</tr>
<tr>
<td>Erwerbstätige / nach ... Qualifikationen</td>
<td>Ja / –</td>
<td>Rev.3: Ja / 18</td>
<td>Ja / –</td>
<td>Ja / –</td>
</tr>
<tr>
<td>Erwerbstätigenstunden / nach ... Qualifikationen</td>
<td>Ja / –</td>
<td>Rev.3: Ja / 18</td>
<td>Ja / –</td>
<td>Nein</td>
</tr>
<tr>
<td>Reale Vorleistungen / nach ... Arten</td>
<td>Nein</td>
<td>Rev.4: Ja / 3</td>
<td>Ja / –</td>
<td>Nein</td>
</tr>
</tbody>
</table>

Quelle: Eurostat, Jährliche Volkswirtschaftliche Gesamtrechnungen; EU KLEMS; OECD STAN; OECD, Productivity Statistics; Statistisches Bundesamt, Fachserie 18, Reihen 1.2-1.5.

Eurostat veröffentlicht VGR-Daten nach der ESVG 2010 für alle Mitgliedsstaaten und verschiedene Aggregate der Mitgliedsstaaten (u.a. Europäische Union insgesamt, Eurozone). Diese sind für einfache international vergleichende Produktivitätsanalysen im europäischen Kontext auf gesamtwirtschaftlicher Ebene vergleichsweise gut brauchbar. Sektoral disaggregierte Analysen sind möglich, auch wenn

8 Eine tiefe Untergliederung des Kapitalstocks ist zwar vorgesehen. Vielfach sind aber keine Angaben verfügbar.
11 Einschränkungen in der Vergleichbarkeit mit den anderen Ländern ergeben sich dabei vor allem daraus, dass der für die Digitalisierung der Wirtschaft wichtige Sektor „Information und Kommunikation“ in der ISIC Rev.3 Klassifikation noch nicht gesondert ausgewiesen wird. Die diesem Sektor in der neueren Klassifikation ISIC Rev.4 zugeordneten Dienstleistungsbranchen sind in der älteren Klassifikation auf verschiedene Dienstleistungssektoren verteilt und damit in den Daten für die Vereinigten Staaten kaum identifizierbar. Um die Vergleichbarkeit der Ergebnisse zwischen den unterschiedlichen WZ-Klassifikationen zu erhöhen, werden die beiden Sektoren Handel, Verkehr und Gastgewerbe und das Produzierende Gewerbe für die Analyse der KLEMS Rev.4-Daten in Abschnitt 5.2.2 der vorliegenden Studie in jeweils drei Teilsektoren (den Handel, den Verkehr und das Gastgewerbe bzw. den Bergbau, das Verarbeitende Gewerbe und die Energieversorgung/-entsorgung) aufgespalten.
Die OECD-STAN Datenbanken für die ISIC Rev.3 und Rev.4 Klassifikationen weisen im Hinblick auf ihre geographische, sektorale und zeitliche Abdeckung einige Gemeinsamkeiten mit den KLEMS-Datenbanken auf, sind aber für tiefergehende Analysen weniger gut geeignet, weil sie Kapitaldienste nicht ausweisen und Faktor- und Vorleistungsinputs nicht weiter aufschlüsseln. Daher werden sie in der vorliegenden Studie nicht verwendet.

3.2 Konzeptionsgerechte Erfassung der Wertschöpfung

Wesentlich für die statistische Erfassung der Wertschöpfung ist das Produktionskonzept in den Volkswirtschaftlichen Gesamtrechnungen (Eurostat 2013). Als Ausgangspunkt bietet sich ein marktbestimmter Produktionsbegriff an, weil hierdurch im Grundsatz sichergestellt ist, dass die Bewertung ökonomischer Aktivität durch Marktpreise erfolgt, über die im Idealfall die Anbindung an die subjektive Wertschätzung der Konsumenten gewährleistet ist. Realisierte Umsätze auf der Produktionsseite einer institutionellen Einheit zeigen dann den geschaffenen Wertzuwachs durch die Produktionsaktivität dieser Einheit an, während die realisierten Vorleistungskäufe den entsprechenden Wertverzehr abbilden. Als Differenz zwischen beiden ergibt sich der Beitrag dieser Einheit zur gesamtwirtschaftlichen nominalen Wertschöpfung.

Das reine Konzept eines marktbasierten Produktionsbegriffes würde für die VGR bedeuten, dass erhebliche Bereiche der wirtschaftlichen Aktivität nicht erfasst werden könnten und zwar immer dann, wenn auf der Input- oder der Outputseite des Produktionsprozesses keine Markttransaktionen vorliegen. Dies gilt insbesondere für die staatliche Aktivität. Die VGR stellen daher auf einen umfassenderen Produktionsbegriff ab, der stärker auf die ökonomische Aktivität (Produktionstätigkeit) und weniger auf die Form des Austauschs (Markt oder Nicht-Markt) abstellt (Brümmerhoff und Grömling 2015). Dies wird jedoch erkauf durch die Notwendigkeit von Schätzungen (unterstellten Transaktionen) oder

gar den Rückgriff auf bloße Konventionen. Dies gilt insbesondere für die Bewertung ökonomischer Aktivität, wenn hierzu keine Marktpreise beobachtet werden können.

Für die Produktivitätsbestimmung ist nicht die nominale, sondern die als Volumengröße ausgedrückte Wertschöpfung von primärem Interesse. Hierzu muss die nominale Wertschöpfung in eine Preis- und eine Volumengröße zerlegt werden, wobei die Volumenkomponente sowohl die von der institutionellen Einheit erbrachte quantitative als auch die qualitative Leistung abbilden soll (Eurostat 2016: 6); ein Mengenzuwachs wie eine Qualitätsverbesserung sollen sich daher in einem Anstieg der Volumenkomponente widerspiegeln. Zwar lässt sich die nominale Wertschöpfung als Saldogröße aus Markttransaktionen ermitteln, jedoch werden auf Märkten nicht Wertschöpfungseinheiten gehandelt und bepreist, sondern Input- und Outputgüter. Demzufolge ist auch weder ein originärer Volumenindex, noch ein originärer Preisindex beobachtbar, sondern beide müssen als implizite Größen bestimmt werden. Dies erfolgt mittels einer getrennten Deflationierung des Produktionswertes und der Vorleistungsausgaben („Doppelte Deflationierung“).

In Deutschland wie auch in der übrigen Europäischen Union erfolgt dies anhand einer Vorjahrespreisbereinigung, bei der die Mengenkomponente als Laspeyres-Index und demzufolge die Preiskomponente als Paasche-Index ausgedrückt wird. Hierzu werden die Output- und Vorleistungsmengen eines Jahres (t) jeweils zu Vorjahrespreisen (t-1) bewertet. Durch Differenzbildung erhält man so die Bruttowertschöpfung eines Jahres in Vorjahrespreisen. Setzt man diese ins Verhältnis zur nominalen Wertschöpfung des Vorjahres, so resultiert die Volumenveränderung der Wertschöpfung im Jahr t gegenüber dem Vorjahr t-1 (dies entspricht der Veränderung des Laspeyres-Index für die Volumenkomponente). Schreibt man die nominale Bruttowertschöpfung des Vorjahres (t-1) mit dieser Volumenänderungsrate fort und setzt die nominale Wertschöpfung des Jahres t ins Verhältnis zu diesem Ergebnis, so erhält man den impliziten Paasche-Preisindex der Wertschöpfung. Über Verkettung dieser jeweils periodenweise ermittelten Zuwachsraten für die Volumen- und Preiskomponente für aufeinanderfolgende Perioden erhält man entsprechende Zeitreihen als Kettenindizes. Die Wahl der Deflationierungsrechnungsmethode hat naturgemäß Einfluss auf die Ergebnisse der Entwicklung der preisbereinigten Wertschöpfung und somit auch auf die Entwicklung der Produktivitätsmaße.13

In dem Maße, wie sich in Preisveränderungen keine Teuerung, sondern eine Qualitätsverbesserung widerspiegelt, wäre diese der Volumenkomponente zuzuschlagen. Gelingt dies nicht, weil der Einfluss der Qualitätsverbesserung auf den jeweiligen Güterpreis nicht adäquat identifiziert werden kann, wird die „wahre“ Wertschöpfung unterschätzt.

Schließlich steht und fällt die Produktivitätsberechnung mit der zutreffenden Erfassung der eingesetzten Produktionsfaktoren. Gesamtwirtschaftlich betrifft dies vor allem die Qualität der Faktoren, auf der Ebene der Wirtschaftsbereiche kommt noch die korrekte Zuordnung der Faktormengen zu den sie tatsächlich im Produktionsprozess einsetzenden institutionellen Einheiten hinzu.

Insgesamt ergeben sich somit für die statistische Erhebung der für die Produktivitätsbestimmung relevanten Daten vor allem drei große Problemkreise, die in den folgenden Abschnitten adressiert werden. Diese betreffen die Ermittlung der nominalen Wertschöpfung in denjenigen ökonomischen Aktivitätsfeldern, wo auf mindestens einer Seite (Input oder Output) keine Markttransaktionen vorlagen (Abschnitt 3.3), die Abbildung der reinen Preisentwicklung (Abschnitt 3.4) sowie die Erfassung der eingesetzten Faktormengen (Abschnitte 3.5 und 3.6).

3.3 Wertschöpfung ohne Markttransaktionen

3.3.1 Selbstgenutztes Wohneigentum

14 Neben dem fiktiven Mietwert sind für die Bestimmung der Bruttowertschöpfung zudem auch die von Eigentümern bezogenen Vorleistungen zu schätzen.
Ausweislich der jüngsten Zensus-Ergebnisse für das Jahr 2011 belief sich die Eigentümerquote in Deutschland auf 45,8 Prozent.15 Da insbesondere die durchschnittliche Wohnfläche bei eigentümergenutzten Wohnungen größer ist als bei Mietwohnungen – 118 m2 gegenüber 71 m2 bezogen auf die Wohnung bzw. 47 m2 gegenüber 38 m2 bezogen auf die Bewohner (Statistisches Bundesamt und Wissenschaftszentrum Berlin 2016: 264 und 268) – liegt der fiktive Mietwert deutlich über diesem Anteil. So betrug der Anteil der unterstellten Mietausgaben an den gesamten Mietausgaben zuletzt fast 57 Prozent – mit steigender Tendenz (Abbildung 3.3.1, linke Seite). Dieser Anteil dürfte so auch für die daraus abgeleitete unterstellte Bruttowertschöpfung (Eigenproduktion der Eigentümerhaushalte) gelten.

\textit{Abbildung 3.3.1: Wohnungswirtschaftliche Kennzahlen 1991-2015}

3.3.2 FISIM

Ausgangspunkt der FISIM-Berechnung ist die Festlegung eines dienstleistungsfreien Referenzzinses für verschiedene Laufzeiten. Das Statistische Bundesamt greift hierfür auf die Zinssätze entsprechender laufzeitähnlicher Industrieobligationen zurück. Mittels Differenzbildung zu den tatsächlich gezahlten Kredit- und Einlagezinsen ergibt sich so der nominale Produktionswert für die unterstellte Bankdienstleistung.

Bei der Interpretation von FISIM ist generell Vorsicht geboten. Insbesondere ist es problematisch, dass die aktuelle Praxis die gesamte Zinsdifferenz zwischen Banken- und Referenzzins zur Wertschöpfung erklärt. Ein erheblicher Teil dieser Differenz besteht aus Aufschlägen zur Finanzierung verschiedener Risiken (Kellermann und Schlag 2013): Folglich können sich zunächst gemessene große Produktivitäts-

\(^{17}\) Zwar gibt es noch weitere Möglichkeiten, eine FISIM-Bestimmung durchzuführen (z.B. Deflationierung der Nettozinssumme), allerdings sind diese typischerweise mit noch größeren Problemen behaftet.

\(^{18}\) Gegenwärtig ist der „Deflated Balances“-Ansatz weiter verbreitet, lediglich die USA stützen sich in ihren VGR auf „Activity Count“; die Niederlande verwenden ein hybrides Modell, dass für Einlagen „Activity Count“ und für Kredite „Deflated Balances“ verwendet.
gewinne im Nachhinein als flüchtig herausstellen, sobald sich die entsprechenden Risiken materialisieren.

Es wäre also wünschenswert, die Zinsdifferenz um die Risikoaufschläge zu bereinigen. Ein Ansatz hierfür ist, den Referenzzins nicht als möglichst risikolosem Zins zu konstruieren, sondern solche Zinsen zu verwenden, die das jeweilige Risiko verschiedener Bankgeschäfte mit abbilden (Wang et al. 2009). 19 Allerdings setzt dies voraus, dass die eingegangen Risiken adäquat gemessen werden können. Sollten die herangezogenen Marktpreise inkorrekt sein, so kann auch dieser Ansatz das Problem nicht vollständig lösen (Haldane et al. 2010).

Die Probleme der FISIM-Methode zeigen sich exemplarisch im Verlauf der letzten Finanzkrise. In ihr stiegen die Risikoaufschläge rasch an und führten zu deutlichen Zinsaufschlägen. Dies führte zur Messung eines regelrechten Produktivitätsbooms im Finanzsektor im vierten Quartal 2008, dem Höhepunkt der Krise (Haldane et al. 2010). Außerdem reagiert die Preisbereinigung aufgrund der Volumenfortschreibung bei stark schwankenden Bilanzsummen mit übermäßigen und daher wenig plausiblen Ausschlägen des impliziten Deflators (Abbildung 3.3.2), worin anschaulich die Verzerrung der gemessenen Produktivität zum Ausdruck kommt (Heise et al. 2015).

Abbildung 3.3.2:
Wertschöpfung der Finanzdienstleister 1992-2014

Diese methodischen Probleme sind umso bedeutsamer, als die nach FISIM unterstellten Werte über 60 Prozent des Produktionswertes der Kreditinstitute in Deutschland ausmachen. Ein Großteil der von diesem Wirtschaftsbereich erbrachten Leistungen wird also nicht direkt beobachtet, sondern nur modellbasiert geschätzt.

3.3.3 Versicherungsdienstleistungen

Für die Bestimmung der Wertschöpfung der Versicherungsdienstleister (Versicherungen und Pensionskassen) besteht ein ähnliches Problem wie bei den Finanzdienstleistern. Auch hier muss das Ent-

Abbildung 3.3.3:
Wertschöpfung der Versicherungen und Pensionskassen 1992-2014

Heise et al. (2015: 27) weisen für den Gesamtbereich der Finanz- und Versicherungsdienstleister darauf hin, dass für den Zeitraum 1995 bis 2014 nominal zwar noch ein jahresdurchschnittlicher Anstieg der Arbeitsproduktivität ausgewiesen wird (+ 2,1 Prozent), dieser Wirtschaftsbereich aber in preisbereinigter Rechnung Jahr für Jahr immer unproduktiver geworden ist (Rückgang der Arbeitsproduktivität um 1,3 Prozent je Jahr). Die Analyse der sektoralen Produktivität in Abschnitt 5.2.1 bestätigt die-

20 „Die Finanzbranche wurde in den vergangenen Jahren immer abhängiger von ihren Zulieferern, die zudem immer billiger wurden; gleichzeitig ging ihr eigener Output aber zurück, nur die Preise stiegen. Dieser „Befund“
sen Befund und zeigt, dass sich der Rückgang der Arbeitsproduktivität insbesondere auf den Zeitraum von 2000 bis 2005 konzentriert.

3.3.4 Querfinanzierungsmodelle

Die Wertschöpfungsmessung wird sowohl sektoral als auch gesamtwirtschaftlich verzerrt, wenn bestimmte Güter des einen Sektors A (Gut X) für die letzte Verwendung produziert, den Nutzern aber unentgeltlich bereitgestellt werden, während die für ihre Produktion anfallenden Kosten als Vorleistungen (Gut V) eines anderen Sektors B auftreten. Verwendungseitig tritt die Produktion des Sektors A aufgrund des Nullpreises mangels Umsatz in der Wirtschaftsstatistik nicht als Komponente der letzten Verwendung in Erscheinung. Zugleich heben sie aber als Vorleistung im Sektor B den dortigen Deflator an und schmälern so die für diesen Bereich ausgewiesene Volumenkomponente. Per Saldo „fehlt“ dann gesamtwirtschaftlich in der Volumenrechnung die als Wertschöpfung für die letzte Verwendung ausgewiesene Produktion des Gutes X (die nominale gesamtwirtschaftliche Wertschöpfung wird indes nicht verzerrt). Derartige Querfinanzierungsmodelle treten vermehrt bei bestimmten digitalen Gütern wie Suchmaschinen, Media-Portalen oder elektronischen sozialen Netzwerken auf, die den Konsumenten unentgeltlich zur Verfügung gestellt werden (Gut X) und deren Produktionskosten über Werbeumsätze (Gut V) finanziert werden.

wenn man keine Verdrängung anderer Werbeträger (Print, TV) unterstellt, bei denen ähnliche Querfinanzierungsmodelle bislang auch schon üblich waren, wäre die rechnerische Zunahme der Zuwachsraten des preisbereinigten Bruttoinlandsproduktes in Folge zusätzlicher werbefinanzierten Online-Güter äußerst gering (Abbildung 3.3.4, rechte Seite, Differential-Reihe). Damit kann das Aufkommen neuer digitaler Güter einen Rückgang der gemessenen gesamtwirtschaftlichen Arbeitsproduktivität in keiner Weise erklären.

Abbildung 3.3.4: Markt für Online-Werbung in Deutschland 2005-2015

3.3.5 Öffentlicher Sektor

3.4 Deflationierung

3.4.1 Bedeutung

Die Deflationierung der Wertschöpfung spielt für die Produktivitätsrechnung eine überragende Rolle. So zeigt ein Vergleich der Stundenproduktivität (Bruttoinlandsprodukt je Erwerbstätigenstunde), dass ein rückläufiger Trend für die Produktivitätsentwicklung in Deutschland während der vergangenen 15 Jahre allenfalls für die Veränderung der preisbereinigten, nicht aber der nominalen Stundenproduktivität auszumachen ist und sich beide vor allem in den vergangenen fünf Jahren deutlicher voneinander unterscheiden (Abbildung 3.4.1). Dies wirft die Frage auf, ob es sich bei der Diagnose einer rückläufigen Produktivitätsentwicklung um ein statistisches Artefakt handeln könnte, das allein auf eine „falsche“ Deflationierung zurückzuführen wäre (vgl. hierzu auch die alternative Deflationierung nach dem Konzept der Wertproduktivität in Abschnitt 7.2.2).

Abbildung 3.4.1: Arbeitsproduktivität (Stundenkonzept) 1992-2015

Diese Frage ist kaum zu beantworten, weil hierzu die „wahre“ Preisentwicklung der Bruttowertschöpfung bzw. des Bruttoinlandsproduktes bekannt sein müsste, diese aber nicht beobachtet werden kann. Jede Preisbereinigung für ein Güterbündel beruht auf einer „Warenkorb“-Konstruktion und ist somit der Unscharfe ausgesetzt, inwiefern die in diesem Warenkorb enthaltenen Güter und ihre Preisentwicklung repräsentativ für die Teuerungsrate ist, die gemessen werden soll. Dies gilt insbesondere für diejenigen Produktionsbereiche, für die entweder keine Markttransaktionen vorliegen oder aber die Preiskomponente in den Umsätzen nur implizit enthalten ist (z.B. FISIM).

Die Wirtschaftsstatistik hat für die Preis- und Volumenmessung A-, B- und C-Methoden identifiziert (A: Idealmaße, B: akzeptable Maße, C: nicht akzeptable Maße). 21 Ein wichtiges Kriterium für die A-Metho-

21 Siehe hierzu die detaillierten Vorgaben, die für die Volkswirtschaftlichen Gesamtrechnungen in den Mitgliedsländern der Europäischen Union zusammengestellt sind (Eurostat 2016). Dort werden neben allgemeinen Vorgaben für die Eigenschaften von Preis- und Volumenindices A-, B- und C-Methoden sowohl nach Transaktionsarten als auch detailliert nach Produktgruppen aufgeführt. Allerdings zeigt die unter Abschnitt 3.3.3 diskutierte

Mit der A-/B-/C-Einteilung ließe sich die Zuverlässigkeit der Deflationierung zumindest grob abschätzen, indem die für verschiedene Branchen herangezogenen Preisindizes für die Input- und Outputseite mit den jeweiligen Wertschöpfungsanteilen gewichtet werden. Leider liegen außer Einzelstudien hierzu keine systematischen Angaben aus den statistischen Ämtern vor.

3.4.2 Qualitätsverbesserungen

Deflatorproblematic für Versicherungsdienstleistungen, dass es auch Branchen gibt, für die auch theoretisch keine A-Methoden vorliegen.

So zeigt Harchaoui (2016) am Beispiel der Dienstleistungsindustrien auf der Basis der A-/B-/C-Klassifikation, dass der stärker ausgewiesene Produktivitätsfortschritt in den USA gegenüber den EU-15-Ländern ab der Mitte der 1990er Jahre nicht zuletzt auf die fortschrittlichere amerikanische Methodik in der Preisbereinigung zurückzuführen sein könnte.
3.4.2.1 Qualitätsbereinigungsverfahren

Zur Bewertung von Qualitätänderungen werden von den statistischen Ämtern unterschiedliche Verfahren herangezogen (Eurostat 2016; Statistisches Bundesamt 2016). Dabei bedienen sich die Preisstatistiker jeweils einer Auswahl von Methoden, die für die betrachteten Güter und angesichts der verfügbaren Datengrundlage als geeignet erscheint.

Direkter Preisvergleich

Bei diesem Verfahren findet keine Anpassung für Qualitätsänderung statt, der Preisunterschied wird vollständig als Preisänderung aufgefasst. Dieses Vorgehen ist angemessen, wenn das Produkt unverändert ist oder ein gleichwertiges Ersatzmodell gefunden wird.

Preisänderung als reine Qualitätsänderung (Automatic Linking)

Diese Methode bildet das andere Extrem des Spektrums der Qualitätsbereinigung. Es wird unterstellt, dass die Preisveränderung vollständig durch Änderungen der Produkteigenschaften bedingt ist, die sich ergebende gemessene Preisänderung ist also annahmegemäß null. In der Praxis wird so vorgegangen, wenn für ein weggefallenes Produkt kein vergleichbares Ersetzungsmodell gefunden werden kann und man auf ein Gerät anderen Typs übergehen muss. Die durchgehende Verwendung dieser Methode würde zu einer systematischen Unterschätzung der Inflation führen, sie darf nach Eurostat-Regeln im Rahmen der HVPI-Berechnung daher nur in begründeten Ausnahmefällen angewandt werden.

Mengenbereinigung

Häufig wird ein im Preisindex erfasstes Produkt lediglich dadurch verändert, dass die Packungsgröße variiert wird. Eine Bereinigung um die Mengenänderung ist angemessen, sofern unterstellt werden kann, dass die Menge unmittelbar und proportional in den Wert des Gutes eingeht. In diesem Fall werden durch eine Mengenbereinigung auch „versteckte“ Preiserhöhungen (kleinere Menge bei unverändertem Preis) erfasst. Diese Methode wird in Deutschland insbesondere beim Verbraucherpreisindex im Bereich der Nahrungsmittel und anderer Verbrauchsgüter (z.B. Waschmittel, Körperpflegemittel), aber auch beim Erzeugerpreisindex für Dienstleistungen (etwa wenn sich das Reinigungsintervall bei der Gebäudereinigung geändert hat) genutzt.

Verkettung

Wenn zwei Gütervarianten in einem bestimmten Zeitraum gleichzeitig am Markt erhältlich sind (Überlappungszeitraum), kann der Preisunterschied als Schätzwert für den Geldwert des Qualitätsunterschiedes angesehen und in der Indexberechnung berücksichtigt werden. Ist dies nicht der Fall, wird häufig so vorgegangen, dass sowohl das nicht mehr erhältliche als auch das nachfolgende Modell bei der Indexberechnung ausgeklammert und lediglich in beiden Perioden erhältlichen Modelle berücksichtigt werden („matched models only“). Damit wird implizit angenommen, dass die Preisentwicklung bei den in beiden Perioden erhältlichen Modellen repräsentativ für die Preisentwicklung auch der wechselnden Modelle ist. Dies ist freilich dann nicht angemessen, wenn Modellwechsel regelmäßig zu Preisänderungen (im engeren Sinne) genutzt werden.
Verwendung von Optionspreisen

Berechnung geldwerter Vorteile

Für manche Produkte ist es möglich, einen monetären Betrag zu bestimmen, der durch die neuen Produkteigenschaften dem Käufer zu Gute kommt. Beispiele sind vor allem Verbrauchseigenschaften oder geänderte Wartungserfordernisse technischer Produkte (Autos, Haushaltsgeräte etc.), aus denen sich unter bestimmten Annahmen über Nutzungsdauer und Nutzungsintensität ein geldwerter Vorteil berechnen lässt. Dabei werden in der Regel die aktuellen Marktpreise für die verbrauchten Ressourcen benutzt, womit implizit unterstellt wird, dass auch der Konsument so vorgeht, wenn er die Qualität des Produkts beurteilt.

Hedonik

Expertenurteil

Ist es bei einem Produktwechsel nicht möglich, mit den oben aufgeführten objektiven Methoden den Anteil zu bestimmen, zu dem ein Preisunterschied auf Änderungen der Qualität zurückzuführen ist,
können auch Experten hinzugezogen werden. Diese beurteilen dann auf der Basis ihrer Erfahrung subjektiv den Umfang, in dem Anpassungen für die Qualität bei der Berechnung des Preisindex vorgenommen werden. Auf diese Weise wird beispielsweise beim Erzeugerpreis für die Dienstleistungen verfahren, wenn ein Vertrag mit einem Dienstleister ausgelaufen und durch einen neuen Vertrag abgelöst worden ist.

3.4.2.2 Auswirkung der verstärkten Nutzung hedonischer Methoden

In Deutschland hat die Umstellung auf die hedonische Methode bei der Preismessung von Personalcomputern im Jahr 2003 zwar die für diese Warengruppe in den Verbraucherpreisindex eingehenden Preisrückgänge erhöht. Hochgerechnet auf ein Jahr betrug der Rückgang der PC-Preise in den Jahren 2002 und 2003 im Durchschnitt 26 Prozent, nach herkömmlicher Methodik hätte er wohl deutlich unter 20 Prozent gelegen. Das Ausmaß der Korrektur war jedoch nicht so gravierend, dass sich dadurch die gesamte Teuerungsrate verändert hätte (Linz und Eckert 2002); hierfür war das Gewicht der PCs im Warenkorb für die Lebenshaltung zu gering.

Seit Mai 2004 wird die Hedonik in Deutschland auch für die Preismessung bei EDV-Investitionsgütern verwendet. Die mit dieser Methode ermittelten Preisrückgänge für EDV-Investitionsgüter sind mit über 20 Prozent beträchtlich. Sie liegen in einer ähnlichen Größenordnung, wie sie für die Vereinigten
Staaten und das Vereinigte Königreich ermittelt wurden (Linz und Behrmann 2004: 688). Die Umstellung wirkte sich auf die Ergebnisse der Indizes für die Erzeugerpreise, die Einfuhr- und Ausfuhrpreise sowie die Großhandelspreise aus. Besonders betroffen war der Einfuhrpreisindex, da EDV-Investitionsgüter hier mit 8,8 Prozent (2002) im Warenkorb ein vergleichsweise großes Gewicht hatten. Für den Zeitraum von Januar bis April 2004 wurde für EDV-Investitionsgüter statt eines Anstiegs um 0,5 Prozent nach alter Methodik (Verkettung) nun ein Rückgang um 5,5 Prozent ermittelt; der gesamte Einfuhrpreisindex erhöhte sich statt um 1,8 Prozent lediglich um 1,2 Prozent (Linz und Behrmann 2004: Tabelle 4). Bei den Ausfuhren war der Anteil dieser Güter mit rund 5 Prozent niedriger, wenngleich immer noch beträchtlich. Da das Ausmaß der Korrektur bei der Preisentwicklung für exportierte EDV-Investitionsgüter zudem geringer war als im Fall der Importe, war der Effekt auf den Anstieg des Gesamtindex der Ausfuhrpreise mit −0,2 Prozentpunkten deutlich niedriger. Noch weniger ins Gewicht fiel die methodische Änderung im Fall des Index der Erzeugerpreise, die nur um 0,1 Prozentpunkte langsamer zunahmen. Dies lag zum einen an einem nochmals reduzierten Effekt auf die ausgewiesene Inflationsrate für den Teilindex der EDV-Investitionsgüter, vor allem aber an dem mit 1,3 Prozent erheblich geringeren Gewicht der Warenguppe im Erzeugerpreisindex.

3.4.2.3 Fazit

Um die Preisentwicklung von Gütern adäquat zu messen, ist eine Bereinigung um Veränderungen der Qualität notwendig. Dabei werden verschiedene Verfahren eingesetzt, die sich in ihrem Ansatz und dem erforderlichen Aufwand für Datenermittlung und Berechnung unterscheiden. Studien haben gezeigt, dass herkömmliche Methoden den Umfang von Qualitätsverbesserungen bei der Preismessung tendenziell unterschätzen, insbesondere dort, wo der technische Fortschritt schnell ist und Modellwechsel in rascher Folge vorgenommen werden. In diesen Fällen kann ein Übergang zu hedonischen Methoden die Qualität der Preisstatistik verbessern, sofern sich das Gut in Produkteigenschaften zerlegen lässt, die einzeln gemessen werden können und für die hinreichende Daten zur Verfügung stehen.

Insgesamt gibt es zwar Hinweise darauf, dass die Produktivitätsentwicklung aufgrund unzureichender Bereinigung um Qualitätsverbesserungen und infolgedessen zu hoch ausgewiesener Preissteigerungs-

3.4.3 Unikate

3.5 Abgrenzung der Wirtschaftszweige

Voraussetzung für eine adäquate sektorale Produktivitätsberechnung ist die stimmige Zuordnung der Produktionsergebnisse eines Wirtschaftsbereichs zu den jeweils von diesem im Produktionsprozess tatsächlich eingesetzten Produktionsfaktoren. Dieser Nexus wird unterbrochen, wenn die ökonomische Aktivität eines Wirtschaftsbereichs gerade darin besteht, Produktionsfaktoren an andere Sektoren auszuleihen, wie es bei der Arbeitnehmerüberlassung (Abschnitt 3.5.1) und Leasing (Abschnitt 3.5.2) auftritt.

3.5.1 Arbeitnehmerüberlassung (Zeitarbeit)

auf eine Vielzahl anderer Wirtschaftszweige. Alternativ könnte sich die statistische Erfassung an der Entstehung der Wertschöpfung („Nutzerkonzept“) statt am Beschäftigungsvertrag orientieren. In diesem Fall würden die Zeitarbeitskräfte ebenso behandelt wie die in den ausliehenden Wirtschaftszweigen direkt Beschäftigten, und auch ihre Wertschöpfung würde beim ausliehenden Wirtschaftszweig verbucht. Beschäftigung und Wertschöpfung im ausliehenden Wirtschaftszweig wären entsprechend höher und die bezogenen Vorleistungen dieses Wirtschaftszweigs niedriger.

3.5.2 Leasing

23 Im Wirtschaftszweig Zeitarbeit wären Beschäftigung sowie Wertschöpfung und Output entsprechend niedriger.
24 An dieser Stelle wird freilich vernachlässigt, dass die Inanspruchnahme von Zeitarbeit die Produktivität von Unternehmen insofern erhöhen kann, als sie ihnen hilft, Informations- und Transaktionskosten im Personalmanagement zu senken, restriktive Arbeitsmarktregulierungen zu umgehen oder flexibler auf Nachfrageschwankungen auf den Absatzmärkten oder Angebotsengpässe am Arbeitsmarkt zu reagieren.
Frist angelegt ist und bei der das Investitionsrisiko de facto vom Leasingnehmer getragen wird (UN und ECB 2014: 275). Finanzleasing wird in den VGR demzufolge als Kreditgewährung erfasst und stellt daher hinsichtlich der Produktivitätsberechnung keinen Verzerrungstatbestand dar, weil die Kapitalgüter dem Sektor zugeordnet werden, der den Produktionsfaktor auch operativ nutzt („Nutzerkonzept“). Hinzu kommt, dass das Finanzleasing in Deutschland bislang quantitativ bedeutungslos ist.

Ebenso wie Zeitarbeit beeinflusst Leasing das gesamtwirtschaftliche Produktivitätswachstum kaum, abgesehen von möglichen Effizienzgewinnen und grenzüberschreitenden Leasinggeschäften. Es könnte aber die internationalen Unterschiede im sektoralen Produktivitätswachstum beeinflussen, wenn sich die Intensität des Leasings in den betrachteten Ländern unterschiedlich entwickelt.

3.6 Produktionsfaktoren

3.6.1 Arbeitsvolumen

Die Datenquellen zur Erhebung der geleisteten Arbeitsstunden lassen sich in drei Kategorien unterscheiden:

1. Haushaltsbefragungen
2. Unternehmensbefragungen
3. Verwaltungsdaten

Verwaltungsdaten stellen die mit Abstand verlässlichste Datenquelle dar, da sie als Vollerhebung im Idealfall alle Beobachtungseinheiten der Grundgesamtheit beinhalten (z.B. alle sozialversicherungspflichtig Beschäftigten). Haushalts- und Unternehmensbefragungen sind hingegen eine Teilerhebung (Stichprobe) der Grundgesamtheit. Die Aussagekraft dieser Stichproben bezüglich der Grundgesamtheit hängt somit entscheidend vom Auswahlverfahren der Stichprobe ab, um eine möglichst hohe Repräsentativität zu gewährleisten.

In Deutschland werden zur Messung der insgesamt geleisteten Arbeitsstunden (= Erwerbstätige x Arbeitszeit) Datenquellen aus allen drei Kategorien herangezogen. In die Erwerbstätigenrechnung des Statistischen Bundesamts fließen derzeit rund 60 Statistiken ein (Lüken 2012), in die Arbeitszeitrechnung des Instituts für Arbeitsmarkt- und Berufsforschung über 20 Statistiken (Wanger 2013). Folgende
Auflistung zeigt exemplarisch, welche Quellen in den jeweiligen Kategorien für die Erhebung welches Merkmals genutzt werden.

1. Haushaltsbefragungen
 o Mikrozensus (z.B. Erwerbstätige, Selbständige, Wochenarbeitszeit, bezahlte und unbezahlte Überstunden, Urlaub)
 o Sozio-ökonomisches Panel SOEP (z.B. bezahlte und unbezahlte Überstunden, Arbeitszeitkonten)
 o ...

2. Unternehmensbefragungen
 o Vierteljährliche Verdiensterhebung des Statistischen Bundesamts (z.B. Arbeitnehmer, Vollzeit, Teilzeit)
 o IAB-Betriebspanel (z.B. Wochenarbeitszeit)
 o IAB-Stellenerhebung (z.B. Arbeitszeitkonten)
 o Ifo-Konjunkturtest (z.B. Überstunden)
 o ...

3. Verwaltungsdaten
 o Beschäftigungsstatistik der Bundesagentur für Arbeit (z.B. sozialversicherungspflichtig Beschäftigte)
 o Gewerbeanzeigenstatistik (Selbständige, Arbeitnehmer)
 o Insolvenzstatistik (Selbständige)
 o Statistiken der gesetzlichen Krankenversicherungen (z.B. Krankenstand)
 o ...

Der Rückgriff auf unterschiedliche Quellen, die ihrerseits auf unterschiedlichen Erhebungsmethoden beruhen mit jeweiligen Vor- und Nachteilen erhöht grundsätzlich die Datenqualität. Sie dürfte allerdings je nach Komponente deutlich variieren. Die Tatsache, dass Verwaltungsdaten deutlich stärker für die Erwerbstätigenrechnung herangezogen werden können als für die Arbeitszeitrechnung, dürfte zu einer höheren Datenqualität der Erwerbstätigenrechnung (Arbeitseinsatz in Köpfen) im Vergleich zur Arbeitszeitrechnung (Arbeitseinsatz in Stunden) führen. Daher besteht grundsätzlich ein Trade-off zwischen Datenzuverlässigkeit (Personenzahl) und ökonomischer Adäquanz (Stundenzahl).

Zu den Erwerbstätigen zählen:

- Sozialversicherungspflichtig Beschäftigte
- Geringfügig Beschäftigte
- Beamte
- Personen in Arbeitsgelegenheiten
- Soldaten, Wehr-, Ersatz-, Sozialdienstleistende
- Selbständige (inkl. mithelfende Familienangehörige)
Die Arbeitszeit gliedert sich in folgende Komponenten (Wanger 2013, Wanger et al. 2014):

- **Tarifliche Komponenten**
 - Wochenarbeitszeit (tariflich/betriebsüblich)
 - Urlaub

- **Kalendereinflüsse**
 - Potentielle Arbeitstage (Kalendertage, Samstage, Sonntage, Feiertage)
 - Ausgleich für Kalendereinflüsse

- **Konjunkturelle Komponenten**
 - Kurzarbeit
 - Bezahlte Überstunden
 - Unbezahlte Überstunden
 - Arbeitszeitkonten

- **Personenbezogene Komponenten**
 - Krankenstand
 - Teilzeit
 - Elternzeit
 - Altersteilzeit (Freistellungsphase)

- **Sonstige Komponenten**
 - Schlechtwetter (bis 2006)
 - Arbeitskampf
 - Nebenerwerbstätigkeit

3.6.2 Humankapital

und allgemein größere Offenheit gegenüber technischen und organisatorischen Innovationen enthal-
ten, die Hochqualifizierten zugeschrieben wird und die ihnen in Produktivitätsanalysen über den stati-
schen Produktivitätsvorteil hinaus zugerechnet werden müsste, die sich stattdessen jedoch in einer
Beschleunigung der TFP niederschlagen dürfte (Griffith et al. 2004). Die Verminderung von Humanka-
pital durch zunehmende Alterung der Erwerbstätigen dürfte gegenläufige Produktivitätseffekte haben
(SVR 2015: 316-319 und Abschnitt 6.5).

Für die Humankapitalmessung sind grundsätzlich zwei Ansätze zu unterscheiden (Cohen und Soto
2007; Folloni und Vittadini 2010; de la Fuente 2011):

- Bei der **prospektiven Methode** wird der Wert des Humankapitals über die zukünftigen Erträge der
 Arbeitskräfte ermittelt. Dazu müssen diese zukünftigen Erträge, also die Entlohnungen, abdiskon-
tiert werden, abzüglich der Lebenshaltungskosten (als Kompensation zum Erhalt der reinen
 Arbeitskraft). Bei diesem Ansatz wird der Erwerb von Humankapital als Investition aufgefasst, die
 bei rationalem Verhalten von dem zu erwartenden Ertrag abhängt (Mincer 1958). Die Entlo-
 hnungen werden dabei als Kompensationen für den zusätzlichen Aufwand gesehen, als Ertrag der
 Investition in das Humankapital. Es handelt sich um einen theoretisch fundierten, an den Arbeitsleis-
tungen orientierten Ansatz, der insbesondere auch die Soft Skills einschließen sollte. Allerdings
 sind die erforderlichen Daten kaum verfügbar, insbesondere weil sich der Ansatz auf die Zukunft
 richtet. Die auch für die Sachkapitalbestimmung relevanten konzeptionellen Probleme (Abschnitt
 3.6.3) gelten daher hier ebenfalls. Außerdem sind Entlohnungen nicht nur von den produktiven
 Fähigkeiten der Arbeitskräfte abhängig, sondern auch von anderen Determinanten wie Regulie-
 rungen (z.B. Tarifverträge), Marktmacht und purem Zufall („windfall profits“).

- Bei der **retrospektiven Methode** werden die Kosten des Erwerbs von Humankapital gemessen, vom
 Aufziehen der Kinder über ihre Ausbildung bis zum lebenslangen Lernen und Sammeln von beruf-
licher wie allgemeiner Erfahrung. Der Ansatz schließt allerdings Soft Skills von vornherein aus, und
 er birgt überdies das Problem, dass das Entstehen von Kosten nicht zwangsläufig entsprechend
 hochwertige Humankapitalleistungen impliziert. Auch bei diesem Ansatz sind Daten nicht einfach
 zu ermitteln; in der Regel begnügt man sich letztlich mit der Messung von Ausbildungsschlässen
 oder Ausbildungsjahren (educational attainment approach).

Pragmatischerweise gehen die meisten vorhandenen Quellen nach der retrospektiven Methode und
dem educational attainment approach vor und stützen sich oft auch auf die gleichen Ausgangsdaten –
dennoch gelangen sie teilweise zu unterschiedlichen Ergebnissen.

Der **KLEMS-Datensatz** (Timmer et al. 2007; Timmer et al. 2010) bietet die detailliertesten Daten zum
Humankapital, bezogen auf die Erwerbstätigen: Verfügbar sind Daten zur Qualitätsstruktur des
Arbeitseinsatzes (in Stunden) nach 3 Qualifikationsniveaus (bezogen auf erreichte Ausbildungs-
abschlüsse), 3 Altersstufen (jung, mittelalt, alt) und Geschlecht, also nach insgesamt 18 Kategorien
und dies für 10 Wirtschaftssektoren. Als Quellen werden dafür herangezogen: nationale Arbeitskräfte-
und Lohnerhebungen, Volkszählungen und Mikrodaten von Zentralbanken; speziell in Deutschland:
Gehalts- und Strukturerhebung 2001, hochgerechnet und fortgeschrieben über Mikrozensus, Statistik
der Sozialversicherungs-Beschäftigten sowie SOEP-Daten. Die drei Qualifikationsniveaus beziehen sich
in Deutschland auf „keinen formalen Abschluss“, „mittleres Niveau“ und „Universitätsabschluss“ (ohne

Andere Datensätze zum Humankapital, die in der Regel für andere Zwecke zusammengestellt wurden, basieren zwar auch auf der Messung von erreichten Bildungsniveaus, unterscheiden sich aber darin, dass sie sich auf die Bevölkerung (normalerweise 15+ Jahre alt) insgesamt beziehen, nicht auf Erwerbstätige oder gar Arbeitsstunden.

Datensätze der OECD (2016a) und des Statistischen Bundesamtes (2015a) zum Bildungsstand der Bevölkerung, die teilweise die Ausgangsbasis für die vorgenannten Datensätze bilden, sind ihrerseits entweder lückenhaft oder international nicht vergleichbar. Im Falle des Statistischen Bundesamtes sind beispielsweise die Daten zu schulischen und beruflichen Abschlüssen nicht integriert (d.h., es wird
nicht dafür bereingt, dass Hochschulabsolventen gleichzeitig auch Abiturienten sind). Da bei all diesen Datensätzen generell Daten zu Entgelten bzw. Wertschöpfungsanteilen fehlen, erlauben sie keine Wachstumszerlegungen.26

Die verfügbaren Daten orientieren sich damit ganz überwiegend an formalen Abschlüssen anstatt an eingesetzten Fähigkeiten und vernachlässigten Soft Skills ebenso wie erforderliche Abschreibungen am Humankapital. Außerdem schwanken sie erheblich je nach herangezogenen Quellen und Bearbeitungen. Diese Divergenzen betreffen nicht nur die Niveaus des Humankapitalbestandes, sondern auch die zeitliche Entwicklung (vgl. im Einzelnen Abschnitt 6.4.1). Die Daten zum Humankapital sind damit insgesamt nicht sehr zuverlässig. Es wäre daher sehr wünschenswert, die PIAAC-Daten, die Kompetenzen statt Abschlüsse messen, zur Zeitreihe auszubauen, um künftige Untersuchungen zum Einfluss von Humankapital auf die Produktivitätsentwicklung auf eine solide Basis stellen zu können.

3.6.3 Sachkapital

Der amtliche Nachweis für den Faktor Sachkapital liegt für Deutschland als Bestandsrechnung (Brutto- und Nettoanlagevermögen jeweils zu Wiederbeschaffungspreisen und preisbereinigt) vor, die um Abschreibungen ergänzt wird. Ausgewiesen werden diese Werte sowohl als gesamtwirtschaftliches Ag-

26Zahlreiche weitere Datensätze, die sich insbesondere darum bemühen, die Bildungsqualität von Ländern in einem einzigen griffigen Indikator zu komprimieren (z.B. in Form qualitativ gewichteter durchschnittlicher Schuljahre), werden hier nicht näher betrachtet (Wößmann 2003).

Wirtschaftsbereichen differenzierte Kapitaldiensterechnung zu ergänzen. In diesem Gutachten wird daher, wenn immer angebracht, auf Schätzungen im Rahmen der EU-KLEMS-Datenbanken zurückgegriffen werden (Timmer et al. 2010: Abschnitt 3.5).

Eine für die ökonomische Analyse aus theoretischer Sicht wünschenswerte Korrektur, die eine Unterscheidung zwischen marktfähigen (und möglicherweise nur unterausgelasteten) und nicht-marktfähigen (obsoleten) Kapitalgütern erlaubt, ist bislang nicht in Sicht. Eine solche Erfassung wäre insbesondere für die Analyse der ökonomischen Entwicklung in solchen Ländern von großer Bedeutung, bei denen sich in Form einer Finanzkrise eine über mehrere Jahre vollzogene Fehlleitung von Kapital offenbart. In dieser Richtung besteht daher weiterhin noch erheblicher Forschungsbedarf.

3.7 Revisionen

Revisionen bei der Arbeitsproduktivität können ein beträchtliches Ausmaß erreichen (Abbildung 3.7.1). So wurde die Veränderung der Arbeitsproduktivität für das Jahr 2006 in einer einzigen Revision von 3,7 Prozent auf 2,0 Prozent herabgesetzt. Der Wert für das Jahr 2010 wurde hingegen von ursprünglich 1,0 Prozent in mehreren Revisionen auf zuletzt 2,5 Prozent hochgesetzt. In Folge der Gene-

Kasten 3.7.1:
Generalrevision 2014

Abbildung K-3.7.1:
Effekte der Generalrevision 2014 auf die Arbeitsproduktivität (Stundenkonzept)
Abbildung 3.7.1: Ausmaß der Revisionen der Arbeitsproduktivität 2007-2016

Auch gesamtwirtschaftlich erreichten die Revisionen der Arbeitsproduktivität ein spürbares Ausmaß (Abbildung 3.7.2). Zum einen stieg in der Vergangenheit der Korrekturbedarf kontinuierlich von Revision zu Revision. Während die mittlere absolute Revision in der ersten Quartalsüberarbeitung (3 Monate nach Erstveröffentlichung) weniger als 0,05 Prozentpunkte betrug, stieg sie auf 0,2 Prozentpunkte in der ersten Jahresüberarbeitung (6 Monate nach Erstveröffentlichung) bis auf knapp 0,7 Prozentpunkte in der vierten Jahresüberarbeitung (42 Monate nach Erstveröffentlichung). Ohne die beiden Generalrevisionen 2011 und 2014 fiel das Revisionsausmaß freilich deutlich kleiner aus. Zum anderen gingen die Revisionen – wie oben bereits angedeutet – systematisch in eine Richtung. Die mittlere Revision war mit Ausnahme der ersten Quartalsüberarbeitung stets positiv; dies galt sowohl für laufende als auch für Generalrevisionen. Im Durchschnitt lag der Wert für die Veränderung der Arbeitsproduktivität eines Jahres zur vierten Jahresüberarbeitung um gut 0,5 Prozentpunkte über dem Wert der Erstveröffentlichung, ohne Generalrevisionen knapp 0,2 Prozentpunkte.

31 Nach der vierten Jahresüberarbeitung ändern sich Werte nur noch im Zuge von Generalrevisionen, die etwa alle 5 Jahre stattfinden.
Abbildung 3.7.2: Mittlere Revision der Arbeitsproduktivität 2008-2016

Revision der Veränderungsrate der jährlichen Arbeitsproduktivität auf Stundenbasis gegenüber dem Vorjahr für die Werte von 2007 bis 2015 im Berichtszeitraum Februar 2008 bis August 2016; Mittlere (absolute) Revision: durchschnittliche (absolute) Abweichung gegenüber der Erstveröffentlichung; Erstveröffentlichung stets im Februar des Folgejahres (t+1); Zahl der Beobachtungen mit/ohne Generalrevisionen: Mai t+1=9/9, August t+1=9/7, August t+2=8/6, August t+3=7/5, August t+4=6/4.

Quelle: Deutsche Bundesbank, Echtzeitdatenbank; eigene Berechnungen.

Abbildung 3.7.3: Revisionseinfluss der Komponenten der Arbeitsproduktivität 2008-2016

Zerlegung der mittleren Revision der jährlichen Arbeitsproduktivität in die Komponenten Bruttoinlandsprodukt und Arbeitsvolumen. Siehe Anmerkungen zur Abbildung 3.7.2.

Quelle: Deutsche Bundesbank, Echtzeitdatenbank; eigene Berechnungen.

Die hier vorgestellte Analyse beruht aufgrund mangelnder Datenverfügbarkeit auf vergleichsweise wenigen Beobachtungen (Anmerkungen zu Abbildung 3.7.2). Der Befund einer tendenziellen Aufwärtsrevision für die Veränderung der Arbeitsproduktivität ist daher nur für den betrachteten Zeitraum (2008 bis 2016) gültig und lässt sich nicht verallgemeinern.

3.8 Messunterschiede im internationalen Vergleich

Bei internationalen Produktivitätsvergleichen ist zu beachten, dass sich die Ergebnisse aufgrund von Unterschieden in der Methodik und der zugrundeliegenden Datenqualität unterscheiden können.

3.8.1 Ursachen

International unterschiedliche Vorgehensweisen gibt es auch, wenn es um die Deflationierung geht. Dies gilt insbesondere für die Qualitätsbereinigung (Abschnitt 3.4.2). Während die Berücksichtigung von Qualitätsveränderungen bei der Preismessung im Verarbeitenden Gewerbe, sowohl was die Erzeugung als auch was die in die Produktion eingehenden Vorleistungen angeht, durch Anwendung von hedonischen Methoden prinzipiell in überzeugender Weise erfolgen kann, sind die Herausforderungen im Dienstleistungssektor noch erheblich größer (van Ark 2002).

33 Zu den Konsequenzen für die Messung von Kapitalintensität und TFP-Wachstumsraten siehe Abschnitt 5.2.2.2.
ßere Anstrengungen der Statistischen Ämter wünschenswert, um die Annahmen, die den Schätzungen von nationalen Preisindizes zugrunde gelegt werden, zu harmonisieren.

Tabelle 3.8.1:
Internationale Nutzung hedonischer Qualitätsbereinigungsverfahren

<table>
<thead>
<tr>
<th>Country</th>
<th>Hedonics in National CPI</th>
<th>CPI Hedonic Items (Date Introduced)</th>
<th>Source of Price Quot & Attribute Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>✓</td>
<td>PCs (2005)</td>
<td>Currently collected internally, although/looking for an external provider due to costs & burden</td>
</tr>
<tr>
<td>Canada</td>
<td>✓</td>
<td>PCs, Laptops, Printers, Monitors (all 1999) & Internet Services (2008)</td>
<td>Price quotes collected by external provider / attributes collected internally</td>
</tr>
<tr>
<td>New Zealand</td>
<td>✓</td>
<td>Used Cars (2011)</td>
<td>Quarterly survey managed internally</td>
</tr>
<tr>
<td>USA</td>
<td>✓</td>
<td>Clothing, Footwear, Refrigerators, Washing Machines, Clothes Dryers, Radios & Coolers, Dishwashers, Oven, TVs, DVD Players</td>
<td>All collected by external provider</td>
</tr>
<tr>
<td>Denmark</td>
<td>✓</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Finland</td>
<td>✓</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Germany</td>
<td>✓</td>
<td>PCs (2003), Laptops (2009), PC Tablets (2013)</td>
<td>Price quotes collected by external provider / attributes collected internally</td>
</tr>
<tr>
<td>Netherlands</td>
<td>✓</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sweden</td>
<td>✓</td>
<td>20 Clothing & 12 software items (=5 yrs ago)</td>
<td>All collected internally</td>
</tr>
<tr>
<td>Switzerland</td>
<td>✓</td>
<td>PCs & Laptops (2012)</td>
<td>All collected by external provider</td>
</tr>
</tbody>
</table>

Quelle: Wells und Restieaux (2014: 3).

Schließlich beruhen die Schätzungen für die Beschäftigung bzw. die Zahl der geleisteten Arbeitsstunden in den einzelnen Ländern auf unterschiedlichen Basisstatistiken. Ihre Konsistenz mit den Produktionszahlen der VGR ist nicht in jedem Fall gewährleistet, und die internationale Vergleichbarkeit der Produktivitätsschätzung kann von daher beeinträchtigt sein (OECD 2005).

3.8.2 Auswirkungen

Wertschöpfung und Produktivität können in vielen der Industrien, die IKT intensiv nutzen, kaum verlässlich gemessen werden. Dies gilt insbesondere für die Finanz- und Unternehmensdienstleistungen. Solche Messfehler schlagen sich oft in der TFP nieder, können also das TFP-Wachstum bedeutender IKT-intensiver Industrien verzerren (Cardona et al. 2013: 115). Unterscheiden sich zudem die Konzepte der Produktivitätssmessung zwischen den untersuchten Ländern, so kann sich auch die Höhe der Messfehler in der TFP in den Ländern unterscheiden.

Um abzuschätzen, wie stark die unterschiedliche Methodik bei der Deflationierung den internationalen Vergleich von Produktionswachstum und damit auch Produktivitätswachstum verzerrt haben, bietet sich der Vergleich der tatsächlichen Wachstumsraten mit hypothetischen Werten an, die unter Verwendung von hedonischen Deflatorn berechnet wurden. Eine solche Vorgehensweise unterstellt, dass die nationalen Preistrends in dem untersuchten Sektor durch die Entwicklung in den Vereinigten Staaten hinreichend gut approximiert werden können. Von daher sind die Ergebnisse solcher Berechnungen mit Vorsicht zu genießen.

Mithilfe von Daten, die vom Groningen Growth and Development Center bereitgestellt wurden, erstellt Lawless (2006) für die Länder der EU-15 die Deflatorn für die Produktion in zwei Hochtechnologiesektoren (Büromaschinen und Elektronische Komponenten) mit den entsprechenden US-Deflatorn, für deren Berechnung in großem Umfang hedonische Methoden genutzt wurden. Der Unterschied, der sich für das Wachstum des preisbereinigten Bruttoinlandsprodukts (und damit der Produktivität) in den europäischen Ländern ergibt, ist freilich nicht sehr groß. Er beläuft sich für die EU insgesamt ebenso wie für Deutschland im Zeitraum von 1995 bis 2002 auf lediglich 0,1 Prozent pro Jahr. Eine Ausnahme ist lediglich Irland, wo sich die jahresdurchschnittliche Wachstumsrate in diesem Zeitraum um reichlich 1,3 Prozentpunkte erhöht. Dies kann dadurch erklärt werden, dass die Hochtechnologiesektoren in Irland einen sehr viel höheren Anteil an der gesamtwirtschaftlichen Produktion ausmachten als im Durchschnitt der EU. Für die Vereinigten Staaten ergibt sich ein um 0,3 Prozentpunkte geringeres Produktivitätswachstum, wenn zur Deflationierung die nicht hedonisch berechneten EU-Deflatorn verwendet werden.

Der empirische Befund über die IKT-Investitionsschwäche Kontinentaleuropas gegenüber den Vereinigten Staaten (Abschnitt 6.3) könnte also zu erheblichen Teilen von den geschätzten Preisindizes herrühren, die laut KLEMS in den Vereinigten Staaten deutlich stärker gesunken sind (Graphik c). Wären die Preissenkungen in den Vereinigten Staaten über- oder in Kontinentaleuropa unterschätzt, so wäre die tatsächliche IKT-Investitionslücke geringer. Für die IKT-Investitionslücke Deutschlands allerdings dürften solche möglichen Schätzungfehler schon allein deshalb eine geringere Rolle spielen, weil
hier die Preise fast ebenso stark gesunken sind wie in den Vereinigten Staaten, und weil auch die nominalen IKT-Kapitalintensitäten (Graphik d) weniger stark gestiegen sind als in allen Vergleichsländern.

Abbildung 3.8.1:
IKT-Kapitalintensitäten und Preisindex für IKT-Kapitaldienste im Ländervergleich

(a) Index der realen IKT-Kapitalintensität (mit nationalen Preisindizes deflationiert)

(b) Index der realen IKT-Kapitalintensität (mit US-Preisindex deflationiert)

(c) Preisindex für IKT-Kapitaldienste

(d) Index der nominalen IKT-Kapitalintensität

Der Index der (nominalen bzw. realen) IKT-Kapitalintensität ist berechnet als (nomiale bzw. reale) IKT-Kapitaldienste pro Arbeitsstunde und auf 1991=100 basiert.

Quelle: EU KLEMS; eigene Berechnungen.

tierung nachgesagt, die einer Automatisierung von Produktionsprozessen und Dienstleistungen zumindest bisher noch Grenzen gesetzt oder sie zumindest verteuert haben könnten. In der Tat ist die Lücke bei der IKT-Kapitalintensität zwischen den USA und Deutschland in diesem Sektor seit 1991 besonders stark gewachsen, wozu die Preise für IKT-Dienste erheblich beigetragen haben. Den KLEMS-Daten zufolge ist die reale IKT-Kapitalintensität der Branche in den USA seit 1991 (bis 2007) doppelt so stark gestiegen wie in Deutschland, und die Preise der IKT-Kapitaldienste sind fast viermal so stark gesunken. Ähnliches gilt für die Chemische Industrie.

Auch dürften Fehler bei der Schätzung von Preisindizes für IKT-Güter kaum erklären, dass im Fahrzeugbau bzw. im Großhandel und bei den Unternehmensdienstleistungen die reale IKT-Kapitalintensität in den USA laut KLEMS um 60 Prozent bzw. 100 Prozent schneller gestiegen ist als in Deutschland, obwohl die dortigen Preise für IKT-Kapitaldienste kaum schneller gesunken sind. Ähnliches gilt für die Finanzdienstleistungen, wo die Preise für IKT-Kapitaldienste in den USA nur unwesentlich stärker gesunken sind, die reale IKT-Kapitalintensität aber um knapp 50 Prozent stärker gestiegen ist.

3.9 Zusammenfassung

Maßgeblich für die Bestimmung von Produktivitätsmaßen sind die Ergebnisse der Volkswirtschaftlichen Gesamtrechnungen (VGR). Neben ihrem konsistenten internen Aufbau haben die VGR grundsätzlich den Vorteil, dass die zugrundeliegenden Systematiken und Konzepte international weitgehend harmonisiert sind und somit konzeptionell kongruente Ländervergleiche ermöglichen. Allerdings ergeben sich für die statistische Erhebung der für die Produktivitätsbestimmung relevanten Daten erhebliche Probleme, sie betreffen insbesondere die Ermittlung der nominalen Wertschöpfung in denjenigen ökonomischen Aktivitätsfeldern, wo auf mindestens einer Seite (Input oder Output) keine Markttransaktionen vorliegen betreffen (Abschnitt 3.3), die Abgrenzung von Qualitätsveränderungen und reiner Preiseentwicklung (Abschnitt 3.4) sowie die Erfassung der eingesetzten Faktormengen (Abschnitte 3.5 und 3.6).

Jede von der Wirtschaftsstatistik nicht beobachtbare, sondern ersatzweise unterstellte ökonomische Aktivität bzw. Bewertung birgt die Gefahr, nur diejenige Produktivitätsentwicklung aus den so bestimmten Daten herauszulesen, die in impliziter Form zuvor in den Modellrechnungen zugrunde gelegt werden musste. Dies mahnt, den Messzahlen für die Produktivitätsentwicklung einen umso gerin- geren Aussagegehalt zuzuschreiben, je höher der Anteil unterstellter bzw. modellhaft konstruierter.
Ausgangsgrößen (Inputs oder Outputs) des betreffenden Wirtschaftsbereichs ist. Die Abschätzung der im Zuge der Erfassung nicht beobachtbarer Wertschöpfung in die Produktivitätsmaße einfließenden Fehler ist konzeptionsbedingt selbst der Richtung nach kaum möglich. Hinweise ergeben sich allenfalls, wenn drastische, Veränderungen bei den Deflatoren, die von der gesamtwirtschaftlichen Entwicklung in extremem Maße abweichen, die Entwicklung der Wertschöpfung dominieren, wie dies nicht selten im Finanzsektor und bei den Versicherungsdienstleistungen der Fall ist. Für die Bewertung der Ergebnisse der gesamtwirtschaftlichen wäre es hilfreich, den Anteil nicht direkt beobachteter, sondern imputierter Wertschöpfung im zeitlichen Verlauf wie im internationalen Vergleich systematisch zu erfassen.

Voraussetzung für eine adäquate sektorale Produktivitätsberechnung ist die stimmige Zuordnung der Produktionsergebnisse eines Wirtschaftsbereichs zu den jeweils von diesem im Produktionsprozess tatsächlich eingesetzten Produktionsfaktoren. Dies wird besonders dann zum Problem, wenn die ökonomische Aktivität eines Wirtschaftsbereichs nur darin besteht, Produktionsfaktoren an andere Sektoren auszuleihen, wie es bei der Arbeitnehmerüberlassung und beim Leasing der Fall ist. Freilich wird dadurch weniger das gesamtwirtschaftliche Produktivitätswachstum beeinflusst als die sektorale Produktivitätsentwicklung. Die Wertschöpfungsmessung wird sowohl sektorial als auch gesamtwirtschaftlich verzerrt, wenn bestimmte Güter des einen Sektors A für die letzte Verwendung produziert, den Nutzern aber unentgeltlich bereitgestellt werden, während die für ihre Produktion anfallenden Kosten als Vorleistungen eines anderen Sektors B auftreten. Derartige Querfinanzierungsmodelle treten vermehrt bei bestimmten digitalen Gütern wie Suchmaschinen, Media-Portalen oder elektronischen sozialen Netzwerken auf. Versucht man den Effekt unentgeltlicher Mediennutzung auf das reale Bruttoinlandsprodukt zu schätzen, indem die entsprechenden Werbeausgaben als Maß herangezogen
werden, zeigt sich für Deutschland, dass die Online-Werbeumsätze hierzulande in den vergangenen zehn Jahren zwar rasant zugenommen haben, aber immer noch nur 2 Promille des nominalen Brutto-
inklandsprodukts ausmachen und somit quantitativ kaum ins Gewicht fallen.

Probleme bei der Ermittlung des in die Produktivitätsberechnung eingehenden Einsatzes an Produkti-
onsfaktoren entstehen zum einen dadurch, dass direkt erfasste Inputdaten nur lückenhaft oder mit erheblicher Zeitverzögerung (etwa bei den eingesetzten Arbeitsstunden) zur Verfügung stehen. Ver-
änderungen der Datenbasis schlagen sich dann im Zeitablauf in Revisionen der ermittelten Produktivität nieder. Grundlegender sind die Probleme bei der Berücksichtigung der Qualität der eingesetzten Arbeit. Hier orientieren sich die verfügbaren Daten ganz überwiegend an formalen Abschlüssen und vernachlässigen Soft Skills ebenso wie erforderliche Abschreibungen auf Humankapital. Unterschiede in Verfahren und Datengrundlage betreffen nicht nur das Niveau, sondern auch die zeitliche Entwick-
lung des Humankapitalbestandes und beeinträchtigen ihre Aussagekraft. Für den Faktor Sachkapital
liegt für Deutschland vonseiten der offiziellen Statistik lediglich eine Bestandsrechnung vor, während aus produktionstheoretischer Sicht eine Kapitalverbrauchsrechnung angemessen ist. Allerdings ist aus wirtschaftsstatistischer Sicht einzuräumen, dass sich der Anteil der Daten, die modellgestützten Be-
rechnungen (Annahmen) beruhen in diesem Fall weiter erhöhen würde, sofern keine originäre Kapi-
talnutzungserhebung zur Grundlage gemacht werden kann.

So sind derzeit vertiefenden Produktivitätsanalysen aufgrund unzureichender Daten enge Grenzen
gesetzt, denn es fehlen Schätzungen von Kapaldienssten sowie eine Disaggregation der eingesetzten
Arbeit nach der Qualifikation und des Kapitalstocks nach dem Technologiegehalt. Die international
vergleichbaren Daten von EU KLEMS bieten zwar die erforderlichen Informationen, dies aber nur für
den Zeitraum bis 2007, mit Einschränkungen auch wenige Jahre darüber hinaus. Sie sind daher für
Analysen der Entwicklung am aktuellen Rand nicht geeignet.

Alles in allem sind die statistischen Unsicherheiten aufgrund konzeptioneller Probleme und mangel-
der Datenverfügbarkeit erheblich, so dass die Interpretation von Berechnungsergebnissen mit Vorsicht
erfolgen sollte. Dies gilt insbesondere für Produktivitätsvergleiche im internationalen Rahmen, aber
auch für die Bewertung der gemessenen Produktivität im Zeitverlauf, vor allem wenn es um kürzerfris-
tige Entwicklungen, etwa die Veränderung von Jahr zu Jahr geht. Eine quantitative Abschätzung der
Datenproblematik ist naturgemäß schwer, da es sich bei einer Reihe von Problemen um konzeptions-
bedingte Datenunsicherheit handelt. Einen Anhaltspunkt dafür, in welchem Umfang die aktuell in der
Statistik ausgewiesene Produktivitätsschwäche auf Probleme in den Daten zurückzuführen sein kön-
te, gibt die Auswertung der Revisionsergebnisse für die jüngere Vergangenheit. So wurden die Produk-
tivitätsergebnisse in den Jahren seit der Finanzkrise tendenziell von Überarbeitung zu Überarbeitung
aufwärts revidiert, wobei die Größenordnung im Durchschnitt mit 0,5 Prozentpunkten durchaus er-
heblich war. Demgegenüber ergibt unsere Analyse des methodischen Umgangs mit Qualitätsverände-
rungen und neuen Gütern im Zuge der digitalen Revolution keine Anhaltspunkte dafür, dass die aus-
gewiesene gesamtwirtschaftliche Produktivität in Deutschland in erheblichem Maße systematisch
nach unten verzerrt ist.
4 Methoden der TFP-Berechnung

4.1 Methode der Europäischen Kommission

Die TFP einer Volkswirtschaft ist nicht direkt beobachtbar und wird daher basierend auf theoretischen Annahmen und Setzungen ermittelt. Zur Berechnung der TFP auf der Makroebene greift die Europäische Kommission auf eine Cobb-Douglas-Produktionsfunktion mit konstanten Skalenerträgen zurück. Dieser Ansatz ist ausführlich in Havik et al. (2014) beschrieben und soll daher im Folgenden nur kurz skizziert werden. Gemäß der Cobb-Douglas-Spezifikation ergibt sich die TFP residual als der Teil des realen Bruttoinlandsprodukts, der nicht durch die Produktionsfaktoren Kapital und Arbeit erklärt werden kann; die Produktionselastizitäten der beiden Inputfaktoren werden dabei als zeitkonstant angenommen:

\[
TFP = \frac{Y}{L^\alpha K^{1-\alpha}}
\] (4.1.1)

Abbildung 4.1.1: Entwicklung der Lohnquote in Deutschland und den USA 1970-2015

Quelle: EU-Kommission, AMECO-Datenbank; eigene Berechnungen.

Abbildung 4.1.2: Alternative TFP-Berechnung für Deutschland und die USA 1970-2015

TFPg: Veränderungsrate basierend auf konstanten Produktionselastizitäten. $\text{TFPg}(\alpha_t)$: Veränderungsrate basierend auf zeitvariablen Produktionselastizitäten (Lohnquote). Balken: Differenz beider Veränderungsrate ($\text{TFPg} - \text{TFPg}(\alpha_t)$).

Quelle: EU-Kommission, AMECO-Datenbank; eigene Berechnungen.

Die Berücksichtigung einer zeitvariablen Lohnquote wird wie folgt vorgenommen. Der Ansatz steht dabei im Einklang zu der in Abschnitt 4.2 beschriebenen Methode.\(^{34}\) Die Veränderung der TFP ergibt sich durch

$$\Delta \ln TFP = \Delta \ln Y - \alpha \Delta \ln L - (1 - \alpha) \Delta \ln K,$$

wobei $\Delta \ln TFP$ der logarithmische Wachstumsrate der TFP zwischen $t-1$ und t entspricht. Anstelle eines konstanten Wertes für α wird nun das arithmetische Mittel der Lohnquote in Periode $t-1$ und

\(^{34}\) Siehe Abschnitt 4.2 für eine detaillierte Erläuterung.
Periode t eingesetzt. Es zeigt sich, dass die Resultate von zeitvariablen und konstanten Produktionselastizitäten relativ nahe beieinander liegen (Abbildung 4.1.2). Für Deutschland ergeben sich spürbare Differenzen des TFP-Wachstums von bis zu 0,4 Prozentpunkten in den 1970er Jahren. Im Zeitraum danach sind die Unterschiede jedoch marginal. Für die USA ergibt sich der größte Unterschied für das Jahr 2009, in dem das TFP-Wachstum unter Berücksichtigung zeitvarierbarer Produktionselastizitäten basierend auf der Entwicklung der Lohnquote knapp 0,2 Prozentpunkte niedriger ausfallen würde.

4.2 Index-Methode

Veränderung der TFP auf Basis des Brutt produkts

Des Weiteren wird angenommen (OECD 2001a: 19-20, 129; Timmer et al. 2010: 48), dass

(i) der technische Fortschritt Hicks-neutral, d.h. outputvermehrend bzw. gleichmäßig faktorvermehrend, ist:

\[
Y_j = f_j(L_j,K_j,X_j,T) = T \cdot \tilde{f}_j(L_j,K_j,X_j) ,
\]

\[
Y_j = f_j(L_j,K_j,X_j,T) = T \cdot \tilde{f}_j(L_j,K_j,X_j) .
\]
(ii) die Produktionsfunktion konstante Skalenerträge aufweist, so dass sich die Produktionselastizitäten in der Summe zu 1 ergänzen,

(iii) auf Faktor- und Outputmärkten vollkommener Wettbewerb herrscht und die Produzenten als Preisnehmer agieren und jederzeit gewinnmaximierend produzieren und

(iv) bei der Variation des Kapital- und Arbeitseinsatzes neben den eigentlichen Faktorkosten keine weiteren Anpassungskosten entstehen.

Unter diesen Annahmen lässt sich die (logarithmische) Wachstumsrate der realen Bruttoproduktion zwischen zwei Zeitpunkten $t-1$ und t wie folgt auf die Änderungen der eingesetzten Faktormengen und der Technologie T zurückführen ("Wachstumszerlegung")\footnote{Weitergehende Annahmen an die funktionale Form der Produktionsfunktion, etwa die Annahme einer Produktionsfunktion vom Cobb-Douglas-Typ sind nicht erforderlich.},

\[
\Delta \ln Y_j = \tilde{s}_L^{\gamma} \Delta \ln L_j + \tilde{s}_K^{\gamma} \Delta \ln K_j + \tilde{s}_X^{\gamma} \Delta \ln X_j + \Delta \ln TFP_j^{\gamma},
\]

wobei $\tilde{s}_{L,R}^{\gamma} = 0.5 \times (s_{L,R}^{Y} + s_{L,R}^{Y,t-1})$ das arithmetische Mittel der Anteile des Faktors Arbeit am nominalen Bruttoproduktionswert in Periode t ($s_{L,R}^{Y} = p_J^L L_j / p_J^Y Y_j$) und Periode $t-1$ ($s_{L,R}^{Y,t-1}$) bezeichnet und entsprechend für die Produktionsfaktoren Kapital und Vorleistungen. Unter der Annahme konstanter Skalenerträge ist die Summe der Faktoranteile für die drei Faktoren gleich 1 (und somit auch $\tilde{s}_L^{\gamma} + \tilde{s}_K^{\gamma} + \tilde{s}_X^{\gamma} = 1$).

Für die Veränderung der Totalen Faktorproduktivität auf der Basis der Bruttoproduktion für Sektor j folgt somit:

\[
\Delta \ln TFP_j^{\gamma} = \Delta \ln Y_j - \tilde{s}_L^{\gamma} \Delta \ln L_j - \tilde{s}_K^{\gamma} \Delta \ln K_j - \tilde{s}_X^{\gamma} \Delta \ln X_j.
\]

Veränderung der TFP auf Basis der Bruttowertschöpfung

Die Berechnung der Veränderung der TFP auf der Basis der Bruttowertschöpfung erfolgt weitgehend analog. Für jeden Sektor j wird angenommen, dass eine Bruttowertschöpfungsfunktion $Z_j = g_j(L_j, K_j, T) = T \tilde{g}_J(L_j, K_j)$ existiert, die die bei effizienter Produktion erzielbare mengenmäßige Bruttowertschöpfung Z_j als Funktion (jetzt nur noch) der primären Faktoren Arbeit und Kapital sowie der Technologie T bestimmt.

\footnote{Im Folgenden bezeichnet $\Delta x = x_t - x_{t-1}$ die Änderung einer Variable x zwischen $t-1$ und t, so dass $\Delta \ln x$ der logarithmischen Wachstumsrate von x zwischen $t-1$ und t entspricht. Aus Gründen der Übersichtlichkeit wird der Zeitindex t, soweit dies ohne Gefahr von Missverständnissen möglich ist, unterdrückt. Zeitabhängige Größen ohne Zeitindex beziehen sich stets auf Periode t.}
Unter vergleichbaren Annahmen und auf gleiche Weise wie für den Fall der Bruttoproduktionsfunktion ergibt sich für die Veränderung der Totalen Faktorproduktivität auf der Basis des Bruttowertschöpfung für Sektor j:

$$\Delta \ln \text{TFP}_j^Z = \Delta \ln Z_j - \bar{Z}_{L,j}^t \Delta \ln L_j - \bar{Z}_{K,j}^t \Delta \ln K_j$$ \hspace{1cm} (4.2.3)

wobei $\bar{Z}_{L,j}^t = 0.5\times(\bar{Z}_{L,j}^t + \bar{Z}_{L,j}^{t-1})$ das arithmetische Mittel der Anteile des nominalen Arbeitseinkommens an der nominalen Bruttowertschöpfung in Periode $t-1$ und Periode t (und entsprechend $\bar{Z}_{K,j}^t$ für den Produktionsfaktor Kapital). Unter der Annahme konstanter Skalenerträge ist die Summe der Faktanteile für die beiden Produktionsfaktoren Arbeit und Kapital gleich 1 (und somit auch $\bar{Z}_{L,j}^t + \bar{Z}_{K,j}^t = 1$).

Unter bestimmten Konsistenzannahmen (vgl. Kasten 4.2.1) gilt für den Zusammenhang zwischen der Veränderung der Totalen Faktorproduktivität auf der Basis der Bruttowertschöpfung $\Delta \ln \text{TFP}_j^Z$ und der Veränderung der Totalen Faktorproduktivität auf der Basis des Bruttoproduktionswerts $\Delta \ln \text{TFP}_j^Y$:

$$\Delta \ln \text{TFP}_j^Z = \frac{1}{\bar{Z}_{L,j}^t} \Delta \ln \text{TFP}_j^Y,$$

wobei $\bar{Z}_{L,j}^t$ den mittleren Anteil der nominalen Bruttowertschöpfung an der nominalen Bruttoproduktion bezeichnet.

Kasten 4.2.1:
Zur Konsistenz von Bruttoproduktions- und Bruttowertschöpfungskonzept

Um sicherzustellen, dass die Konzepte der Bruttoproduktionsfunktion und der Bruttowertschöpfungsfunktion miteinander kompatibel sind, wird angenommen (Timmer et al. 2010: 54-56), dass

– die Bruttoproduktionsfunktion separabel ist zwischen den primären Faktoren L und K einerseits und den Zwischenprodukten X andererseits: $Y_j = f_j(X_j, g_j(L_j, K_j, T))$,
– die mengenmäßige Bruttowertschöpfung implizit über einen Törnquist-Index für die Bruttoproduktion definiert wird:

$$\Delta \ln Z_j = \frac{1}{\bar{Z}_{L,j}^t} \left(\Delta \ln Y_j - (1 - \bar{Z}_{L,j}^t) \Delta \ln X_j \right),$$

wobei $\bar{Z}_{L,j}^t$ der mittlere (Periodendurchschnitt) Anteil der nominalen Bruttowertschöpfung an der nominalen Bruttoproduktion ist, der sich mit dem mittleren Anteil der Vorleistungen an der nominalen Bruttoproduktion $\bar{Z}_{L,j}^t$ zu 1 ergänzt,
– der Preisindex für die Bruttowertschöpfung implizit definiert ist durch die Beziehung

$$p_j^{\text{Y}} Z_j = p_j^{\text{Y}} K_j + p_j^{\text{Y}} L_j = p_j^{\text{Y}} Y_j - p_j^{\text{Y}} X_j.$$

Hieraus folgt unmittelbar, dass die Veränderungsrate der TFP auf der Basis der Bruttowertschöpfung stets größer ist als die Veränderungsrate der TFP auf der Basis der Bruttoproduktion.\(^{37}\) Vereinfacht

\(^{37}\) In einer geschlossenen Volkswirtschaft würde der Unterschied zwischen den beiden Maßen mit zunehmendem Aggregationsniveau tendenziell abnehmen und beide Konzepte wären auf der Ebene der Gesamtwirtschaft identisch. In einer offenen Volkswirtschaft mit positiven Importen weichen beide Konzepte jedoch auch auf der Ebene der Gesamtwirtschaft voneinander ab.
formuliert erfolgt die Messung der TFP-Veränderungsrate auf der Basis des Bruttowertschöpfungskonzepts unter der Annahme, dass der technische Fortschritt allein die Nutzung der primären Faktoren Arbeit und Kapital direkt beeinflusst (Timmer et al. 2010: 56). Jede Verbesserung bei der Nutzung von Vorleistungen, beispielsweise durch einen kostengünstigeren Bezug oder eine verbesserte Qualität der Vorleistungen, wird deshalb nach dem Bruttowertschöpfungskonzept als Erhöhung der TFP \(\Delta \ln (TFP_j) > 0 \) ausgewiesen, obwohl dies mit technischem Fortschritt \(T \) im Sinne des theoretischen Konzepts wenig zu tun hat.

Heterogene Faktoren

Soweit entsprechende Daten verfügbar sind, lässt sich dies durch die Verwendung geeigneter Mengenindizes für die einzelnen Faktorinputs erreichen (OECD 2001a: 83, 108-109; Timmer et al. 2010: 49-51). Werden also beispielsweise beim Faktor Arbeit entsprechend der unterschiedlichen Qualifikation und Erfahrung der Beschäftigten unterschiedliche Typen von Arbeitstypen und bezeichnet \(H_{j,t} \) die Menge der eingesetzten Arbeitsstunden vom Typ \(t \), so lässt sich der Einsatz des Produktionsfaktors Arbeit als Törnquist-Mengenindex\(^{38}\) der einzelnen Typen von Arbeit definieren, so dass sich die Veränderung der Arbeitsleistung in Sektor \(j \) ergibt als

\[
\Delta \ln L_j = \sum_i \bar{x}_{ij} \Delta \ln H_{i,j,t}, \tag{4.2.4}
\]

wobei die Gewichte \(\bar{x}_{ij} \) dem mittleren (Durchschnitt der Perioden \(t-1 \) und \(t \)) Anteil der Entlohnung des Arbeitstyps \(i \) an der gesamten Entlohnung des Faktors Arbeit entsprechen.\(^{39}\)

\(^{39}\) \(\bar{x}_{ij} = \frac{1}{2} \left(\frac{p_{L_j}^{-1}L_{ij,t-1}^{-1} + p_{L_j}^{-1}L_{ij,t}}{p_{L_j}^{-1}L_{ij,t-1} + p_{L_j}^{-1}L_{ij,t}} \right) \).
Mittels einer einfachen Erweiterung der rechten Seite von (4)

\[\Delta \ln L_j = \sum \xi_j \Delta \ln H_{i,j} + \Delta \ln H_j = \Delta \ln LC_j + \Delta \ln H_j \quad (4.2.5) \]

lässt sich die Änderung des Arbeitseinsatzes in zwei Komponenten zerlegen, in einen Kompositionseffekt (erster Summand in (4.2.5)), der die Änderung der Arbeitszusammensetzung widerspiegelt, und einen Mengeneffekt (zweiter Summand in (4.2.5)), der die Änderung der insgesamt eingesetzten Arbeitssstunden widerrgibt.

Analog kann ggf. für die anderen Produktionsfaktoren Kapital und Vorleistungen vorgegangen werden. Auf diese Weise können, soweit die notwendigen Daten verfügbar sind, neben reinen Mengenänderungen beim Einsatz der Produktionsfaktoren auch mögliche Änderungen in der "qualitativen" Zusammensetzung der eingesetzten Faktoren bei der Berechnung des TFP-Wachstums mittels Wachstumszerlegung (Gleichung (4.2.2) bzw. (4.2.3)) berücksichtigt werden. Hierdurch lässt sich vermeiden, dass Produktionssteigerungen, die auf entsprechende Änderungen in der Zusammensetzung der einzelnen Produktionsfaktoren zurückgehen, fälschlich als Zunahme der TFP (und somit als Effekt ungebundenen technischen Fortschritts) interpretiert werden.\(^{40}\)

Aggregation des TFP-Wachstums der einzelnen Branchen

\[\Delta \ln TFP_{z}^{*} = \Delta \ln T + \sum z_j \Delta \ln LC_j. \]

\[^{40}\] In Kombination mit der aus der Wachstumszerlegung folgenden Gleichung (4.2.2) bzw. (4.2.3) zur Bestimmung der TFP-Wachstumsrate impliziert Gleichung (4.2.5), dass das gemessene TFP-Wachstum bei Vernachlässigung des Kompositionseffekts nur noch einen „verzerrten Schätzer“ für den technischen Fortschritt \(\Delta \ln T \) darstellt. So erhielt man bspw. im Fall der TFP-Messung auf der Basis der Bruttowertschöpfung (Gleichung (3)):

\[\Delta \ln TFP_{z}^{*} = \Delta \ln T + \sum z_j \Delta \ln LC_j. \]

\[^{41}\] \(z_j = \frac{1}{2} \left(\frac{p_{j+}^Y Y_{j+}}{p_{j+}^Z Z_{j+}} + \frac{p_{j+}^Y Y_{j+}}{p_{j+}^Z Z_{j+}} \right); \hspace{1cm} z_{ij} = \frac{1}{2} \left(\frac{p_{i+}^Y Y_{i+}}{p_{i+}^Z Z_{i+}} + \frac{p_{i+}^Y Y_{i+}}{p_{i+}^Z Z_{i+}} \right). \]
\[
\Delta \ln \text{TFP}^Y = \sum_j Z_{Y,j} \Delta \ln \text{TFP}_j^Y \quad \text{(geschlossene Volkswirtschaft)} \tag{4.2.6a}
\]
\[
\Delta \ln \text{TFP}^Y = \sum_j Z_{Y,j} \Delta \ln \text{TFP}_j^Y \quad \text{(offene Volkswirtschaft)} \tag{4.2.6b}
\]

Die Summe der Domar-Gewichte ist sowohl im Fall der geschlossenen als auch in dem der offenen Volkswirtschaft größer als 1. Die aggregierte TFP-Wachstumsrate ist beim Bruttoproduktionskonzept, d.h. bei Berücksichtigung der Vorleistungen als Produktionsfaktor, größer als die mit den Sektoranteilen an der gesamtwirtschaftlichen Produktion gewichteten TFP-Wachstumsraten der einzelnen Sektoren. Dies ist Ausdruck der Tatsache, dass die gesamtwirtschaftliche Produktivität von der Produktivitätssteigerung in einem gegebenen Sektor nicht nur direkt (gemäß dem Bruttoproduktsanteil des Sektors) profitiert, sondern ggf. auch noch indirekt davon profitiert, dass sich die Produktivität in nachgelagerten Sektoren aufgrund gesunkener Preise für ihre Vorleistungsbezüge aus dem nun produktiveren Sektor ebenfalls erhöht (OECD 2001a: 95, 141).\(^{42}\)

Für das Wachstum der TFP auf Basis der Bruttowertschöpfung lässt sich das aggregierte TFP-Wachstum der verschiedenen Sektoren dagegen einfach als gewichteter Durchschnitt der TFP-Wachstumsraten der einzelnen Sektoren berechnen, wobei die Gewichte dem mittleren Anteil (Periodendurchschnitt) der einzelnen Sektoren an der aggregierten nominalen Bruttowertschöpfung entsprechen (vgl. Timmer et al. 2010: 155)\(^{43}\):

\[
\Delta \ln \text{TFP}^\mathcal{Z} = \sum_j Z_{Z,j} \Delta \ln \text{TFP}_j^\mathcal{Z} . \tag{4.2.7}
\]

In diesem Fall summieren sich die Gewichte also zu Eins auf. Mögliche Vorleistungsbeziehungen zwischen den Sektoren und sich darüber verbreitende Produktivitätsseffekte finden beim der Berechnung des TFP-Wachstums auf der Basis der Bruttowertschöpfung keine explizite Berücksichtigung. Produktivitätssteigerungen aufgrund preiswerterer oder qualitativ hochwertigerer Vorleistungen werden implizit als Steigerung der TFP des Sektors interpretiert, der diese Vorleistungen bezieht.

Wichtig ist es zu beachten, dass die aggregierte bzw. mittlere TFP-Wachstumsrate der Sektoren in (4.2.7) im Allgemeinen nicht der TFP-Wachstumsrate der aggregierten Ökonomie entspricht. Aufgrund von Verschiebungen in den Sektoranteilen bei Inputs und Outputs (Reallokation) kann sich die TFP der aggregierten Ökonomie auch dann ändern, wenn die TFP in allen Sektoren unverändert bleiben. Die TFP-Wachstumsrate der aggregierten Ökonomie ergibt sich somit aus der gewichteten Summe der TFP-Wachstumsraten der einzelnen Sektoren zuzüglich eines Reallokationseffekts. Dieser Reallokationseffekt entspricht dem Teil des gesamtwirtschaftlichen TFP-Wachstums, der sich allein aus Ver-

\(^{42}\) „… this reflects the fact that productivity gains in the production of intermediate inputs do not only have an “own” effect but in addition they lead to reduced input prices in downstream industries, and effects cumulate” (OECD 2001a: 141).

\(^{43}\) \[Z_{Z,i} = \frac{1}{2} \left(\frac{p_\mathcal{Z}_j Z_{j,i}^Z + p^{\mathcal{Z}Z}_i Z_{i,j}}{p_\mathcal{Z}_j Z_{j,i} + p^{\mathcal{Z}Z}_i} \right) . \]
schiebungen der Sektoranteile bei der Bruttowertschöpfung und beim Einsatz (aller Typen) der Primärfaktoren Arbeit und Kapital ergeben.\footnote{Entsprechendes gilt für das TFP-Wachstum auf Basis der Bruttoproduktion gemäß (4.2.6a) bzw. (4.2.6b).}

Zum Verhältnis von Arbeitsproduktivität und Totaler Faktorproduktivität

Aus den Wachstumszerlegungen (4.2.2) bzw. (4.2.3) lässt sich unmittelbar der Zusammenhang zwischen der Änderung der TFP und der Änderung der Arbeitsproduktivität ableiten. Wir beschränken uns dabei im Folgenden auf den Fall der Produktivitätsrechnung auf Basis der Bruttowertschöpfung.

Messen wir den Arbeitsinput auf Stundenbasis \((H_j)\) in Sektor \(j\), so ergibt sich aus der Wachstumszerlegung (vgl. (4.2.3)) für die Änderung der Bruttowertschöpfung die Beziehung

\[
\Delta \ln Z_j = \Delta \ln H_j + \Delta \ln K_j + \Delta \ln TFP^Z.
\]

(4.2.8)

Hieraus ergibt sich unter Verwendung der Definition der Arbeitsproduktivität auf Stundenbasis \(AP_j = Z_j / H_j\) für deren Änderungsrate die Beziehung \(\Delta \ln AP_j = \Delta \ln Z_j - \Delta \ln H_j\). Durch Subtraktion von \(\Delta \ln H_j\) auf beiden Seiten der Gleichung (4.2.8) ergibt sich für die Änderung der Arbeitsproduktivität die Beziehung:

\[
\Delta \ln AP^Z_j = \Delta \ln k_j + \Delta \ln TFP^Z_j.
\]

(4.2.9)

wobei \(k_j = K_j / H_j\) die Kapitalintensität (pro Arbeitsstunde) in Industrie \(j\) bezeichnet.

Die (logarithmische) Wachstumsrate der Arbeitsproduktivität in Sektor \(j\) ergibt sich somit als Summe der mit dem Wertschöpfungsanteil des Kapitals gewichteten Wachstumsrate der Kapitalintensität in Sektor \(j\) und der Zunahme der Totalen Faktorproduktivität in Sektor \(j\).

Für den Zusammenhang zwischen der Entwicklung der gesamtwirtschaftlichen Arbeitsproduktivität und der Entwicklung der Arbeitsproduktivität in den einzelnen Sektoren lässt sich folgender Zusammenhang ableiten (vgl. Kasten 4.2.2):

\[
\Delta \ln AP^Z = \sum_j Z_j \Delta \ln AP^Z_j + R^H
\]

(4.2.10)

\footnote{Dieser Reallokationseffekt unterscheidet sich von dem oben im Zusammenhang mit der TFP eingeführten Reallokationseffekts dadurch, dass er nur aus der intersektoralen Verschiebung der Arbeitsstunden resultiert.}
Kasten 4.2.2: Herleitung von Gleichung (4.2.10) und Definition des Reallokationseffekts

Jorgenson et al. (2005) folgend wird angenommen, dass sich die Wachstumsrate der gesamtwirtschaftlichen Bruttowertschöpfung (Mengenkonzept) als gewichtete Summe der Wachstumsraten der Bruttowertschöpfung der einzelnen Sektoren ausdrücken lässt, wobei die Gewichte den Anteilen der einzelnen Sektoren an der gesamtwirtschaftlichen nominalen Bruttowertschöpfung entsprechen („direct aggregation over industries approach“): \(\Delta \ln Z = \sum_j \tilde{x}_Z^2 \Delta \ln Z_j \).

Zugleich entspricht die Wachstumsrate des gesamtwirtschaftlichen Arbeitseinsatzes der gewichteten Summe der Wachstumsraten des Arbeitseinsatzes der einzelnen Sektoren, wobei die Gewichte den Anteilen der einzelnen Sektoren an den insgesamt eingesetzten Arbeitsstunden entsprechen:

\[\Delta \ln H = \sum_j \tilde{x}_H^H \Delta \ln H_j. \]

Hieraus folgt für die Wachstumsrate der gesamtwirtschaftlichen Arbeitsproduktivität (Stiroh 2002):

\[\Delta \ln \text{AP}^Z = \Delta \ln Z - \Delta \ln H = \sum_j \tilde{x}_Z^Z \Delta \ln \text{AP}^Z + \left(\sum_j \tilde{x}_Z^Z \Delta \ln H_j - \Delta \ln H \right) = \sum_j \tilde{x}_Z^Z \Delta \ln \text{AP}^Z + \text{R}^H, \]

wobei sich der Reallokations- effekt \(\text{R}^H \) unter Berücksichtigung der Definition von \(\Delta \ln H \) auch schreiben lässt als

\[\text{R}^H = \sum_j (\tilde{x}_Z^Z - \tilde{x}_H^H) \Delta \ln H_j. \]

Setzt man nun Gleichung (4.2.9) in Gleichung (4.2.10) ein, so erhält man die Gleichung

\[\Delta \ln \text{AP}^Z = \sum_j \tilde{x}_Z^Z \Delta \ln k_j + \sum_j \tilde{x}_Z^Z \Delta \ln \text{TFP}_j + \text{R}^H, \quad (4.2.11) \]

die es erlaubt, die Wachstumsrate der gesamtwirtschaftlichen Arbeitsproduktivität in drei Komponenten zu zerlegen, in (i) die aggregierte Wachstumsrate der Kapitalintensitäten der einzelnen Industrien, (ii) die aggregierte Wachstumsrate der TFP der einzelnen Industrien und den (Stunden-) Reallokations-effekt.

Zusätzlich zu diesen Effekten sind gegebenenfalls noch die Änderungen der Arbeitsproduktivität zu berücksichtigen, die sich im Fall heterogener Faktoren aus Änderungen in der Zusammensetzung der einzelnen Faktoren ergeben. Werden etwa verschiedene Typen von Arbeit unterschieden, so führt eine Änderung der Arbeitszusammensetzung \(\Delta \ln L_{C,j}^Z \) (vgl. Gleichung (4.2.5)) zu einer Änderung der Arbeitsproduktivität in Sektor \(j \). Dieser Effekt ist umso größer, je größer der Anteil der Arbeit an der gesamten Wertschöpfung, \(\tilde{x}_L^Z,j \), so dass

\[\Delta \ln \text{AP}^Z = \sum_j \tilde{x}_Z^Z \Delta \ln k_j + \sum_j \tilde{x}_Z^Z \Delta \ln L_{C,j}^Z + \sum_j \tilde{x}_Z^Z \Delta \ln \text{TFP}_j + \text{R}^H. \quad (4.2.12) \]

Konsequenzen einer Verletzung der gemachten Annahmen

Unter den gemachten Annahmen (s.o.), erlaubt es die Methode der Wachstumszerlegung TFP-Änderungs- raten allein auf der Basis relativ breit verfügbarer Preis- und Mengenbeobachtungen zu berechnen, was einen wichtigen Vorteil gegenüber ökonometrischen Verfahren darstellt (OECD 2001a: 20). Während diese Annahmen in einigen Branchen bzw. Sektoren als eine sinnvolle Approximation der...

Aber auch in Sektoren, für die davon ausgegangen werden kann, dass die gemachten Annahmen grundsätzlich eine sinnvolle Approximation darstellen, werden diese kaum je vollständig erfüllt sein, so dass das gemessene TFP-Wachstum neben dem technischen Fortschritt auch vielfältige andere Einflussfaktoren widerspiegeln kann (vgl. 2001a: 20, 115-120):

(i) Im Fall zunehmender Skalenerträge kann eine (strukturrell oder konjunkturell bedingte) Erhöhung der Produktion durch die Nutzung von Skalenvorteilen auch ohne technischen Fortschritt zu einer Erhöhung der ausgewiesenen TFP führen (und entsprechend umgekehrt im Fall abnehmender Skalenerträge).

(ii) Kann nicht davon ausgegangen werden, dass die Produzenten zu jedem Zeitpunkt effizient arbeiten, so können Veränderungen der TFP teilweise auch Änderungen in der technischen oder allokativen Effizienz der Produktion (bei gegebener Produktionsfunktion bzw. gegebenen Technologieniveau) widerspiegeln.

Zusätzlich zu den genannten Problemen wird die Messung des TFP-Wachstums jederzeit durch eine Vielzahl weiterer Messprobleme bzw. Messfehler bei der Erfassung (oder Bewertung) von Änderungen der Produktion (Output) und der eingesetzten Produktionsfaktoren beeinflusst (vgl. Kapitel 3). Sowohl das Ausmaß dieser Probleme als auch die zu ihrer Lösung bzw. Minimierung gewählten Methoden werden sich zwischen verschiedenen Industrien und auch international teilweise erheblich unterscheiden was eine international und sektoral vergleichende Analyse der von Produktivitätsentwicklungen notwendig erschweren muss.

Die Interpretation eines höheren TFP-Wachstums als rascherer technischer Fortschritt hängt entscheidend von der Annahme ab, dass der technische Fortschritt vom
Hicks-neutralen
Typ (d.h. „outputvermehrend“ oder „gleichmäßig faktorvermehrend“) ist. Sie lässt sich nicht ohne weiteres auf allgemeinere oder andere spezielle Formen des technischen Fortschritts übertragen. Dies gilt insbesondere auch für den Fall des Harrod-neutralen oder arbeitsvermehrenden technischen Fortschritts, bei dem der technische Fortschritt nur den Faktor Arbeit direkt produktiver macht (vgl. Abschnitte 2.2 und 2.5). Selbst wenn alle anderen der zuvor gemachten Annahmen erfüllt sind, wäre es im Fall Harrod-neutralen (arbeitsvermehrenden) technischen Fortschritts \(Y_j = f_j ((TL_j), K_j) \) nicht richtig die gemäß Gleichung (4.2.3) berechnete Änderungsrate der TFP als Rate des technischen Fortschritts zu interpretieren. Da der technische Fortschritt in diesem Fall nur den Faktor Arbeit direkt produktiver macht, hängt die Beziehung zwischen der Rate des technischen Fortschritts und der Änderung der TFP in diesem Fall von der Produktionselastizität des Faktors Arbeit ab. Für den Vergleich zweier Sektoren (oder Länder) mit unterschiedlicher Produktionselastizität des Faktors Arbeit gilt dabei: Weisen beide Sektoren die gleiche Rate des Harrod-neutralen technischen Fortschritts auf, so wird der Sektor mit der höheren Produktionselastizität des Faktors Arbeit ceteris paribus das höhere TFP-Wachstum aufweisen. Oder anders ausgedrückt: Bei gleichem TFP-Wachstum ist die Rate des technischen Fortschritts in dem Sektor mit der höheren Produktionselastizität des Faktors Arbeit niedriger.

Fazit

5 Deskriptive Statistik

5.1 Entwicklung der Produktivität auf Länderebene

5.1.1 Arbeitsproduktivität

In Deutschland war das Wachstum der Arbeitsproduktivität im Zeitraum von 1990 bis 2015 in der Tendenz zwar positiv, jedoch schwächten sich die Zuwachsraten in diesem Zeitraum deutlich ab (Abbildung 5.1.1). Wurden Anfang der 90er Jahren – wohl auch aufgrund des Wiedervereinigungsbooms – noch vergleichsweise hohe Raten von deutlich über 2 Prozent verzeichnet, so stieg die Arbeitsproduktivität in den vergangenen Jahren nur noch mit rund 0,6 Prozent. Im Zuge der Finanzkrise brach die Arbeitsproduktivität in Deutschland im Jahr 2009 deutlich ein (-2,6 Prozent). Noch deutlicher sank die Arbeitsproduktivität gemessen auf Basis der Erwerbstätigen (-5,7 Prozent). Dieser Unterschied spiegelt die spürbar gesunkene Arbeitszeit pro Erwerbstätigen in diesem Jahr wider.

Abbildung 5.1.1: Arbeitsproduktivität 1990-2015 (Ländervergleich)

Jahresdaten. Veränderung gegenüber dem Vorjahr in Prozent. Trend basierend auf Hodrick-Prescott Filter mit Glättungsparameter $\lambda=100$.

Quelle: OECD, Productivity Statistics; eigene Berechnungen.

Tabelle 5.1.1:
Korrelationsmatrix Arbeitsproduktivitäts-Veränderung 1991-2014

<table>
<thead>
<tr>
<th></th>
<th>Deutschland</th>
<th>USA</th>
<th>UK</th>
<th>Frankreich</th>
<th>Italien</th>
<th>Spanien</th>
<th>Japan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutschland</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>0.00</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td>0.73</td>
<td>0.38</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frankreich</td>
<td>0.60</td>
<td>0.18</td>
<td>0.60</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italien</td>
<td>0.73</td>
<td>-0.14</td>
<td>0.53</td>
<td>0.57</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spanien</td>
<td>-0.06</td>
<td>-0.15</td>
<td>-0.06</td>
<td>-0.16</td>
<td>0.23</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td>0.58</td>
<td>0.30</td>
<td>0.63</td>
<td>0.41</td>
<td>0.55</td>
<td>-0.06</td>
<td>1</td>
</tr>
</tbody>
</table>

Quelle: OECD, Productivity Statistics; eigene Berechnungen.

5.1.2 Totale Faktorproduktivität

Die TFP wird residual bestimmt, d.h., sie stellt den Teil des Bruttoinlandsprodukts dar, der nicht durch die Produktionsfaktoren Arbeit und Kapital erklärt werden kann (Abschnitt 4.1). Im Folgenden betrachten wir für jedes Land die Veränderung der TFP, wie sie von der OECD sowie von der Europäischen Kommission ausgewiesen wird. Darüber hinaus vergleichen wir den Trend basierend auf der Hodrick-Prescott-gefilterten Veränderungsrate mit der Veränderungsrate der mit dem Kommissionsansatz gefilterten TFP. Es zeigt sich, dass die jeweiligen Unterschiede zumindest im Hinblick auf mittel- und langfristige Entwicklungen vernachlässigbar sind (Abbildung 5.1.2).

Deutschland verzeichnet seit Anfang der 1990er Jahre eine fallende Trendwachstumsrate der TFP. In den 1990er Jahren stieg die TFP noch mit merklich über 1 Prozent, seit der Jahrtausendwende nur noch mit durchschnittlich 0,6 Prozent. Insbesondere in den vergangenen drei Jahren war der durchschnittliche Anstieg mit nur rund 0,4 Prozent auffallend gering. Die Entwicklung der TFP ähnelt stark der Entwicklung der Arbeitsproduktivität: Der Korrelationskoeffizient der beiden Veränderungsraten liegt bei über 0,9 (Tabelle 5.1.2, untere Zeile).
Abbildung 5.1.2:
TFP 1990-2015 (Ländervergleich)

Quelle: OECD, Productivity Statistics; Europäische Kommission, AMECO-Datenbank; eigene Berechnungen.

Tabelle 5.1.2: Korrelationsmatrix TFP-Veränderung 1991-2014

<table>
<thead>
<tr>
<th></th>
<th>Deutschland</th>
<th>USA</th>
<th>UK</th>
<th>Frankreich</th>
<th>Italien</th>
<th>Spanien</th>
<th>Japan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutschland</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>0,06</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td>0,67</td>
<td>0,43</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frankreich</td>
<td>0,64</td>
<td>0,26</td>
<td>0,65</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italien</td>
<td>0,78</td>
<td>0,02</td>
<td>0,55</td>
<td>0,64</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spanien</td>
<td>0,32</td>
<td>0,06</td>
<td>0,18</td>
<td>0,15</td>
<td>0,57</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td>0,57</td>
<td>0,23</td>
<td>0,48</td>
<td>0,30</td>
<td>0,49</td>
<td>0,14</td>
<td>1</td>
</tr>
</tbody>
</table>

Arbeitsproduktivität

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutschland</td>
<td>1,4</td>
<td>1,2</td>
<td>1,0</td>
<td>1,3</td>
</tr>
<tr>
<td>USA</td>
<td>1,7</td>
<td>1,2</td>
<td>1,6</td>
<td>1,2</td>
</tr>
<tr>
<td>UK</td>
<td>1,7</td>
<td>1,6</td>
<td>1,0</td>
<td>1,5</td>
</tr>
<tr>
<td>Frankreich</td>
<td>1,4</td>
<td>1,2</td>
<td>1,0</td>
<td>1,2</td>
</tr>
<tr>
<td>Italien</td>
<td>0,7</td>
<td>1,5</td>
<td>0,0</td>
<td>0,5</td>
</tr>
<tr>
<td>Spanien</td>
<td>1,0</td>
<td>1,1</td>
<td>1,0</td>
<td>0,9</td>
</tr>
<tr>
<td>Japan</td>
<td>1,5</td>
<td>1,2</td>
<td>1,2</td>
<td>1,3</td>
</tr>
<tr>
<td>OECD</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2,2</td>
</tr>
</tbody>
</table>

Tabelle 5.1.3: Arbeitsproduktivität, TFP und Bruttoinlandsprodukt 1991-2014

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mw</td>
<td>Std</td>
</tr>
<tr>
<td>AP TFP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP BIP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deutschland</td>
<td>1,4</td>
<td>1,2</td>
</tr>
<tr>
<td>USA</td>
<td>1,7</td>
<td>1,2</td>
</tr>
<tr>
<td>UK</td>
<td>1,7</td>
<td>1,6</td>
</tr>
<tr>
<td>Frankreich</td>
<td>1,4</td>
<td>1,2</td>
</tr>
<tr>
<td>Italien</td>
<td>0,7</td>
<td>1,5</td>
</tr>
<tr>
<td>Spanien</td>
<td>1,0</td>
<td>1,1</td>
</tr>
<tr>
<td>Japan</td>
<td>1,5</td>
<td>1,2</td>
</tr>
<tr>
<td>OECD</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Veränderung gegenüber dem Vorjahr in Prozent, Mittelwert (Mw) bzw. Standardabweichung (Std) über verschiedene Zeiträume.

Quelle: OECD, Productivity Statistics; eigene Berechnungen.

Spanien und Italien sind die beiden Länder mit der niedrigsten durchschnittlichen TFP-Veränderungsrate im Zeitraum ab Anfang der 90er Jahre; in den Jahren ab 2000 ist diese im Durchschnitt sogar leicht negativ (Tabelle 5.1.3). Die Wachstumsrate des BIPs war in Spanien allerdings in beiden Zeit-
räumen höher als beispielsweise in Deutschland und nur wenig niedriger als der OECD-Durchschnitt. Auffällig ist, dass die TFP-Veränderungsrate die geringste Volatilität unter den hier betrachteten Ländern aufweist (Standardabweichung von 0,7 bzw. 0,4), die Wachstumsrate des BIPs jedoch die höchste Volatilität (Standardabweichung von 2,5 bzw. 2,7). Dies deutet wiederum auf starke Schwankungen insbesondere beim Arbeitsvolumen hin. In allen hier betrachteten Ländern ist nicht nur der Mittelwert, sondern auch die Volatilität der TFP-Veränderungsrate merklich geringer als bei der Wachstumsrate des BIPs.

5.1.3 Kapitalproduktivität

Tabelle 5.1.4: Korrelationsmatrix Kapitalproduktivitäts-Veränderung 1991-2014

<table>
<thead>
<tr>
<th></th>
<th>Deutschland</th>
<th>USA</th>
<th>UK</th>
<th>Frankreich</th>
<th>Italien</th>
<th>Spanien</th>
<th>Japan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutschland</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>0,48</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td>0,58</td>
<td>0,48</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frankreich</td>
<td>0,84</td>
<td>0,58</td>
<td>0,60</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italien</td>
<td>0,86</td>
<td>0,55</td>
<td>0,60</td>
<td>0,85</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spanien</td>
<td>0,48</td>
<td>0,25</td>
<td>0,53</td>
<td>0,69</td>
<td>0,74</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td>0,67</td>
<td>0,42</td>
<td>0,51</td>
<td>0,47</td>
<td>0,46</td>
<td>0,05</td>
<td>1</td>
</tr>
</tbody>
</table>

Quelle: OECD, Productivity Statistics; eigene Berechnungen.
Abbildung 5.1.3:
Kapitalproduktivität: Ländervergleich 1990-2015

Quelle: OECD, Productivity Statistics; eigene Berechnungen.
5.1.4 Wachstumsbeiträge zur Arbeitsproduktivität

48 Eine detailliertere Analyse, insbesondere nach Sektoren, erfolgt im Abschnitt 5.2.
Abbildung 5.1.4:
Wachstumsbeiträge zur Arbeitsproduktivität 1990-2010

Quelle: OECD, Productivity Statistics; eigene Berechnungen.
5.2 Entwicklung der sektoralen Produktivität in Deutschland und anderen OECD-Ländern

5.2.1 Sektorale Arbeits-, Kapital- und totale Faktorproduktivität in Deutschland

5.2.1.1 Produktivitätsentwicklung und -niveaus in zehn Sektoren

49 Statistisches Bundesamt, Fachserie 18, Reihe 1.4.
50 Aggregationsstufe A10 im Europäischen System Volkswirtschaftlicher Gesamtrechnungen (ESVG).
52 Bei den durchschnittlichen jährlichen Wachstumsraten in Tabelle 5.2.1 handelt es sich um logarithmische Wachstumsraten, d.h., die Wachstumsrate einer Variable \(x \) zwischen Zeitpunkten \(t-1 \) und \(t \) wird berechnet als \(\Delta \ln x_t = \ln x_t - \ln x_{t-1} \). Das Gleiche gilt für alle anderen jährlichen Wachstumsraten in diesem Abschnitt. Für Wachstumsraten in der hier vorherrschenden Größenordnung ist der Unterschied zu traditionell berechneten Wachstumsraten \(x_{t+1}^t = (x_{t+1} - x_t)/x_t \) gering. Bei Bedarf lassen sich die entsprechenden Werte der traditionellen Wachstumsraten mittels der Beziehung \(x_{t+1}^t = \exp(\Delta \ln x_t) - 1 \) errechnen.
tret sie den Vergleich mit der einschlägigen Literatur, in der häufig eine entsprechende Periodeneinteilung gewählt wird (vgl. SVR 2015; Eicher und Roehn 2007; Timmer et al. 2010).

Betrachtet man zunächst die Gesamtwirtschaft, also das Aggregat dieser zehn Sektoren, so zeigt sich das aus Abschnitt 5.1 bekannte Bild (siehe auch SVR 2015: 310; Heise et al. 2015)

- Die aggregierte Kapitalproduktivität, gemessen als preisbereinigte Bruttowertschöpfung dividiert durch den preisbereinigten Bruttokapitalstock, sank zwischen 1991 und 2005 um durchschnittlich jährlich knapp 0,9 Prozent, und hat sich danach, trotz Schwankungen, insgesamt nur noch wenig verändert.

Wie aus Abbildung 5.2.1 und Tabelle 5.2.1. unmittelbar ersichtlich, ist die beschriebene aggregierte Produktivitätsentwicklung das Ergebnis sehr unterschiedlicher Entwicklungen in den einzelnen Sektoren (vgl. hierzu grundsätzlich auch Heise et al. 2015; OECD 2001a; SVR 2015).

53 Die gesamtwirtschaftlichen Werte für die reale Bruttowertschöpfung und den realen Kapitalstock (bzw. deren Veränderungsraten) für die Gesamtwirtschaft werden durch Aggregation über die entsprechenden Sektordaten gebildet. Aufgrund der Nichtadditivität verketteter Volumenindizes können die so gebildeten Werte von den vom Statistischen Bundesamt für die Gesamtwirtschaft ausgewiesenen Daten geringfügig abweichen.

54 Während des Beobachtungszeitraums haben sich die Zahl der Erwerbstätigenstunden und die Zahl der geleisteten Arbeitsstunden deutlich unterschiedlich entwickelt. So ist die Zahl der Erwerbstätigen zwischen 1991 und 2015 um ca. 10,4 Prozent gestiegen während die der geleisteten Erwerbstätigenstunden um 2,1 Prozent gesunken ist. Dabei unterscheiden sich die einzelnen Sektoren im Hinblick auf die Unterschiede in der Entwicklung von Erwerbstätigen und Erwerbstätigenstunden teilweise erheblich (vgl. Tabelle 5.2.1). In zahlreichen aber nicht allen Sektoren ist die Zahl der Erwerbstätigen im Beobachtungszeitraum deutlich stärker gestiegen (oder weniger stark zurückgegangen) als die Zahl der Erwerbstätigenstunden. Aufgrund der höheren Aussagekraft und besseren intersektoralen Vergleichbarkeit wird der Wachstum je Arbeitsstunde betrachtet.

55 Dabei scheinen die Unterschiede zwischen den Sektoren spätestens seit 2010 zumindest hinsichtlich Arbeitsproduktivität und TFP insgesamt deutlich abgenommen zu haben; seither stagniert die Produktivitätsentwicklung in einer Mehrzahl der Sektoren mehr oder weniger (hierauf wird im weiteren Verlauf des Abschnitts noch näher eingegangen).
Abbildung 5.2.1: Produktivitätsentwicklung in Deutschland 1991-2015 (10 Sektoren)

Arbeitsproduktivität (Erwerbstätigenstunden)

Kapitalproduktivität (Bruttokapitalstock)
Abbildung 5.2.1 (Fortsetzung)

Indexreihen und jährliche Wachstumsraten (Periodendurchschnitte)

Quelle: Statistisches Bundesamt, Fachserie 18, Reihe 1.4; eigene Berechnungen.

Insgesamt deutlich überdurchschnittlich war die Produktivitätsentwicklung im wichtigen Sektor des Produzierenden Gewerbes (ohne Baugewerbe), der über ein Viertel der gesamtwirtschaftlichen Brutto-wertschöpfung ausmacht. Dies gilt generell sowohl für die Arbeitsproduktivität als auch für die TFP und nach 1995 auch für die Kapitalproduktivität. Allerdings weist das Wachstum der Arbeitsproduktivität auch im Produzierenden Gewerbe einen abnehmenden Trend auf. Insbesondere nach 2010 ist es stark zurückgegangen und liegt seitdem knapp unter der Rate für die Gesamtwirtschaft.

Tabelle 5.2.1:
Entwicklung von Bruttowertschöpfung, Beschäftigung und Produktivität in Deutschland 1991-2015 (10 Sektoren)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alle Wirtschaftssektoren</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bruttowertschöpfung</td>
<td>100,0</td>
<td>1,22</td>
<td>2,04</td>
<td>0,74</td>
<td>1,24</td>
<td>1,42</td>
</tr>
<tr>
<td>Erwerbstätige</td>
<td>-0,54</td>
<td>1,01</td>
<td>-0,30</td>
<td>0,84</td>
<td>1,05</td>
<td>0,96</td>
</tr>
<tr>
<td>Geleistete Arbeitsstunden</td>
<td>-0,96</td>
<td>-0,01</td>
<td>-0,87</td>
<td>0,54</td>
<td>0,36</td>
<td>0,68</td>
</tr>
<tr>
<td>Arbeitsproduktivität (Std)</td>
<td>2,18</td>
<td>2,05</td>
<td>1,61</td>
<td>0,70</td>
<td>1,05</td>
<td>0,77</td>
</tr>
<tr>
<td>Kapitalproduktivität</td>
<td>-1,61</td>
<td>-0,33</td>
<td>-0,83</td>
<td>-0,01</td>
<td>0,28</td>
<td>.</td>
</tr>
<tr>
<td>Totale Faktorproduktivität</td>
<td>0,92</td>
<td>1,28</td>
<td>0,78</td>
<td>0,43</td>
<td>0,78</td>
<td>.</td>
</tr>
<tr>
<td>Acht Wirtschaftssektoren</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bruttowertschöpfung</td>
<td>70,5</td>
<td>0,29</td>
<td>1,89</td>
<td>0,53</td>
<td>1,12</td>
<td>1,65</td>
</tr>
<tr>
<td>Erwerbstätige</td>
<td>-1,14</td>
<td>0,90</td>
<td>-0,57</td>
<td>0,71</td>
<td>1,22</td>
<td>1,01</td>
</tr>
<tr>
<td>Geleistete Arbeitsstunden</td>
<td>-1,39</td>
<td>-0,18</td>
<td>-1,16</td>
<td>0,41</td>
<td>0,49</td>
<td>0,68</td>
</tr>
<tr>
<td>Arbeitsproduktivität (Std)</td>
<td>1,67</td>
<td>2,07</td>
<td>1,68</td>
<td>0,71</td>
<td>1,16</td>
<td>0,98</td>
</tr>
<tr>
<td>Kapitalproduktivität</td>
<td>-2,48</td>
<td>-0,11</td>
<td>-0,53</td>
<td>0,23</td>
<td>1,25</td>
<td>.</td>
</tr>
<tr>
<td>Totale Faktorproduktivität</td>
<td>0,46</td>
<td>1,47</td>
<td>1,04</td>
<td>0,56</td>
<td>1,19</td>
<td>.</td>
</tr>
<tr>
<td>Land- und Forstwirtschaft, Fischerei (A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bruttowertschöpfung</td>
<td>0,6</td>
<td>-10,88</td>
<td>1,20</td>
<td>-1,33</td>
<td>0,72</td>
<td>-0,30</td>
</tr>
<tr>
<td>Erwerbstätige</td>
<td>-7,61</td>
<td>-2,66</td>
<td>-2,53</td>
<td>-0,21</td>
<td>-1,02</td>
<td>-0,80</td>
</tr>
<tr>
<td>Geleistete Arbeitsstunden</td>
<td>-5,65</td>
<td>-4,05</td>
<td>-4,10</td>
<td>-1,09</td>
<td>-2,50</td>
<td>-2,01</td>
</tr>
<tr>
<td>Arbeitsproduktivität (Std)</td>
<td>-5,23</td>
<td>5,25</td>
<td>2,77</td>
<td>1,81</td>
<td>2,20</td>
<td>2,90</td>
</tr>
<tr>
<td>Kapitalproduktivität</td>
<td>-11,47</td>
<td>0,91</td>
<td>-1,27</td>
<td>0,36</td>
<td>-0,45</td>
<td>.</td>
</tr>
<tr>
<td>Totale Faktorproduktivität</td>
<td>-5,23</td>
<td>5,19</td>
<td>2,24</td>
<td>1,42</td>
<td>1,36</td>
<td>.</td>
</tr>
<tr>
<td>Produzierendes Gewerbe o. Baugewerbe (B-E)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bruttowertschöpfung</td>
<td>25,8</td>
<td>-1,83</td>
<td>1,73</td>
<td>1,02</td>
<td>1,41</td>
<td>2,04</td>
</tr>
<tr>
<td>Erwerbstätige</td>
<td>-5,48</td>
<td>-0,80</td>
<td>-1,59</td>
<td>-0,29</td>
<td>1,36</td>
<td>0,95</td>
</tr>
<tr>
<td>Geleistete Arbeitsstunden</td>
<td>-5,05</td>
<td>-1,36</td>
<td>-1,79</td>
<td>-0,79</td>
<td>1,39</td>
<td>1,26</td>
</tr>
<tr>
<td>Arbeitsproduktivität (Std)</td>
<td>3,22</td>
<td>3,09</td>
<td>2,81</td>
<td>2,21</td>
<td>0,65</td>
<td>0,67</td>
</tr>
<tr>
<td>Kapitalproduktivität</td>
<td>-4,15</td>
<td>0,55</td>
<td>0,73</td>
<td>1,49</td>
<td>2,41</td>
<td>.</td>
</tr>
<tr>
<td>Totale Faktorproduktivität</td>
<td>0,91</td>
<td>2,32</td>
<td>2,13</td>
<td>1,94</td>
<td>1,31</td>
<td>.</td>
</tr>
<tr>
<td>Baugewerbe (F)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bruttowertschöpfung</td>
<td>4,7</td>
<td>2,22</td>
<td>-2,68</td>
<td>-4,53</td>
<td>0,62</td>
<td>0,44</td>
</tr>
<tr>
<td>Erwerbstätige</td>
<td>3,49</td>
<td>-2,75</td>
<td>-4,80</td>
<td>0,47</td>
<td>1,36</td>
<td>0,84</td>
</tr>
<tr>
<td>Geleistete Arbeitsstunden</td>
<td>3,22</td>
<td>-3,09</td>
<td>-4,97</td>
<td>1,02</td>
<td>0,24</td>
<td>0,22</td>
</tr>
<tr>
<td>Arbeitsproduktivität (Std)</td>
<td>-1,00</td>
<td>0,40</td>
<td>0,44</td>
<td>-0,40</td>
<td>0,20</td>
<td>0,61</td>
</tr>
<tr>
<td>Kapitalproduktivität</td>
<td>-2,97</td>
<td>-3,66</td>
<td>-1,74</td>
<td>3,07</td>
<td>0,61</td>
<td>.</td>
</tr>
<tr>
<td>Totale Faktorproduktivität</td>
<td>-1,23</td>
<td>0,13</td>
<td>0,42</td>
<td>-0,25</td>
<td>0,24</td>
<td>.</td>
</tr>
<tr>
<td>Handel, Verkehr und Gastgewerbe (G-I)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bruttowertschöpfung</td>
<td>15,5</td>
<td>0,48</td>
<td>1,73</td>
<td>2,51</td>
<td>0,60</td>
<td>1,26</td>
</tr>
<tr>
<td>Erwerbstätige</td>
<td>-0,08</td>
<td>1,31</td>
<td>-0,37</td>
<td>0,57</td>
<td>0,97</td>
<td>0,89</td>
</tr>
<tr>
<td>Geleistete Arbeitsstunden</td>
<td>-0,55</td>
<td>-0,07</td>
<td>-1,06</td>
<td>0,10</td>
<td>-0,20</td>
<td>0,26</td>
</tr>
<tr>
<td>Arbeitsproduktivität (Std)</td>
<td>1,03</td>
<td>1,79</td>
<td>3,57</td>
<td>0,50</td>
<td>1,46</td>
<td>1,07</td>
</tr>
<tr>
<td>Kapitalproduktivität</td>
<td>-3,55</td>
<td>-1,32</td>
<td>0,89</td>
<td>-1,39</td>
<td>-0,16</td>
<td>.</td>
</tr>
<tr>
<td>Totale Faktorproduktivität</td>
<td>0,31</td>
<td>1,32</td>
<td>3,04</td>
<td>0,07</td>
<td>1,10</td>
<td>.</td>
</tr>
</tbody>
</table>
Tabelle 5.2.1 (Fortsetzung)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Information und Kommunikation (J)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bruttowertschöpfung</td>
<td>4,9</td>
<td>5,10</td>
<td>8,66</td>
<td>2,39</td>
<td>5,33</td>
<td>6,78</td>
<td>5,10</td>
</tr>
<tr>
<td>Erwerbstätige</td>
<td>-0,29</td>
<td>2,63</td>
<td>1,22</td>
<td>0,23</td>
<td>1,57</td>
<td>0,79</td>
<td></td>
</tr>
<tr>
<td>Geleistete Arbeitsstunden</td>
<td>-0,19</td>
<td>2,01</td>
<td>1,27</td>
<td>0,50</td>
<td>1,28</td>
<td>1,25</td>
<td></td>
</tr>
<tr>
<td>Arbeitsproduktivität (Std)</td>
<td>5,29</td>
<td>6,66</td>
<td>1,12</td>
<td>4,83</td>
<td>5,50</td>
<td>3,85</td>
<td></td>
</tr>
<tr>
<td>Kapitalproduktivität</td>
<td>0,81</td>
<td>6,96</td>
<td>1,17</td>
<td>4,86</td>
<td>6,38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totale Faktorproduktivität</td>
<td>3,35</td>
<td>6,79</td>
<td>1,14</td>
<td>4,84</td>
<td>5,84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finanz- und Versicherungsdienstleistungen (K)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bruttowertschöpfung</td>
<td>3,9</td>
<td>1,13</td>
<td>0,71</td>
<td>-5,51</td>
<td>-0,49</td>
<td>-0,29</td>
<td>-0,23</td>
</tr>
<tr>
<td>Erwerbstätige</td>
<td>1,08</td>
<td>0,46</td>
<td>-0,44</td>
<td>-0,74</td>
<td>-0,33</td>
<td>-0,30</td>
<td></td>
</tr>
<tr>
<td>Geleistete Arbeitsstunden</td>
<td>-0,18</td>
<td>-0,07</td>
<td>-1,19</td>
<td>-1,15</td>
<td>-0,59</td>
<td>-0,29</td>
<td></td>
</tr>
<tr>
<td>Arbeitsproduktivität (Std)</td>
<td>1,31</td>
<td>0,78</td>
<td>-4,31</td>
<td>0,65</td>
<td>0,31</td>
<td>0,06</td>
<td></td>
</tr>
<tr>
<td>Kapitalproduktivität</td>
<td>-3,09</td>
<td>-2,50</td>
<td>-6,53</td>
<td>-0,48</td>
<td>-1,23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totale Faktorproduktivität</td>
<td>0,03</td>
<td>0,08</td>
<td>-4,87</td>
<td>0,31</td>
<td>-0,08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grundstücks- und Wohnungswesen (L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bruttowertschöpfung</td>
<td>11,2</td>
<td>6,29</td>
<td>3,65</td>
<td>2,35</td>
<td>1,52</td>
<td>0,84</td>
<td>0,98</td>
</tr>
<tr>
<td>Erwerbstätige</td>
<td>6,72</td>
<td>5,65</td>
<td>0,23</td>
<td>0,84</td>
<td>-0,22</td>
<td>0,34</td>
<td></td>
</tr>
<tr>
<td>Geleistete Arbeitsstunden</td>
<td>4,30</td>
<td>3,82</td>
<td>-1,17</td>
<td>0,18</td>
<td>-1,81</td>
<td>-0,32</td>
<td></td>
</tr>
<tr>
<td>Arbeitsproduktivität (Std)</td>
<td>1,99</td>
<td>-0,17</td>
<td>3,52</td>
<td>1,34</td>
<td>2,65</td>
<td>1,30</td>
<td></td>
</tr>
<tr>
<td>Kapitalproduktivität</td>
<td>3,08</td>
<td>0,77</td>
<td>0,33</td>
<td>-0,08</td>
<td>-0,80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totale Faktorproduktivität</td>
<td>3,02</td>
<td>0,71</td>
<td>0,54</td>
<td>0,00</td>
<td>-0,62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unternehmensdienstleister (M-N)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bruttowertschöpfung</td>
<td>11,2</td>
<td>3,42</td>
<td>3,26</td>
<td>0,86</td>
<td>0,70</td>
<td>1,32</td>
<td>1,80</td>
</tr>
<tr>
<td>Erwerbstätige</td>
<td>3,88</td>
<td>6,92</td>
<td>2,58</td>
<td>3,53</td>
<td>2,26</td>
<td>2,20</td>
<td></td>
</tr>
<tr>
<td>Geleistete Arbeitsstunden</td>
<td>3,17</td>
<td>5,32</td>
<td>2,10</td>
<td>3,43</td>
<td>1,49</td>
<td>1,71</td>
<td></td>
</tr>
<tr>
<td>Arbeitsproduktivität (Std)</td>
<td>0,25</td>
<td>-2,06</td>
<td>-1,23</td>
<td>-2,73</td>
<td>-0,17</td>
<td>0,09</td>
<td></td>
</tr>
<tr>
<td>Kapitalproduktivität</td>
<td>1,04</td>
<td>-1,96</td>
<td>-3,51</td>
<td>-2,80</td>
<td>0,24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totale Faktorproduktivität</td>
<td>0,70</td>
<td>-2,01</td>
<td>-2,27</td>
<td>-2,76</td>
<td>-0,03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Öffentl. Dienstleister, Erziehung, Gesundheit (O-Q)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bruttowertschöpfung</td>
<td>18,3</td>
<td>2,45</td>
<td>1,64</td>
<td>0,57</td>
<td>1,53</td>
<td>0,86</td>
<td>0,96</td>
</tr>
<tr>
<td>Erwerbstätige</td>
<td>1,36</td>
<td>1,18</td>
<td>0,56</td>
<td>1,25</td>
<td>0,56</td>
<td>0,81</td>
<td></td>
</tr>
<tr>
<td>Geleistete Arbeitsstunden</td>
<td>0,50</td>
<td>0,43</td>
<td>0,14</td>
<td>0,98</td>
<td>0,04</td>
<td>0,75</td>
<td></td>
</tr>
<tr>
<td>Arbeitsproduktivität (Std)</td>
<td>1,95</td>
<td>1,21</td>
<td>0,44</td>
<td>0,55</td>
<td>0,82</td>
<td>0,21</td>
<td></td>
</tr>
<tr>
<td>Kapitalproduktivität</td>
<td>0,40</td>
<td>-0,21</td>
<td>-0,93</td>
<td>0,14</td>
<td>-0,39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totale Faktorproduktivität</td>
<td>1,72</td>
<td>1,00</td>
<td>0,24</td>
<td>0,49</td>
<td>0,62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sonstige Dienstleister (R-T)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bruttowertschöpfung</td>
<td>4,1</td>
<td>1,84</td>
<td>1,40</td>
<td>-0,23</td>
<td>0,38</td>
<td>-0,53</td>
<td>-0,22</td>
</tr>
<tr>
<td>Erwerbstätige</td>
<td>3,03</td>
<td>2,66</td>
<td>0,75</td>
<td>0,49</td>
<td>0,68</td>
<td>0,57</td>
<td></td>
</tr>
<tr>
<td>Geleistete Arbeitsstunden</td>
<td>0,78</td>
<td>1,69</td>
<td>0,14</td>
<td>0,52</td>
<td>-0,62</td>
<td>-0,37</td>
<td></td>
</tr>
<tr>
<td>Arbeitsproduktivität (Std)</td>
<td>1,06</td>
<td>-0,29</td>
<td>-0,37</td>
<td>-0,14</td>
<td>0,09</td>
<td>0,15</td>
<td></td>
</tr>
<tr>
<td>Kapitalproduktivität</td>
<td>-0,83</td>
<td>-0,76</td>
<td>-2,14</td>
<td>-1,41</td>
<td>-1,40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totale Faktorproduktivität</td>
<td>0,47</td>
<td>-0,43</td>
<td>-0,88</td>
<td>-0,52</td>
<td>-0,33</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Quelle: Statistisches Bundesamt, Fachserie 18, Reihe 1.4; eigene Berechnungen.

Im relativen Maße der Sonstigen Dienstleistungen hat sich die Arbeitsproduktivität insgesamt kaum verändert, während Kapitalproduktivität und TFP seit 1995 in allen Teilperioden gesunken sind.

Im Bereich der Öffentlichen Dienstleistungen handelt es sich bei vielen Anbietern um staatliche Institutionen für deren Output oftmals keine Marktpreise – vielfach nicht einmal administrierte Preise – existieren, so dass die Wertschöpfung in weiten Teilen des Sektors nicht an deren Output, sondern vielmehr an deren Inputs bemessen wird, was eine Messung der tatsächlichen Produktivitätsentwicklung unmöglich macht (vgl. Abschnitt 3.3.5). In anderen Bereichen des Sektors, etwa im Gesundheitswesen, unterliegen die Preise oftmals einer strengen Regulierung, die auch die Outputmengen stark beeinflusst. Die Änderungen in der Produktivitätsentwicklung dürften deshalb oftmals eher Regulierungsä-
derungen (z.B. „Gesundheitsreform“) widerspiegeln als tatsächliche Produktivitätsentwicklungen (Heise et al. 2015). Da die für den öffentlichen Sektor so ermittelte Bruttowertschöpfung in Deutschland fast 20 Prozent (18,3 Prozent in 2015) der gesamten Bruttowertschöpfung ausmacht, besteht die Gefahr, dass die besonderen Messprobleme des Sektors einen u.U. durchaus signifikanten, verzerrenden Einfluss auf die Analyse der gesamtwirtschaftlichen Produktivitätsentwicklung (vor allem auch im nachfolgenden internationalen Vergleich) haben. Es scheint daher sinnvoll, den Sektor von der weiteren Analyse auszuschließen.

Tabelle 5.2.2: Niveaus der Arbeits- und Kapitalproduktivität 2013 (10 Sektoren)

<table>
<thead>
<tr>
<th>Arbeitsproduktivität (€ / geleistete Stunde)</th>
<th>Kapitalproduktivität (€ / eingesetzten €)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alle Wirtschaftssektoren</td>
<td>44,01</td>
</tr>
<tr>
<td></td>
<td>0,16</td>
</tr>
<tr>
<td>Land- und Forstwirtschaft, Fischerei (A)</td>
<td>18,82</td>
</tr>
<tr>
<td></td>
<td>0,06</td>
</tr>
<tr>
<td>Produzierendes Gewerbe ohne Baugewerbe (B-E)</td>
<td>56,58</td>
</tr>
<tr>
<td></td>
<td>0,27</td>
</tr>
<tr>
<td>Verarbeitendes Gewerbe (C)</td>
<td>53,45</td>
</tr>
<tr>
<td></td>
<td>0,38</td>
</tr>
<tr>
<td>Baugewerbe (F)</td>
<td>28,91</td>
</tr>
<tr>
<td></td>
<td>1,21</td>
</tr>
<tr>
<td>Handel, Verkehr und Gastgewerbe (G-I)</td>
<td>30,31</td>
</tr>
<tr>
<td></td>
<td>0,33</td>
</tr>
<tr>
<td>Information und Kommunikation (J)</td>
<td>68,88</td>
</tr>
<tr>
<td></td>
<td>0,51</td>
</tr>
<tr>
<td>Finanz- und Versicherungsdienstleistungen (K)</td>
<td>58,78</td>
</tr>
<tr>
<td></td>
<td>0,39</td>
</tr>
<tr>
<td>Grundstücks- und Wohnungswesen (L)</td>
<td>526,16</td>
</tr>
<tr>
<td></td>
<td>0,04</td>
</tr>
<tr>
<td>Unternehmensdienstleister (M-N)</td>
<td>37,48</td>
</tr>
<tr>
<td></td>
<td>0,38</td>
</tr>
<tr>
<td>Öffentliche Dienstleister, Erziehung, Gesundheit (O-Q)</td>
<td>34,69</td>
</tr>
<tr>
<td></td>
<td>0,18</td>
</tr>
<tr>
<td>Sonstige Dienstleister (R-T)</td>
<td>31,94</td>
</tr>
<tr>
<td></td>
<td>0,26</td>
</tr>
</tbody>
</table>

Quelle: Statistisches Bundesamt, Fachserie 18, Reihe 1.4; eigene Berechnungen.

56 Dies ist insbesondere für international vergleichende Analysen üblich (vgl. OECD 2015a), erscheint aber aus den genannten Gründen auch für die weitere Analyse der Produktivitätsentwicklung in Deutschland in diesem Abschnitt sinnvoll.

5.2.1.2 Sektorbeiträge zum Arbeitsproduktivitätswachstum

57 Eine entsprechende Tabelle für die zehn Sektoren findet sich im Anhang (Tabelle A-5.2.1).
59 Eine nähere Analyse der Auswirkungen sektoraler Reallokationseffekte auf das AP-Wachstum auch im internationalen Vergleich findet sich in Abschnitt 6.1 der Studie.
Tabelle 5.2.3:
Sektorbeträge zum aggregierten Arbeitsproduktivitätswachstum 1991-2013 (8 Sektoren)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Arbeitsproduktivitätswachstum</td>
<td>1,67</td>
<td>2,07</td>
<td>1,68</td>
<td>0,71</td>
<td>1,16</td>
</tr>
<tr>
<td>Gesamtheit der Sektorbeträge</td>
<td>1,74</td>
<td>1,75</td>
<td>1,45</td>
<td>0,85</td>
<td>0,96</td>
</tr>
<tr>
<td>davon: Kapitalintensität</td>
<td>1,22</td>
<td>0,44</td>
<td>0,59</td>
<td>0,24</td>
<td>-0,15</td>
</tr>
<tr>
<td>Totaler Faktorproduktivität</td>
<td>0,52</td>
<td>1,31</td>
<td>0,86</td>
<td>0,61</td>
<td>1,11</td>
</tr>
<tr>
<td>Reallokationsseffekt</td>
<td>-0,07</td>
<td>0,32</td>
<td>0,23</td>
<td>-0,13</td>
<td>0,20</td>
</tr>
<tr>
<td>Land- und Forstwirtschaft, Fischerei (A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anteil an der Bruttowertschöpfung</td>
<td>1,50</td>
<td>1,46</td>
<td>1,27</td>
<td>1,04</td>
<td>1,07</td>
</tr>
<tr>
<td>Sektorbetrag zum Produktivitätswachstum</td>
<td>-0,08</td>
<td>0,08</td>
<td>0,04</td>
<td>0,02</td>
<td>0,02</td>
</tr>
<tr>
<td>davon: Kapitalintensität</td>
<td>0,00</td>
<td>0,00</td>
<td>0,01</td>
<td>0,00</td>
<td>0,01</td>
</tr>
<tr>
<td>Totaler Faktorproduktivität</td>
<td>-0,08</td>
<td>0,08</td>
<td>0,03</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>Sektorbetrag zum Reallokationseffekt</td>
<td>0,16</td>
<td>0,09</td>
<td>0,07</td>
<td>0,02</td>
<td>0,04</td>
</tr>
<tr>
<td>Produzierendes Gewerbe ohne Baugewerbe (B-E)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anteil an der Bruttowertschöpfung</td>
<td>38,54</td>
<td>36,04</td>
<td>35,80</td>
<td>36,17</td>
<td>36,59</td>
</tr>
<tr>
<td>Sektorbetrag zum Produktivitätswachstum</td>
<td>1,24</td>
<td>1,11</td>
<td>1,01</td>
<td>0,80</td>
<td>0,24</td>
</tr>
<tr>
<td>davon: Kapitalintensität</td>
<td>0,89</td>
<td>0,28</td>
<td>0,24</td>
<td>0,10</td>
<td>-0,24</td>
</tr>
<tr>
<td>Totaler Faktorproduktivität</td>
<td>0,35</td>
<td>0,84</td>
<td>0,76</td>
<td>0,70</td>
<td>0,48</td>
</tr>
<tr>
<td>Sektorbetrag zum Reallokationseffekt</td>
<td>-0,32</td>
<td>-0,09</td>
<td>-0,14</td>
<td>-0,08</td>
<td>0,15</td>
</tr>
<tr>
<td>Handel, Verkehr und Gastgewerbe (G-I)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anteil an der Bruttowertschöpfung</td>
<td>8,66</td>
<td>8,28</td>
<td>6,25</td>
<td>5,74</td>
<td>6,20</td>
</tr>
<tr>
<td>Sektorbetrag zum Produktivitätswachstum</td>
<td>-0,09</td>
<td>0,03</td>
<td>0,03</td>
<td>-0,02</td>
<td>0,01</td>
</tr>
<tr>
<td>davon: Kapitalintensität</td>
<td>0,02</td>
<td>0,02</td>
<td>0,00</td>
<td>-0,01</td>
<td>0,00</td>
</tr>
<tr>
<td>Totaler Faktorproduktivität</td>
<td>-0,11</td>
<td>0,01</td>
<td>0,03</td>
<td>-0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>Beitrag zum Reallokationsseffekt</td>
<td>-0,08</td>
<td>0,10</td>
<td>0,17</td>
<td>-0,03</td>
<td>-0,01</td>
</tr>
<tr>
<td>Information und Kommunikation (J)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anteil an der Bruttowertschöpfung</td>
<td>4,99</td>
<td>5,82</td>
<td>6,39</td>
<td>6,37</td>
<td>6,58</td>
</tr>
<tr>
<td>Sektorbetrag zum Produktivitätswachstum</td>
<td>0,26</td>
<td>0,39</td>
<td>0,07</td>
<td>0,31</td>
<td>0,36</td>
</tr>
<tr>
<td>davon: Kapitalintensität</td>
<td>0,10</td>
<td>-0,01</td>
<td>0,00</td>
<td>0,00</td>
<td>-0,02</td>
</tr>
<tr>
<td>Totaler Faktorproduktivität</td>
<td>0,17</td>
<td>0,40</td>
<td>0,07</td>
<td>0,31</td>
<td>0,38</td>
</tr>
<tr>
<td>Sektorbetrag zum Reallokationseffekt</td>
<td>0,00</td>
<td>0,05</td>
<td>0,03</td>
<td>0,01</td>
<td>0,03</td>
</tr>
<tr>
<td>Finanz- und Versicherungsdienstleistungen (K)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anteil an der Bruttowertschöpfung</td>
<td>6,57</td>
<td>6,34</td>
<td>6,76</td>
<td>6,93</td>
<td>6,16</td>
</tr>
<tr>
<td>Sektorbetrag zum Produktivitätswachstum</td>
<td>0,09</td>
<td>0,05</td>
<td>-0,29</td>
<td>0,05</td>
<td>0,02</td>
</tr>
<tr>
<td>davon: Kapitalintensität</td>
<td>0,08</td>
<td>0,04</td>
<td>0,04</td>
<td>0,02</td>
<td>0,02</td>
</tr>
<tr>
<td>Totaler Faktorproduktivität</td>
<td>0,00</td>
<td>0,01</td>
<td>-0,33</td>
<td>0,02</td>
<td>0,00</td>
</tr>
<tr>
<td>Sektorbetrag zum Reallokationseffekt</td>
<td>0,00</td>
<td>0,00</td>
<td>-0,03</td>
<td>-0,03</td>
<td>-0,01</td>
</tr>
<tr>
<td>Unternehmensdienstleister (M-N)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anteil an der Bruttowertschöpfung</td>
<td>12,59</td>
<td>14,10</td>
<td>14,90</td>
<td>14,97</td>
<td>15,22</td>
</tr>
<tr>
<td>Sektorbetrag zum Produktivitätswachstum</td>
<td>0,03</td>
<td>-0,29</td>
<td>-0,18</td>
<td>-0,41</td>
<td>-0,03</td>
</tr>
<tr>
<td>davon: Kapitalintensität</td>
<td>-0,06</td>
<td>-0,01</td>
<td>0,15</td>
<td>0,00</td>
<td>-0,02</td>
</tr>
<tr>
<td>Totaler Faktorproduktivität</td>
<td>0,09</td>
<td>-0,28</td>
<td>-0,34</td>
<td>-0,41</td>
<td>-0,01</td>
</tr>
<tr>
<td>Sektorbetrag zum Reallokationseffekt</td>
<td>0,14</td>
<td>0,19</td>
<td>0,04</td>
<td>-0,01</td>
<td>-0,02</td>
</tr>
<tr>
<td>Sonstige Dienstleister (R-T)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anteil an der Bruttowertschöpfung</td>
<td>5,49</td>
<td>5,85</td>
<td>5,98</td>
<td>5,95</td>
<td>5,83</td>
</tr>
<tr>
<td>Sektorbetrag zum Produktivitätswachstum</td>
<td>0,06</td>
<td>-0,02</td>
<td>-0,02</td>
<td>-0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>davon: Kapitalintensität</td>
<td>0,03</td>
<td>0,01</td>
<td>0,03</td>
<td>0,02</td>
<td>0,02</td>
</tr>
<tr>
<td>Totaler Faktorproduktivität</td>
<td>0,03</td>
<td>-0,02</td>
<td>-0,05</td>
<td>-0,03</td>
<td>-0,02</td>
</tr>
<tr>
<td>Sektorbetrag zum Reallokationseffekt</td>
<td>-0,01</td>
<td>-0,02</td>
<td>0,00</td>
<td>-0,01</td>
<td>0,01</td>
</tr>
</tbody>
</table>

Quelle: Statistisches Bundesamt, Fachserie 18, Reihe 1.4; eigene Berechnungen.
Abbildung 5.2.2:
Sektorbeteiligungen zum Arbeitsproduktivitätswachstum, Harberger-Diagramm 1991-2015 (8 Sektoren)

Kennziffern zu den Diagrammen

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtheit der Sektorbeteiligungen</td>
<td>1,74</td>
<td>1,75</td>
<td>1,45</td>
<td>0,85</td>
<td>0,96</td>
<td>0,83</td>
</tr>
<tr>
<td>Harberger-Fläche (Prozent)</td>
<td>32,90</td>
<td>32,76</td>
<td>42,42</td>
<td>51,77</td>
<td>36,81</td>
<td>26,37</td>
</tr>
<tr>
<td>Anzahl Sektoren mit abnehmender AP</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>deren Anteil an BWS (Prozent)</td>
<td>10,15</td>
<td>19,95</td>
<td>27,64</td>
<td>26,66</td>
<td>15,22</td>
<td>0,00</td>
</tr>
</tbody>
</table>

Zur Erläuterung der Sektorkodes vgl. Anhangtabelle A-5.2.5.

Quelle: Statistisches Bundesamt, Fachserie 18, Reihe 1.4; eigene Berechnungen.
Ein Vergleich der Harberger-Diagramme für das Wachstum der Arbeitsproduktivität in den einzelnen Perioden (Abbildung 5.2.2), erlaubt eine Reihe interessanter Beobachtungen (für detaillierte numerische Ergebnisse vgl. Tabelle 5.2.3):

60 Der Anteil des Sektors an der Bruttowertschöpfung stieg von 5 Prozent in 1991-1995 auf rund 6,6 Prozent in 2010-2013.
mehr als 25 Prozent, ein negatives AP-Wachstum auf, so verzeichnete im Zeitraum 2010-2013 nur noch der Sektor Unternehmensdienstleistungen ein leicht negatives AP-Wachstum, das für den Zeitraum 2010-2015 ebenfalls ins positive schwenkte.

Entwicklung der Beiträge von Kapitalintensität und TFP zum Arbeitsproduktivitätswachstum

Zusätzliche Aufschlüsse über die Quellen der Arbeitsproduktivitätsentwicklung erhält man, wenn man die Wachstumsbeiträge der Sektoren in eine aus der Änderung der sektoralen Kapitalintensität resultierende Komponente (KI-Komponente) und eine aus der Änderung der sektoralen TFP resultierende Komponente (TFP-Komponente) zerlegt (vgl. Abschnitt 4.2). Hierbei zeigen sich deutlich unterschiedliche Entwicklungen dieser beiden Komponenten (vgl. Tabelle 5.2.3).

Besonders stark ging der Wachstumsbeitrag der Kapitalintensität im Produzierenden Gewerbe zurück.61 Während das Produzierende Gewerbe im Zeitraum 1991-1995 noch rund 0,9 Prozentpunkte

61 Auch im Sektor „Handel, Verkehr und Gastgewerbe“ (G-I), dem gemessen an der nominalen Wertschöpfung zweitgrößten Sektor, sowie bei den Finanz- und Versicherungsdienstleistungen ist der Produktivitätsbeitrag aus der Änderung der Kapitalintensität mehr oder weniger kontinuierlich, wenn auch insgesamt deutlich weniger stark, gesunken.
Die Beiträge der einzelnen Sektoren zum aggregierten TFP-Wachstum des Marktsektors und deren zeitliche Entwicklung lassen sich anhand der entsprechenden Harberger-Diagramme zusammenfassend beschreiben und analysieren. Ein Vergleich der Harberger-Diagramme für das TFP-Wachstum der acht Sektoren in den einzelnen Perioden (Abbildung 5.2.3) erlaubt dabei folgende Schlüsse (für numerische Details vgl. Tabelle 5.2.3):

- Zwischen 1995 und 2010 ist die TFP in den Unternehmensdienstleistungen (M-N) mit einer jährlichen Durchschnittsrate zwischen 2 und 2,8 Prozent gefallen. Der Sektor hat die aggregierte TFP-Wachstumsrate der acht Sektoren dadurch in diesem Zeitraum um rund 0,3 bis 0,4 Prozentpunkte gesenkt. Ähnlich groß (-0,33 Prozentpunkte) war im Zeitraum 2000-2005 der negative Beitrag der Finanz- und Versicherungsdiensleister (K).

\(^6\) Im Vergleich der Perioden 2000-2005 und 2010-2013 ist der Beitrag des Rückgangs der Kapitalintensitätseffekt im Produzierenden Gewerbes immer noch fast genauso groß wie der gesamte Rückgang im Wachstum der gesamtwirtschaftlichen Arbeitsproduktivität (-0,48 gegenüber -0,52 Prozentpunkte).

\(^6\) Dass ein einzelner Sektor (deutlich) mehr als einhundert Prozent zum aggregierten TFP-Wachstum aller acht Sektoren beitragen konnte, ist natürlich nur deshalb möglich weil ein oder mehrere andere Sektoren (hier vor allem die Unternehmensdienstleistungen) einen stark negativen Beitrag leisteten.
Abbildung 5.2.3:
Sektorbeiträge zum Wachstum der Totalen Faktorproduktivität, Harberger-Diagramm 1991-2013 (8 Sektoren)

Kennziffern zu den Diagrammen:
<table>
<thead>
<tr>
<th>Zeitraum</th>
<th>Gesamtheit der Sektorbeiträge</th>
<th>Harberger-Fläche (Prozent)</th>
<th>Anzahl Sektoren mit abnehmender TFP</th>
<th>deren Anteil an BWS (Prozent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991-1995</td>
<td>0,52</td>
<td>41,55</td>
<td>2</td>
<td>10,15</td>
</tr>
<tr>
<td>1995-2000</td>
<td>1,31</td>
<td>38,98</td>
<td>2</td>
<td>19,95</td>
</tr>
<tr>
<td>2000-2005</td>
<td>0,86</td>
<td>54,16</td>
<td>3</td>
<td>27,64</td>
</tr>
<tr>
<td>2005-2010</td>
<td>0,61</td>
<td>59,35</td>
<td>3</td>
<td>26,66</td>
</tr>
<tr>
<td>2010-2013</td>
<td>1,11</td>
<td>25,18</td>
<td>3</td>
<td>27,21</td>
</tr>
</tbody>
</table>

Zur Erläuterung der Sektorcodes vgl. Anhangtabelle A-5.2.5.

Quelle: Statistisches Bundesamt, Fachserie 18, Reihe 1.4; eigene Berechnungen.

5.2.1.3 Analyse des Produktivitätswachstums auf der Basis von 31 Branchen

64 Analysiert werden die 38 Sektoren der Aggregationsstufe A38 der ESVG abzüglich der Branchen der beiden zuvor ausgeschlossenen Sektoren sowie der privaten Haushalte und der exterritorialen Organisationen (vgl. Tabelle A-5.2.5 im Anhang). Daten zur Berechnung der Arbeitsproduktivität liegen für die 31 Branchen nur bis 2013 vor. Auf stärker disaggregierter Ebene (Aggregationsstufe A64 der ESVG) stellt das Statistische Bundesamt Daten zum Arbeitsbeinsatz nur in Form von Erwerbstätigenzahlen nicht von Erwerbstätigenstunden bereit.

65 Kleinere Abweichungen zwischen dem Wachstum der Arbeitsproduktivität für die acht Sektoren und für die 31 Branchen können daraus resultieren, dass die Summe der realen Wertschöpfung der acht Sektoren aufgrund der Nichtadditivität verketteter Volumenindizes nicht vollständig mit der Summe der realen Wertschöpfung über die einzelnen Branchen dieser Sektoren übereinstimmen. Hinzu kommt, dass bei der Analyse auf Branchenebene der Bereich der privaten Haushalte aufgrund fehlender Daten ausgeschlossen werden musste.
Tabelle 5.2.4:
Aggregierte Beiträge zum Arbeitsproduktivitätswachstum 1991-2013 (31 Branchen)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>31 Wirtschaftsbranchen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arbeitsproduktivitätswachstum</td>
<td>1,66</td>
<td>2,01</td>
<td>1,88</td>
<td>0,59</td>
<td>1,09</td>
</tr>
<tr>
<td>Gesamtheit der Branchenbeiträge</td>
<td>1,71</td>
<td>1,82</td>
<td>1,47</td>
<td>0,83</td>
<td>0,82</td>
</tr>
<tr>
<td>davon: Kapitalintensität</td>
<td>1,08</td>
<td>0,55</td>
<td>0,59</td>
<td>0,30</td>
<td>-0,12</td>
</tr>
<tr>
<td>Totale Faktorproduktivität</td>
<td>0,64</td>
<td>1,27</td>
<td>0,88</td>
<td>0,53</td>
<td>0,95</td>
</tr>
<tr>
<td>Reallokationseffekt</td>
<td>-0,05</td>
<td>0,19</td>
<td>0,21</td>
<td>-0,25</td>
<td>0,27</td>
</tr>
</tbody>
</table>

Quelle: Statistisches Bundesamt, Fachserie 18, Reihe 1.4; eigene Berechnungen.

Auch die Aufteilung der Produktivitätsentwicklung nach den Ursachen Veränderungen der Kapitalintensität und Veränderungen der TFP zeigt auf der Branchenebene ähnliche Ergebnisse wie auf der Sektorenebene: Auch auf der Branchenebene nahm der positive Wachstumsbeitrag, der von der zunehmenden Kapitalintensität ausging, im Zeitablauf stark ab und war zuletzt sogar negativ. Und auch der Wachstumsbeitrag aufgrund von TFP-Änderungen zeigt für beide Aggregationsebenen eine sehr ähnliche Entwicklung.

Die Wachstumsbeiträge der einzelnen Branchen lassen sich erneut anhand von Harberger-Diagrammen für die Arbeitsproduktivität (Abbildung 5.2.4) und die Totale Faktorproduktivität (Abbildung 5.2.5) zusammenfassend darstellen (für detaillierte numerische Ergebnisse vgl. Tabellen A-5.2.2 und A-5.2.3 im Anhang). Dabei lassen sich für die Entwicklung der Arbeitsproduktivität und die Entwicklung der TFP im Großen und Ganzen recht ähnliche Entwicklungen beobachten:

- Sowohl hinsichtlich der Arbeitsproduktivität als auch hinsichtlich der Totalen Faktorproduktivität wies in allen Perioden ein erheblicher Teil der Branchen negative Produktivitätszuwächse auf. Der Anteil der Branchen mit negativem Produktivitätswachstum lag dabei in den einzelnen Perioden zwischen rund 30 und 40 (Arbeitsproduktivität) bzw. 45 (TFP) Prozent mit einem Bruttowertschöpfungsanteil zwischen rund 25 und 40 bzw. 45 Prozent.

- Der Anteil der Branchen mit negativem Produktivitätswachstum und ihr kumulierter Anteil an der gesamten Bruttowertschöpfung ging nach 2010 stark zurück; im Fall der Arbeitsproduktivität war der auf der Branchenebene beobachtete Rückgang allerdings weniger stark als der auf der Sektorebene beobachtete Rückgang.
Abbildung 5.2.4: Branchenbeiträge zum Arbeitsproduktivitätswachstum, Harberger-Diagramm 1991-2013 (31 Branchen)

Kennziffern zu den Diagrammen

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtheit der Branchenbeiträge</td>
<td>1.71</td>
<td>1.82</td>
<td>1.47</td>
<td>0.83</td>
<td>0.82</td>
</tr>
<tr>
<td>Harberger-Fläche (Prozent)</td>
<td>44.53</td>
<td>43.33</td>
<td>51.01</td>
<td>62.65</td>
<td>57.71</td>
</tr>
<tr>
<td>Anzahl Branchen mit abnehmender AP</td>
<td>10</td>
<td>9</td>
<td>9</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>deren Anteil an BWS (Prozent)</td>
<td>25.27</td>
<td>27.45</td>
<td>24.01</td>
<td>39.32</td>
<td>24.59</td>
</tr>
</tbody>
</table>

Zur Erläuterung der Branchencodes vgl. Anhangtabelle A-5.2.5.

Quelle: Statistisches Bundesamt, Fachserie 18, Reihe 1.4; eigene Berechnungen.

Abbildung 5.2.5:
Branchenbeiträge zum Wachstum der Totalen Faktorproduktivität, Harberger-Diagramm 1991-2013 (31 Branchen)

Kennziffern zu den Diagrammen

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtheit der Branchenbeiträge</td>
<td>0,64</td>
<td>1,27</td>
<td>0,88</td>
<td>0,53</td>
<td>0,95</td>
</tr>
<tr>
<td>Harberger-Fläche (Prozent)</td>
<td>66,47</td>
<td>48,43</td>
<td>62,94</td>
<td>69,65</td>
<td>51,56</td>
</tr>
<tr>
<td>Anzahl Branchen mit abnehmender TFP</td>
<td>13</td>
<td>9</td>
<td>14</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>deren Anteil an BWS (Prozent)</td>
<td>46,16</td>
<td>27,45</td>
<td>39,31</td>
<td>39,32</td>
<td>30,36</td>
</tr>
</tbody>
</table>

Zur Erläuterung der Branchencodes vgl. Anhangtabelle A-5.2.5.

Quelle: Statistisches Bundesamt, Fachserie 18, Reihe 1.4; eigene Berechnungen.

Betrachtet man die für die gesamtwirtschaftliche Produktivitätsentwicklung wichtigsten Sektoren etwas genauer, so fällt auf, dass zwischen den Branchen der einzelnen Sektoren tatsächlich erhebliche Unterschiede in der Produktivitätsentwicklung bestehen (Tabellen A-5.2.2 und A-5.2.3 im Anhang).

Zum Produzierenden Gewerbe (ohne Baugewerbe) gehören nicht weniger als 16 der 31 hier betrachteten Branchen, 13 davon zum Verarbeitenden Gewerbe. Diese unterscheiden sich sowohl mit Blick auf ihre Größe (Anteil der gesamten Bruttowertschöpfung) und deren Entwicklung (intrasektoraler Strukturwandel) als auch mit Blick auf ihre Produktivitätsentwicklung und ihre Beiträge zur gesamtwirtschaftlichen Produktivitätsentwicklung teilweise erheblich voneinander. Das mit Abstand stärkste Produktivitätswachstum innerhalb des Produzierenden Gewerbes wies der Bereich Herstellung von Datenverarbeitungsgeräten, elektronischen und optischen Erzeugnissen (C26) auf. Das durchschnittliche jährliche Produktivitätswachstum lag hier zwischen 1995 und 2010 für die Arbeitsproduktivität zwischen neun und knapp elf Prozent (im 5-Jahresdurchschnitt) und für die TFP zwischen acht und mehr als 9,5 Prozent. In 2010-2013 fielen die Wachstumsraten von Arbeitsproduktivität und TFP auf immer noch sehr hohe 5,6 bzw. 6,5 Prozent. Trotz seiner eher geringen – und fallenden – Größe von zuletzt weniger als 2 Prozent der gesamten Bruttowertschöpfung des Marktsektors trug die Branche somit in allen Perioden seit 1995 sowohl bei der Arbeitsproduktivität als auch bei der TFP zwischen 0,1 und 0,22 Prozentpunkten zum aggregierten Produktivitätswachstum bei und gehörte damit durchgängig zu den Branchen mit den höchsten Produktivitätswachstumsbeiträgen aller 31 Branchen.66

Am anderen Ende der Skala, mit negativer Produktivitätsentwicklung, steht der allerdings sehr kleine Bereich Kokerei und Mineralölvorarbeitung (C19), in dem Arbeitsproduktivität und TFP in einigen Perioden, so auch in 2010-2013, um durchschnittlich jährlich mehr als 20 Prozent zurückgegangen sind. Trotz seiner geringen Größe von nur rund 0,3 Prozent der Bruttowertschöpfung der 31 Branchen, hat der Bereich damit in 2010-2013 den jeweils viertgrößten negativen Beitrag aller 31 Branchen zum aggregierten Wachstum von Arbeitsproduktivität und TFP geleistet.

Insgesamt wiesen in den einzelnen Perioden meist nur wenige Branchen des Produzierenden Gewerbes eine negative Produktivitätsentwicklung auf. Bei der Arbeitsproduktivität traf dies in den ersten drei Perioden auf nur jeweils drei Branchen zu; allerdings stieg die Zahl der Branchen mit negativem AP-Wachstum in der Periode 2005-2010 auf fünf und in 2010-2013 sogar auf sieben der insgesamt 16

66 Eine Zusammenstellung der jeweils fünf Branchen mit den höchsten und den niedrigsten Wachstumsraten und Produktivitätsbeiträgen für Arbeitsproduktivität und TFP findet sich im Anhang (Tabelle A-5.2.4).

Innerhalb des Sektors Information und Kommunikation (J) war es bis 2005 fast ausschließlich die Telekommunikation (J61), die mit zeitweise zweistelligen Produktivitätswachstumsraten für die weit überdurchschnittlichen Produktivitätssteigerungen des Sektors und die gemessen an der geringen Größe
des Sektors außergewöhnlich hohen Beiträge zum Produktivitätswachstums des Marktsektors verantwortlich zeichnete. Seit 2005 weist jedoch mit dem Bereich IT und Informationsdienstleister (J62-J63) eine zweite Branche des Sektors außergewöhnlich hohe Produktivitätssteigerungen und erhebliche Beiträge zum gesamtwirtschaftlichen Produktivitätswachstum auf.\(^{67}\) In 2010-2013 wies der Bereich IT und Informationsdienstleister sogar erstmals sowohl hinsichtlich der Arbeitsproduktivität als auch der TFP höhere Wachstumsraten und höhere Wachstumsbeiträge auf als die Telekommunikation. Die Produktivitätswachstumsbeiträge der Branche waren damit die größten aller 31 Branchen. Angesichts der abnehmenden Größe der Telekommunikation scheinen die hohen Produktivitätsbeiträge des Sektors Information und Kommunikation nur dann aufrechtzuerhalten, wenn die Branche IT und Informationsdienstleister ihr zuletzt sehr hohes Produktivitätswachstum verstetigen kann.\(^{68}\)

Im Bereich der Unternehmensdienstleistungen (M-N) haben sich die verschiedenen Branchen zuletzt sehr unterschiedlich entwickelt. Zwischen 1995 und 2005 wiesen sowohl die Freiberuflichen wissenschaftlichen und technischen Dienstleister (M69-M71 und M73-M75) als auch die Sonstigen Unternehmensdienstleister (N) einen starken Rückgang von Arbeitsproduktivität und TFP auf und leisteten dadurch erhebliche negative Beiträge zum aggregierten Produktivitätswachstum. Nach 2010 verlief die Produktivitätsentwicklung in den einzelnen Branchen des Sektors dagegen deutlich unterschiedlich. Während Arbeitsproduktivität und TFP im Hauptteil der freiberuflichen und technischen Dienstleister (M69-M71) weiter stark gesunken sind (die Branche liefert sowohl für die AP als auch für die TFP den größten negativen Wachstumsbeitrag aller 31 Branchen), sind sie bei den Sonstigen freiberuflichen, wissenschaftlichen und technischen Tätigkeiten (M73-M75) und den Sonstigen Unternehmensdienstleistern (N), zu denen auch die Vermietung beweglicher Sachen und die Vermittlung und Überlassung vor Arbeitskräften gehören, erstmals seit 1995 signifikant angestiegen.\(^{69}\) Dies hat dazu geführt, dass sich die zuvor sehr stark negative Produktivitätsentwicklung des (Gesamt-) Sektors Unternehmensdienstleistungen nach 2010, jedenfalls zunächst, nicht weiter fortgesetzt hat. Ob dies lediglich eine vorübergehende Entwicklung darstellt, oder den Beginn einer längerfristigen Entwicklung beschreibt, ist von potentiell erheblicher Bedeutung für die weite

\(^{67}\) Die dritte Branche innerhalb des Sektors (Verlagswesen, audiovisuelle Medien und Rundfunk, J58-J60) weist hingegen ein eher moderates Produktivitätswachstum auf und leistet überwiegend eher geringe Beiträge zum gesamtwirtschaftlichen Produktivitätswachstum.

\(^{68}\) Während der Anteil der Telekommunikation an der gesamten Wertschöpfung der 31 Branchen seit Beginn des Beobachtungszeitraums um fast ein Drittel auf nur noch rund 1,5 Prozent gesunken ist, hat sich der entsprechende Anteil des Bereichs IT und Informationsdienstleister im gleichen Zeitraum auf rund 3,3 Prozent nahezu verdreifacht.

\(^{69}\) Der Wirtschaftsbereich M69-M71 umfasst die Rechts- und Steuerberatung, Wirtschaftsprüfung, Verwaltung und Führung von Unternehmen, Unternehmensberatung sowie Architektur- und Ingenieurbüros und technische, physikalische und chemische Untersuchungen. Der Bereich M73-M75 umfasst Werbung und Marktforschung, Sonstige freiberufliche, wissenschaftliche und technische Tätigkeiten und das Veterinärwesen. Der separat ausgewiesene Bereich M72 umfasst Forschung und Entwicklung. In diesem Bereich sind Arbeitsproduktivität und TFP zuletzt deutlich zurückgegangen, was aber aufgrund der geringen Größe der Branche einen nur geringen Einfluss auf die Produktivitätsentwicklung im Sektor insgesamt hatte.
fort, könnte der Sektor seine Rolle als lange Zeit größter Bremser der Produktivitätsentwicklung in Deutschland abstreifen.70

Im Rahmen der Analyse der 31 Branchen wird der Sektor \textit{Handel, Verkehr und Gastgewerbe} (G-I) in drei Branchen von allerdings sehr unterschiedlicher Größe unterteilt – den \textit{Handel} (G) mit rund 14 Prozent der aggregierten Wertschöpfung der 31 Branchen71, den \textit{Verkehr inkl. Lagerei} (H) mit rund 6,5 Prozent und das \textit{Gastgewerbe} (I) mit lediglich rund 2 Prozent der aggregierten Wertschöpfung. Die Produktivitätsentwicklung in den drei Branchen verlief dabei recht unterschiedlich. Im Bereich \textit{Verkehr} entwickelten sich Arbeitsproduktivität und TFP in nahezu allen betrachteten Zeitintervallen deutlich überdurchschnittlich.72 Im Gegensatz dazu waren die Wachstumsraten von Arbeitsproduktivität und TFP im \textit{Gastgewerbe} in allen Teilperioden bis 2010 deutlich negativ (in der Periode 2010-2013 jedoch deutlich positiv).73 Aufgrund der relativ geringen Größe der Branche waren die negativen Beiträge der Branche zur gesamtwirtschaftlichen Produktivitätsentwicklung jedoch durchweg nur moderat. In der größten Branche des Sektors, dem \textit{Handel}, verlief die Produktivitätsentwicklung in der Mehrzahl der betrachteten Perioden unterdurchschnittlich. Im Zeitraum 2000-2005 stiegen sowohl die Arbeitsproduktivität als auch die TFP im Handel jedoch deutlich überdurchschnittlich. Aufgrund der hohen Wachstumsraten und der Größe der Branche war der Beitrag des Handels zum aggregierten Produktivitätswachstum in diesem Zeitraum sowohl bei der Arbeitsproduktivität als auch bei TFP der höchste aller 31 Branchen überhaupt.

70 Der Sektor Finanz- und Versicherungsdienstleistungen wird innerhalb der Aggregationsstufe A38 der ESVG nicht weiter untergliedert und das Statistische Bundesamt stellt keine Informationen zu den geleisteten Erwerbstätigenstunden für Teilbereiche des Sektors bereit. Die Entwicklung der realen Bruttowertschöpfung und der Zahl der Erwerbstätigen deutet jedoch darauf hin, dass der für diesen Sektor beobachtete sehr starke Rückgang von Arbeitsproduktivität und TFP zwischen 2000 und 2005 jedenfalls ganz überwiegend auf die Versicherungsdienstleistungen und nur zu einem geringen Teil auf die Finanzdienstleistungen zurückgeht (vgl. auch Abschnitt 3.3.3).

71 Der Handel ist damit an der Wertschöpfung gemessen die mit Abstand größte der 31 Branchen.

72 In 2010-2013 war die Produktivitätsentwicklung weiter positiv aber nur noch unterdurchschnittlich.

73 Negative TFP-Wachstumsraten über einen so langen Zeitraum werfen auch hier Zweifel an der Interpretation der gemessenen TFP-Wachstumsraten als Raten des technischen Fortschritts auf.

5.2.2 Internationaler Vergleich

Aufbauend auf der Analyse des vorangegangenen Abschnitts wird in diesem Abschnitt die sektorale Produktivitätsentwicklung in Deutschland mit den entsprechenden Entwicklungen in anderen ausgewählten Ländern verglichen. Als Vergleichsländer dienen dabei, wie schon in Abschnitt 5.1., die Vereinigten Staaten und das Vereinigte Königreich als Vertreter des anglo-amerikanischen Wirtschaftssystems, die großen kontinentaleuropäischen Länder Frankreich, Italien und Spanien sowie Japan. Im Mittelpunkt steht dabei die Frage, inwieweit die zeitlichen Entwicklungen der aggregierten und sektoralen Arbeitsproduktivitäten in Deutschland seit Anfang der 1990er Jahre, wie sie im vorangegangenen Abschnitt beschrieben wurden, von den entsprechenden Entwicklungen in den Vergleichsländern abweichen und ob diese Abweichungen eher durch Unterschiede in der Entwicklung der Kapitalintensität oder der TFP bestimmt wurden. Wie schon im vorangegangenen Abschnitt beschränkt sich die Analyse auf den Marktsektor der betrachteten Volkswirtschaften. Das Wohnungswesen sowie die überwiegend öffentlichen Dienstleistungen (öffentliche Verwaltung, Erziehung, Gesundheit) bleiben unberücksichtigt, weil die Messung der Produktivität dieser Sektoren besonderen Problemen unterliegt und international teilweise sehr unterschiedlich gehandhabt wird.

5.2.2.1 Entwicklung des Arbeitsproduktivitätswachstums und der Sektorbeiträge im internationalen Vergleich

75 Der Rückgriff auf die Daten des WORLD KLEMS-Konsortiums (http://www.worldklems.net/data.htm; Zugriff am 26. Juni 2016) erfolgt, weil die erforderlichen Daten für die Vereinigten Staaten dort bis einschließlich 2010 und nicht wie bei EU-KLEMS nur bis 2009 (jeweils ISIC Rev.3) verfügbar sind.

Abbildung 5.2.6:
Wachstumsbeiträge zur Arbeitsproduktivität in Deutschland und EU Vergleichsländern gemäß Eurostat 1991-2015

Wachstumsbeiträge von acht Wirtschaftsbereichen des Marktsektors.

Quelle: Eurostat, Jährliche Volkswirtschaftliche Gesamtrechnungen; eigene Berechnungen.

Einschränkungen in der Vergleichbarkeit ergeben sich dabei vor allem daraus, dass der für die Digitalisierung der Wirtschaft wichtige Sektor „Information und Kommunikation“ in der ISIC Rev.3 Klassifikation nicht gesondert ausgewiesen wird. Die diesem Sektor in der neueren Klassifikation ISIC Rev.4 (entsprechend der deutschen WZ 2008 Klassifikation) zugeordneten Dienstleistungsbranchen sind in der ISIC Rev.3 Klassifikation auf verschiedene Dienstleistungssektoren verteilt und damit in den Daten für die Vereinigten Staaten kaum identifizierbar. Um die Vergleichbarkeit der Ergebnisse zwischen den unterschiedlichen WZ-Klassifikationen zu erhöhen, werden die beiden Sektoren Handel, Verkehr und Gastgewerbe und Produzierendes Gewerbe für die Analyse der KLEMS-Daten in jeweils drei Teilsektoren (den Handel, den Verkehr und das Gastgewerbe bzw. den Bergbau, das Verarbeitende Gewerbe und die Energieversorgung und Wasserversorgung/-entsorgung) aufgespalten.

76 Für das Vereinigte Königreich, Frankreich und Spanien reichen die EU KLEMS-Daten ebenfalls nur bis 2009; für Deutschland und Italien bis 2010. Die Daten decken die Effekte der weltweiten Finanz- und Wirtschaftskrise sowie der Eurokrise somit nur unvollständig ab und erlauben keine Aussagen über die Produktivitätsentwicklung nach Überwindung der Krise.

77 Für die Vereinigten Staaten liegen für die ISIC Rev.4 Klassifikation nur lückenhafte, für den Zweck der vorliegenden Analyse unzureichende Daten vor.
Abbildung 5.2.7: Wachstumsbeiträge zur Arbeitsproduktivität in Deutschland und Vergleichsländern gemäß KLEMS 1991-2010

Betrachtet man nun zunächst eben jene Arbeitsproduktivitätsentwicklung des Marktsektors insgesamt (schwarze Linie bzw. Rauten in Abbildungen 5.2.6 und 5.2.7), so fällt auf, dass Deutschland mit der relativen Konstanz des Arbeitsproduktivitätsanstiegs zwischen Anfang der 1990er und Mitte der 2000er Jahre im internationalen Vergleich eine Sonderrolle einnimmt. Der Beitrag eines Sektors zum AP-Wachstum des Marktsektors ergibt sich als Produkt der AP-Wachstumsrate des Sektors und seines Anteils an der Wertschöpfung des gesamten Marktsektors.

Quelle: EU KLEMS; WORLD KLEMS; eigene Berechnungen.

78 Der Beitrag eines Sektors zum AP-Wachstum des Marktsektors ergibt sich als Produkt der AP-Wachstumsrate des Sektors und seines Anteils an der Wertschöpfung des gesamten Marktsektors.

79 Für Deutschland liefern die Datensätze von destatis (Statistisches Bundesamt) und Eurostat wie zu erwarten nahezu identische Ergebnisse hinsichtlich der Entwicklung der Arbeitsproduktivität in den acht betrachteten Sektoren und deren Beiträgen zur Entwicklung der Arbeitsproduktivität im Marktsektor. Die EU KLEMS-Daten

Sektorbeiträge zum Arbeitsproduktivitätswachstum

Vergleicht man nun die Beiträge, die die einzelnen Sektoren zum Wachstum der Arbeitsproduktivität in den verschiedenen Ländern geleistet haben, so zeigen sich sowohl hinsichtlich der relativen Bedeutung der Sektorbeiträge als auch hinsichtlich deren zeitlicher Entwicklung bei aller Heterogenität im Detail sowohl grundlegende Parallelen als auch systematische Unterschiede zwischen Deutschland und den verschiedenen Vergleichsländern.

Wie bereits im Rahmen der Sektoranalyse für Deutschland in Abschnitt 5.2.1. hervorgehoben wurde, leisteten in Deutschland in allen betrachteten Perioden die jeweils gleichen drei Sektoren, das Produ-

85 Hier definiert als Beitrag von mehr als 0,1 Prozentpunkten pro Jahr im Periodendurchschnitt.
86 Die für die Vereinigten Staaten verwendete WZ-Klassifikation ISIC Rev.3 weist den Bereich „Information und Kommunikation“ nicht als eigenständigen Sektor aus.

Die Auswirkungen des sektoralen Strukturwandels auf die Produktivitätsentwicklung werden in Abschnitt 6.1 näher untersucht.

87 Allein in Japan weist das Produzierende Gewerbe einen ähnlich hohen und ähnlich konstanten Wertschöpfungsanteil auf wie in Deutschland.
88 Die Auswirkungen des sektoralen Strukturwandels auf die Produktivitätsentwicklung werden in Abschnitt 6.1 näher untersucht.
90 Angesichts der relativ zu Deutschland deutlich geringeren Wertschöpfungsanteile des Sektors implizieren ähnlich große AP-Wachstumsbeiträge des Produzierenden Gewerbes in der ersten Hälfte der 2000er Jahre, dass die Arbeitsproduktivität in diesem Zeitraum sowohl in Großbritannien als auch in Frankreich deutlich stärker zunahm als in Deutschland. Während die durchschnittliche jährliche Wachstumsrate der Arbeitsproduktivität im Produzierenden Gewerbe in 2000-2005 in Deutschland rund 2,8 Prozent betrug, betrug sie im Vereinigten Königreich im gleichen Zeitraum rund 4,1 Prozent und in Frankreich rund 3,7 Prozent (gemäß Eurostat Daten). In der zweiten Hälfte der 2000er Jahre war das Wachstum der Arbeitsproduktivität im Produzierenden Gewerbe in Deutschland trotz eines Rückgangs auf durchschnittlich nur noch 2,2 Prozent pro Jahr jedoch höher als im Vereinigten Königreich (1,3 Prozent) und in Frankreich (1,6 Prozent).

91 Zwischen 2010 und 2015 lag die durchschnittliche jährliche Wachstumsrate der Arbeitsproduktivität im Produzierenden Gewerbe im Vereinigten Königreich (gemäß Eurostat-Daten) bei -1,2 Prozent, in Deutschland lag sie bei 0,7 Prozent in Frankreich hingegen bei 2,2 Prozent.
95 Neben dem Sektor Handel, Verkehr und Gastgewerbe haben vor allem das Baugewerbe und die Unternehmensdienstleistungen zu diesem Anstieg beigetragen. Tendenziell entgegengewirkt hat diesem Anstieg vor allem die Entwicklung bei den Finanz- und Versicherungsdienstleistungen.

96 Ein Vergleich mit den Vereinigten Staaten ist hier nicht möglich, da in der ISIC Rev.3 Klassifikation kein entsprechender Sektor ausgewiesen wird.
98 Am größten ist der Wertschöpfungsanteil des Sektors mit 8-9 Prozent im Vereinigten Königreich; in Frankreich ist er mit 7-8 Prozent ebenfalls noch etwas höher als in Deutschland. In Italien und Spanien liegt er nur geringfügig (maximal 0,5-1 Prozentpunkt) unter dem Wert in Deutschland. In Japan war er Anfang der 1990er Jahre etwa einen Prozentpunkt niedriger als in Deutschland, stieg dann aber auf ein ähnliches Niveau wie in Deutschland an.
der Zeit vor der Finanzkrise, höher lag als in den europäischen Vergleichsländern mit Ausnahme Spaniens.¹⁰⁰

5.2.2.2 Entwicklung der Beiträge von Kapitalintensität und TFP im internationalen Vergleich

Die Ergebnisse der Zerlegung der Sektorbeiträge zum AP-Wachstum in die beiden Komponenten sind für die KLEMS-Daten für alle Sektoren und Vergleichsländer in den Abbildungen 5.2.8 (KI-Komponente) und 5.2.9 (TFP-Komponente) dargestellt. Die Höhen der korrespondierenden Säulensegmente für die einzelnen Sektoren aus Abbildungen 5.2.8 und 5.2.9 addieren sich mithin zur Höhe der entsprechenden Säulensegmente in Abbildung 5.2.7.

Abbildung 5.2.8: Wachstumsbeiträge der Kapitalintensität zur Arbeitsproduktivität in Deutschland und Vergleichsländern 1991-2010

Beiträge von zwölf Wirtschaftsbereichen gemäß ISIC Rev.4 für europäische Länder und Japan, und von elf Wirtschaftsbereichen gemäß ISIC Rev.3 für die USA. ISIC Rev.4 codes / ISIC Rev.3 codes in Klammern hinter den Bezeichnungen der Wirtschaftsbereiche.

Quelle: EU KLEMS; WORLD KLEMS; eigene Berechnungen.

Abbildung 5.2.9: Wachstumsbeiträge der TFP zur Arbeitsproduktivität in Deutschland und Vergleichsländern 1991-2010

Beiträge von zwölf Wirtschaftsbereichen gemäß ISIC Rev.4 für europäische Länder und Japan, und von elf Wirtschaftsbereichen gemäß ISIC Rev.3 für die USA. ISIC Rev.4 codes / ISIC Rev.3 codes in Klammern hinter den Bezeichnungen der Wirtschaftsbereiche.

Quelle: EU KLEMS; WORLD KLEMS; eigene Berechnungen.
Ergebnisse für Deutschland auf Basis unterschiedlicher Datengrundlagen

101 Gemäß KLEMS-Daten beträgt die KI-Komponente in 2000-2005 0,66 Prozentpunkte und die TFP-Komponente 0,82 Prozentpunkte gegenüber 0,59 und 0,86 Prozentpunkten gemäß Daten des Statistischen Bundesamtes.
102 Dies ist zu erwarten, wenn sich die Zusammensetzung des Kapitalstocks zugunsten relativen produktiverer Kapitalgüter verändert. Dies ist insbesondere dann der Fall, wenn die IKT-Investitionen der Unternehmen in dem betreffenden Zeitraum überproportional zunehmen („Digitalisierung“). Die Bedeutung der „Digitalisierung“ für die Erklärung der unterschiedlichen Produktivitätsentwicklungen in verschiedenen Sektoren und Ländern ist Gegenstand von Abschnitt 6.3 der Studie.
Abbildung 5.2.10:
Wachstumsbeiträge zur Arbeitsproduktivität in Deutschland gemäß Daten des Statistischen Bundesamtes 1991-2013

Wachstumsbeiträge von acht Wirtschaftsbereichen des Marktsektors, und Wachstumsbeiträge von Kapitalintensität und TFP.
Quelle: Statistisches Bundesamt, Fachserie 18, Reihe 1.4; eigene Berechnungen.

Internationaler Vergleich auf Basis der KLEMS-Daten

In den europäischen Vergleichsländern sank die KI-Komponenten zwischen 1991-1995 und 2000-2005 zwar ebenfalls, allerdings war der Rückgang im Vereinigten Königreich, in Frankreich und in Italien...
recht klein und auch in Spanien war er (mit -0,63 Prozentpunkten) kleiner als in Deutschland. Zugleich sank jedoch in allen europäischen Vergleichsländern die TFP-Komponente deutlich, während sie in Deutschland (und Japan) zeitgleich deutlich anstieg. Dabei war die TFP-Komponente Anfang der 1990er Jahre in allen europäischen Vergleichsländern allerdings zunächst noch deutlich größer als in Deutschland (in Japan war sie in dieser Zeit sogar leicht negativ). Im Vereinigten Königreich war sie trotz eines deutlichen Rückgangs auch in 2000-2005 immer noch größer als in Deutschland.

Die Beiträge, die die Veränderung der Kapitalintensität und das TFP-Wachstum der einzelnen Sektoren in den verschiedenen Perioden und Ländern zum Wachstum der Arbeitsproduktivität im Marktsektor geleistet haben, sind in Abbildungen 5.2.8 (KI-Komponente) und 5.2.9 (TFP-Komponente) in Form der farbigen Säulensegmente dargestellt. Wie Abbildung 5.2.8 zeigt, bestätigen die KLEMS-Daten die in Abschnitt 5.2.1 für die Daten des Statistischen Bundesamtes bereits beschriebene Beobachtung, dass die KI-Komponente im Untersuchungszeitraum in Deutschland bis Mitte der 2000er Jahre von nur wenigen Wirtschaftsbereichen dominiert wird: dem Produzierenden Gewerbe (hier insbesondere dem Verarbeitenden Gewerbe), dem Handel und dem Verkehr, den Unternehmensdienstleistungen sowie Anfang der 1990er Jahre auch der Sektor Information und Kommunikation. Dabei trugen alle genannten Wirtschaftsbereiche auch zum Rückgang der KI-Komponente im Zeitverlauf bei.

104 In Frankreich und Spanien betrug der Rückgang jeweils rund -0,9 Prozentpunkte, im Vereinigten Königreich betrug er -1,2 Prozentpunkte und in Italien sogar -2,9 Prozentpunkten.

Der nachfolgende internationale Vergleich der Sektorbeiträge konzentriert sich weitgehend auf die zuvor genannten Wirtschaftsbereiche, die für die Höhe und die zeitliche Entwicklung der beiden Komponenten des AP-Wachstums in Deutschland von Bedeutung waren. In den Vergleichsländern spielten darüber hinaus teilweise auch andere Sektoren wie das Baugewerbe (vor allem in Spanien, Japan, den Vereinigten Staaten und dem Vereinigten Königreich), das Gastgewerbe (Spanien), der Bergbau inklusive Gewinnung von Erdöl und Erdgas (Vereinigtes Königreich) oder die Landwirtschaft (Frankreich, Italien, Spanien) eine nicht unerhebliche Rolle. Auf sie wird im Folgenden nicht systematisch eingegangen.

Hinsichtlich der TFP-Komponente leistete das Produzierende Gewerbe in Deutschland in allen drei Perioden den größten Beitrag aller Sektoren. Im Periodendurchschnitt stieg dieser zwischen 1991-
1995 (+0,48 Prozentpunkte) und 2000-2005 (+0,81 Prozentpunkte) deutlich an. Allein in Japan stieg der Beitrag des Produzierenden Gewerbes zur TFP-Komponente noch deutlich stärker an als in Deutschland. In den anderen Vergleichsländern änderte er sich im Zeitverlauf entweder nur wenig (Spanien, Vereinigte Staaten) oder ging deutlich zurück (Vereinigtes Königreich106, Italien, Frankreich). Allerdings ging in den meisten dieser Länder auch der Wertschöpfungsanteil des Produzierenden bzw. des Verarbeitenden Gewerbes anders als in Deutschland deutlich zurück. Tatsächlich stieg die TFP-Wachstumsrate im Verarbeitenden Gewerbe im Vereinigten Königreich zwischen der ersten Hälfte der 1990er Jahre und der ersten Hälfte der 2000 Jahre ebenso stark an wie in Deutschland und das sogar auf deutlich höherem Niveau (Vereinigtes Königreich von +2,5 auf +3,6 Prozent, Deutschland von +1,4 auf +2,5 Prozent).

Der Beitrag der Unternehmensdienstleistungen zur TFP-Komponente war außer in Deutschland auch in Frankreich bis Mitte der 2000er Jahre (im Periodendurchschnitt) durchgehend signifikant negativ. Für die meisten anderen Vergleichsländer gilt dies zumindest phasenweise. Allerdings waren die negativen Beiträge dort ebenso wie in Frankreich (betragmäßig) durchweg kleiner – zumeist sehr viel kleiner als in Deutschland (wo er in der zweiten Hälfte der 1990er Jahre mit -0,61 Prozentpunkten sein „Maximum“ erreichte). Dies gilt auch für die Vereinigten Staaten, wo der TFP-Beitrag des Sektors in den 1990er Jahren ebenfalls negativ war, die TFP des Sektors ging in diesem Zeitraum also auch hier zurück. In der ersten Hälfte der 2000er war der Beitrag dort jedoch ebenso wie in Japan deutlich posi-
tiv. Allein im Vereinigten Königreich leistete der Sektor im gesamten hier betrachteten Zeitraum durchwegs signifikante positive Beiträge zur TFP-Komponente.

5.2.2.3 Branchenbeiträge zum Produktivitätswachstum

Beim Versuch, die Produktivitätsentwicklung in Deutschland und den Vergleichsländern noch detaillierter auf einzelne Wirtschaftsbranchen zurückzuführen, geht es im Folgenden um die Ungleichheit der Produktivitätsentwicklung in den verschiedenen Ländern über diese Branchen hinweg und um die Frage, ob sich unter den Branchen klare Wachstumsträger und Wachstumsbremser ausmachen lassen.

Einen Eindruck von der Leistung der Branchen zum aggregierten Wachstum der Arbeitsproduktivität kann man aus Harberger-Diagrammen und den zugehörigen Kennziffern gewinnen (Abbildung 5.2.11; zur Technik der Harberger-Diagramme vgl. Abschnitt 5.2.1).

¹¹⁰ Insbesondere für die Vereinigten Staaten zeichnet sich hier möglicherweise bereits der Beginn der Finanzkrise ab.
Abbildung 5.2.11:

D Kennziffern zu den Diagrammen UK
1,75 1,85 1,54 Gesamtheit der Branchenbeiträge 4,19 3,35 2,75
43,86 40,54 47,77 Harberger-Fläche (Prozent) 23,74 23,17 21,25
7 6 9 Anzahl Branchen mit abnehmender AP 1 2 4
18,69 26,99 33,46 Anteil an BWS (Prozent) 1,42 3,70 11,85

F Kennziffern zu den Diagrammen USA
2,39 2,53 1,41 Gesamtheit der Branchenbeiträge 2,02 3,71 3,09
25,91 27,30 36,65 Harberger-Fläche (Prozent) 35,43 34,99 28,88
4 3 4 Anzahl Branchen mit abnehmender AP 3 3 4
7,20 18,52 29,41 Deren Anteil an BWS (Prozent) 12,57 10,19 17,40
Abbildung 5.2.11 (Fortsetzung)

Kennziffern zu den Diagrammen

Italien

Gesamtheit der Branchenbeiträge
2,97 1,08 -0,03

Harberger-Fläche (Prozent)
28,01 48,66 96,61

Anzahl Branchen mit abnehmender AP
3 4 12

Deren Anteil an BWS (Prozent)
11,83 23,32 41,78

Spanien

Gesamtheit der Branchenbeiträge
2,03 0,23 0,57

Harberger-Fläche (Prozent)
28,96 84,14 76,51

Anzahl Branchen mit abnehmender AP
6 11 9

Deren Anteil an BWS (Prozent)
21,54 44,59 50,22

Japan

Gesamtheit der Branchenbeiträge
1,09 2,07 2,94

Harberger-Fläche (Prozent)
62,64 33,44 31,16

Anzahl Branchen mit abnehmender AP
10 5 5

Deren Anteil an BWS (Prozent)
32,77 23,72 11,85

ISIC Rev.4 für europäische Länder und Japan, ISIC Rev.3 für USA. Ohne Wohnungswesen und Öffentliche Dienstleistungen.

Quelle: EU KLEMS; WORLD KLEMS; eigene Berechnungen.

Im Vereinigten Königreich trugen dagegen nahezu alle Branchen in bemerkenswert einheitlicher Weise positiv zum hohen Produktivitätswachstum bei (Abbildung 5.2.11). Stärkste Wachstumsträger unter den Branchen, waren, ähnlich wie in Deutschland und mit nur geringfügig höheren Wachstumsraten, IKT-produzierende Wirtschaftszweige und die Chemische Industrie; das starke Produktivitätswachstum im Vereinigten Königreich stützte sich aber zusätzlich auf Beiträge von den Finanz- und Unternehmensdienstleistungen (vgl. Abschnitt 5.2.2.1) und wurde eben kaum durch starke Wachstumsbremsen beeinträchtigt. Der Rückgang des Produktivitätswachstums über die drei Perioden ging, wie oben geschildert, in erster Linie auf Wachstumseinbrüche im Bergbau (genauer: bei der Erdöl- und Erdgasgewinnung) zurück, und verteilte sich ansonsten relativ gleichmäßig über alle Branchen, auch wenn sich die Zahl und die Größe der negativen Beiträge geringfügig erhöht haben.

Die Produktivitätsentwicklung wurde also in manchen der untersuchten Länder und in manchen Perioden auf breiter Front von allen Branchen relativ gleichmäßig getragen, insbesondere im Fall der Arbeitsproduktivität, während sich in anderen Ländern und Perioden die Branchen in Wachstumsträger und Wachstumsbremser aufspalteten, besonders ausgeprägt im Fall der TFP. Eine gewisse Tendenz geht dahin, dass die Produktivität immer dann am stärksten wuchs, wenn möglichst alle Branchen positive Beiträge dazu lieferten – die Vorstellung, einige herausragende Wachstumsträger könnten das gesamte Produktivitätswachstum mit sich ziehen, egal ob sich daneben einige Verlierer-Branchen einstellen, wird insofern nicht bestätigt. Welche Branchen als Wachstumsträger fungierten, varierte ohnehin stark, nicht nur zwischen den verschiedenen Ländern, sondern auch zwischen verschiedenen Zeitperioden. Immerhin erwiesen sich des Öfteren IKT-produzierende Branchen als Wachstumsträger, die eine besondere Rolle für die gesamte Produktivitätsentwicklung spielen könnten, weil sie ein investives Element für die gesamte Wirtschaft darstellen. Wie diese Wirtschaftszweige vor allem die US-amerikanische Wirtschaft verändert haben und warum sie in den europäischen Ländern nicht in gleicher Weise gewirkt haben, obwohl sie auch hier oft Wachstumsträger waren, wird im Abschnitt 6.3. näher untersucht.
Abbildung 5.2.12:

Kumulierte Bruttowertschöpfungsanteile

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutschland</td>
<td>0,22</td>
<td>0,76</td>
<td>0,83</td>
</tr>
<tr>
<td>Gesamtheit der Branchenbeiträge</td>
<td>2,67</td>
<td>1,71</td>
<td>1,37</td>
</tr>
<tr>
<td>Vereinigtes Königreich</td>
<td>1,66</td>
<td>1,74</td>
<td>0,74</td>
</tr>
<tr>
<td>Harberger-Fläche (Prozent)</td>
<td>37,65</td>
<td>35,40</td>
<td>58,70</td>
</tr>
<tr>
<td>Anzahl Branchen mit abnehmender TFP</td>
<td>11</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>Der Anteil an BWS (Prozent)</td>
<td>3,65</td>
<td>23,61</td>
<td>21,07</td>
</tr>
<tr>
<td>Frankreich</td>
<td>1,66</td>
<td>1,74</td>
<td>0,74</td>
</tr>
<tr>
<td>Gesamtheit der Branchenbeiträge</td>
<td>0,91</td>
<td>1,82</td>
<td>1,59</td>
</tr>
<tr>
<td>USA</td>
<td>37,65</td>
<td>35,40</td>
<td>58,70</td>
</tr>
<tr>
<td>Harberger-Fläche (Prozent)</td>
<td>56,72</td>
<td>52,45</td>
<td>44,71</td>
</tr>
<tr>
<td>Anzahl Branchen mit abnehmender AP</td>
<td>6</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>Anteil an BWS (Prozent)</td>
<td>32,54</td>
<td>29,96</td>
<td>22,38</td>
</tr>
</tbody>
</table>
Abbildung 5.2.12 (Fortsetzung)

Kumulierte Bruttowertschöpfungsanteile

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtheit der Branchenbeiträge</td>
<td>2,03</td>
<td>0,18</td>
<td>-0,86</td>
</tr>
<tr>
<td>Harberger-Fläche (Prozent)</td>
<td>35,86</td>
<td>82,89</td>
<td>46,26</td>
</tr>
<tr>
<td>Anzahl Branchen mit abnehmender TFP</td>
<td>5</td>
<td>10</td>
<td>17</td>
</tr>
<tr>
<td>Deren Anteil an BWS (Prozent)</td>
<td>24,73</td>
<td>52,54</td>
<td>68,27</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtheit der Branchenbeiträge</td>
<td>-0,68</td>
<td>0,70</td>
<td>1,86</td>
</tr>
<tr>
<td>Harberger-Fläche (Prozent)</td>
<td>73,24</td>
<td>59,45</td>
<td>38,13</td>
</tr>
<tr>
<td>Anzahl Branchen mit abnehmender AP</td>
<td>17</td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>Deren Anteil an BWS (Prozent)</td>
<td>60,54</td>
<td>45,29</td>
<td>18,10</td>
</tr>
</tbody>
</table>

ISIC Rev.4 für europäische Länder und Japan, ISIC Rev.3 für USA. Ohne Wohnungswesen und Öffentliche Dienstleistungen.

Quelle: EU KLEMS; WORLD KLEMS; eigene Berechnungen.
5.3 Zusammenfassung

Abschließend sollen die wichtigsten stilisierten Fakten aus den Abschnitten 5.1 und 5.2 kurz zusammengefasst werden:

- Die Wachstumsrate der Arbeitsproduktivität in Deutschland ist in der Tendenz in den letzten 25 Jahren gesunken. Im „Vorkrisenzeitraum“ (Anfang der 90er Jahre bis zum Beginn der Krise) fiel die Rate allerdings nur leicht, maßgeblich für diese Tendenz war also vor allem die schwache Dynamik nach der Krise (insbesondere in den Jahren ab 2012).

- Die leicht fallende Wachstumsrate der Arbeitsproduktivität im Vorkrisenzeitraum ist größtenteils auf zwei Sektoren zurückzuführen: Grundstücks- und Wohnungswesen sowie Öffentliche Dienstleister, die im Zuge des Wiedervereinigungsbooms besonders stark zum Produktivitätswachstum beigetragen haben. In diesen Sektoren ist die Messung der Produktivität allerdings besonders problematisch und daher wenig verlässlich. Rechnet man diese beiden Sektoren heraus (d.h., man betrachtet nur den aus acht Sektoren bestehenden Marktsektor der deutschen Volkswirtschaft), so weist die Arbeitsproduktivität in diesem Zeitraum eine mehr oder weniger konstante Zuwachsrate auf.

- Die Entwicklung der Arbeitsproduktivität in Deutschland ist mit der in Vergleichsländern, abgesehen von den Vereinigten Staaten und Spanien, relativ stark korreliert. Im Vorkrisenzeitraum war die Wachstumsrate der Arbeitsproduktivität im Vergleich zu den anderen kontinentaleuropäischen Volkswirtschaften (insbesondere Italien) allerdings höher.

- Zerlegt man die Veränderung der Arbeitsproduktivität in eine aus der Veränderung der TFP und eine aus der Veränderung der Kapitalintensität resultierende Komponente, so zeigt sich, dass im Vorkrisenzeitraum in Deutschland der Beitrag der Kapitalintensität rückläufig war, der der TFP hingegen relativ stabil. Betrachtet man nur den Marktsektor, so stieg der Beitrag der TFP in diesem Zeitraum sogar an. (Generell hängt die Entwicklung der TFP vor allem auf Sektorebene aber stark von den verwendeten Kapitaldaten ab.)

- Nach den Krisenjahren nimmt der Wachstumsbeitrag der Kapitalintensität in Deutschland weiter ab (und ist am aktuellen Rand sogar negativ); in den vergangenen paar Jahren stellt sich auch der Wachstumsbeitrag der TFP spürbar geringer dar.

- Im Vorkrisenzeitraum wurde die Dynamik der Produktivität in Deutschland durch Entwicklungen in den Sektoren „Produzierendes Gewerbe“, „Handel, Verkehr und Gastgewerbe“ so-

- Sektorübergreifend sind die IKT-produzierenden Wirtschaftsbereiche (Herstellung von Datenverarbeitungsgeräten, elektronischen und optischen Erzeugnissen, Telekommunikation und IT und Informationsdienstleistungen) die drei Branchen mit den höchsten Produktivitätswachstumsraten. Diese drei Branchen, die zusammen weniger als sieben Prozent der Wertschöpfung des Marktsektors ausmachen, waren im Vorkrisenzeitraum für rund ein Drittel, nach der Krise (2010-2013) sogar für rund die Hälfte des Wachstums von Arbeitsproduktivität und TFP des Marktsektors verantwortlich.

- In keinem der Vergleichsländer sind die positiven Beiträge zum Arbeitsproduktivitätswachstum so eindeutig auf nur drei Sektoren konzentriert wie in Deutschland. Zwar leisteten die drei auch in den Vergleichsländern in den meisten Perioden substantielle positive Beiträge zum Wachstum der Arbeitsproduktivität, allerdings gilt dies dort zumindest in einzelnen Perioden auch für weitere Sektoren.

- Wie in Deutschland leistete das Produzierende Gewerbe vor der Finanzkrise auch in den meisten Vergleichsländern den größten Sektorbeitrag zum Wachstum der Arbeitsproduktivität. In der ersten Hälfte der 2000er Jahre war der Sektorbeitrag dabei in Frankreich, im Vereinigten
Königreich und den Vereinigten Staaten ähnlich hoch wie in Deutschland. Angesichts des in diesen Ländern im Vergleich zu Deutschland deutlich kleineren und stark rückläufigen Wertschöpfungsanteils des Sektors war dies nur möglich, weil die Arbeitsproduktivität im Produzierenden Gewerbe in diesen Ländern in diesem Zeitraum stärker gestiegen ist als in Deutschland. Nach der Finanzkrise war der Beitrag des Sektors sowohl in Deutschland als auch in Frankreich und dem Vereinigten Königreich sehr viel niedriger als vor der Krise. Im Vereinigten Königreich war es zuletzt sogar negativ.

6 Ökonomische Erklärungsansätze

6.1 Sektoraler Strukturwandel

6.1.1 Motivation und Methodik

Eine mögliche Ursache für die in Deutschland und den meisten Vergleichsländern beobachtete Verlangsamung der gesamtwirtschaftlichen Produktivitätsentwicklung ist eine strukturelle Verschiebung der Beschäftigung weg von hochproduktiven Wirtschaftsbereichen wie dem Produzierenden bzw. dem Verarbeitenden Gewerbe hin zu Wirtschaftsbereichen mit geringerer Produktivität bzw. geringerem Produktivitätswachstum, zu denen insbesondere verschiedene Dienstleistungsbereiche zu zählen sind (SVR 2015; IMF 2015).

In diesem Abschnitt soll untersucht werden, ob und ggf. in welchem Ausmaß der sektorale Strukturwandel in Form der Reallokation des Arbeitseinsatzes (geleistete Arbeitsstunden) zwischen den Sektoren die Wachstumsrate der gesamtwirtschaftlichen Arbeitsproduktivität und deren Entwicklung über die Zeit in Deutschland sowie in den europäischen Vergleichsländern beeinflusst hat.

Zu diesem Zweck wird das Arbeitsproduktivitätswachstum (auf Stundenbasis) des Marktsektors (bzw. der Gesamtwirtschaft) mit Hilfe eines Shift-Share-Ansatzes in verschiedene Komponenten zerlegt. Die erste Komponente entspricht dabei dem Wachstumsbeitrag, der sich aus dem Arbeitsproduktivitätswachstum innerhalb der einzelnen Sektoren ergibt; die zweite entspricht dem Wachstumsbeitrag, der sich aus der Reallokation des Arbeitseinsatzes zwischen den Sektoren ergibt (Reallokationseffekt). Dieser lässt sich dann noch weiter in zwei Teilkomponenten aufspalten, von denen die eine die Reallokationseffekte erfasst, die sich aus Unterschieden in den Niveaus der Arbeitsproduktivität zwischen den Sektoren ergeben, während die andere die Reallokationseffekte erfasst, die sich aus Unterschieden in den sektoralen AP-Wachstumsraten ergeben.\[112\]

Ausgangspunkt der Analyse ist die Beziehung

\[
AP_t = \sum h_{jt} AP_{jt},
\]

gemäß der sich die aggregierte (reale) Arbeitsproduktivität \(AP\) zum Zeitpunkt \(t\) als gewichtete Summe der (realen) Arbeitsproduktivitäten \(AP_{jt}\) der einzelnen Sektoren ergibt, wobei die Gewichte \(h_{jt} = H_{jt}/H_t\) den Anteilen der in den einzelnen Sektoren eingesetzten Arbeitsstunden \(H_{jt}\) an den insgesamt eingesetzten Arbeitsstunden \(H_t\) entsprechen.\[114\]

Für die Änderung der aggregierten Arbeitsproduktivität \(AP\) zwischen zwei beliebigen Zeitpunkten \(t=0\) und \(t=1\) gilt demnach\[115\]:

\[\text{112 Der in diesem Abschnitt mittels Shift-Share Ansatz ermittelte Reallokationseffekt ist nicht identisch mit dem in Kapitel 5.2 ausgewiesenen Reallokationseffekt. Der Vorteil des hier verwendeten Ansatzes liegt vor allem in der besseren Interpretierbarkeit der Ergebnisse. In den zentralen Punkten der folgenden Analyse stimmen die Ergebnisse beider Ansätze qualitativ weitgehend überein.}

\[\text{114 Die aggregierte reale Bruttowertschöpfung } Z_t \text{ wird hierbei als einfache Summe der realen Bruttowertschöpfung der einzelnen Sektoren } Z_{jt} \text{ berechnet (} Z_t = \sum Z_{jt} \text{). Aufgrund der Nichtadditivität verketteter Volumenindizes ergeben sich hierbei in der Regel geringfügige Abweichungen der so berechneten aggregierten reallen Bruttowertschöpfung von den in den öffentlichen Statistiken ausgewiesenen Werten für die reale Bruttowertschöpfung der entsprechenden Aggregate.}

\[\text{115 Da sich die Sektoranteile } h_{jt} \text{ stets zu 1 addieren, gilt } \sum (h_{jt} - h_{jt})AP_t = 0 \cdot \text{Die entsprechende Erweiterung des zweiten Terms auf der rechten Seite von Gleichung (6.1.2) dient der leichteren Interpretation des Terms.}\]
\[AP_1 - AP_0 = \sum_j h_{j,0}(AP_{j,1} - AP_{j,0}) + \sum_j (h_{j,1} - h_{j,0})(AP_{j,1} - AP_{j,0}) + \sum_j (h_{j,1} - h_{j,0})(AP_{j,1} - AP_{j,0}) - (AP_{1} - AP_{0}). \]

(6.1.2)

Entsprechend gilt für die Wachstumsrate der Arbeitsproduktivität:

\[\frac{AP_1 - AP_0}{AP_0} = \sum_j h_{j,0}(AP_{j,1} - AP_{j,0}) + \sum_j (h_{j,1} - h_{j,0})(AP_{j,1} - AP_{j,0}) + \sum_j (h_{j,1} - h_{j,0})(AP_{j,1} - AP_{j,0}) - \frac{(AP_{1} - AP_{0})}{AP_{0}}. \]

(6.1.3)

Die Änderung der aggregierten Arbeitsproduktivität (Stundenkonzept) lässt sich somit in zwei Komponenten zerlegen, von denen die erste den Effekt der Produktivitätssteigerungen innerhalb der einzelnen Sektoren und die zweite den Effekt der Reallokation der gesamten Arbeitsstunden zwischen den Sektoren erfasst. Der erste der beiden Effekte wird im Folgenden als Intrasektoraler Effekt (ISE), der zweite als Sektoraler Reallokationseffekt (SRE) bezeichnet.

Der Intrasektorale Effekt entspricht der gewichteten Summe des Arbeitsproduktivitätswachstums in den einzelnen Sektoren, wobei die Gewichte den Anteilen der Sektoren an den insgesamt geleisteten Arbeitsstunden in der Ausgangsperiode entsprechen. Der Sektorale Reallokationseffekt entspricht der Summe der Produkte aus der Änderung der Sektoranteile an den eingesetzten Arbeitsstunden und den Arbeitsproduktivitätsniveaus der jeweiligen Sektoren (relativ zur aggregierten Produktivität) zum Ende der betrachteten Zeitperiode. Er ist positiv (negativ), wenn sich der Arbeitskräfteeinsatz im betrachteten Zeitraum tendenziell von Sektoren mit relativ niedriger (hoher) in solche mit relativ hoher (niedriger) Arbeitsproduktivität (in \(t=1 \)) verschoben hat.\(^{116}\)

Stellt man die sektoralen und aggregierten Arbeitsproduktivitäten zum Zeitpunkt \(t=1 \) im zweiten Summanden auf der rechten Seite von Gleichung (6.1.2) bzw. (6.1.3) als Summe der jeweiligen Arbeitsproduktivitätszunahmen zwischen den beiden Zeitpunkten dar \((AP_{j,1} = AP_{j,0} + (AP_{j,1} - AP_{j,0}) \text{ und } AP_{1} = AP_{0} + (AP_{1} - AP_{0})) \), so lässt sich der Sektorale Reallokationseffekt in zwei Teilkomponenten aufspalten und man erhält:

\[AP_1 - AP_0 = \sum_j h_{j,0}(AP_{j,1} - AP_{j,0}) + \sum_j (h_{j,1} - h_{j,0})(AP_{j,1} - AP_{j,0}) + \sum_j (h_{j,1} - h_{j,0})(AP_{j,1} - AP_{j,0}) - (AP_{1} - AP_{0}). \]

(6.1.4)

Entsprechend ergibt sich für die Wachstumsrate der aggregierten Arbeitsproduktivität:

\[\frac{AP_1 - AP_0}{AP_0} = \sum_j h_{j,0}(AP_{j,1} - AP_{j,0}) + \sum_j (h_{j,1} - h_{j,0})(AP_{j,1} - AP_{j,0}) + \sum_j (h_{j,1} - h_{j,0})(AP_{j,1} - AP_{j,0}) - \frac{(AP_{1} - AP_{0})}{AP_{0}}. \]

(6.1.5)

Bei der Interpretation der Ergebnisse der Wachstumszerlegung ist zudem stets zu beachten, dass diese von der konkreten vorgegebenen Sektorabgrenzung abhängen und sich für unterschiedliche Sektorabgrenzungen sowohl qualitativ als auch quantitativ stark unterscheiden können: Werden zwei Wirtschaftszweige dem gleichen Sektor zugeordnet, so werden die Produktivitätseffekte, die sich aus einer Verschiebung der Beschäftigung zwischen diesen beiden Wirtschaftszweigen ergeben, als Teil des Intrasektoralen Effekts erfasst; werden sie unterschiedlichen Sektoren zugeordnet, so werden dieselben Produktivitätseffekte hingegen als Teil des Sektoralen Reallokationseffekts erfasst. Die folgende Analyse bezieht sich auf die bereits in Kapitel 5.2 verwendete Definition von acht (Marktsektor) bzw. zehn (Gesamtwirtschaft) Sektoren gemäß Aggregationsstufe A10 im Europäischen System der Volkswirtschaftlichen Gesamtrechnungen. Der Untersuchungszeitraum reicht von 1995 bis 2015. Dabei erfolgt die Analyse zunächst für den Gesamtzeitraum; anschließend wird sie analog zum Vorgehen in Abschnitt 5.2 für aufeinander folgende 5-Jahreszeiträume durchgeführt.

Beiträge zum Wachstum der Arbeitsproduktivität (Stundenkonzept) von Intrasektoralen Effekt (ISE), Statischem Sektoralen Reallokationseffekt (SSRE) und Dynamischem Sektoralen Reallokationseffekt (DSRE). Kumuliertes Wachstum über Zeitraum 1995-2015 in Prozent. Gesamtwirtschaft (rechtes Panel) bestehend aus 10 Wirtschaftsbereichen gemäß ISIC Rev.4; Marktsektor (linkes Panel) bestehend aus 8 Wirtschaftsbereichen gemäß ISIC Rev.4 (ohne Grundstücks- und Wohnungswesen (L) und ohne Öffentliche Dienstleister, Erziehung, Gesundheit (O-Q)).

Quelle: Eurostat, Jährliche Volkswirtschaftliche Gesamtrechnungen; eigene Berechnungen.

118 Ein Vergleich mit den Vereinigten Staaten erscheint hier nicht sinnvoll, da Wertschöpfungs- und Beschäftigungsdaten für die Vereinigten Staaten in der hier verwendeten Sektorabgrenzung nicht verfügbar sind (vgl. Abschnitt 5.2.2).

119 Die hier verwendeten Daten zur realen Bruttowertschöpfung (verkettete Volumen, Referenzjahr 2010) und Erwerbstätigenstunden sind wie schon in Abschnitt 5.2.2 den Volkswirtschaftlichen Gesamtrechnungen von Eurostat entnommen.

120 Entsprechend Gleichungen (6.1.3) bzw. (6.1.5) beziehen sich die Wachstumsraten bzw. Wachstumsbeiträge in diesem Kapitel stets auf das Wachstum während des gesamten betrachteten Zeitintervalls von hier 20 (später 5) Jahren.

121 Der Beschäftigungsanteil des Produzierenden Gewerbes am Marktsektor ging im relevanten Zeitraum um rund 3,3 Prozentpunkte von 29,9 Prozent im Jahr 1995 auf 26,6 Prozent im Jahr 2015 zurück.

122 Betragsmäßig waren beide Effekte größer als der Beitrag des Sektors zum Intra-Sektoralen Produktivitätswachstumseffekt, der für den gleichen Zeitraum rund -3,6 Prozentpunkte betrug.
Im Gegensatz zu Deutschland war der Sektorale Reallokationseffekt (Summe von SSRE und DSRE) bezogen auf den Marktsektor in allen Vergleichsländern negativ.\(^{123}\) Dabei war der Dynamische Sektorale Reallokationseffekt (DSRE) in den Vergleichsländern wie auch in Deutschland negativ, während der Statische Sektorale Reallokationseffekt (SSRE) in allen Vergleichsländern mit Ausnahme des Vereinigten Königreichs positiv war,\(^{124}\) den negativen Beitrag des DSRE aber anders als in Deutschland nicht (vollständig) ausgleichen konnte. Ähnlich wie in Deutschland waren die Beiträge des gesamten Sektoralen Reallokationseffekts zum aggregierten AP-Wachstum vor allem in Frankreich (-1,4 Prozentpunkte) aber auch im Vereinigten Königreich (-4,1 Prozentpunkte) relativ zum Intrasektoralen Effekt nur gering. Dennoch hat der Sektorale Reallokationseffekt teilweise einen substanziellen Einfluss auf die Größe der internationalen Unterschiede in den AP-Wachstumsraten gehabt. Dies gilt insbesondere für den Vergleich zwischen Deutschland und dem Vereinigten Königreich. Während der Beitrag des Intrasektoralen Effekts zum AP-Wachstum im Vereinigten Königreich rund 8,6 Prozentpunkte größer war als in Deutschland (38,7 gegenüber 30,1 Prozentpunkte), war der Beitrag des Sektoralen Reallokationseffekts dort betragsmäßig rund 4,8 Prozentpunkte geringer als in Deutschland (-4,2 gegenüber +0,6 Prozentpunkte). Ohne Sektoralen Reallokationseffekt hätte die Differenz der AP-Wachstumsraten des Marktsektors zwischen dem Vereinigten Königreich und Deutschland statt 3,8 Prozentpunkten rund 8,6 Prozentpunkte über den 20-Jahreszeitraum (entsprechend durchschnittlich 0,15 bzw. 0,35 Prozentpunkten pro Jahr) betragen.

In Italien und Spanien, wo der Beitrag der Intrasektoralen Produktivitätssteigerungen (ISE) zum Wachstum der aggregierten Arbeitsproduktivität im betrachteten Zeitraum deutlich geringer war als in den drei anderen Ländern, hatte der Strukturelle Reallokationseffekt zumindest relativ einen deutlich größeren Einfluss auf das aggregierte AP-Wachstum. So wäre das AP-Wachstum des Marktsektors ohne den Sektoralen Reallokationseffekt zwischen 1995 und 2015 sowohl in Italien als auch in Spanien rund 1,4-mal so hoch ausgefallen wie mit diesem.\(^{125}\) Den größten negativen Beitrag zum Sektoralen Reallokationseffekt leistete in allen vier Vergleichsländern das Produzierende Gewerbe. Vor allem in Frankreich (-3,5 Prozentpunkte) und im Vereinigten Königreich (-3,9 Prozentpunkte) war dieser Effekt betragsmäßig deutlich größer als in Deutschland (-1,7 Prozentpunkte). Hierzu trug vor allem das im Vergleich zu Deutschland deutlich höhere Tempo der „Deindustrialisierung“, hier verstanden als Rückgang des Beschäftigungsanteils des Produzierenden Gewerbes, bei. Bemerkenswert ist, dass das Wachstum des Beschäftigungsanteils der Unternehmensdienstleistungen ebenso wie in Deutschland auch im Vereinigten Königreich einen (leicht) dämpfenden Effekt auf das AP-Wachstum des Marktsektors hatte (-1,2 Prozentpunkte). Anders als in Deutschland stieg die Arbeitsproduktivität des Sektors im Vereinigten Königreich zwar stärker als die des Marktsektors insgesamt, so dass der Beitrag des Sektors zum DSRE positiv war (+0,5 Prozentpunkte im Vergleich zu -5,7 Prozentpunkten in Deutschland). Zugleich

\(^{123}\) Für die Gesamtwirtschaft ist er nur in Frankreich negativ.

\(^{124}\) Für die Gesamtwirtschaft ist er auch im Vereinigten Königreich positiv.

\(^{125}\) Für Italien und insbesondere für Spanien ist der Wert des SSRE für die Gesamtwirtschaft sehr viel größer als für den Marktsektor. In Spanien gilt dies auch für den (negativen) Wert der DSRE. Ursächlich hierfür ist der Sektor Grundstücks- und Wohnungswesen, dessen Arbeitsproduktivität in 1995 mehr als zwanzigmal so groß war wie die in der Gesamtwirtschaft (aber insbesondere in Spanien deutlich langsamer gewachsen ist als dieser) und dessen Beschäftigungsanteil in beiden Ländern im Zeitverlauf zunahm (in Spanien von 0,3 auf 1 Prozent und in Italien von 0,7 auf 0,9 Prozent der gesamtwirtschaftlichen Beschäftigung).
war im Vereinigten Königreich jedoch der Beitrag des Sektors zum SSRE negativ (-1,7 Prozentpunkte im Vergleich zu +4,3 Prozentpunkten in Deutschland), da die Arbeitsproduktivität des Sektors im Jahr 1995 noch deutlich unter der des Marktsektors insgesamt lag.\footnote{126}

6.1.3 Entwicklung der Sektoralen Reallokationseffekte im Zeitverlauf

\footnote{126}{Während die Arbeitsproduktivität im Bereich der Unternehmensdienstleistungen im Vereinigten Königreich im Ausgangsjahr 1995 gemäß Eurostat-Daten real (Referenzjahr 2010) rund 20 Prozent \textit{unter} der des gesamten Marktsektors lag, lag er zu diesem Zeitpunkt in Deutschland noch rund 50 Prozent \textit{über} der des Marktsektors. In Frankreich lag die Arbeitsproduktivität in den Unternehmensdienstleistungen im Jahr 1995 real rund 35 Prozent \textit{über} der im Marktsektor insgesamt und ging während des Untersuchungszeitraums leicht zurück (-4 Prozent). Hier haben sich der positive Beitrag der Unternehmensdienstleistungen zum SSRE (+2,4 Prozentpunkte) und deren negativer Beitrag zum DSRE (-2,8 Prozentpunkte) weitgehend gegeneinander aufgehoben.}

\footnote{127}{Dies entspricht dem aus Abschnitt 5.2.1 bekannten Muster (vgl. Tabelle 5.2.3), wobei zu beachten ist, dass der dort ausgewiesene Reallokationseffekt nicht mit dem hier verwendeten Sektoralen Reallokationseffekt identisch ist (s.o.).}
Abbildung 6.1.2: Wachstumsbeiträge zur Arbeitsproduktivität in Deutschland und EU Vergleichsländern 1995-2015 (Marktsektor)

Beiträge zum Wachstum der Arbeitsproduktivität (Stundenkonzept) von Intrasektoralen Effekt (ISE), Statischem Sektoralen Reallokationseffekt (SSRE) und Dynamischem Sektoralen Reallokationseffekt (DSRE). Kumuliertes Wachstum über jeweilige 5-Jahreszeiträume in Prozent. Marktsektor bestehend aus 8 Wirtschaftsbereichen gemäß ISIC Rev.4 (ohne Grundstück- und Wohnungswesen (L) und ohne Öffentliche Dienstleister, Erziehung, Gesundheit (O-Q)).

Quelle: Eurostat, Jährliche Volkswirtschaftliche Gesamtrechnungen; eigene Berechnungen.

des Sektors und der durchschnittlichen Arbeitsproduktivität des Marktsektors größer als in den Vorperioden.

Auch in Frankreich war der Sektorale Reallokationseffekt in allen Perioden außer 2005-2010 positiv. Allerdings war der Effekt in allen betrachteten Perioden (betragsmäßig) deutlich kleiner als in Deutschland. Im Gegensatz zu Deutschland und Frankreich wirkte der sektorale Strukturwandel im Vereinigten Königreich in allen Perioden in Richtung einer Verringerung des AP-Wachstums. Ausschlaggebend hierfür ist, dass der Statische Sektorale Reallokationseffekt im Vereinigten Königreich in allen Perioden negativ war, während er in Frankreich in allen Perioden und in Deutschland in allen Perioden außer 2005-2010 positiv war. Im Vereinigten Königreich hat sich die Beschäftigung also in allen Perioden tendenziell in Sektoren mit (zu Periodenbeginn) relativ niedriger Arbeitsproduktivität verschoben.

Im Vereinigten Königreich war der negative Beitrag des Sektoralen Reallokationseffekts (SSRE + DSRE) in der ersten Hälfte der 2000er Jahre (betragsmäßig) am größten. In 2000-2005 verringerte der Strukturelle Reallokationseffekt das Wachstum der Arbeitsproduktivität um beachtliche 2,6 Prozentpunkte auf 13,7 Prozent (über den 5-Jahreszeitraum). Hauptgrund hierfür war der in diesem Zeitraum besonders starke Rückgang des Beschäftigungsanteils des Produzierenden Gewerbes.\(^{128}\)

gleichzeitig stark abnehmender Arbeitsproduktivität.131 Nach Ausbruch der Finanzkrise ging der Beschäftigungsanteil des Sektors dann wieder deutlich zurück, während die Arbeitsproduktivität zugleich (überdurchschnittlich) stark anstieg.132 In beiden Fällen leistete die Entwicklung einen negativen Beitrag zum Dynamischen Sektoralen Reallokationseffekt.133 Insgesamt ist bemerkenswert, dass der Dynamische Sektorale Reallokationseffekt in nahezu allen Ländern und Perioden negativ war. In Einklang mit Baumols Theorie hat sich die Beschäftigung in nahezu allen Perioden und Vergleichsländern tendenziell von Sektoren mit hohen AP-Wachstumsraten zu solchen mit niedrigen AP-Wachstumsraten verschoben.134

Auch für die Differenz in den AP-Wachstumsraten zwischen Deutschland und dem Vereinigten Königreich und für deren zeitliche Entwicklung spielte der Sektorale Reallokationseffekt eine teilweise nicht unerhebliche Rolle. Ohne die Wachstumseffekte des Sektoralen Reallokationseffekts wären sowohl die AP-Wachstumsschwäche Deutschlands gegenüber dem Vereinigten Königreich in der zweiten Hälfte der 1990er und ersten Hälfte der 2000er Jahre als auch der anschließende „Aufholprozess“ Deutschlands deutlich größer ausgefallen. So hätte die Differenz in der AP-Wachstumsrate zwischen dem Vereinigten Königreich und Deutschland in 2000-2005 ohne Reallokationseffekt 9,2 statt „nur“ 5,9 Pro-

131 Zur sektoralen Fehlallokation in Niedrigzinsphasen und im Vorlauf von Finanzkrisen vgl. Abschnitt 6.7.
132 Der Anteil des Baugewerbes an der gesamten Beschäftigung des Marktsektors stieg in Spanien von 11,5 Prozent im Jahr 1995 auf 16,5 Prozent im Jahr 2005 an und ging dann auf 11,6 Prozent im Jahr 2010 und 8,0 Prozent im Jahr 2015 zurück.
133 Hinzu kamen zwischen 2000 und 2010 das Produzierenden Gewerbe mit seinem fallenden Beschäftigungsanteil bei überdurchschnittlichem Produktivitätswachstum und die Unternehmensdienstleistungen mit einem wachsenden Beschäftigungsanteil und stark fallender Arbeitsproduktivität.
134 Zugleich scheint sich der (negative) Effekt im Zeitablauf jedoch tendenziell abzuschwächen. In Deutschland und dem Vereinigten Königreich war der DSRE zuletzt (2010-2015) sogar schwach positiv.
135 In der Tendenz gilt dies auch für Frankreich.

6.1.4 Intrasektoraler Strukturwandel (Produzierendes Gewerbe und Unternehmensdienstleister)

Ebenso wie Verschiebungen in den Beschäftigungsanteilen zwischen unterschiedlich produktiven Sektoren die AP-Wachstumsrate des Marktsektors (bzw. der Gesamtwirtschaft) beeinflussen, so beinflussen Verschiebungen zwischen den Beschäftigungsanteilen unterschiedlich produktiver Branchen bzw. Industrien innerhalb eines Sektors das (aggregierte) Arbeitsproduktivitätswachstum des (Gesamt-)Sektors. In Kapitel 5 wurde gezeigt, dass die Höhe und die zeitliche Entwicklung der Arbeitsproduktivität in Deutschland in besonderem Maße durch die Produktivitätsentwicklung im Produzierenden Gewerbe und bei den Unternehmensdienstleistungen geprägt wurde (Abschnitt 5.2.1) und dass sich die Beiträge der beiden Sektoren für die Entwicklung der Arbeitsproduktivität in Deutschland teilweise erheblich von denen in den Vergleichsländern unterschieden (Abschnitt 5.2.2). Im Folgenden soll deshalb untersucht werden, welche Rolle der intrasektorale Strukturwandel innerhalb dieser beiden Sektoren für die Entwicklung der Arbeitsproduktivität bzw. des AP-Wachstums dieser beiden Sektoren in Deutschland gespielt hat. Entsprechend der Analyse in Abschnitt 5.2.1 werden dabei innerhalb des Produzierenden Gewerbes 16 Branchen und innerhalb der Unternehmensdienstleistungen 4 Branchen unterschieden.\footnote{136} Da die erforderlichen Daten zu realer Wertschöpfung (verkettete Volumen, Referenzjahr 2005) und Arbeitsinput (auf Stundenbasis) bei Eurostat derzeit nur bis 2011 verfügbar sind, beschränkt sich die Analyse auf die drei 5-Jahresperioden zwischen 1995 und 2010. Der internationale Vergleich der deutschen Entwicklung beschränkt sich zudem auf die Vergleichsländer Frankreich und Vereinigtes Königreich.

Die Ergebnisse der Zerlegung des Arbeitsproduktivitätswachstums (Stundenkonzept) der beiden Sektoren sind für die entsprechenden Zeiträume und Länder in Abbildungen 6.1.3 (Produzierendes Gewerbe) und 6.1.4 (Unternehmensdienstleistungen) zusammenfassend dargestellt.\footnote{137} Zur sprachlichen Vereinfachung werden die Bezeichnungen Intrasektoraler Effekt (ISE) und Sektoraler Reallokationseffekt (SRE) beibehalten, obwohl die Rolle der Sektoren in der vorangegangenen Analyse hier von den Branchen bzw. Industrien innerhalb des Produzierenden Gewerbes bzw. der Unternehmensdienstleistungen übernommen werden.

Für Deutschland zeigt sich, dass der intrasektorale Strukturwandel, also die Verschiebung der Beschäftigungsanteile zwischen den verschiedenen Branchen des Sektors, sowohl im Produzierenden Gewerbe als auch bei den Unternehmensdienstleistungen im betrachteten Zeitraum nur einen sehr geringen Einfluss auf die AP-Wachstumsrate des Sektors (und deren zeitliche Entwicklung) hatte. Dies gilt insbesondere für die trendmäßige Abnahme der AP-Wachstumsrate des Produzierenden Gewerbes während der 1990er und 2000er Jahre. Und es gilt ebenso für den deutlichen Rückgang der Arbeitspro-

\footnote{136 Dies entspricht der Aggregationsstufe A38 des Europäischen Systems Volkswirtschaftlicher Gesamtrechnungen (ESVG).}

\footnote{137 Auf eine Aufteilung des Reallokationseffekts in einen Statischen und einen Dynamischen Reallokationseffekt wird dabei verzichtet.}
duktivität bei den Unternehmensdienstleistungen zwischen 1995 und 2010. Dieser ist praktisch vollständig auf die stark negative Produktivitätsentwicklung *innerhalb* von drei der vier Branchen des Sektors Unternehmensdienstleistungen zurückzuführen.\(^\text{138}\)

Abbildung 6.1.3:
Wachstumsbeiträge zur Arbeitsproduktivität des Produzierenden Gewerbes in Deutschland, Vereinigtem Königreich und Frankreich 1991-2015

Quelle: Eurostat, Jährliche Volkswirtschaftliche Gesamtrechnungen; eigene Berechnungen.

Abbildung 6.1.4:
Wachstumsbeiträge zur Arbeitsproduktivität der Unternehmensdienstleistungen in Deutschland, Vereinigtem Königreich und Frankreich 1991-2015

Beiträge zum Wachstum der Arbeitsproduktivität (Stundenkonzept) von Intrasекторalem Effekt (ISE) und Sektoralem Reallokationseffekt (SRE). Kumuliertes Wachstum über jeweilige 5-Jahreszeiträume in Prozent. Unternehmensdienstleistungen bestehend aus 4 Wirtschaftszweigen („Sektoren”).

Quelle: Eurostat, Jährliche Volkswirtschaftliche Gesamtrechnungen; eigene Berechnungen.

\(^{138}\) Allein im Bereich Forschung und Entwicklung, der mit Abstand kleinsten Branche innerhalb der Unternehmensdienstleistungen, ist die Arbeitsproduktivität in diesem Zeitraum insgesamt (leicht) gestiegen (vgl. Anhang, Tabelle A-5.2.3).

6.1.5 Fazit

In den vergangenen zwei Jahrzehnten (1995-2015) wurde das Arbeitsproduktivitätswachstum in Deutschland ganz überwiegend von der Produktivitätsentwicklung innerhalb der einzelnen Sektoren...

6.2 Outsourcing

Übersicht 6.2.1:
Formen des Outsourcings

<table>
<thead>
<tr>
<th>Produktion der Vorleistungen</th>
<th>Im Inland</th>
<th>Im Ausland</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selbst</td>
<td>Eigenfertigung</td>
<td>Ausländische Direktinvestition (ADI)</td>
</tr>
<tr>
<td>Fremd</td>
<td>Inländisches Outsourcing</td>
<td>Ausländisches Outsourcing</td>
</tr>
</tbody>
</table>

Unter Outsourcing verstehen wir die Vergabe von Leistungen, die vormals in einem Wirtschaftszweig, Sektor oder Land selbst erstellt wurden, an externe Produzenten in anderen inländischen Wirtschaftszweigen oder Sektoren („inländisches Outsourcing“), an verbundene Unternehmen in anderen Ländern („ausländische Direktinvestitionen“), oder an nicht verbundene Unternehmen in anderen Ländern („ausländisches Outsourcing“ oder „Arms Length Trade“; Übersicht 6.2.1). Im Gegensatz zu Analysen auf Unternehmensebene spielt das Eigentum an den Produktionsanlagen in den vorliegenden Analysen keine Rolle, so dass ausländisches Outsourcing und ADI hier auch unter dem Begriff „Offsho-

6.2.1 Literaturüberblick

Empirische Studien bestätigen diese Selbstselektion von Unternehmen eindrucksvoll: Es sind vor allem die produktiveren und größeren Unternehmen, die in größerem Umfang Vorleistungen aus dem Ausland beziehen oder in ausländische Produktionsstätten investieren (vgl. u.a. Altomonte und Ottaviano 2011; Kohler und Smolka 2012).

Dagegen sind die theoretischen Grundlagen und auch die empirische Evidenz über Effekte in die umgekehrte Richtung deutlich schwächer (Olsen 2006). Theoretisch unklar ist vor allem, über welche Wirkungschanäle Outsourcing die Produktivität von Unternehmen tatsächlich beeinflusst. Grundsätzlich kann Outsourcing für Unternehmen zum einen statische Effizienzgewinne mit sich bringen, etwa, wenn sie sich dadurch auf ihre Kernkompetenzen konzentrieren. Daneben kann es auch produktivi-
tätsteigernde dynamische Effizienzwachstum mit sich bringen, etwa, wenn sie von ausländischen Lieferanten lernen können, wenn ausländische Lieferanten höherwertige Vorprodukte als sie selbst herstellen können, eine größere Vielfalt an Varianten eines Vorprodukts anbieten können, oder aber Kosten einsparungen ermöglichen, die größere finanzielle Spielräume für Investitionen in Forschung und Entwicklung und Innovation verschaffen (z.B. Görg und Hanley 2010).

Insgesamt ist damit die empirische Evidenz im Hinblick auf den Einfluss des Offshorings auf die Produktivität von Unternehmen und Wirtschaftszweigen recht gemischt. Dieser unklaren Evidenz steht freilich, wie eingangs dargestellt, starke Evidenz für Effekte mit umgekehrter Kausalität entgegen.

6.2.2 Messung des Outsourcings

Im Gegensatz zu den im vorangegangenen Literaturüberblick diskutierten Studien misst die vorliegende Studie Outsourcing nicht anhand der direkten (Brutto-)Handelsströme zwischen Ländern und Wirtschaftszweigen, sondern anhand der in diesen Handelsströmen enthaltenen Wertschöpfung (Kasten 6.2.1). Dieses Wertschöpfungssourcing ist für den Zweck der vorliegenden Studie besonders

Kasten 6.2.1: Wertschöpfungssourcing: Der Outsourcingindikator

geeignet, weil es die sektoralen und nationalen Quellen möglicher Produktivitätseffekte des Outsourcings identifiziert. Es erfasst nicht nur die jeweils letzte Stufe der Wertschöpfungskette, sondern zerlegt die gesamte Wertschöpfungskette, die die Vorleistungen zuvor durchlaufen haben, in die Wertschöpfungsbeiträge auf jeder Stufe und ordnet diese Beiträge denjenigen Wirtschaftszweigen und Ländern zu, die sie tatsächlich erbracht haben. Auf diese Weise können etwa die in vorangegangen Produktionsstufen eingeflossenen Dienstleistungen identifiziert werden. Und es wird verhindert auch, dass der Vorleistungsanteil durch Reimporte inflationiert wird. Unser Outsourcingindikator misst die prozentuale Veränderung des Anteils der fremdbezogenen Wertschöpfung am gesamten Produktionswert eines Landes, Sektors oder Wirtschaftszweiges.

6.2.3 Entwicklung des Outsourcings

Die obere Graphik in Abbildung 6.2.1 zeigt, dass Deutschland insgesamt seit Mitte der 1990er Jahre in stärkerem Maße Wertschöpfung an ausländische Zulieferer ausgelagert hat als alle Vergleichsländer außer Japan. Der Anteil der ausländischen Wertschöpfung am Produktionswert aller deutschen Güter und Dienstleistungen, der durch die Gesamthöhe der Balken widergegeben wird, ist um 70 Prozent im Jahr 2011 gestiegen (auf 15,9 Prozent des Produktionswerts), verglichen mit einem Anstieg von knapp 50 Prozent in den Vereinigten Staaten, rund 35 Prozent in Frankreich, Italien und Spanien und nur

Abbildung 6.2.1: In Vorleistungsbezügen enthaltene Wertschöpfung nach Herkunftsländern und -sektoren 1995 und 2011 (Gesamtwirtschaft, Sektoren und ausgewählte Wirtschaftszweige)

Quelle: WIOD; eigene Berechnungen.

148 Das Verarbeitende Gewerbe in diesen Ländern hat 2011 lediglich 1,3 Prozent an Wertschöpfung zum Output des deutschen Verarbeitenden Gewerbes beigetragen; weitere 0,9 Prozent stammen von Dienstleistern aus diesen Ländern.
Abbildung 6.2.2: Offshoring und Wachstum der Arbeitsproduktivität in Deutschland und Vergleichsländern 1996-2011 (Prozent)

Offshoring ist gemessen als Veränderung (zum Vorjahr, in Prozent) des Anteils der in den importierten Vorleistungen enthaltenen ausländischen Wertschöpfung am gesamten Bruttoproduktionswert.

Quelle: WIOD; EU KLEMS; OECD, Productivity Statistics; eigene Berechnungen.
Unternehmensdienstleistungen (Graphik unten rechts) etwa haben per Saldo ein „Insourcing“ inländischer Wertschöpfung betrieben, also einen Teil der noch 1995 von anderen inländischen Wirtschaftszweigen bezogenen Wertschöpfung in 2011 selbst erstellt. Dieses Insourcing scheint in diesem Wirtschaftszweig aber international eher die Regel als die Ausnahme gewesen zu sein. Auch die Unternehmensdienstleister im Vereinigten Königreich, Frankreich, Spanien Japan und – in geringerem Umfang – den Vereinigten Staaten haben den Anteil der Eigenleistung an ihrem Output zu Lasten anderer inländischer Wirtschaftszweige erhöht.\footnote{Solches Insourcing ist in Deutschland ebenfalls beim Gastgewerbe und der Grundstücks- und Wohnungsvermittlung zu beobachten, war aber auch in diesen Wirtschaftszweigen international nicht unüblich. Insourcing kann entweder direkt erfolgt sein, also durch vermehrte Eigenproduktion vormals fremdbezogener Dienstleistungen, oder indirekt dadurch, dass Lieferanten aus anderen Wirtschaftszweigen vermehrt Unternehmensdienstleistungen als Vorprodukte eingesetzt haben. Gegen das indirekte Insourcing spricht allerdings, dass der Anteil der von anderen inländischen Wirtschaftszweigen bezogenen Güter und Dienstleistungen im Zeitablauf in ähnlichem Umfang abgenommen hat. Indirektes Insourcing impliziert hingegen, dass der (Markt-) Wert der fremdbezogenen Güter und Dienstleistungen weniger stark sinkt als die darin enthaltene fremde Wertschöpfung.}

Dass Deutschland insgesamt Outsourcing intensiver betrieben hat als die meisten Vergleichsländer und trotzdem vom Produktivitätswachstum her eher zurückgeblieben ist, könnte darauf hindeuten, dass Outsourcing keinen maßgeblichen Beitrag zur Erklärung des Produktivitätswachstums leisten kann. Abbildung 6.2.2 vergleicht für Deutschland und die Vergleichsländer unseren Outsourcing-Indikator für die Gesamtwirtschaft (schwarze Linie) mit den jährlichen Wachstumsraten der gesamtwirtschaftlichen Arbeitsproduktivität (rote Linie) im Zeitraum 1995 bis 2011. Der Outsourcing-Indikator ist die jährliche Veränderung (in Prozent) der in den Vorleistungsbezügen aller Wirtschaftszweige enthaltenen ausländischen Wertschöpfung. Da er deutlich stärkeren jährlichen Schwankungen unterliegt als das Produktivitätswachstum, ist dieser Indikator jeweils auf der rechten Skala der länderspezifischen Graphiken abgetragen. Zum Vergleich wird auch das Produktivitätswachstum abgetragen, wie es sich aus den EU-KLEMS-Daten ergibt (bis 2007; grüne Linie). Die Graphiken zeigen für Deutschland und viele der kontinentaleuropäischen Vergleichsländer (mit Ausnahme Spaniens) einen deutlich positiven Zusammenhang zwischen Outsourcing und Produktivitätswachstum über die Zeit hinweg. Für die Vereinigten Staaten und das Vereinigte Königreich ist dieser Zusammenhang dagegen deutlich schwächer.\footnote{Korrelationskoeffizienten bestätigen diesen Eindruck. Der Korrelationskoeffizient zwischen Outsourcing und Produktivitätswachstum beträgt für Deutschland r=0,79, für Italien 0,8 und für Frankreich 0,4. Für die Vereinigten Staaten beträgt er dagegen -0,2 und für das Vereinigte Königreich 0,08. Im Zeitraum 1996-2007, der die Finanzkrise ausklammert, zeichnen die Korrelationskoeffizienten ein ähnliches Bild: In Deutschland (0,38), Frankreich (0,33) und Italien (0,65) ist die Korrelation deutlich höher als in den Vereinigten Staaten (0,10) und dem Vereinigten Königreich (0,04) (Spanien: 0,04, Japan: 0,02).} Allerdings könnte dieser positive Zusammenhang vor allem durch konjunkturelle Schwankungen getrieben sein, die sowohl das Produktivitätswachstum, als auch das Outsourcing beeinflussten. Aufschlussreich erscheinen allerdings die Entwicklungen bis Mitte der 2000er Jahre. In diesem Zeitraum hat die deutsche Wirtschaft einen deutlich stärker zunehmenden Teil ihrer Produktion ins Ausland verlagert als die Vereinigten Staaten und das Vereinigte Königreich. Ihre Produktivität ist dennoch langsamer gewachsen.
6.2.4 Produktivitätseffekte des Outsourcings im Verarbeitenden Gewerbe

Dieses Ergebnis wird durch die folgende, sektoral disaggregierte Analyse des Zusammenhangs zwischen Produktivitätswachstum und Outsourcing auf der Ebene der einzelnen Wirtschaftszweige des Verarbeitenden Gewerbes bestätigt. Dabei wird untersucht, ob es auch auf der Ebene der Wirtschaftszweige einen systematischen Zusammenhang zwischen Produktivitätswachstum und Outsourcing gibt. Zu diesem Zweck wird eine multiple Panelregression für alle Wirtschaftszweige des Verarbeitenden Gewerbes in allen Untersuchungsländern durchgeführt. Das Regressionsmodell \(\ln AP_{cjt} = \alpha \cdot out_{cjt} + \beta_1 \cdot \ln k_{cjt} + \beta_2 \cdot \ln H_{cjt} + \gamma_{ctj} (+ \gamma_j) + \epsilon_{cjt} \) basiert auf einer Cobb-Douglas-Produktionsfunktion. Es erklärt die (logarithmierte) Arbeitsproduktivität in Land \(c \), Wirtschaftszweig \(j \) und Jahr \(t \) \((AP_{cjt})\) durch das Ausmaß des Outsourcings, \(out_{cjt} \), gemessen als Anteil der fremdbezogenen Wertschöpfung am Produktionswert des jeweiligen Wirtschaftszweigs. Kontrolliert wird dabei für den Einfluss der (logarithmierten) Kapitalintensität \((k_{cjt})\) und der (logarithmierten) Zahl der Arbeitsstunden \((H_{cjt})\) auf die Arbeitsproduktivität. Diese Variablen filtern den Einfluss der Produktionsfaktoren (Arbeit und Kapital) auf die Arbeitsproduktivität heraus, so dass das Schätzmodell letztlich den Zusammenhang zwischen Outsourcing und TFP-Wachstum identifiziert (vgl. dazu auch die Kapitel 2 und 4 oben).\(^{151}\) Daneben eliminieren Land\(\times\)Jahr Dummies \((\gamma_{ct})\) die länder spezifischen und zeitabhängigen Produktivitätsunterschiede, die für alle Wirtschaftszweige einheitlich sind. Diese Dummies verhindern unter anderem, dass international asymmetrische Konjunkturzyklen oder Wechselkursschwankungen den geschätzten Zusammenhang zwischen Outsourcing und Produktivität verzerren.\(^{152}\) In einigen Regressionen werden zusätzlich Wirtschaftszweig-Dummies \((\gamma_j)\) eingefügt, die Produktivitätsunterschiede zwischen den Wirtschaftszweigen neutralisieren, sofern sie land- und zeitunabhängig sind. Outsourcing \((out_{cjt})\) wird, ebenso wie im vorangegangenen Abschnitt, nach in- und ausländischer Herkunft oder nach Herkunftssektor (Verarbeitendes Gewerbe, Dienstleistungsgewerbe) differenziert. Ein positiver (negativer) geschätzter Parameter einer Outsourcing-Variable \((\alpha)\) deutet darauf hin, dass – im Durchschnitt über die 12 Wirtschaftszweige, sieben Länder und 13 Jahre (Japan: 12 Jahre) – ein

zunehmender Anteil fremder Wertschöpfung mit steigender (sinkender) Arbeitsproduktivität einhergeht, dass Outsourcing also mit positivem (negativem) Produktivitätswachstum einhergeht.

Die Schätzergebnisse sind in Tabelle 6.2.1 zusammengefasst. Die Regression in Spalte (1) zeigt zunächst einen signifikant positiven Zusammenhang zwischen Arbeitsproduktivität und dem gesamten Wertschöpfungsvorsorgekommunique an in- oder ausländische Wirtschaftszweige. Wie Spalten (2)-(4) zeigen, wird dieser Zusammenhang allerdings ausschließlich durch Offshoring getrieben (Spalte 2), und zwar sowohl das Offshoring von Wertschöpfung an das ausländische Verarbeitende Gewerbe (3), als auch das an das ausländische Dienstleistungsgewerbe (4). Inländisches Outsourcing zeigt dagegen keinen

<table>
<thead>
<tr>
<th>Abhängige Variable: Arbeitsproduktivität (ln)</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wertschöpfungsvorsorge insgesamt</td>
<td>0,011***</td>
<td>-0,017**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0,002)</td>
<td>(0,006)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inländisches Wertschöpfungsvorsorge</td>
<td></td>
<td></td>
<td>-0,016*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0,007)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ausländisches Wertschöpfungsvorsorge</td>
<td></td>
<td></td>
<td>0,022***</td>
<td>-0,021*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0,008)</td>
<td>(0,007)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inländisches Wertschöpfungsvorsorge an</td>
<td></td>
<td></td>
<td></td>
<td>-0,001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verarbeitende Gewerbe</td>
<td></td>
<td></td>
<td></td>
<td>(0,008)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ausländisches Wertschöpfungsvorsorge an</td>
<td></td>
<td></td>
<td></td>
<td>0,034**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verarbeitende Gewerbe</td>
<td></td>
<td></td>
<td></td>
<td>(0,010)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inländisches Wertschöpfungsvorsorge an</td>
<td></td>
<td></td>
<td></td>
<td>-0,004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dienstleister</td>
<td></td>
<td></td>
<td></td>
<td>(0,006)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ausländisches Wertschöpfungsvorsorge an</td>
<td></td>
<td></td>
<td></td>
<td>0,063***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dienstleister</td>
<td></td>
<td></td>
<td></td>
<td>(0,016)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geleistete Arbeitsstunden (ln)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Kapitalintensität (ln)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Land × Jahr Dummies</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Wirtschaftszweig-Dummies</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Anzahl Beobachtungen</td>
<td>996</td>
<td>996</td>
<td>996</td>
<td>996</td>
<td>996</td>
<td>996</td>
</tr>
<tr>
<td>R²</td>
<td>0,981</td>
<td>0,982</td>
<td>0,982</td>
<td>0,982</td>
<td>0,991</td>
<td>0,991</td>
</tr>
</tbody>
</table>

Quelle: EU KLEMS; WIOD; eigene Berechnungen und Schätzungen.
Zusammenhang mit der Produktivität. Der Koeffizient von 0,022 in Spalte (2) besagt, dass ein Wirtschaftszweig mit einem um fünf Prozentpunkte höheren Anteil importierter Wertschöpfung eine um rund 11,6 Prozent (= \[\exp(5 \times 0,022) - 1\] x 100) höhere Produktivität hat.

6.2.5 Arbeitnehmerüberlassung

153 Wir differenzieren in den Regressionen nicht simultan zwischen nationaler und sektoraler Herkunft der in Zwischenprodukten enthaltenen Wertschöpfung, weil dies zu erheblichen Multikollinearitäts-Problemen führt.

154 In einigen der Regressionen, die zur Abschätzung der Sensitivität dieser Ergebnisse durchgeführt wurden, sind diese Parameter auch nicht signifikant von null verschieden.

Im Folgenden wird daher der Frage nachgegangen, ob sich die Unterschiede im sektoralen Produktivitätswachstum zwischen Deutschland und den Vergleichsländern nennenswert ändern, wenn Zeitarbeit in den VGR nach dem Nutzerkonzept verbucht wird. Der Antwort auf diese Frage sind allerdings durch die Datenverfügbarkeit enge Grenzen gesetzt. So muss die Schätzung von sektoraler Wertschöpfung und Beschäftigung nach dem Nutzerkonzept in Deutschland auf die Jahre seit 2008 begrenzt bleiben, weil in den VGR für die Jahre bis 2007 weder die Beschäftigung im Zeitarbeitsgewerbe, noch die sektorale Struktur ihrer Lieferungen ausgewiesen wird. Auch eigene internationale Vergleichsrechnungen können mit vertretbarem Aufwand nicht vorgenommen werden, weil die Schätzungen von Beschäftigten im Zeitarbeitsgewerbe und die Struktur der Sektoren, in denen sie beschäftigt sind, für die Vereinigten Staaten etwa ungleich schwieriger ist als für Deutschland. Vor diesem Hintergrund beschränkt sich die vorliegende Studie weitgehend darauf, einen Überblick über das Ausmaß und die Entwicklung der Zeitarbeit in Deutschland und den Vergleichsländern zu geben und anhand von Modellrechnungen darzustellen, wie sich Wertschöpfung, Beschäftigung und Produktivität in Deutschland nach dem Entstehungskonzept seit 2008 entwickelt haben. Die Ergebnisse dieser Modellrechnungen werden mit denen der verfügbaren, handwerklich recht sorgfältigen Studien für die Vereinigten Staaten verglichen.

Entwicklung der Zeitarbeit in Deutschland und den Vergleichsländern

156 Die vorliegende Untersuchung stützt sich im Wesentlichen auf die Daten der VGR. Die von der Bundesagentur für Arbeit veröffentlichten Daten aus der Beschäftigenstatistik sowie der Statistik zur Arbeitnehmerüberlassung haben ähnliche Größenordnungen. In Abbildung 6.2.3 und den folgenden Analysen wird, soweit die Daten es zulassen, Beschäftigung im Zeitarbeitsgewerbe durch die Zahl der Arbeitnehmer statt der Erwerbstätigen gemessen, um selbständige Arbeitsvermittler auszuschließen, die nicht aus den Daten herausgerechnet werden können. Die Erwerbstätigenzahlen führen jedoch zu sehr ähnlichen Ergebnissen.

das Statistische Bundesamt weisen auch Eurostat und Ciett, der internationale Verband der Zeitarbeitsunternehmen, aus (Abbildung 6.2.4).158

\textbf{Abbildung 6.2.3:}
Entwicklung der Zeitarbeit in Deutschland 1991-2013, Arbeitnehmer (Prozent)

\textit{Quelle:} Statistisches Bundesamt, Fachserie 18, Reihe 1.4; eigene Berechnungen und Schätzungen.

\textbf{Abbildung 6.2.4:}
Entwicklungen des Anteils der Zeitarbeit an der Gesamtbeschäftigung in Deutschland und Europäischen Vergleichsländern 1991-2011 gemäß Eurostat und Ciett (Prozent)

\textit{Quelle:} Ciett (2008: Tabelle 2); Eurostat, Jährliche Volkswirtschaftliche Gesamtrechnungen; eigene Berechnungen.

Abbildung 6.2.4 zeigt auch, dass die strukturelle Bedeutung der Zeitarbeit auch in vielen der anderen Europäischen Vergleichsländer seit Anfang der 1990er Jahre deutlich zugenommen hat, allerdings in unterschiedlichen Zeiträumen. Diese zeitlichen Unterschiede könnten theoretisch zu den Unterschie-

158 Vgl. Mai (2008) für einen breiten Überblick über die verschiedenen statistische Quellen, die Daten zur Zeitarbeit in Deutschland enthalten. Ciett (2008) weist allerdings insgesamt niedrigere Beschäftigtenanteile aus, was daran liegen könnte, dass der Verband nur Mitgliedsunternehmen erfasst.
den im sektoralen Produktivitätswachstum zwischen den Ländern (Abschnitt 5.2) beigetragen haben. In Frankreich und Spanien etwa ist der Beschäftigtenanteil bereits in den 1990er Jahren stark angestiegen, während er in den 2000er Jahren, als die Zeitarbeit in Deutschland boomte, kaum noch gestiegen oder sogar leicht zurückgegangen ist. Auch in Italien begann die starke Expansion der Zeitarbeit früher als in Deutschland, allerdings später als in Frankreich und Spanien. Im Vereinigten Königreich schließlich hat der Beschäftigtenanteil des Zeitarbeitsgewerbes mehr oder weniger kontinuierlich zugenommen.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sektor (ISIC Rev.3)</td>
</tr>
<tr>
<td>---------------------------</td>
</tr>
<tr>
<td>Gesamtwirtschaft</td>
</tr>
<tr>
<td>Landwirtschaft</td>
</tr>
<tr>
<td>Bergbau, Energie, Wasser</td>
</tr>
<tr>
<td>Verarbeitendes Gewerbe</td>
</tr>
<tr>
<td>Baugewerbe</td>
</tr>
<tr>
<td>Verkehr und Nachrichtenübermittlung</td>
</tr>
<tr>
<td>Kredit- und Versicherungsgewerbe</td>
</tr>
<tr>
<td>Unternehmensorientierte Dienstleistungen</td>
</tr>
<tr>
<td>Öffentliche Verwaltung</td>
</tr>
</tbody>
</table>

Sozialversicherungspflichtig Beschäftigte nach IAB-Betriebspanel.

159 Zu ähnlichen Ergebnissen kommen Segal und Sullivan (1997).

Abbildung 6.2.5:
Zeitarbeit vergleichsweise intensiv nutzende Sektoren in Deutschland 2008-2012 (Prozent)

Quelle: Statistisches Bundesamt, Fachserie 18, Reihe 1.4; Statistisches Bundesamt, Fachserie 18, Reihe 2; eigene Berechnungen und Schätzungen.

Einfluss der Verbuchung von Zeitarbeit auf die Sektorstruktur des Produktivitätswachstums

Eine erheblichen Einfluss hat die Methode allerdings möglicherweise auf das Wachstum der Arbeitsproduktivität der Unternehmensdienstleistungen im Zeitraum 2002-2006 gehabt, als die Zeitarbeit stark expandierte. Wären die Zeitarbeitnehmer und ihre Wertschöpfung diesem Sektor nicht zugeordnet worden, so wäre seine Produktivität den Schätzungen zufolge um rund 0,5 Prozent pro Jahr gestiegen und nicht um rund 0,6 Prozent gesunken. Auch dieses Ergebnis ist vor allem auf die vergleichsweise geringe Entlohnung der Zeitarbeitnehmer zurückzuführen, die deutlich unter der des übrigen Sektors liegt. Wiederum schlägt hier das Boomjahr der Zeitarbeit, 2006, mit einem geschätzten Wachstumsunterschied von 2,8 Prozentpunkten (+0,7 statt -2,1 Prozent) stark zu Buche. Wie belastbar dieses Schätzergebnis allerdings ist, muss letztlich auch in der vorliegenden Studie offen bleiben.

Abbildung 6.2.6:
Zeitarbeit und sektoriales Produktivitäswachstum in Deutschland 2002-2012 (Prozent)

Quelle: EU KLEMS; Statistisches Bundesamt, Fachserie 18 Reihe 1.4, Fachserie 18 Reihe 2; Bellmann und Kühl (2008: Tabelle 4); eigene Berechnungen und Schätzungen.

Arbeitsproduktivität im Verarbeitenden Gewerbe in einzelnen Jahren um bis zu einem Prozentpunkt überschätzt und das in den Unternehmensdienstleistungen um mehrere Prozentpunkte unterschätzt.

6.2.6 Leasing

Ähnlich wie die Zeitarbeit wird auch operatives Leasing von produktiven Kapitalgütern in den VGR gemäß der verbindlichen Vorgaben der ESVG 2010 nach dem „Eigentümerkonzept“ statt dem „Nutzerkonzept“ erfasst (vgl. Kapitel 3). Es wird interpretiert als eine Dienstleistung des Wirtschaftszweigs „Vermietung von beweglichen Sachen“ (ISIC 7700; im Folgenden kurz „Leasinggewerbe“), in dem viele der Leasinggeber erfasst werden, an andere Wirtschaftsbereiche, in denen die Leasinggüter zum Einsatz kommen. Auch dies beeinflusst das gesamtwirtschaftliche Produktivitätswachstum kaum, könnte aber die internationalen Unterschiede im sektoralen Produktivitätswachstum beeinflussen, wenn sich die Intensität des Leasings in den betrachteten Ländern unterschiedlich entwickelt. Im Folgenden wird daher versucht, den Einfluss des Erfassungskonzepts für Leasing auf das sektorale Wachstum der Arbeitsproduktivität zumindest für Deutschland und die Vereinigten Staaten abzuschätzen.165

\textit{Gesamtwirtschaftliche Bedeutung und Entwicklung des Leasinggewerbes}

Der Anteil des Leasinggewerbes am gesamtwirtschaftlichen Kapitalstock (schwarze Linie in Abbildung 6.2.7) und der Wertschöpfung (rot) liegt in Deutschland sogar nur bei rund drei bzw. zwei Prozent. VGR-Daten des Bureau of Economic Analysis deuten darauf hin, dass der Wirtschaftszweig in den Vereinigten Staaten einen etwas geringeren Wertschöpfungsanteil von reichlich einem Prozent hat (blaue

Abbildung 6.2.7: Gesamtwirtschaftliche Bedeutung des Leasinggewerbes in Deutschland und den Vereinigten Staaten 1991-2013

Quelle: Statistisches Bundesamt, Fachserie 18, Reihe 1.4; Bureau of Economic Analysis, Industry Accounts; eigene Berechnungen.

Einfluss des Leasings auf das Produktivitätswachstum

167 Dabei unterstellen wir, ähnlich wie bei der Analyse der Leiharbeit, dass Leasing keinen Einfluss auf die sektorspezifischen Deflattoren für die Wertschöpfung hat.

Abbildung 6.2.8:
Operatives Leasing und sektoriales Produktivitätswachstum in Deutschland und den Vereinigten Staaten 1995-2012 (Prozent)

(b) Deutschland, 10 Sektoren (ISIC Rev.4), 2008-2012

Quelle: Statistisches Bundesamt, Fachserie 18, Reihe 1.4; Bureau of Economic Analysis, Industry Accounts, Input-Output Accounts; EU KLEMS; eigene Berechnungen und Schätzungen.

Weitere Ausnahmen von der Regel, dass die Zuordnung des Leasing in den VGR das sektoriale Wachstum kaum beeinflusst, sind die Landwirtschaft im Zeitraum 2000-2005 (Graphik a, grüne Raute) und die Finanzdienstleistungen im Zeitraum 2008-2012 (Graphik b, hellblaues Quadrat). In der Landwirtschaft hat die zunehmende Leasingintensität 2000-2005 das Produktivitätswachstum nach dem Eigentümerkonzept deutlich abgeschwächt; nach dem Nutzerkonzept ist es höher. Im Finanzsektor 2008-
2012 dagegen hat die sinkende Leasingintensität das negative Produktivitätswachstum nach dem Eigentümerkonzept abgeschwächt. Wird dem Sektor auch die Wertschöpfung des geleasten Kapitals zugerechnet, so ist seine Produktivität noch stärker gesunken.

6.2.7 Fazit

Von daher kann die vorliegende Analyse die vielfach gestellte Diagnose der regulierungsbedingten Wachstumsschwäche (u.a. SVR 2015: 299; OECD 2014: Kapitel 2; Europäische Kommission 2015: 68) nicht nachhaltig entkräften.

6.3 Digitalisierung

Die Weltbank betont aber auch, dass diese Chancen umfassend nur dann genutzt werden können, wenn die „analogen Komplemente“ (Weltbank 2016: 4) der Digitalisierung den neuen Erfordernissen angepasst werden. Anpassungen der Regulierungssysteme, der Bildungssysteme und der staatlichen Institutionen müssen der Weltbank zufolge die Rahmenbedingungen dafür schaffen, dass digitale Technologien adaptiert, eingesetzt und weiterentwickelt werden können. Sie erachtet diese Aufgabe nicht nur deshalb als wichtiger denn je zuvor, weil die Digitalisierung die Chancen für Wachstum und wirtschaftliche Entwicklung erhöht, sondern auch deshalb, weil sie die Opportunitätskosten der analogen Fehlsteuering erhöht.

Im Folgenden wird zunächst der empirische Befund zur IKT-Investitionsschwäche und zur schwächeren Ausnutzung der IKT-Produktivitätsdividende in Kontinentaleuropa anhand makroökonomischer Wachstumszerlegungen und mikroökonomischer Regressionsanalysen rekapituliert (Abschnitt 6.3.1). Die Wachstumszerlegungen sind mit einiger Unsicherheit behaftet, weil insbesondere die realen IKT-

6.3.1 Empirischer Befund

Wachstumszerlegung

\(^{171}\) Die neuere Rev.4 der ISIC lässt zwar eine etwas trennschärfere Abgrenzung der IKT produzierenden Wirtschaftszweige zu. Es fehlen allerdings Daten für den Kapitalstock in den Vereinigten Staaten. Die Ergebnisse für die übrigen Länder sind ansonsten denen in Abbildung 6.3.1 sehr ähnlich. Auch die OECD kommt zu insgesamt ähnlichen Ergebnissen (OECD 2016e: 54-67), differenziert IKT- und sonstige Kapitaldienste aber nicht in beiden Dimensionen, Wirtschaftszweiggruppen und Komponenten. Das Statistische Bundesamt differenziert nicht zwischen IKT- und sonstigem Kapital. Eurostat differenziert zwar prinzipiell sogar nach mehreren Arten von IKT-

Quelle: EU KLEMS; eigene Berechnungen.

Die Abbildung zeigt, dass sowohl die IKT-produzierenden Wirtschaftszweige (rot), als auch die Wirtschaftszweige, die IKT intensiv nutzen (grün), seit Mitte der 1990er Jahre in Deutschland insgesamt einen wesentlich geringeren Beitrag zum Produktivitätswachstum geleistet haben als in den Vereinigten Staaten (vgl. auch Eicher und Roehn 2007). In den frühen 1990er Jahren hatte Deutschland in dieser Hinsicht noch in etwa gleichauf mit den Vereinigten Staaten gelegen.

Tabelle 6.3.1:
IKT-Intensität IKT-intensiver Wirtschaftszweige in Deutschland und den Vereinigten Staaten 1995-2005

<table>
<thead>
<tr>
<th>Anteile der realen IKT-Kapitaldienste an den realen Kapitaldiensten insgesamt (Prozent)</th>
<th>Vereinigte Staaten</th>
<th>Deutschland</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herstellung chemischer Erzeugnisse</td>
<td>12,3</td>
<td>24,5</td>
</tr>
<tr>
<td>Maschinenbau</td>
<td>21,7</td>
<td>40,2</td>
</tr>
<tr>
<td>Fahrzeugbau</td>
<td>20,8</td>
<td>36,2</td>
</tr>
<tr>
<td>Sonstiges Verarbeitendes Gewerbe</td>
<td>16,2</td>
<td>30,3</td>
</tr>
<tr>
<td>Einzelhandel*</td>
<td>12,0</td>
<td>22,9</td>
</tr>
<tr>
<td>Großhandel</td>
<td>22,8</td>
<td>42,7</td>
</tr>
<tr>
<td>Finanzdienstleistungen</td>
<td>10,7</td>
<td>28,5</td>
</tr>
<tr>
<td>Unternehmensdienstleistungen</td>
<td>36,1</td>
<td>64,6</td>
</tr>
</tbody>
</table>

Anteile der IKT-Kapitaldienste an den realen Kapitaldiensten insgesamt in IKT-intensiven Wirtschaftszweigen.

* Die realen Kapitaldienste des Einzelhandels in Deutschland werden in KLEMS für den gesamten Zeitraum als negativ ausgewiesen.

Quelle: EU KLEMS; eigene Berechnungen.

In den frühen 2000er Jahren ist die IKT-Kapitalintensität der IKT-intensiven Wirtschaftszweige in den Vereinigten Staaten zwar deutlich langsamer gestiegen (Tabelle 6.3.1, vgl. auch Stiroh und Botsch 2007: 256), so dass ihr Beitrag zum Produktivitätswachstum deutlich zurückging (vgl. Abbildung 6.3.1, mittelgrüne Balkenelemente). Aber die Wirtschaftszweiggruppe verzeichnete dafür sehr viel stärkere Zuwächse bei der TFP (dunkelgrün). Dies wird vielfach darauf zurückgeführt, dass Unternehmen in diesem Zeitraum die Früchte ihrer vorherigen hohen IKT-Investitionen in Form kräftiger Effizienz-

174 Ein ähnliches Bild wie für die Vereinigten Staaten ergibt sich für die IKT-intensiven Wirtschaftszweige im Vereinigten Königreich.

Anders als KLEMS weist das Statistische Bundesamt einen leichten Anstieg der TFP in den IKT-intensiven Wirtschaftszweigen aus, so dass ihre TFP knapp 0,2 Prozentpunkte zum gesamtwirtschaftlichen Wachstum beigetragen hat (siehe Abbildung 6.3.2 weiter unten). Auch dieser positive Beitrag bleibt allerdings weit hinter dem entsprechenden Beitrag in den Vereinigten Staaten zurück (1,1 Prozentpunkte lt. KLEMS).

Abbildung 6.3.2: IKT und Produktivitätswachstum in Deutschland 2005-2013 (Prozentpunkte)

Quelle: Statistisches Bundesamt, Fachserie 18, Reihe 1.4; eigene Berechnungen.

178 Abbildung 6.3.2 zeigt die jährlichen Beiträge von TFP und Kapitalintensität zum Wachstum der Arbeitsproduktivität der Marktwirtschaft in Deutschland laut Statistischem Bundesamt. Kapital wird in Form des Kapitalstocks gemessen und eine Untergliederung der Beiträge der Kapitalintensität in IKT- und Nicht-IKT-Kapital ist nicht verfügbar.

Mikroökonometrische Studien

6.3.2 Ökonomische Gründe

In der ökonomischen Literatur werden im Wesentlichen drei Ursachen dafür diskutiert, dass deutsche und andere kontinentaleuropäische Unternehmen – und insbesondere Unternehmen der IKT-intensiven Wirtschaftszweige – die Möglichkeiten, die digitale Technologien bieten, bisher in nur geringerem Maße genutzt haben als Unternehmen im angloamerikanischen Raum: die „US Home Bias“- und die „US Management“-Hypothese sowie die im Durchschnitt niedrigeren Unternehmensgrößen. Speziell für Deutschland kommt die Vermutung hinzu, dass das duale Berufsbildungssystem die Anreize für IKT-Investitionen verringert. Insbesondere die US Home Bias- und die Management-Hypothese sind freilich nicht überschneidungsfrei. Hinter beiden stehen letztlich Argumente, die auf die wettbewerbs-

180 Kurzfristig können IKT-Investitionen sogar mit einer Verringerung der TFP einhergehen, wenn sie komplementäre Investitionen erfordern, beispielsweise in die Reorganisation des Unternehmens, die Ausbildung von Mitarbeitern, zusätzliche Forschungs- und Entwicklungsanstrengungen oder die Anpassung der Produktpalette oder der Vertriebswege (Basu et al. 2003; Brynjolfsson et al. 2003; Basu und Fernald 2007). Sie kommen entsprechend erst dann voll zum Tragen, wenn die komplementären Investitionen abgeschlossen sind.

181 Vgl. van Reenen et al. (2010: 35, Table I.5). Für französische Unternehmen schätzen sie etwas höhere Produktivitätseffekte von 1,4 bis 1,6 Prozent.

6.3.2.1 Die „US Home Bias“-Hypothese

Der unvollendete Europäische Binnenmarkt

Produktmarktregulierungen

\[183\] Auf Aspekte der Qualifikation von Arbeitskräften wird weiter unten in Abschnitt 6.3.2.4 eingegangen.
2012). Dies hemmt nicht nur die Produktivität der Unternehmen, die IKT produzieren oder nutzen. Es setzt sich über Wertschöpfungsketten auch auf nachgelagerte Produktionsstufen sowie letztlich die Verbraucher fort. So verringern restriktivere Marktregulierungen auch die Produktivität nachgelagerter Wertschöpfungsstufen signifikant (Cetcl et al., im Erscheinen).

Arbeitsmarktregulierungen

Sonstige Regulierungen

6.3.2.2 Die „US Management“ Hypothese

sennotierte Unternehmen in den Vereinigten Staaten, dass der Beitrag von IKT zum Unternehmenswert von einer Vielzahl komplementärer Faktoren abhängt. Die Kapitalmärkte honorieren offenbar die effiziente Nutzung auch immaterieller IKT-Güter und hohe IKT-Kompetenzen großzügig, einschließlich einer effizienten Unternehmensorganisation.186

\textbf{6.3.2.3 Unternehmensgrößenstruktur}

Abbildung 6.3.3: Beschäftigungsanteile nach Unternehmensgrößenklassen in Deutschland und Vergleichsländern 2012

Deutschland und die anderen kontinentaleuropäischen Länder sind in der Tat deutlich stärker durch KMU geprägt als die Vereinigten Staaten und das Vereinigte Königreich (Abbildung 6.3.3). 2012 arbeiteten in den Vereinigten Staaten knapp 60 Prozent der Erwerbstätigen in Unternehmen mit mehr als 250 Beschäftigten, während es in Deutschland und Frankreich nur knapp 40 Prozent und in Italien und Spanien sogar nur gut 20 Prozent waren. Die Anteile der KMU sind in Kontinentaleuropa entsprechend höher.

Auch deuten verschiedene Indikatoren darauf hin, dass KMU IKT zu einem kleineren Teil einsetzen als Großunternehmen. So zeigen zum Beispiel Daten der OECD, dass der Anteil der Unternehmen, die Internetdienste wie Breitbandanschluss, eine Webseite, Betriebsmittelplanungssoftware oder Cloud-Dienste überhaupt nutzen, unter kleineren Unternehmen niedriger ist als unter größeren Unternehmen (Abbildung 6.3.4). Dies gilt nicht nur für Deutschland, sondern gleichermaßen auch für andere europäische Länder.187 Für die Vereinigten Staaten liegen leider keine Daten vor. In der Tat sind die Unterschiede innerhalb der Größenklassen zwischen den Ländern vergleichsweise gering. Zwar ist zum Beispiel der Anteil der Unternehmen, die Cloud-Dienste nutzen, in Deutschland in allen Größenklassen etwas niedriger als beispielsweise im Vereinigten Königreich, aber dafür ist der Anteil der Unternehmen größer, die Betriebsmittelplanungssoftware nutzen. Dies deutet daraufhin, dass die internationalen Unterschiede in der gesamtwirtschaftlichen IKT-Intensität zumindest zum Teil auf unterschiedliche Unternehmensgrößenstrukturen zurückzuführen sein könnten.

6.3.2.4 Qualifikationsstruktur und das deutsche duale Berufsbildungssystem

Insbesondere die deutsche Wirtschaft könnte IKT bisher auch deshalb weniger intensiv eingesetzt haben, weil zumindest einige Gruppen von Arbeitskräften, die am Arbeitsplatz mit IKT konkurrieren, aufgrund ihrer Facharbeiterausbildung produktiver sind als vergleichbare angelernte Arbeitskräfte in Ländern wie den Vereinigten Staaten. Rendall und Weiss (2016) argumentieren, dass Unternehmen –

187 Vgl. auch Fabiani et al. (2005), die zeigen, dass die IKT-Intensität in italienischen Unternehmen systematisch mit der Unternehmensgröße zunimmt.
Abbildung 6.3.4: Nutzung von Internetdiensten nach Unternehmensgrößenklassen 2012

Anteile der Unternehmen in ihren jeweiligen Unternehmensgrößenklassen, die die jeweiligen Internetdienste nutzen.

190 Goos et al. (2014; Tabelle 2) beziffern den Rückgang des Beschäftigtenanteils im mittleren Einkommenssegment zwischen 1993 und 2010 in Deutschland auf 6,7 Prozentpunkte, verglichen mit 10,9 Prozentpunkten im Vereinigten Königreich, 12 in Spanien, 10,6 in Italien und 8,6 in Frankreich. Für die Vereinigten Staaten sind zwar direk vergleichbare Daten nicht verfügbar. Autor (2015: 14) beziffert allerdings den dortigen Rückgang des Beschäftigtenanteils im mittleren Einkommenssegment auf rund 10 Prozentpunkte.
signifikant sinkenden Anteil dieser Routine-Berufe, noch einen signifikanten Anstieg des Anteils geringqualifizierter Dienstleistungsberufe.

6.3.3 Fazit

6.4 Humankapital

Die Beziehungen zwischen Humankapital und Produktivitätsentwicklung umschließen einen inhaltlichen Aspekt und einen methodisch-statistischen Aspekt. Der inhaltliche Aspekt besteht darin, dass dem Anstieg des durchschnittlichen Humankapitals der Erwerbstätigen, wie er in allen Industrieländern seit Jahrzehnten zu beobachten ist, ein erheblicher positiver Effekt auf die Entwicklung der gesamtwirtschaftlichen Arbeitsproduktivität zugesprochen wird, weil die Produktivität hochqualifizierter Beschäftigter im Allgemeinen höher ist als die geringqualifizierter (Barro 2001; Bassanini und Scarpetta 2001; Cohen und Soto 2007; de la Fuente 2011; Hanushek und Wößmann 2012; OECD 2016d). Die Frage ist, inwieweit Deutschland im Vergleich zu anderen Ländern seine Humankapital-
basis ausbauen und in effektives (Arbeits-)Produktivitätswachstum umsetzen konnte. Dieser Einfluss ist bei den meisten Produktivitätsanalysen aber aufgrund eines methodischen Effekts gar nicht beobachtbar. Weil in diesen Analysen zumeist unterstellt wird, dass der Faktor Arbeit homogen ist, kann sich die Erhöhung des Humankapitalstocks nur im TFP-Wachstum niederschlagen; das Wachstum der TFP wird damit überzeichnet (Timmer et al. 2010: Kapitel 3.4). Dies ist der zweite, methodische Aspekt, der zudem die Deutung der empirischen Messgröße TFP als Indikator für technischen Fortschritt berührt (Jorgenson und Griliches 1967): Nur wenn andere Erklärungsfaktoren für die Produktivitätsentwicklung, wie etwa eine veränderte Zusammensetzung des Kapitaldienstes oder eben eine veränderte Zusammensetzung des Arbeitsinputs, zutreffend aus der Restgröße TFP herausgerechnet werden können, ist eine Deutung als technischer Fortschritt und ein internationaler Vergleich überhaupt erst erwägenswert. Im Folgenden wird untersucht, inwieweit das Wachstum der Arbeitsproduktivität eher auf humankapitalbedingte qualifizatorische Veränderungen des Arbeitsinputs als auf Veränderungen der TFP zurückzuführen ist, und welche Bedeutung Humankapital generell für die Produktivitätsentwicklung hat.

6.4.1 Empirischer Befund

Bei der Produktivitätsanalyse geht es um das im Produktionsprozess eingesetzte Humankapital, Daten sind allerdings oftmals nur für den insgesamt vorhandenen Humankapitalstock verfügbar, und sie unterliegen zudem vielen Einschränkungen (zu den Daten und den Problemen bei der Humankapitalmessung vgl. Abschnitt 3.6.2). Am ergiebigsten und am besten mit den vorstehenden Produktivitätsanalysen vergleichbar sind die Daten des auf Ausbildungsabschlüssen beruhenden KLEMS3-Datensatzes, denn sie sind zum einen recht detailliert (umfassen 3 Qualifikationsstufen x 3 Altersstufen x 2 Geschlechter = 18 Differenzierungsstufen) und sie beziehen sich zum anderen auf die eingesetzten Arbeitsstunden; sie reichen allerdings nur bis 2005.191 Nach KLEMS unterscheiden sich die Bildungsniveaus der verschiedenen Untersuchungsländer erheblich (Abbildung 6.4.1): Deutschland scheint danach nahezu das geringste Qualifikationsniveau von allen untersuchten Ländern zu haben, mit einem geringeren Anteil an Hochqualifizierten als sogar Spanien und Italien (blaue Segmente der Säulen), und mit dem zweithöchsten Anteil an Geringqualifizierten hinter Spanien (rote Segmente der Säulen), und die Qualifikation der Frauen scheint noch geringer zu sein als die der Männer.

Das beste Qualifikationsniveau scheinen jedoch, Männer und Frauen zusammengenommen, die Vereinigten Staaten zu haben; je nach Datensatz weisen sie Anteile von teilweise mehr als 50 Prozent der Bevölkerung mit Tertiär bildung (blau) auf, und der Anteil der Geringqualifizierten (rot) erscheint damit durchweg besonders niedrig. Ziemlich gut schneidet außerdem Japan ab. Während solches Ergebnis für Japan kaum überrascht, wirft das hervorragende Abschneiden der Vereinigten Staaten Fragen nach der Zuverlässigkeit der Messkonzepte auf, insbesondere angesichts formaler Unterschiede von Bildungswegen, die nicht notwendigerweise auch qualifikatorische Unterschiede begründen. So werden für die Vereinigten Staaten in der Regel alle College-Ausbildungen als Tertiärabschluß gezählt, während in Deutschland beispielsweise nicht einmal Fachhochschulabschlüsse dazu gerechnet werden (so bei KLEMS, Abschnitt 3.6.2). Es ist auch bekannt, dass viele Berufe, die in Deutschland

Untersuchungen, die auf tatsächliche Fähigkeiten von Menschen abstellen statt auf absolvierte Ausbildungsgänge, und die sich damit dem eigentlichen, an den Arbeitsleistungen orientierten Konzept von Humankapital stärker annähern, kommen zu anderen Ergebnissen (Abbildung 6.4.2). Hanushek und Woßmann (2012), die sich auf Tests unter Schülern wie TIMSS, PISA und ähnlichen stützen (Abschnitt 3.6.2), finden vor allem einen großen Vorsprung Japans vor allen anderen Vergleichsländern. Deutschland schneidet ein wenig besser als die Vereinigten Staaten und sehr viel besser als Italien und Spanien ab, Frankreich steht ebenfalls besser da als nach den anderen Statistiken. Allerdings sind Ergebnisse für Schüler nicht repräsentativ für die Bevölkerung; bis die Fähigkeiten einer jungen Generationskohorte die gesamte (Erwerbs-)Bevölkerung durchdrungen haben, vergehen Jahrzehnte.

Von daher ist die neue PIAAC-Erhebung der OECD (2016b) besonders interessant, weil sie sich auf die Kompetenzen der erwachsenen Bevölkerung (16-65 Jahre) bezieht. Auch dabei fällt wieder die herausragende Stellung Japans auf, zumindest was Leseverständnis und numerisches Verständnis angeht. Und wiederum liegt Deutschland ein wenig vor den Vereinigten Staaten und etwa gleichauf mit dem Vereinigten Königreich, während Frankreich, Spanien und Italien dagegen abfallen. Man kann also schlussfolgern, dass die auf formalen Bildungsabschlüssen aufgebauten Daten das Humankapital Deutschlands möglicherweise systematisch unterzeichnen. Allerdings lässt sich diese Unterzeichnung offenbar nicht auf eine unangemessene Erfassung des beruflichen Ausbildungssystems zurückführen. Eine auf der PIAAC-Erhebung aufbauende OECD-Studie findet jedenfalls, dass die berufliche Ausbildung gegenüber der akademischen Ausbildung auf allen Bildungsstufen deutlich zurückbleibt, mit einem Rückstand von durchschnittlich 2-3 geringeren erreichten Punkten bei Leseverständnis, numerischem Verständnis und Problemlösungsfähigkeiten (Brunello und Rocco 2015).
Abbildung 6.4.2: Kognitive Fähigkeiten nach verschiedenen Datenquellen

Quelle: Hanushek und Wößmann (2012); OECD (2016b); eigene Berechnungen.

Woran immer nun eine mögliche Unterschätzung des deutschen Humankapitalstocks im Vergleich zu anderen Ländern liegen mag, die Autoren der KLEMS-, Barro-Lee- und de-la-Fuente-Doménech-Daten-sätze betonen ohnehin, dass der direkte Vergleich von Bildungsniveaus zwischen den Ländern problematisch sei. Die Datensätze seien vor allem dafür gedacht, die Veränderungen über die Zeit widerzugeben und zu vergleichen – im Rahmen unserer Analyse des Produktivitätswachstums ist das auch völlig ausreichend. Allerdings zeigt ein Vergleich der zeitlichen Entwicklung des Humankapitals nach diesen verschiedenen Datensätzen ebenfalls erhebliche Unterschiede (Abbildung 6.4.3).

Ein gewisser, aber nicht vollständiger, Ausgleich unzulänglicher Differenzierungen ergibt sich bei unseren Berechnungen außerdem daraus, dass die jeweiligen Entlohnungen der verschiedenen Qualifikationsstufen in die Analyse eingehen.
Abbildung 6.4.3: Humankapitalveränderungen nach verschiedenen Datenquellen

*Geleistete Arbeitsstunden nach Art der Qualifikation und Alter, ISIC Rev.3, Marktsektor ohne Grundstücks- und Wohnungswe
sen und Öffentliche Dienstleister. Keine Daten für Frankreich verfügbar. – † Letzter erreichter Bildungsstand der Bevölkerung 15+. – ‡ Bildungsergebnisse der Bevölkerung 25+. – ¶ Bildungsniveaus der Bevölkerung 25+. Quelle: EU KLEMS; World KLEMS; Barro und Lee (2010); de la Fuente und Doménech (2012); OECD (2016a); eigene Berech
ungen.
So wies Deutschland nach den KLEMS-Daten (obere Graphik) kaum Veränderungen des Humankapitaleinsatzes auf – die Zuwachsraten im Bereich hoher Qualifikation (blaue Linien) bewegten sich danach im niedrigen positiven Prozentbereich bis etwa 1,3 Prozent jährlich und stiegen nur im Falle der älteren hochqualifizierten Erwerbstätigen (blau gestrichelt) im Zeitraum 2000-2005 auf 4,4 Prozent jährlich, sanken sogar im Falle der jungen hochqualifizierten (blau gepunktet) im gleichen Zeitraum auf -4,8 Prozent jährlich. Im Bereich mittlerer Qualifikation (grüne Linien) nahm der Humankapitaleinsatz dagegen ab, wenn auch ebenfalls nur geringfügig (ca. -1 Prozent), während er im Bereich geringer Qualifikation (rote Linien) bereits ab der Periode 1995-2000 noch einmal leicht verstärkt 2000-20005 zunahm. Diese Ergebnisse dürften u.a. von den deutschen Renten- und „Hartz“-Reformen geprägt sein, nach denen z.B. gesetzliche Frühverrentungsmöglichkeiten eingeschränkt und Beschäftigungsmöglichkeiten für Geringqualifizierte ausgeweitet wurden (Abschnitte 6.5 und 6.7).

Nach den anderen Datensätzen fällt Deutschland nicht derartig aus dem Rahmen. Zwar verzeichnen auch diese Datensätze nur geringe Veränderungen der Qualifikationen in Deutschland; aber auch in den Vergleichsländern sind die Änderungen überwiegend nicht so groß. Im Datensatz von Barro und Lee (2010) treten zwar einige erhebliche Sprünge auf, die allerdings eher auf Datenprobleme zurückzuführen sein dürften als auf reale Vorgänge (De la Fuente und Doménech 2012). Davon abgesehen, ist die Zahl von Personen mit Tertiärausbildung (blaue Linien) nach diesen Daten in den USA eher langsamer und in den meisten anderen Ländern nur geringfügig schneller als in Deutschland gestiegen, und nahm die Zahl der Personen mit Elementarbildung (rote Linien) überall meist ab, mit überall über die Zeit stark schwankenden Raten. Nach dem de-la-Fuente-Doménech-Datensatz werden zwar eben-

falls die Veränderungen in allen Ländern als ähnlich gering wie in Deutschland eingeschätzt; einzelne Datenreihen sehen aber anders aus. So nahm danach in Deutschland die Zahl der Geringqualifizierten in der Bevölkerung nach 1995 zu – ähnlich wie die entsprechenden Arbeitsstunden nach KLEMS, und genau entgegengesetzt zu den Barro-Lee- und OECD-Daten.

Abbildung 6.4.4:
Entwicklung der Arbeitslosigkeit in Deutschland und Vergleichsländern 1990-2015

In der Erwerbsbevölkerung (15-64 Jahre).
Quelle: OECD (2016c).

Für die Gesamtbevölkerung 15+ und für die Erwerbsbevölkerung bewegten sich die Veränderungsraten dagegen selbst nach den Daten des Statistischen Bundesamtes sowohl bei Schul- wie bei Berufsabschlüssen im international gesehen vergleichsweise niedrigen Bereich von minimal -4 bis maximal +5 Prozent pro Jahr (Abbildung 6.4.5). Die Abiturientenzahlen wiesen zwar durchweg positive, aber abnehmende Zuwachsraten auf, die Zahl der Hochschulabsolventen ging zeitweilig im Zeitraum 1995-2000 sogar zurück. Die mittleren Schul- und Bildungsabschlüsse zeigten Zuwachsraten nahe 0; rückläufig war vor allem die Zahl der Hauptschulabsolventen. Dagegen stieg die Zahl der Geringqualifizierten (ohne Schulabschluss/ohne Berufsabschluss) lange Zeit noch an; und dies nicht nur im Falle der Erwerbstätigen, wo man diesen Anstieg auf eine Eingliederung geringqualifizierter Arbeitsloser in den Arbeitsmarkt zurückführen könnte, sondern auch im Fall der Bevölkerung 15+.

Insgesamt kann man festhalten, dass die verfügbaren Daten zum Humankapital nicht sehr zuverlässig sind. Sie orientieren sich überwiegend an formalen Abschlüssen anstatt an eingesetzten Fähigkeiten. Sie vernachlässigen damit zusätzliche Humankapitalelemente, wie nichtformale Bildung, „on-the-job-training“, Kreativität und Erfahrung, ebenso wie Abstriche, die für nichtgenutzte, vergessene oder obsolette Bildungsinhalte gemacht werden müssten (Folloni und Vittadini 2010). Außerdem schwanken sie erheblich je nach herangezogenen Quellen und Bearbeitungen. Diese Divergenzen betreffen nicht nur die Niveaus des Humankapitalbestandes, sondern auch die zeitliche Entwicklung. Für Deutschland ergeben sich nach allen Datensätzen eher geringe Erhöhungen des Humankapitals. In den Vergleichsländern unserer Analyse könnten die KLEMS-Daten, die am besten ausgearbeitet sind, um in die Produktivitätsanalysen nach der Indexmethode eingebaut zu werden, im Vergleich zu anderen Quellen die Humankapitalentwicklung zu vorteilhaft darstellen. Diese Einschränkungen sind zu beachten, wenn im Folgenden die Beiträge des Humankapitals zur Produktivitätsentwicklung betrachtet werden.

Abbildung 6.4.5:
Humankapitalveränderungen in Deutschland nach Statistischem Bundesamt 1991-2014

Veränderungsraten, Bevölkerung 15+

Veränderungsraten, Erwerbstätige

Schulabschlüsse: linke Skala, Berufsabschlüsse: rechte Skala.

Quelle: Statistisches Bundesamt (2015a); eigene Berechnungen.
6.4.2 Einfluss auf die Entwicklung von TFP und Arbeitsproduktivität

Produktionstheoretisch kann die Wirkung des Humankapitals auf die Produktivität in verschiedener Weise modelliert – und dementsprechend auch empirisch gemessen – werden. So kann Humankapital als Beitrag zur TFP, als eigener Produktionsfaktor oder als Element des Faktors Arbeit aufgefasst werden.

- Im ersten Fall, bei der Zurechnung zur TFP, wird das Humankapital als Determinante für die Veränderungsrate des technischen Fortschritts – als Bestandteil der TFP – verstanden (de la Fuente 2011). Dafür kann eine Funktion des technischen Fortschritts formuliert werden, die als Argumente Humankapital nebst beispielsweise einem Indikator für F&E-Investitionen und einem Indikator
für den Rückstand zur technologischen Grenze enthält. Mit einem solchen Ansatz kann man den technischen Fortschritt als Kombination aus technischen Errungenschaften ebenso wie neuen Fertigkeiten der Arbeitskräfte analysieren. Das kann sinnvoll sein, wenn man beispielsweise an die Produktivitätssteigerungen durch zunehmend verbesserte Software denkt: Der Fortschritt resultiert aus der Verbindung leistungsfähigerer Computer und im Prozess steigender Fähigkeiten der beteiligten Arbeitskräfte, wodurch sich gleichzeitig deren Humankapital erhöht; es ist kaum möglich, diese Zusammenhänge auseinander zu rechnen.

- Andere Ansätze zielen darauf ab, die TFP soweit wie möglich von allen Einflussfaktoren, die man identifizieren kann, frei zu halten; TFP wird dann als eine Rest-Produktivität verstanden, die möglichst vollständig exogen ist und somit leichter als Effekt ungebundenen technischen Fortschritts interpretiert werden kann. Der Humankapitalstock wird dazu als weiterer Produktionsfaktor in der Produktionsfunktion aufgefasst, zusätzlich zu Arbeit, Kapital und TFP.

- Schließlich kann Humankapital als Komponente eines zusammengesetzten Faktors Arbeit aufgefasst werden, was sich empfiehlt, wenn sich Arbeit und Humankapital nur schwer trennen lassen. Bei der Komponentenzerlegung wird der Arbeitseinsatz je nach vorhandener Qualifikation der eingesetzten Arbeitskräfte und zusätzlichen Faktoren wie z.B. ihrem Alter und Geschlecht aufgespalten. Je nach geschätzter Substitutionselastizität lassen sich die Teile dann zu einem Arbeitskompositionseffekt aggregieren. Wichtige Annahmen hierzu betreffen z.B. Restriktionen für die Substitutionselastizität (ob sich sämtliche Substitutionselastizitäten zu 1 ergänzen sollen – konstante Skalenentwürfe – oder ob auch anderes zugelassen wird).

Welches Konzept letztlich sinnvoll ist, hängt immer von der Art der zu untersuchenden Fragestellung ab. Hier geht es darum, den Einfluss des Faktors Humankapital auf die in Kapitel 5.2 gefundenen detailierten Ergebnisse zu untersuchen, und daher empfiehlt es sich, die dort genutete Indexmethode mit einer Komponentenzerlegung weiter zu führen. Nach Abschnitt 4.2. lässt sich die Änderung des Arbeitseinsatzes im Sektor \(j \), \(\Delta \ln L_j \), in zwei Komponenten zerlegen, in einen Arbeitskompositionseffekt, \(\Delta \ln LC_j \), der die Änderung der Arbeitszusammensetzung widerspiegelt, und einen Mengeneffekt, \(\Delta \ln H_j \), der die Änderung der insgesamt eingesetzten Arbeitsstunden widergibt:

\[
\Delta \ln L_j = \Delta \ln LC_j + \Delta \ln H_j
\]

(6.4.1)

Daraus ergibt sich für die Änderungen der TFP (\(Z_j \) Bruttowertschöpfung, \(K_j \) Kapitalinput, \(s_{L_j} \) und \(s_{K_j} \) Produktionselastizitäten von Arbeit und Kapital,\(^{194}\) jeweils im Sektor \(j \)):

\[
\Delta \ln \text{TFP}_j = \Delta \ln Z_j - s_{L_j} \Delta \ln L_j - s_{K_j} \Delta \ln K_j = \Delta \ln Z_j - s_{L_j} \Delta \ln H_j - s_{L_j} \Delta \ln LC_j
\]

(6.4.2)

\(^{194}\) Wie in Abschnitt 4.2 beschrieben, werden die Produktionselastizitäten (bzw. Faktorentlohnungen) von Arbeit und Kapital dabei gemessen als arithmetische Mittel der Anteile des jeweiligen Faktors an der nominalen Bruttowertschöpfung in Periode \(t \) und Periode \(t-1 \).
und für die Bereinigung einer zunächst „naiv“, ohne Kompositionseffekt, berechneten TFP:

\[
\Delta \ln TFP_{j}^{ber} = \Delta \ln TFP_{j}^{nber} - \overline{\sigma}_{j} \Delta \ln LC_{j} .
\]

(6.4.3)

Die Ergebnisse dieser Zerlegung, berechnet anhand der KLEMS3-Daten, sind in Abbildung 6.4.6 für Deutschland, die USA, das Vereinigte Königreich, Italien, Spanien und Japan dargestellt, und zwar für den Marktsektor, also für die Gesamtwirtschaft ohne Wohnungswesen und ohne öffentliche Dienstleistungen. Gezeigt wird, wie sich das aus dem Abschnitt 5.2. bekannte, unbereinigte TFP (schwarze Linie), aus dem Arbeitskompositionseffekt (grüne Segmente der Säule) und dem verbleibendem bereinigten TFP (graue Segmente der Säule) zusammensetzt. Der Arbeitskompositionseffekt umfasst dabei die vorgenannten 18 Differenzierungen des Humankapitals (Abbildung 6.4.1). Da das TFP-Wachstum seinerseits einen Beitrag zur Arbeitsproduktivität leistet (Abschnitte 4.2. und 5.2.), kann man von diesen Ergebnissen auch darauf schließen, wie die Veränderung des Humankapitals die Entwicklung der Arbeitsproduktivität beeinflusst (rote Linie).

Auf der Ebene der einzelnen Sektoren fällt für Deutschland auf, dass der Humankapitalbeitrag in manchen Fällen sogar negativ war, d.h., eine verringerte Humankapitalausstattung hat in diesen Sektoren das Produktivitätswachstum verlangsamt (so in der Landwirtschaft, zeitweilig im Handel, Verkehr und Gastgewerbe und bei den Sonstigen Dienstleistungen), auch wenn der verbleibende TFP-Beitrag teilweise kompensierend wirkte. Die Hintergründe dazu variieren: Im Falle der Landwirtschaft haben sich bei insgesamt stark rückläufigem Arbeitseinsatz nur die Beiträge von Hoch- und Mittelqualifizierten vermindert, während die Geringqualifizierten übrigblieben. Im Falle der Sonstigen Dienstleistungen sind dagegen bei insgesamt steigendem Arbeitseinsatz verstärkt auch Geringqualifizierte integriert worden. Diese Effekte traten vor allem vor 2000 auf, sie können also nicht auf die „Hartz“-Arbeitsmarktreformen zurückgeführt werden (Abschnitt 6.7).

Erhöhungen des eingesetzten Humankapitals, und damit positive Beiträge zur Produktivitätsentwicklung (und entsprechend verminderte Beiträge der bereinigten TFP), traten in Deutschland dagegen in nennenswerter Weise nur zeitweilig im Produzierenden Gewerbe auf. Dort wurde bei insgesamt sinkenden eingesetzten Arbeitsstunden vor allem der Einsatz von Geringqualifizierten abgebaut.
Abbildung 6.4.6: Bereinigung des TFP-Wachstums um den Kompositionseffekt der Arbeit 1991-2005

Unbereinigtes TFP-Wachstum berechnet auf Basis von Kapitaldiensten, ISIC Rev.3. – Inkl. Reallokationseffekt (Abschnitt 5.2).

Quelle: EU KLEMS; World KLEMS; eigene Berechnungen.

Eine alternative Berechnung des Arbeitskompositionseffektes, bei der nur die drei Qualifikationsstufen, nicht jedoch Geschlecht und Altersgruppen berücksichtigt werden (hier nicht dargestellt), liefert übrigens ein nahezu deckungsgleiches Bild zu Abbildung 6.4.6. Demzufolge werden alle beobachteten Humankapitaleffekte ganz überwiegend von den Qualifikationsunterschieden getrieben, kaum jedoch vom Geschlecht und vom Alter der eingesetzten Arbeitskräfte.

Die methodische Frage, inwieweit die TFP-Veränderungen durch Nichtberücksichtigung des Arbeitskompositionseffektes falsch eingeschätzt werden, beantwortet sich für Deutschland insgesamt dahingehend, dass es praktisch keine solche Fehleinschätzung gegeben hat – sofern die KLEMS-Daten die Humankapitalentwicklung zutreffend beschreiben. Für andere Länder und für einzelne Sektoren selbst in Deutschland ist das anders: Dabei wird das TFP zumeist überschätzt; ein Teil des Effektes, der sonst vielleicht als Steigerung des technischen Fortschritts interpretiert würde, war insbesondere im Vereinigten Königreich, in Spanien und Japan den KLEMS-Daten zufolge auf eine erhöhte Humankapitalzusammensetzung bei der eingesetzten Arbeit zurückzuführen. Unter den Wirtschaftsbereichen galt dies vor allem für die Unternehmensdienstleistungen (außer in Deutschland), die Sonstigen Dienstleistungen (außer in Deutschland), Handel, Verkehr und Gastgewerbe (außer in Deutschland) und das Produzierende Gewerbe.

Die inhaltliche Frage, inwieweit Humankapitalerhöhungen die Entwicklung der TFP und der Arbeitsproduktivität vorangebracht haben, lässt sich dagegen nur schwer beantworten, weil mit der Indexmethode keine Kausalitäten untersucht, sondern allenfalls Koinzidenzen aufgezeigt werden können. Aber auch solche Koinzidenzen sind nicht sehr ausgeprägt. So lässt sich keine komplementäre oder substitutive Beziehung der Humankapitalerhöhungen zur bereinigten TFP erkennen; weder wuchs die TFP generell, wenn sich die Humankapitalzusammensetzung in Richtung höherer Qualifikation verschob, noch ersetzte die TFP generell eine sich verschlechternde Humankapitalausstattung. Vielmehr reicht die Beziehung von einer ausgeprägt gleichgerichteten Entwicklung (z.B. im Vereinigten Königreich, insbesondere Produzierendes Gewerbe, Handel, Verkehr und Gastgewerbe und Kredit- und Versicherungsgewerbe) bis zu einer ausgeprägt gegenläufigen Entwicklung (z.B. in Spanien, insbesondere Unternehmensdienstleistungen und Sonstige Dienstleistungen). Auf die Entwicklung der Arbeitsproduktivität...
vität haben die Humankapitalveränderungen insgesamt nur wenig Einfluss gehabt; denn diese ist erkennbar eng mit der Entwicklung der unbereinigten TFP korreliert, also mit den soldierten Beiträgen aus bereinigtem TFP und Humankapitalveränderung. Die Entwicklung dieser unbereinigten TFP wiederum wurde vor allem von derjenigen der bereinigten TFP und nicht von den Humankapitalveränderungen geprägt.

6.4.3 Fazit

Insgesamt hatten die Humankapitalveränderungen nach unseren Berechnungen also einen eher geringen Einfluss auf das Wachstum der Arbeitsproduktivität. Diese Aussage steht allerdings vor dem Hintergrund, dass die Messung des Humankapitals durch den KLEMS-Datensatz, wie der meisten anderer bislang bekannten Messkonzepte, unzulänglich ist. Eine Fehlspezifikation kann jedoch dazu führen, dass die Wirkung des Humankapitals auf die Produktivitätsentwicklung erheblich unterschätzt wird. Für eine geeignetere Messung des Humankapitalbestandes gibt es also durchaus noch großen Forschungsbedarf. So könnte beispielsweise der PIAAC-Datensatz, der Kompetenzen statt Abschlüsse misst, weiter ausgebaut werden; wünschenswert wäre die Gewinnung einer Zeitreihe. In Deutschland scheinen allerdings die Erhöhungen des Humankapitalstocks, im internationalen Vergleich gesehen, gering gewesen zu sein; erheblich mehr Bildungsanstrengungen könnten zu einer Erhöhung der Arbeitsproduktivität beitragen.

6.5 Demografische Entwicklungen

Grundsätzlich lassen sich somit zwei Herangehensweisen zur Analyse demografischer Effekte auf die Produktivitätsentwicklung unterscheiden. Zum einen die Betrachtung der Altersstruktur des aktiven Teils der Bevölkerung, d.h. der Erwerbstätigen (Feyrer 2007; Raciborski und Thum 2016). Alternativ die Betrachtung der Altersstruktur der Gesamtbevölkerung (Sarel 1995; Kögel 2005). Während erstere Abgrenzung, insbesondere mit Blick auf die Arbeitsproduktivität, einen direkten Zusammenhang zwischen Produktivität und Altersstruktur vermuten lässt (die Produktivität eines Aktiven kann über die

195 Die verbleibende Differenz erklärt sich aus dem Wachstumsbeitrag der Kapitalintensität, vgl. dazu Abschnitt 5.2.

In der folgenden empirischen Untersuchung werden zunächst die Effekte der Altersstruktur der Erwerbstätigen auf Arbeitsproduktivität und TFP in Deutschland und den USA untersucht. Danach wird geprüft, inwieweit sich die Ergebnisse ändern, wenn man statt dessen die gesamtgesellschaftliche Altersstruktur berücksichtigt. In beiden Fällen wird jeweils ein Panel von 20 fortgeschrittenen Volkswirtschaften herangezogen.196 Zeitreihen zu den abhängigen Variablen Arbeitsproduktivität bzw. TFP stammen jeweils von der OECD.

6.5.1 Effekte der Altersstruktur der Erwerbstätigen

$$y_{it} = \alpha + \sum_{k=1}^{11} \beta_k n_{kit} + \delta x_{it-1} + \rho y_{it-1} + \lambda_i + \eta_t + \epsilon_{it}, \quad (6.5.1)$$

wobei y_{it} die Veränderungsraten der Arbeitsproduktivität (Stundenbasis) bzw. der TFP darstellt und n_{kit} die 11 Alterskohorten umgerechnet als Anteile an der Gesamtzahl der Erwerbstätigen. Als zusätzliche Kontrollvariable wird das pro-Kopf-Einkommen der Vorperiode (x_{it-1}) berücksichtigt, um für mögliche Aufholprozesse zu kontrollieren. λ_i und η_t sind die Länder- bzw. zeitspezifischen Effekte. Die

196 Folgende Länder sind in der Analyse berücksichtigt: Australien, Österreich, Belgien, Kanada, Dänemark, Finnland, Frankreich, Deutschland, Irland, Italien, Japan, Korea, Niederlande, Neuseeland, Portugal, Spanien, Schweden, Schweiz, Vereinigtes Königreich und Vereinigte Staaten. Die Auswahl ist bedingt durch die Verfügbarkeit von Daten zur TFP.
Fehler e_{it} sind im Mittel null und über die Zeit unkorreliert. Länderspezifische Varianzen sind zugelassen.\footnote{Die festen Effekte zusammen mit allen Anteilen erzeugen perfekte Multikollinearität. In der Schätzung wird daher ein Anteilswert (die erste Kohorte) ausgelaßen und für die spätere Analyse werden die Koeffizienten so umgerechnet, dass der Mittelwert aller Koeffizienten gleich Null ist. Eine perfekte Gleichverteilung der Arbeitskräfte hätte somit keinerlei Effekt.}

Die Schätzung für $k=11$ Alterskohorten („direkter Ansatz“) impliziert eine Vielzahl an zu schätzenden Parametern und Multikollinearitätsprobleme kann die Schätzung deutlich beeinflussen, so dass die Interpretation der Koeffizienten einzelner Alterskohorten problematisch werden kann. Wir folgen daher dem Ansatz von Juselius und Takats (2015) und reduzieren die Zahl der zu schätzenden Parameter durch die Verwendung eines Polynom-Ansatzes. Der Koeffizient β_k ergibt sich demnach als gewichtete Summe von Parametern γ_p und dem Polynom, wobei die Anzahl der Parameter kleiner als k ist:

$$\beta_k = \sum_{p=0}^{P} \gamma_p k^p$$ \hspace{1cm} (6.5.2)

Bei diesem Ansatz werden die Regressoren, die die Anteile der Alterskohorten repräsentieren, entsprechend der neuen Formulierung der Schätzparameter umgerechnet:

$$\bar{f}_{p_{it}} = \sum_{k=1}^{11}(k^p n_{kit} - k^p/11).$$ \hspace{1cm} (6.5.3)

Es ergibt sich somit folgende Schätzgleichung:

$$y_{it} = \alpha + \sum_{p=1}^{P} \gamma_p \bar{f}_{p_{it}} + \delta x_{it-1} + \rho y_{it-1} + \lambda i + \eta_t + \epsilon_{it}.$$ \hspace{1cm} (6.5.4)

Die Zahl der Parameter P ist a priori nicht festgelegt. Wir werten daher die Informationskriterien AIC und BIC aus, die ein Polynom der Ordnung 6 favorisieren.

über Ausreißern. Positiv scheint insbesondere die Kohorte der 50-54 Jährigen und der 50-59 Jährigen auf die Produktivität zu wirken. Für ältere Kohorten flachen die Effekte wieder ab.

Abbildung 6.5.1:
Effekte der Beschäftigungsanteile der Alterskohorten auf die Produktivität

Quelle: Eigene Berechnungen.

Abbildung 6.5.2:
Effekte der Verschiebung der Beschäftigungsanteile der Alterskohorten über die Zeit 1986-2015 (Deutschland)

Quelle: Eigene Berechnungen.

Die geschätzten Koeffizienten können in einem nächsten Schritt mit den Daten zu den Alterskohorten in Deutschland zusammengebracht werden. Somit kann der Beitrag der Alterskohorten an der Veränderung der Arbeitsproduktivität bzw. der TFP über die Zeit dargestellt werden (Abbildung 6.5.2). Wiederum sind die Ergebnisse für die direkte Schätzung der Koeffizienten der Alterskohorten recht volatil. Ein besser interpretierbares Bild liefert der Ansatz über die Schätzung des Polynoms. Es zeigt sich, dass in den 90er Jahren die Arbeitsproduktivität (bzw. die TFP) durch die Demografie gestärkt wurde. Der
Effekt nahm jedoch gegen Ende der 90er Jahre ab und in den 2000er Jahren dürfte die demografische Entwicklung negativ auf die Produktivität gewirkt haben. Erst gegen Ende des Schätzzeitraums finden sich gemäß der vorliegenden Schätzungen wieder leicht positive Effekte.

6.5.2 Vergleich mit den USA

Analog zu der Analyse für Deutschland lassen sich die Schätzergebnisse auch auf die spezifische Situation in den USA übertragen. Abbildung 6.5.3 zeigt für die USA den Effekt der Beschäftigungsanteile der Alterskohorten auf die Veränderung der Arbeitsproduktivität bzw. der TFP über die Zeit. Die Resultate basierend auf dem Polynom-Ansatz deuten darauf hin, dass die Altersstruktur der Erwerbstätigen in den USA in den Jahren 1990-2010 leicht positiv oder neutral auf die Produktivität gewirkt hat. In den Jahren nach 2010 scheint die Altersstruktur der Erwerbstätigen das Produktivitätswachstum jedoch leicht zu dämpfen. Interessanterweise sind die Unterschiede zwischen Deutschland und den USA in Bezug auf die Effekte der demografischen Entwicklung im Einklang mit der unterschiedlichen Entwicklung der Produktivitätsmaße in beiden Ländern.

Abbildung 6.5.3:
Effekte der Verschiebung der Beschäftigungsanteile der Alterskohorten über die Zeit (USA) 1986-2015

Quelle: Eigene Berechnungen.

6.5.3 Effekte der gesamtgesellschaftlichen Altersstruktur

Im Folgenden wird untersucht, inwieweit Veränderungen der gesamtgesellschaftlichen Altersstruktur Auswirkungen auf die Produktivität haben. Dazu wird die durchschnittliche Veränderung der TFP über einen Zeitraum von fünf Jahren auf die Bevölkerungsanteile verschiedener Alterskohorten regressiert. Der Fünfjahresrhythmus ist dabei der Datenlage geschuldet: Die Alterskohorten sind den World Population Prospects der Vereinten Nationen entnommen, die nur für alle fünf Jahre Daten angeben. So weit möglich werden Daten ab 1970 in die Regression einbezogen. Für viele der zwanzig Länder sind allerdings Daten zur TFP erst ab einem späteren Zeitpunkt verfügbar, so dass wiederum ein unbalan-
ciertes Panel vorliegt. Das Panelmodell wird mit festen zeitlichen und länderspezifischen Effekten geschätzt. Die Modellgleichung lautet:

$$y_{it} = \alpha + \sum_{k=1}^{17} \beta_k n_{kit} + \delta x_{it-1} + \lambda_i + \eta_t + e_{it}, \quad (6.5.4)$$

wobei y_{it} die Veränderungsrate der TFP über eine Periode von fünf Jahren darstellt. n_{kit} sind die 17 Alterskohorten, die aus den Daten der Vereinten Nationen entnommen werden können. Wie zuvor sind immer fünf Jahrgänge in einer Kohorte zusammengefasst (0-4 Jahre, 5-9 Jahre, ..., 75-79 Jahre, sowie Personen, die 80 Jahre und älter sind). Die Kohorten sind jeweils zu Anteilen an der Gesamtbevölkerung umgerechnet. Das pro-Kopf-Einkommen der Vorperiode (x_{it-1}) wird als zusätzliche Kontrollvariable berücksichtigt, λ_i und η_t sind die länder- bzw. zeitspezifischen Effekte. Möglichen Problemen einer Schätzung für 17 Alterskohorten wird wiederum mit einem Polynom-Ansatz begegnet. Die Informationskriterien AIC und BIC favorisieren in diesem Fall ein Polynom der Ordnung 7.

Schließlich sollen die Ergebnisse mit Bezug auf die Veränderung der TFP der beiden Herangehensweisen (Beschäftigungsanteile der Alterskohorten sowie Bevölkerungsanteile der Alterskohorten) direkt in Beziehung gesetzt werden. Da es sich bei der ersten Analyse um Vorjahresvergleiche und bei der zweiten Analyse um Fünfjahresvergleiche handelt, werden hierzu die Ergebnisse der ersten Analyse entsprechend transformiert. Die nach der Transformation resultierenden Ergebnisse korrespondieren erstaunlich gut mit denen, die auf einer Regression des TFP-Wachstums auf die Bevölkerungsanteile der Alterskohorten basieren (Abbildung 6.5.5). Die grundsätzliche Tendenz dürfte also nicht vom Fokus auf Erwerbstätige oder auf die Gesamtbevölkerung abhängen.
Abbildung 6.5.4:
Effekte der gesamtgesellschaftlichen Altersstruktur

Quelle: Eigene Berechnungen.

Abbildung 6.5.5:
Vergleich der Effekte der Verschiebung der Beschäftigungsanteile und der Bevölkerungsanteile der Alterskohorten über die Zeit 1975-2015 (Deutschland)

Quelle: Eigene Berechnungen.

6.5.4 Fazit

Demografische Entwicklungen dürften in den 90er Jahren das Produktivitätswachstum (gemessen anhand der Arbeitsproduktivität oder der TFP) um rund 0,2 Prozentpunkte pro Jahr gestützt haben. In den 2000er Jahren wirkten sie dagegen in ähnlicher Größenordnung dämpfend. Am aktuellen Rand scheinen die dämpfenden Effekte wieder ausgelaufen zu sein. Die aus der Analyse resultierenden Punktsschätzer sind allerdings mit einiger Unsicherheit behaftet und daher ist eine gewisse Vorsicht bei den Schlussfolgerungen geboten. Nichtsdestotrotz deuten die Ergebnisse darauf hin, dass demografi-
sche Entwicklungen für sich genommen zu einer tendenziellen Verlangsamung des Produktivitäts-
wachstums über die vergangenen 25 Jahre geführt haben.

6.6 Arbeitsmarktspezifische Entwicklungen

Deutschland verzeichnete in den zehn Jahren zwischen 2005 und 2015 einen nahezu ununter-
brochenen Beschäftigungsanstieg um insgesamt 3,7 Mill. Erwerbstätige oder 9,5 Prozent. Dies ist der
stärkste kontinuierliche Beschäftigungsaufbau seit der Zeit zwischen 1983 und 1991, gemessen am
Stundenvolumen sogar der stärkste seit mindestens 1970. Drei Faktoren sind für den aktuellen Be-
schäftigungsaufbau von besonderer Bedeutung:

1. die seit Anfang der 2000er Jahre bis heute andauernde **Lohnmoderation**,
2. die zwischen 2003 und 2005 umgesetzten **Hartz-Reformen**,
3. und die seit 2011 stark gestiegene **Zuwanderung**.

Alle drei Faktoren dampfen für sich genommen die gesamtwirtschaftliche Arbeitsproduktivität. Eine
andauernde Lohnmoderation, die das Verhältnis von Lohnkosten zu Arbeitsproduktivität reduziert,
erhöht unter sonst gleichen Bedingungen die Arbeitsnachfrage der Unternehmen. Ein gegebenes Pro-
duktionsniveau wird mit einem höheren Beschäftigungsniveau erreicht. Die Hartz-Reformen und die
Zuwanderung dürften dazu geführt haben, dass Personen eine Erwerbstätigkeit aufnahmen, die über
eine unterdurchschnittliche Humankapitalausstattung und somit Arbeitsproduktivität im Vergleich zur
jeweiligen Gesamtheit der Erwerbstätigen verfügten. Erklärtes Ziel der Hartz-Reformen war die Be-
kämpfung der hohen Arbeitslosigkeit, insbesondere indem die Anreize zur Arbeitsaufnahme für Ar-
beitslose erhöht und die Beschäftigung im Niedriglohnbereich attraktiver gestaltet wurden. Dies betraf
vor allem Erwerbspersonen, die über eine niedrige Qualifikation verfügten und/oder deren Humanka-
pital von langen Zeiten der Arbeitslosigkeit herabgesetzt war. Im Falle der Zuwanderer sprechen für
eine unterdurchschnittliche Humankapitalausstattung vor allem unterdurchschnittliche Deutsch-
kenntnisse sowie schulische und berufsspezifische Qualifikationen, aber auch eine mangelnde Aner-
kennung von im Ausland erworbener Qualifikationen.

Die Integration von Beschäftigten mit unterdurchschnittlicher Humankapitalausstattung reduziert
vorübergehend die gesamtwirtschaftliche Arbeitsproduktivität über einen rechnerischen Kompositi-
oneffekt. Darüber hinaus wird allerdings auch die Arbeitsproduktivität der übrigen Erwerbstätigen
vorübergehend gedämpft. Da der Sachkapitalstock nur allmählich an die gestiegene Zahl an Beschäf-
tigten angepasst werden kann, sinkt zunächst die Sachkapitalausstattung aller Erwerbstätigen. Die
zwischenzeitlich verringerte Sachkapitalausstattung dämpft unmittelbar die Arbeitsproduktivität. Die-
ser Effekt ist unabhängig vom Humankapital der neu in den Arbeitsmarkt integrierten Personen und er
tritt auch unabhängig davon auf, ob der Beschäftigungsaufbau durch eine Lohnmoderation, durch
Arbeitsmarktreformen oder eine hohe Zuwanderung verursacht wurde.
6.6.1 Zuwanderung

Abbildung 6.6.1:
Ausländeranteil an der Beschäftigung 2000-2015

Quelle: Bundesagentur für Arbeit, Arbeitsmarkt in Zahlen – Beschäftigungsstatistik; eigene Berechnungen.

Abbildung 6.6.2:
Ausländische Beschäftigte und Produktivität nach Wirtschaftszweigen 2011-2015

Quelle: Bundesagentur für Arbeit (2016a), Sonderauswertung nach Wirtschaftszweigen; Statistisches Bundesamt, Fachserie 18, Reihe 1.4; eigene Berechnungen.
Insgesamt fanden 86 Prozent der Ausländer, die seit 2011 eine Beschäftigung in Deutschland aufgenommen haben, ihren Arbeitsplatz in einem Wirtschaftszweig mit unterdurchschnittlicher Arbeitsproduktivität. Die hierdurch verursachte Verschiebung der Branchenstruktur hin zu unterdurchschnittlich produktiven Bereichen dämpfte die gesamtwirtschaftliche Arbeitsproduktivität zwischen 2011 und 2015 um durchschnittlich 0,06 Prozent pro Jahr (Tabelle 6.6.1).

Tabelle 6.6.1:
Effekt der Zuwanderung auf die gesamtwirtschaftliche Arbeitsproduktivität 2011-2015

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Zuwanderungsbedingte Strukturverschiebung hin zu unterdurchschnittlich produktiven Wirtschaftszweigen (bezogen auf Zuwanderer aus EU-8, EU-2, Kroatien und Hauptasylherkunftsländern, vgl. Anmerkungen zur Abbildung 6.6.2)</td>
<td>+780.000</td>
<td>-0,06</td>
</tr>
<tr>
<td>Annahme: Arbeitsproduktivität der Zuwanderer beträgt 80 Prozent des gesamtwirtschaftlichen Durchschnitts (bezogen auf Zuwanderer aller Länder); beinhaltet Effekt der Strukturverschiebung</td>
<td>+900.000</td>
<td>-0,11</td>
</tr>
<tr>
<td>Annahme: Arbeitsproduktivität der Zuwanderer beträgt Null (bezogen auf Zuwanderer aller Länder); beinhaltet Effekt der Strukturverschiebung</td>
<td>+900.000</td>
<td>-0,55</td>
</tr>
</tbody>
</table>

Effekt über Sachkapitalausstattung

| Höhere Beschäftigung führt vorübergehend zu niedrigerer Sachkapitalausstattung aller Erwerbstätigen (Annahme: Produktionselastizität des Sachkapitals=0,35, vgl. Abschnitt 4.1) | +900.000 | -0,18 |

Quelle: Bundesagentur für Arbeit (2016a), Sonderauswertung nach Wirtschaftszweigen; Bundesagentur für Arbeit, Arbeitsmarkt in Zahlen – Beschäftigungsstatistik; eigene Berechnungen.

Neben dem Kompositionseffekt wird die Arbeitsproduktivität auch über eine vorübergehend verringerte Sachkapitalausstattung gedämpft, da der Sachkapitalstock nur allmählich an die gestiegene Zahl an Beschäftigten angepasst werden kann. Die zwischenzeitlich verringerte Sachkapitalausstattung aller Erwerbstätigen dämpft unmittelbar die Arbeitsproduktivität, unabhängig vom Humankapital der Zuwanderer. Unter der Annahme, dass die Produktionselastizität des Sachkapitals 0,35 beträgt (wie auch von der Europäischen Kommission angenommen, vgl. Abschnitt 4.1), wäre die gesamtwirtschaftliche Arbeitsproduktivität zwischen 2011 und 2015 um 0,18 Prozent pro Jahr verringert worden.\footnote{Gegeben die Cobb-Douglas-Produktionsfunktion aus Abschnitt 4.1 gilt für die Veränderung der Arbeitsproduktivität: $\Delta \ln \left(\frac{Y}{L} \right) = \Delta \ln TFP + (1 - \alpha) \Delta \ln \left(\frac{K}{L} \right)$, wobei die Produktionselastizität des Sachkapitals $1 - \alpha = 0,35$ beträgt.}

6.6.2 Hartz-Reformen

Der Effekt der Hartz-Reformen auf die gesamtwirtschaftliche Arbeitsproduktivität ist weitaus schwieriger zu beziffern als der Effekt der Zuwanderung. Es kann naturgemäß nicht beobachtet werden, ob eine Person aufgrund der Hartz-Reformen oder aufgrund anderer Faktoren einen Arbeitsplatz gefunden hat, so dass bereits hinsichtlich des Effekts der Hartz-Reformen auf die Beschäftigung erhebliche Unsicherheit besteht. Auch wenn sich die einschlägigen Studien hinsichtlich der untersuchten Zeiträume und Reformbestandteile (Hartz I-IV) unterscheiden und damit nicht direkt miteinander vergleichbar sind, ergeben sie in ihrer Gesamtheit eine Größenordnung bzw. Spannweite des Beschäftigungseffekts der Hartz-Reformen (Tabelle 6.6.2).

Tabelle 6.6.2:
Effekt der Hartz-Reformen auf die gesamtwirtschaftliche Arbeitsproduktivität

<table>
<thead>
<tr>
<th>Kompositionseffekt:</th>
<th>Effekt über Sachkapitalausstattung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annahme: Bei einer indi-</td>
<td>Annahme: Produktionselastizität des</td>
</tr>
<tr>
<td>duellen Arbeits-</td>
<td>Sachkapitals=0,35, vgl.</td>
</tr>
<tr>
<td>produktivität relativ zur</td>
<td>Abschnitt 4.1</td>
</tr>
<tr>
<td>gesamtwirtschaftlichen</td>
<td></td>
</tr>
<tr>
<td>Arbeitsproduktivität von</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ILO-Erwerbslosenquote</th>
<th>Umrechnung auf die Zahl der Erwerbstätigen</th>
<th>Zeitraum</th>
<th>Effekt auf die gesamtwirtschaftliche Arbeitsproduktivität (Prozent pro Jahr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Prozentpunkte)</td>
<td></td>
<td></td>
<td>Kompositionseffekt:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Effekt über Sachkapitalausstattung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
<th>Kompositionseffekt:</th>
<th>Effekt über Sachkapitalausstattung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hertweck und Sigrist (2013)</td>
<td>-20 Prozent</td>
<td>+970.000</td>
</tr>
<tr>
<td>(Hartz I-IV)</td>
<td></td>
<td>2005-2009</td>
</tr>
<tr>
<td>Launov und Wälde (2016)</td>
<td>-1,1</td>
<td>+460.000</td>
</tr>
<tr>
<td>(Hartz III-IV)</td>
<td></td>
<td>2005-2008</td>
</tr>
<tr>
<td>Franz et al. (2012)</td>
<td></td>
<td>k.A.</td>
</tr>
<tr>
<td>(Hartz IV)</td>
<td></td>
<td>-0</td>
</tr>
<tr>
<td>Krause und Uhlig (2012)</td>
<td>-2,8</td>
<td>+1.120.000</td>
</tr>
<tr>
<td>(Hartz IV)</td>
<td></td>
<td>2005-2010</td>
</tr>
<tr>
<td>Fahr und Sunde (2009)-</td>
<td>-0,6</td>
<td>+240.000</td>
</tr>
<tr>
<td>Krebs und Scheffel (2013)</td>
<td>-2,6</td>
<td>+960.000</td>
</tr>
<tr>
<td>(Hartz I-IV)</td>
<td></td>
<td>2005-2012</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nachrichtlich</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbau der Langzeitarbeitslosigkeit</td>
<td>+620.000</td>
<td>2005-2010</td>
</tr>
<tr>
<td>Verschiebung der Beveguide-Kurve (Zahl der Arbeitslosen bei gleicher Zahl an offenen Stellen)</td>
<td>+1.300.000</td>
<td>2006-2010</td>
</tr>
<tr>
<td>Rückgang der NAWRU (jüngste IfW-Schätzung mit EU-Kommissionsmethode)</td>
<td>-1,6</td>
<td>+680.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2005-2010</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mittelwert</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+710.000</td>
<td>2005-2009</td>
</tr>
</tbody>
</table>

Quelle: Eigene Berechnungen auf Basis der in der Tabelle angegebenen Literatur.
Unter der Annahme, dass die durch die Hartz-Reformen in den Arbeitsmarkt integrierten Personen über eine individuelle Arbeitsproduktivität verfügten, die 75 Prozent des gesamtwirtschaftlichen Durchschnitts entsprach (Fall der angelernten Arbeitnehmer), wäre die gesamtwirtschaftliche Arbeitsproduktivität betrachtet man den Durchschnitt der geschätzten Beschäftigungseffekte zwischen 2005 und 2009 um 0,10 Prozent pro Jahr gedämpft worden (letzte Zeile der Tabelle 6.6.2). Hätten die Personen über eine individuelle Arbeitsproduktivität verfügten, die 66 Prozent des gesamtwirtschaftlichen Durchschnitts entsprach (Fall der unangelerten Arbeitnehmer), wäre die gesamtwirtschaftliche Arbeitsproduktivität um 0,14 Prozent pro Jahr gedämpft worden. Die Obergrenze des Effekts lässt sich wieder unter der extremen Annahme ableiten, dass die neu hinzugekommenen Erwerbstätigen eine Arbeitsproduktivität von Null aufwiesen. In diesem Fall wäre die gesamtwirtschaftliche Arbeitsproduktivität um 0,41 Prozent pro Jahr gedämpft worden.

6.6.3 Lohnmoderation

Ursachen der Lohnmoderation

Es ist grundsätzlich denkbar, dass eine schwache Lohnentwicklung nicht die Ursache, sondern die Folge einer schwachen Produktivitätsentwicklung ist. Es spricht jedoch einiges gegen diese umgekehrte Kausalität. Hätte sich die Reallohnentwicklung in Reaktion auf die schwächere Arbeitsproduktivität im

204 Die realen Lohnstückkosten lassen sich entweder berechnen als (1) nominale Lohnkosten geteilt durch nominale Arbeitsproduktivität (wie in Abbildung 6.6.3) oder als (2) reale Lohnkosten geteilt durch reale Arbeitsproduktivität.
gleichen Ausmaß verlangsamt, wären die realen Lohnstückkosten konstant geblieben. Die Reallöhne haben sich allerdings deutlich schwächer als die Arbeitsproduktivität entwickelt.

ionslohn sank und das Arbeitsangebot stieg.205 Und drittens dürfte der drastische Ölpreisverfall seit dem Jahr 2014 zur Lohnmoderation beigetragen haben. Dieser dürfte mitverantwortlich dafür sein, dass die Gewerkschaften geringere nominale Tariflohnabschlüsse akzeptierten, da diese Abschlüsse bei rückläufigen Energiepreisen und somit geringer Verbraucherpreisinflation nichtsdestrotz spürbare reale Lohnsteigerungen bedeuteten. Aus Sicht der Arbeitgeber und damit aus Sicht der Arbeitsnachfrage, für die nicht die Verbraucherpreise, sondern die Wertschöpfungspreise relevant sind, stellen sich die realen Lohnkostensteigerungen allerdings moderater dar, da die Wertschöpfspreise (gemessen am Deflator der Bruttwertschöpfung) schneller stiegen als die Verbraucherpreise. Die Lohnmoderation erhielt also durch relativ niedrige nominale Tariflohnabschlüsse und relative hohe Anstiege der Wertschöpfungspreise weitere Impulse.

Die Zuwanderung dürfte hingegen kaum zur Lohnmoderation (im Sinne der realen Lohnstückkosten) beigetragen haben. Zum einen steigt durch die Zuwanderung nicht nur das Arbeitsangebot, sondern auch die gesamtwirtschaftliche Nachfrage und somit die Arbeitsnachfrage. Zum anderen kann es zwar zu lohdämpfenden Effekten kommen, wenn die Zuwanderer eher in Bereichen tätig sind, die unterdurchschnittlich entlohnt werden. Dieser Kompositionseffekt kommt aber auch bei der Arbeitsproduktivität zum Tragen, so dass die Lohnstückkosten von der Zuwanderung kaum berührt sein sollten.

Theoretische Grundlagen

Die folgenden theoretischen Ausführungen sollen verdeutlichen, wie eine Lohnmoderation vorübergehend die Arbeitsproduktivität dämpft. Unter der Annahme einer Cobb-Douglas-Produktionsfunktion wie in Abschnitt 4.1

\[Y = TFP L^{\alpha} K^{1-\alpha} \]

(6.6.1)

Hängt die (durchschnittliche) Arbeitsproduktivität wie folgt von der TFP und der Kapitalausstattung ab:

\[\frac{Y}{L} = TFP \left(\frac{K}{L} \right)^{1-\alpha} \]

(6.6.2)

205 In dem Maße, wie die Hartz-Reformen ihre Wirkung über eine Lohnmoderation entfalten, beinhaltet der Effekt der Lohnmoderation auf die Arbeitsproduktivität den der Hartz-Reformen.
Die Grenzproduktivität der Arbeit und die (durchschnittliche) Arbeitsproduktivität stehen in folgendem Zusammenhang:

\[
\frac{\partial Y}{\partial L} = \alpha \frac{Y}{L} \tag{6.6.3}
\]

Die Arbeitsnachfrage eines gewinnmaximierenden Unternehmens mit dieser Produktionsfunktion erfüllt die folgende Bedingung (SVR 2003: Kasten 15)

\[
\frac{\partial Y}{\partial L} = \frac{W}{P} \frac{1+\eta}{1-\delta} \tag{6.6.4}
\]

wobei \(\frac{W}{P}\) den Reallohn, \(\eta\) ein Maß für Marktmacht am Arbeitsmarkt und \(\delta\) ein Maß für Marktmacht am Gütermarkt darstellen. Die bekannte Bedingung, wonach ein Unternehmen so viel Arbeit nachfragt, bis die Grenzproduktivität der Arbeit genau dem Reallohn entspricht, gilt nur unter vollständigem Wettbewerb auf dem Arbeitsmarkt \((\eta = 0)\) und auf dem Gütermarkt \((\delta = \infty)\). Setzt man in die obige Gleichung den Ausdruck für die Grenzproduktivität ein und definiert \(\kappa \equiv \frac{1+\eta}{1-\delta}\), so erhält man folgenden Ausdruck für die Arbeitsnachfrage:

\[
\alpha \frac{Y}{L} = \kappa \frac{W}{P} \tag{6.6.5}
\]

Für die realen Lohnstückkosten gilt dementsprechend:

\[
\frac{W/P}{Y/L} = \frac{\alpha}{\kappa} \tag{6.6.6}
\]

Unter der plausiblen Annahme, dass die Produktionselastizität des Faktors Arbeit \((\alpha)\) sowie die Bedingungen auf den Arbeits- und Gütermärkten \((\kappa)\) nicht von den Unternehmen beeinflusst werden können, besteht ein proportionaler Zusammenhang zwischen Reallohn und Arbeitsproduktivität. Eine exogen verursachte moderate Entwicklung der Reallöhne führt demnach zu einer ebenso moderaten Entwicklung der Arbeitsproduktivität. Wie bereits beschrieben, spricht einiges dafür, dass die in Deutschland beobachtete Lohnmoderation in der Tat maßgeblich auf exogene Faktoren, die unabhängig von der Arbeitsproduktivität sind, zurückzuführen ist.

\[\text{Die Gleichung lässt sich umformen zu } \frac{W \times L}{P \times Y} = \frac{\alpha}{\kappa}. \text{ Die Lohnquote ist also nur dann ein Schätzer für die Produktionselastizität der Arbeit, wenn vollständiger Wettbewerb herrscht bzw. Änderungen der Lohnquote sind nur dann ein Schätzer für Änderungen der Produktionselastizität der Arbeit, wenn es keine Änderungen der Wettbewerbsintensität gibt.}\]
somit die Arbeitsproduktivität gedämpft. Die Arbeitsproduktivität wird also solange gedämpft, bis der Kapitalstockaufbau abgeschlossen ist.

Vergleich mit der beobachteten Entwicklung

Der recht kräftige Beschäftigungsaufbau infolge der Lohnmoderation trug in der Tat spürbar zu einer Dämpfung der Kapitalausstattung bei (Abbildung 6.6.3, rechte Abbildung). Die Kapitalausstattung stieg zwischen 2004 und 2015 nur noch um 0,3 Prozent pro Jahr, während sie bis dahin mit 2,6 Prozent pro Jahr deutlich stärker aufwärtsgerichtet war. Die Verlangsamung der Kapitalausstattung um 2,3 Prozent pro Jahr dämpfte die Arbeitsproduktivität bei einer Produktionselastizität des Kapitals von 0,35 um 0,8 Prozent pro Jahr seit 2004. Rund die Hälfte des Rückgangs der Kapitalausstattung geht auf den kräftigen Beschäftigungsaufbau zurück (die andere Hälfte auf einen verlangsamen Kapitalstockaufbau). Die Lohnmoderation dürfte die Arbeitsproduktivität demnach bereits um 0,4 Prozent pro Jahr verringert haben.

Quelle: Statistisches Bundesamt, Fachserie 18, Reihe 1.2; EU-Kommission, AMECO-Datenbank; eigene Berechnungen.

Voraussichtlich werden von der Lohnmoderation auch in den kommenden Jahren noch dämpfende Effekte auf die Arbeitsproduktivität ausgehen. Wie theoretisch gezeigt, sollte zwischen den realen Lohnkosten und der realen Arbeitsproduktivität unter sonst gleichen Bedingungen langfristig (d.h. nach vollzogener Anpassung) ein proportionaler Zusammenhang bestehen. Hätten sich die realen Lohnkosten von 2004 bis 2015 nicht verlangsamt, sondern wären im gleichen Tempo gestiegen wie zwischen 1991 und 2003, dann wären sie nicht mit durchschnittlich 0,8 Prozent pro Jahr gewachsen, sondern mit 2,0 Prozent. Die Lohnmoderation betrug demnach 1,2 Prozent pro Jahr oder insgesamt 14,1 Prozent. Bei proportionalen Zusammenhang verringert eine solche Lohnmoderation die Arbeitsproduktivität ebenfalls um 1,2 Prozent pro Jahr oder insgesamt um 14,1 Prozent. An dem Rückgang der realen Lohnstückkosten im selben Zeitraum erkennt man allerdings, dass die Arbeitsproduktivität bislang unterproportional auf die realen Lohnkosten reagierte hat. Von daher ist zu erwarten, dass die Arbeitsproduktivität auch in den kommenden Jahren noch gedämpft wird. Die Höhe des jährlichen Effekts wird in jedem Fall weniger als 1,2 Prozent pro Jahr betragen, da sich der Gesamteffekt von 14,1 Prozent über einen längeren Zeitraum verteilt. Um wieviel weniger, ist schwer zu sagen, da nicht absehbar ist, wie lange die Anpassung noch dauert.

Der beobachtete Rückgang der realen Lohnstückkosten könnte laut den obigen theoretischen Ausführungen zwar nicht nur durch eine Lohnmoderation, sondern auch durch eine sinkende Produktionselastizität des Faktors Arbeit (α) oder durch eine steigende Marktmacht auf den Arbeits- und Gütermärkten (κ) verursacht worden sein. Allerdings hätte man dann einen Rückgang der Beschäftigung beobachten müssen. Denn beide Fälle machen eine Erhöhung der Arbeitsproduktivität notwendig. Dass die Beschäftigung nicht gesunken, sondern gestiegen ist, spricht dafür, dass nicht Änderung von α und κ die Ursache für den Rückgang der realen Lohnstückkosten waren, sondern tatsächlich die Lohnmoderation in Verbindung mit einer verzögerten Beschäftigungsanpassung.
Simulation mit einem empirischen Arbeitsmarktmodell

Ein wichtiger Grund dafür, dass der mit dem empirischen Arbeitsmarktmodell ermittelte Effekt der Lohnmoderation (0,8 bis 0,9 Prozent pro Jahr) höher ist als der ermittelte Effekt auf Basis des verlangsamten Anstiegs der Kapitalausstattung (0,4 Prozent pro Jahr), dürfte sein, dass im Modell das Bruttoinlandsprodukt exogen ist und somit keine Rückkopplung zwischen der Lohnentwicklung und dem Bruttoinlandsprodukt besteht. Tatsächlich würde eine stärkere Lohnentwicklung über einen geringeren Beschäftigungsstand auch das Bruttoinlandsprodukt dämpfen, was für sich genommen die Arbeitsproduktivität dämpft. Insofern überschätzt das empirische Arbeitsmarktmodell den Effekt der Lohnmoderation auf die Arbeitsproduktivität.208

208 Der Effekt der Lohnmoderation auf die Arbeitsproduktivität kann jedoch nicht null oder sogar positiv werden, da dies eine unplausible hohe Sensitivität des Bruttoinlandsprodukts bezüglich der Reallohnentwicklung implizieren würde.
Abbildung 6.6.4:
Effekt der Lohnmoderation auf die gesamtwirtschaftliche Arbeitsproduktivität 2004-2015

Quartalsdaten; Simulationen erstellt mithilfe eines empirischen Arbeitsmarktmodells, das regelmäßig zur Unterstützung der Arbeitsmarktprognose im Rahmen der Konjunkturprognosen des IfW zum Einsatz kommt.

Quelle: Statistisches Bundesamt, Fachserie 18, Reihe 1.3; eigene Berechnungen.

Internationaler Vergleich

Der oben für Deutschland beschriebene Zusammenhang, wonach negative (positive) Abweichungen der realen Lohnstückkosten von ihrem langjährigen Durchschnitt mit einem Anstieg (Rückgang) des Arbeitsvolumens einhergehen, zeigt sich in der Tendenz auch in einigen Vergleichsländern (Abbildung 6.6.5). So sind die realen Lohnstückkosten im Vereinigten Königreich und den USA in den vergangenen Jahren spürbar gesunken, während die Beschäftigung recht kräftig aufgebaut wurde. In Frankreich und Italien sind die realen Lohnstückkosten hingegen gestiegen, so dass hier die Beschäftigung abgebaut wurde. In Spanien hätte die Beschäftigung, gemessen an den realen Lohnstückkosten, schon früher als erst in den vergangenen beiden Jahren aufgebaut werden müssen. Es spricht daher einiges dafür, dass
sich der Beschäftigungsaufbau dort in den kommenden Jahren intensiviert. Über den gesamten Be-
obachtungszeitraum betrachtet ist der Zusammenhang zwischen realen Lohnstückkosten und Be-
schäftigung nicht nur in Deutschland recht gut, sondern auch in Italien und dem Vereinigten König-
reich. In anderen Ländern ist der Zusammenhang weniger eng. Hierfür könnten – wie oben gezeigt – Änderungen der Produktionselastizität des Faktors Arbeit (α) oder der Wettbewerbsintensität auf den Arbeits- und Gütermärkten (κ) verantwortlich sein.

Der beschriebene Zusammenhang zwischen Arbeitsvolumen und Kapitalausstattung zeigt sich tenden-
ziell ebenfalls in anderen Ländern (Abbildung 6.6.6). Mit Deutschland vergleichbar ist insbesondere die Entwicklung im Vereinigten Königreich. Dort wurde die Kapitalausstattung (und somit die Arbeitspro-
duktivität) in den vergangenen Jahren ebenfalls spürbar gedämpft, was ebenfalls auf einen starken Beschäftigungsaufbau zurückzuführen ist. In den USA ging die Kapitalausstattung zwar auch deutlich zurück. Hier fällt jedoch die Verlangsamung des Kapitalstockaufbaus stärker ins Gewicht als der Be-
schäftigungsaufbau. In Spanien wiederum zeigte sich erst in den vergangenen beiden Jahren eine ab-
Abbildung 6.6.5:
Reale Lohnstückkosten und Arbeitsvolumen 1990-2015

Quelle: Europäische Kommission, AMECO-Datenbank.
Abbildung 6.6.6: Kapitalausstattung, Arbeitsvolumen und Kapitalstock 1990-2015

Jahresdaten; Arbeitsvolumen, Kapitalstock: Veränderung gegenüber dem Vorjahr in Prozent. Kapitalausstattung: Quotient aus Kapitalstock und Arbeitsvolumen.

Quelle: Europäische Kommission, AMECO-Datenbank.
6.6.4 Fazit

Die Lohnmoderation dämpft das Wachstum der Arbeitsproduktivität in jedem Fall nur vorübergehend. Treten in absehbarer Zeit keine weiteren „Schocks“ auf die Lohnentwicklung auf, werden sich die Beschäftigung und vor allem der Kapitalstock nach und nach an die neuen Gegebenheiten angepasst haben, sofern sich in der übrigen Welt keine lukrativeren Investitionsgelegenheiten finden als im Inland. Das Wachstum der Arbeitsproduktivität kehrt dann zu den Raten von vor der Lohnmoderation zurück.
6.7 Fehlallokation der Produktionsfaktoren

Für systematische Fehlallokationen können verschiedene Ursachen verantwortlich sein. So wird zunächst untersucht, inwieweit sich Finanzkrisen auf die Produktivitätsentwicklung auswirken. Es wurde vielfach gezeigt, dass Finanzkrisen dauerhaft die wirtschaftliche Aktivität einer Volkswirtschaft dampfen können. Gleichzeitig kommt es jedoch zu Anpassungsprozessen sowohl auf dem Arbeitsmarkt als auch beim Kapitalstock, so dass die Auswirkungen auf die Produktivität nicht eindeutig sind. Danach wird der Frage nachgegangen, ob Phasen sehr starker Kreditexpansionen mit Fehlinvestitionen einhergehen, die die Produktivität dämpfen. Schließlich wird untersucht, ob sehr niedrige Zinsen zu Fehlallokationen und einer geringeren Produktivität beitragen können. Zwar wurde vielfach gezeigt, dass diese möglichen Ursachen für systematische Fehlallokationen miteinander zusammenhängen, ihre Bedeutung für die Produktivität wurde bisher jedoch noch nicht gemeinsam untersucht, so dass wir der vorliegenden Literatur folgend, Finanzkrisen, Kreditexpansionen, Niedrigzinsphasen und damit zusammenhängend die „Zombifizierung“ von Unternehmen separat diskutieren.\(^\text{209}\)

6.7.1 Finanzkrisen

Um zu prüfen ob es im Zuge von Finanzkrisen tatsächlich zu systematischen Änderungen der Produktivität kommt, nehmen wir eine eigene Schätzung vor auf Basis eines Datensatzes für 20 fortgeschritte-

Die TFP verringert sich den Schätzergebnissen auf Basis der *local projections method* zufolge im ersten Jahr einer Bankenkrise bzw. einer normalen Rezession um rund 3 Prozent gegenüber einem Szenario, in dem keine Bankenkrise bzw. normale Rezession aufgetreten wäre, wobei der Rückgang im Falle einer Bankenkrise etwas ausgeprägter ist (Abbildung 6.7.1). Nach einer normalen Rezession stellt sich ab dem zweiten Jahr eine gewisse Erholung der TFP ein und nach fünf Jahren ist das Niveau der TFP nicht mehr signifikant niedriger im Vergleich zu einem Szenario, in dem keine Rezession aufgetreten ist.

\textbf{Abbildung 6.7.1:} TFP im Anschluss an Bankenkrisen und normalen Rezessionen

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure6.7.1.png}
\caption{TFP im Anschluss an Bankenkrisen und normalen Rezessionen}
\end{figure}

\textit{Quelle:} Europäische Kommission, AMECO-Datenbank; eigene Berechnungen.

\begin{flushright}
213 Für den Zeitraum vor der globalen Finanzkrise liegen in unserem Datensatz lediglich fünf Bankenkrisen vor. Während der Verlauf der TFP in den ersten drei Jahren während dieser fünf Krisen vergleichbar war, kam es danach zu einer Erholung, und die TFP war sieben Jahre nach dem Beginn der Krise in etwa wieder auf ihrem Vorkrisenpfad. Betrachtet man nur Bankenkrisen außerhalb des Euroraums ergibt sich ebenfalls eine etwas stärkere Erholung und die TFP ist sieben Jahre nach Beginn der Bankenkrise noch um rund 1,5 Prozent gedrückt.
214 Akkumuliert man die Auswirkungen auf die Zuwachsrate jeweils für die ersten 6 Jahre einer Bankenkrise bzw. einer normalen Rezession auf, so ist die TFP nach Bankenkrisen um 2,6 Prozent niedriger (local projections method: 3,4 Prozent niedriger) und nach normalen Rezessionen um 1 Prozent niedriger (local projections method: 0,4 Prozent niedriger). Diese Unterschiede sind angesichts der Modell- und Schätzunsicherheit recht gering.
\end{flushright}
dass sich die Zuwachsrate der TFP bereits einige Jahre vor dem Beginn einer Bankenkrise bzw. einer normalen Rezession abschwächt.

Abbildung 6.7.2:
Zuwachsrate der TFP im Verlauf von Bankenkrisen und normalen Rezessionen

Quelle: Europäische Kommission, AMECO-Datenbank; eigene Berechnungen.

6.7.2 Kreditexpansionen

216 Freilich könnte Deutschland auch indirekt von der Krise betroffen sein, da sich mit dem Rückgang des Produktionspotenzials im Zuge der Finanzkrise vielerorts auch die Absatzaussichten für die deutschen Exporteure verringert haben, wodurch sich auch die Produktivität der dafür eingesetzten Produktionsfaktoren verringert haben könnte. Diese indirekten Auswirkungen sind gesamtwirtschaftlich jedoch schwer messbar und wohl kaum von einem gewöhnlichen Strukturwandel zu unterscheiden.

217 Ebenfalls signifikante negative Auswirkungen ergeben sich, wenn als erklärende Variable die Abweichung des Kreditvolumens in Relation von seinem längerfristigen Trend verwendet wird.
dass sich während einer Kreditexpansion die Beschäftigung im Baugewerbe, das eine relativ geringe Produktivität aufweist, erhöht, während sie sich im Verarbeitenden Gewerbe, das eine relativ hohe Produktivität aufweist, verringert. Ein Rückgang der Produktivität durch einen solchen Reallokationseffekt erhöht sich spürbar, wenn in einer Volkswirtschaft eine Bankenkrise auftritt. Ein Rückgang der Produktivität durch den Reallokationseffekt um 1 Prozent in den drei Jahren vor der Krise führt dazu, dass die Arbeitsproduktivität acht Jahre nach dem Beginn der Krise um mehr als 5 Prozent niedriger ist. Nach normalen Rezessionen beträgt der Rückgang weniger als 1 Prozent.218

Alles in allem kann eine starke Ausweitung des Kreditvolumens zur Fehlallokation von Produktionsfaktoren und somit auch zu einer Abschwächung des Produktivitätswachstums beitragen. In der Ver-

218 Neben dem Reallokationseffekt untersuchen Borio et al. (2015) auch Produktivitätsrückgänge, die sich über alle Wirtschaftsbereiche gemeinsam ergeben. Diese gemeinsamen Produktivitätsrückgänge verändern sich in starken Kreditexpansionen nicht signifikant und spielen bei Bankenkrissen nur eine geringere Rolle: Ein Rückgang dieser gemeinsamen Produktivitätskomponente in den drei Jahren vor Beginn einer Bankenkrise um 1 Prozent führt zu einem Rückgang der AP um rund 2,5 Prozent 8 Jahre nach dem Beginn einer Krise und um reichlich 1 Prozent 8 Jahre nach Beginn einer normalen Rezession.

Abbildung 6.7.3:
Kreditvolumen in Relation zum Bruttoinlandsprodukt in Deutschland 1991-2015

![Abbildung 6.7.3: Kreditvolumen in Relation zum Bruttoinlandsprodukt in Deutschland 1991-2015](image)

Jahresdaten.

Quelle: Bank for International Settlements, Credit to the non-financial sector.

Abbildung 6.7.4:
Anteil am Arbeitsvolumen der Erwerbstätigen in ausgewählten Wirtschaftsbereichen 1991-2015

![Abbildung 6.7.4: Anteil am Arbeitsvolumen der Erwerbstätigen in ausgewählten Wirtschaftsbereichen 1991-2015](image)

Jahresdaten.

Quelle: Statistisches Bundesamt, Fachserie 18 Reihe 1.2; eigene Berechnungen.

6.7.3 Niedrigzinsphasen

beispielhaft an der Entwicklung Spaniens nach 1999. Dort trug die Einführung des Euro maßgeblich zu
dem deutlichen Rückgang der langfristigen Realzinsen bei. Sie verwenden die Dispersion der Grenz-
produktivität des Kapitals von Unternehmen im Verarbeitenden Gewerbe als Indikator für die Fehl-
Fehlallokation von Kapital gekommen ist, die zur schwachen Produktivitätsentwicklung beigetragen
hat.220 Auf dieser Beobachtung aufbauend leiten Gopinath et al. (2015) ein Modell ab, in dem niedrige
Realzinsen und Kapitalzuflüsse aus dem Ausland zur Fehlallokation von Kapital führen. Ein wichtiger
Mechanismus in diesem Modell ist, dass vor allem größere Unternehmen in so einem Umfeld zusätzli-
che Kredite aufnehmen können, was zu einer ineffizienten Verteilung des Faktors Kapital führt. Mit
diesem Modell können Gopinath et al. (2015) auch andere stilisierten Fakten in Spanien in diesen Zeit-
raum erklären. In einer länderübergreifenden Untersuchung zeigen Gopinath et al. (2015) zudem, dass
in diesem Zeitraum Fehlallokationen von Kapital auch in Italien und Portugal zu beobachten waren,
während dies für Deutschland, Frankreich und Norwegen nicht der Fall war.

Cette et al. (2016a) untersuchen auf Länderebene inwieweit Veränderungen der Realzinsen (gemes-
sen anhand der Zinsen für Staatsanleihen mit 10jähriger Laufzeit abzüglich der Vorjahresrate des BIP-
Deflators) sich auf die AP im Euroraum, in den vier großen Volkswirtschaften des Euroraums sowie in
den Vereinigten Staaten auswirken. Basierend auf einem bivariaten VAR-Modell, das sie jeweils für
einen signifikanten positiven Zusammenhang zwischen Realzinsen und AP. So führt ein Rückgang der
Realzinsen um rund 0,4 Prozentpunkte im Euroraum nach ca. zweieinhalb Jahren zu einem Rückgang
der Zuwachsrate der AP im Vorjahresvergleich um knapp 0,2 Prozentpunkte. Für die Vereinigten Sta-
aten ist der Effekt weniger als halb so groß. In Italien und Spanien haben die niedrigeren Realzinsen
zwischen den Jahren 1999 und 2008 gemäß dem Modell die Zuwachsrate der Arbeitsproduktivität um
rund 0,5 Prozentpunkte im Jahr gedrückt. Für Deutschland und Frankreich fällt der Effekt deutlich
niedriger aus. Cette et al. (2016a) finden einen signifikanten positiven Zusammenhang zwischen Real-
zins und AP sowie TFP auch für einen Panel-Datensatz von 13 fortgeschrittenen Volkswirtschaften für
18 Wirtschaftsbereiche für die Jahre von 1985 bis 2008. Gemäß diesen Schätzungen würde ein Rück-
gang der Realzinsen um einen Prozentpunkt die Zuwachsrate der AP in allen Wirtschaftsbereichen je
nach Ländersample um 0,2 bis 0,3 Prozentpunkten im folgenden Jahr drücken (bzw. die Zuwachsrate
der TFP um 0,2 Prozentpunkte).

Allerdings werden in diesem Modell die Auswirkungen von Realzinsänderungen auf die Produktivität
im VAR-Modell nur schwach identifiziert (da die Identifikation letztlich nur auf einer sehr allgemeinen
Annahme beruht) und im Modell auf Basis der Wirtschaftsbereiche gar nicht identifiziert. Zudem wer-
den keine weiteren Kontrollvariablen in die Modelle aufgenommen. Somit wird weniger ein strukturel-
ler Zusammenhang zwischen den beiden Variablen geschätzt sondern lediglich die Korrelation, wobei
bei der Interpretation der Ergebnisse implizit davon ausgegangen wird, dass die Korrelation von Ver-
änderungen der Realzinsen getrieben wird. Vor diesem Hintergrund sollten diese Ergebnisse für sich
genommen nur mit sehr großer Vorsicht für kausale Erklärungen oder wirtschaftspolitische Schlussfol-
gerungen herangezogen werden.

220 Sie finden keine Evidenz für eine erhöhte Fehlallokation des Faktors Arbeit.
Für Deutschland ist der Zusammenhang zwischen den beiden Variablen offenbar weit weniger ausgeprägt als für die anderen Länder bzw. als es die Ergebnisse auf Basis der Panel-Schätzungen suggerieren.\(^{221}\) So führt ein Rückgang der Realzinsen in Deutschland um 0,4 Prozentpunkte zu einem Rückgang der Vorjahresrate der AP um lediglich knapp 0,01 Prozentpunkte (Abbildung 6.7.5). Zudem findet sich anders als in der Panel-Schätzung kein signifikanter Zusammenhang zwischen Realzins und der Produktivität in den Wirtschaftsbereichen, wenn man die Schätzung lediglich für Deutschland durchführt.\(^{222}\)

Abbildung 6.7.5:
Auswirkungen eines Anstiegs der Realzinsen auf die Arbeitsproduktivität in Deutschland

Quelle: Statistisches Bundesamt, Fachserie 18 Reihe 1.2; eigene Berechnungen.

Der Rückgang der Realzinsen hat gemäß den in diesem Abschnitt diskutierten Zusammenhängen in vielen Volkswirtschaften, wie Spanien oder Italien, zu einer Verlangsamung des Produktivitätswachstums beigetragen. Für die Produktivitätsentwicklung in Deutschland dürften sie eher von untergeordneter Bedeutung gewesen sein. Zwar ist der Realzins auch in Deutschland seit Mitte der 1990er Jahre bis vor den Beginn der Finanzkrise in der Tendenz spürbar gesunken, allerdings weit weniger ausgeprägt als in vielen anderen Ländern des Euroraums. Hinzu kommt, dass der Zusammenhang zwischen Realzins und Produktivität für Deutschland deutlich schwächer ist als für andere Volkswirtschaften und in Deutschland in diesem Zeitraum keine weiteren typischen Symptome, wie eine ausgeprägte Kreditexpansion oder ein Immobilienboom, die mit Niedrigzinsphasen in Verbindung stehen, zu verzeichnen waren. Auch die Schätzungen auf Basis von Firmendaten finden keine Evidenz für die Fehlallokation von Produktionsfaktoren für den Zeitraum vor dem Beginn der Finanzkrise in Deutschland (Gopinath et al. 2015). Allerdings ist der Realzins seit dem Beginn der Finanzkrise in Deutschland deutlich stärker

\(^{221}\) Die Ergebnisse für Deutschland werden in Cette et al. (2016a) nicht explizit berichtet, sie sind jedoch in den Zusatzinformationen verfügbar bzw. können mittels dieser Zusatzinformationen geschätzt werden.

\(^{222}\) Auf Länderebene findet sich für die empirische Analyse auf Basis der 18 Wirtschaftsbereiche lediglich ein signifikanter Zusammenhang für Italien.

Abbildung 6.7.6: Realzins in Deutschland 1991-2015

Quelle: Thomson Financial Datastream; Statistisches Bundesamt, Fachserie 18 Reihe 1.2; eigene Berechnungen.

6.7.4 „Zombifizierung“ von Unternehmen

Acharya et al. (2015) analysieren, wie sich die Ankündigung des OMT-Programms (Outright Monetary Transactions) durch die EZB auf die Finanzierungsbedingungen von Firmen im Euroraum ausgewirkt

6.7.5 Fazit

Überleben ermöglichen, und so die Produktivität dämpfen. Während die in diesem Abschnitt diskutierten Faktoren in vielen fortgeschrittenen Volkswirtschaften insbesondere vor und nach der Finanzkrise zu einer Abschwächung des Produktivitätswachstums beigetragen haben dürften, sind die Auswirkungen auf die Produktivität in Deutschland bislang wohl begrenzt. Die größten Auswirkungen könnten sich in dem Zeitraum von nach der Wiedervereinigung bis zur Jahrtausendwende ergeben haben. Unmittelbar vor und während der Finanzkrise waren die Auswirkungen auf die Produktivität in Deutschland wohl gering. In den vergangenen Jahren könnte insbesondere die ausgeprägte Niedrigzinsphase die Produktivität in Deutschland etwas gedämpft haben, wobei diese Effekte nur schwer zu quantifizieren sind. Risiken für die Produktivität in Deutschland ergeben sich insbesondere in der laufenden und zukünftigen Entwicklung, da die Niedrigzinsphase wohl noch für geraume Zeit anhalten wird, und sich eine stärkere Kreditexpansion sowie ein Boom an den Immobilienmärkten andeutet. Bei alldem ist zu bedenken, dass die empirischen Ergebnisse, die diesem Abschnitt zugrunde liegen, mit Vorsicht interpretiert werden sollten. Neben der Modell- und Schätzunsicherheit werden die Effekte auf die Produktivität in der Regel nur schwach oder gar nicht identifiziert.
7 Weiterführende und vertiefende Studien

7.1 Analysen auf der Mikroebene

7.1.1 Einleitung

Weiterführende Studien auf der Mikroebene sind daher wichtig, um sowohl die Determinanten der Produktivität auf der Betriebs- oder Unternehmensebene (und die relevanten Unterschiede zwischen Firmen) als auch die Möglichkeiten zur Reallokation von Faktoren zwischen Firmen näher zu analysieren (siehe auch den Übersichtsartikel von Syverson 2011). Insbesondere erlauben neuere Datenquellen, Managementqualität auf der Unternehmensebene zu messen, wodurch die Analyse von Produktivitätswachstum auf der Unternehmens- oder Betriebsebene stark verbessert werden kann.

Bloom et al. (2013) zeigen für die USA, dass eine höhere Managementqualität eines Betriebes einen positiven Einfluss auf die Produktivität hat. Dieser Effekt besteht insbesondere für große, weniger jedoch für kleinere Betriebe.

Für Deutschland gibt es ebenfalls einige Studien, die sich mit den Determinanten der Produktivität auf der Betriebs- oder Unternehmensebene beschäftigen. Diese Studien nutzen hauptsächlich drei unterschiedliche Datengrundlagen, die offiziellen Statistiken der deutschen Statistischen Ämter, Mikrodaten des Instituts für Arbeitsmarkt- und Berufsforschung (die Forschungseinrichtung der Bundesagentur für Arbeit) und das Mannheimer Innovationspanel. Diese Daten sollen im Folgenden knapp vorgestellt werden. Außerdem werden beispielhaft einige empirische Studien dargestellt, die diese Daten zur Produktivitätsanalyse nutzen.

7.1.2 Daten der statistischen Ämter

Die Daten der statistischen Landesämter und des Bundesamtes werden im Rahmen des AFiD (Amtliche Firmendaten für Deutschland) Zugangs bereitgestellt. Unter dem Schirm der AFiD sind verschiedene Datensätze verfügbar, die Analysen auf mehreren Ebenen möglich machen:

Unternehmensregister

Das Unternehmensregister stellt die Grundgesamtheit aller in Deutschland aktiven Unternehmen dar, welche positive Umsätze oder sozialversicherungspflichtige Beschäftigte haben. Mit Ausnahme der Land-, Forst-, und Fischereiwirtschaft, sowie der öffentlichen Verwaltung, sind grundsätzlich alle Unternehmen sämtlicher Wirtschaftsbereiche im Datensatz enthalten. Die Daten sind ab 2002 verfügbar. Im Jahr 2008 waren beispielsweise 3,8 Millionen aktive Unternehmen im Datensatz enthalten.

Der Vorteil der umfassenden Erfassung aller Unternehmen wird durch die geringe Anzahl der Variablen im Datensatz etwas abgeschwächt. Die Daten erlauben es jedoch, Arbeitsproduktivität als Umsatz pro Beschäftigtem zu berechnen. Da die Grundgesamtheit der Unternehmen erfasst ist, lassen sich Markteintritte und -austritte präzise bestimmen. Der Datensatz erscheint demnach geeignet, um die Dynamik der Entwicklung der Arbeitsproduktivität, insbesondere die Rolle von neuen und aus dem Markt ausscheidenden Unternehmen, zu analysieren.

Eine Berechnung der Wertschöpfung pro Beschäftigtem oder der totalen Faktorproduktivität ist nicht möglich. Eine Analyse der Determinanten der Produktivität auf der Unternehmensebene ist ebenfalls nur in beschränktem Maße durchführbar, da wichtige Variablen (z.B. zu Ex- und Importen, F&E Aktivität, Qualifikation der Beschäftigten etc.) im Datensatz nicht enthalten sind. Die Grundgesamtheit der Unternehmen erlaubt es jedoch, den inländischen Wettbewerb innerhalb einer Branche zu bestimmen. So kann z.B. die Anzahl an Wettbewerbern, Konzentrationsindizes oder der Hirschman-Herfindahl Index auf der Basis von Umsatz oder Beschäftigung berechnet werden.

Industriebetriebe

Wagner (2007a) beschäftigt sich mit der Frage, wie sich die Dynamik von Markteintritten und -austritten auf die Produktivität auswirkt. Mithilfe von Paneldaten für Betriebe des Verarbeitenden Gewerbes über den Zeitraum 1995 bis 2002 zeigt er, dass besonders solche Betriebe aus dem Markt austreten, welche im Vorjahr signifikant weniger produktiv waren als Betriebe, die im Markt verblei-

Industrieunternehmen

Während der zuvor genannte Datensatz Informationen auf Betriebsebene liefert, gibt es einen ähnlichen Datensatz auf Unternehmensebene, bei dem die Daten für Mehrbetriebsunternehmen aggregiert werden. Dieser Datensatz ist ab 2001 verfügbar. Im Unterschied zu den Daten für Industriebetriebe enthält dieser Datensatz zusätzliche Informationen aus der „Kostenstrukturerhebung“. Dies ist eine repräsentative Zufallsstichprobe von Unternehmen mit mindestens 20 Beschäftigten; die Stichprobe umfasst maximal 18.000 Unternehmen.

Durch die Kostenstrukturerhebung können ebenfalls weitere Variablen als potenzielle Determinanten der Produktivität berücksichtigt werden. Neben den Informationen, die für Industriebetriebe verfügbar sind, kann die Struktur der Beschäftigung betrachtet werden (Teilzeit oder Vollzeit, männlich oder weiblich, Leiharbeit, „contracting out“), sowie der Anteil der Beschäftigten, die in der Forschung und Entwicklung tätig sind. Des Weiteren sind Informationen zu Subventionen erhältlich.\(^{227}\)

Wagner (2010c) nutzt die Kostenstrukturanalyse, um Produktivitätsunterschiede zwischen einzelnen Bundesländern zu betrachten\(^{228}\). Ein interessantes Ergebnis der Studie ist, dass in einem Ranking der auf der Basis der Unternehmensdaten berechneten Durchschnittsproduktivität der Bundesländer das Land Niedersachsen den 5. Platz einnimmt (mit Hamburg auf Position 1). Allerdings sind für die Bundesländer von Rang 2 (Bremen) bis 9 (Berlin) keine statistisch signifikanten Unterschiede in der Durchschnittsproduktivität zu beobachten und sich somit die Durchschnittsproduktivität dieser Bundesländer statistisch gesehen nicht unterscheidet. Das zeigt einen klaren weiteren Vorteil der Arbeit mit Mikrodaten; ohne die Berechnung der Signifikanzniveaus (auf der Basis der Mikrodaten) würde beispielsweise Bremen auf Platz 2 klar besser eingestuft werden als Niedersachsen auf Platz 5.

\(^{226}\) Produktivität wird in dieser Studie von Wagner ebenfalls als Arbeitsproduktivität (Umsatz pro Kopf) gemessen.

\(^{227}\) Dass Subventionen positive Determinanten der TFP sind, zeigen z.B. Girma et al. (2007) mit irischen Unternehmenspaneldaten.

\(^{228}\) Die Arbeit wird mit der Arbeitsproduktivität definiert als Bruttowertschöpfung pro Kopf (also eine etwas andere Definition als in den bereits aufgeführten Studien).
Dienstleistungen

Weitere Datenquellen der statistischen Ämter

Neben den Datensätzen, die regulär im Rahmen von AFiD verfügbar sind, besteht die Möglichkeit, auf weitere Daten der statistischen Ämter zuzugreifen, die als „Erhebungen für besondere Zwecke“ gesammelt werden (Wagner 2010b). Diese Erhebungen beziehen sich generell nur auf einen Querschnitt von Unternehmen, da sie nur in einem bestimmten Jahr erhoben werden. Außerdem wird nur eine Stichprobe an Firmen befragt, und die Befragung ist nicht verpflichtend. Durch die Verbindung mit den in AFiD vorhandenen Paneldaten besteht jedoch die Möglichkeit, das Forschungspotential dieser Querschnittsdaten stark zu erweitern.

7.1.3 Daten des Instituts für Arbeitsmarkt- und Berufsforschung (IAB)

Das Institut für Arbeitsmarkt- und Berufsforschung der Bundesagentur für Arbeit stellt ebenfalls Betriebsdaten zur Verfügung, die zur Produktivitätsanalyse verwendet werden können.\(^\text{229}\)

Betriebs-Historien-Panel

Das BHP weist Informationen zu der Anzahl der Beschäftigten sowie der Beschäftigtenstruktur (Geschlecht, Qualifikation, Alter, Erwerbsstatus) aus. Da es keine Informationen zum Umsatz der Betriebe enthält, ist es zur Analyse der Produktivitätsentwicklung nicht nutzbar, erlaubt jedoch eine präzise Definition von Marktein- und -austritten (z.B. Fackler und Schnabel 2015).

IAB Betriebspanel

Beckmann (2016) ist eine Studie, die ebenfalls auf dem IAB Betriebspanel basiert und in der Daten für den Zeitraum 2002-2010 genutzt werden. Er analysiert den Zusammenhang zwischen der Einführung einer weiteren Form der Arbeitszeitflexibilisierung, der sogenannten Vertrauensarbeitszeit, und der Produktivität. Im Gegensatz zu bisher genannten Studien für Deutschland kalkuliert er die totale Faktorproduktivität, in dem er eine Produktionsfunktion bestehend aus Umsatz als abhängige Variable
und Arbeits-, Kapital und Materialeinsatz als unabhängige Variable schätzt. Er zeigt, dass die Einführung von Vertrauensarbeitszeit einen positiven Einfluss auf die Produktivität von Betrieben hat.230

GMOP Daten

Diese Daten sind für ca. 2 500 deutsche Unternehmen verfügbar. Neben einem Fragenkatalog zu Managementpraktiken werden noch weitere Informationen abgefragt, die eine detaillierte Analyse des Zusammenhangs zwischen Managementqualität, ausländischen Investitionen, Offshoring, Exporten und Firmenproduktivität (gemessen als Umsatz pro Kopf) erlauben.

7.1.4 Mannheimer Innovationspanel

7.1.5 Vergleich AFiD, IAB und MIP Daten

Im Vergleich der drei Datensätze kann gesagt werden, dass sowohl für AFiD als auch für IAB und MIP Daten jeweils Vor- und Nachteile bestehen und kein Datensatz generell als „der Beste“ für eine Produktivitätsanalyse bezeichnet werden kann. Die Entscheidung, welcher Datensatz bevorzugt werden sollte, hängt von der jeweiligen Fragestellung ab.

Die IAB Daten haben den Vorteil, dass sie auf Betriebebene relativ viele Informationen enthalten, die sowohl eine Berechnung der TFP als auch eine Analyse wichtiger Determinanten der TFP enthält. Dies gilt insbesondere hinsichtlich der Beschäftigungsstruktur und der Nutzung von „Human Ressource“ Maßnahmen. Die zusätzlich verfügbaren GMOP Daten erlauben des Weiteren, den Zusammenhang zwischen Managementqualität und Produktivität zu betrachten, was in der aktuellen Literatur als wichtige Determinante der Produktivität angesehen wird (vgl. OECD 2015a; Bloom et al. 2013). Der
Nachteil der GMOP Daten ist wiederum die relativ kleine Stichprobe und die Tatsache, dass die Daten nur für zwei Jahre (2008 und 2013) vorhanden sind.

7.1.6 Weitere Daten

zu Exporten oder Importen, oder der Beschäftigungsstruktur enthalten. Aufgrund der eingeschränkten Abdeckung von Unternehmen, sowie der eingeschränkten Verfügbarkeit von relevanten Variablen, erscheinen die BvD Daten als weniger gute Datengrundlage für eine Produktivitätsanalyse auf der Mikroebene.

7.1.7 Fazit

7.2 Alternative Arbeitsproduktivitätsmaße

7.2.1 Potenzialproduktivität

Die übliche Berechnung der Arbeitsproduktivität ist anfällig für den Effekt der „Entlassungsproduktivität“. Kommt es in einem Wirtschaftsraum dazu, dass der Einsatz des Faktors Arbeit durch steigende Arbeitskosten oder eine beschäftigungsunfreundliche Regulierung weniger lohnend wird (Anstieg der realen Lohnstückkosten), so reagieren die Unternehmen darauf typischerweise durch eine Reduktion

des Arbeitseinsatzes. Dem fallen diejenigen Beschäftigungsverhältnisse zum Opfer, deren Produktivität die höheren Kosten nicht tragen kann, so dass nur die höherproduktiven übrigbleiben. Im Ergebnis steigt die durchschnittliche Arbeitsproduktivität. Es wäre aber irreführend hieraus auf einen effizienten Einsatz des Faktors Arbeit zu schließen, weil ein Teil der Erwerbspersonen maximal unproduktiv „eingesetzt“ wird, indem sie erwerbslos bleiben. Umgekehrt würden beschäftigungsfreundliche Maßnahmen (Lohnmoderation, Deregulierung von Arbeitsmärkten) die gesamtwirtschaftliche Durchschnittsproduktivität tendenziell schmälern (Abschnitt 6.6).

Derartige statistische Artefakte werden vermieden, wenn die Leistung eines Wirtschaftsraums nicht auf die Zahl der Erwerbstätigen, sondern als Potenzialproduktivität auf die Zahl der Erwerbspersonen bezogen wird (Abbildung 7.2.1). Nach dieser Alternativrechnung weist die Pro-Kopf-Produktivität in Deutschland zuletzt mit Zuwachsraten von 1,1 Prozent (2014) und 1,2 Prozent (2015) Werte auf, die dem Vorkrisendurchschnitt des Zeitraums 1992 bis 2006 entsprechen (1,1 Prozent), während die realisierte Pro-Kopf-Produktivität mit Raten von 0,8 Prozent in beiden Jahren deutlich unter ihrem Vorkrisendurchschnitt von 1,3 Prozent zurückbleibt.

Abbildung 7.2.1:
Tatsächliche und arbeitskräftepotenzialbezogene Pro-Kopf-Produktivität in Deutschland 1992-2015

7.2.2 Wertproduktivität

Abbildung 7.2.2: Einfluss der Preisbereinigung auf die Arbeitsstundenproduktivität in Deutschland 1992-2015

Sieht man von dem durch Horten von Arbeitskräften bedingten Produktivitätseinbruch während der Großen Rezession 2008/2009 ab, so weist die gesamtwirtschaftliche Wertproduktivität in den letzten 20 Jahren eher einen U-förmigen als einen durchgehend fallenden Trend auf (Abbildung 7.2.2). In dieser Maßzahl spiegeln sich die für den privaten Verbrauch relevanten Terms-of-Trade-Effekte im deutschen Außenhandel wider. Anders als die volumenbezogene Arbeitsproduktivität erfasst dieses Maß auch Produktivitätseffekte, die nicht nur auf eine Mengen- oder Qualitätssteigerung in der betrachteten Produktion abstellen, sondern berücksichtigt auch, wie erfolgreich die Produktion auf globale Knappheitsrelationen ausgerichtet wird, um damit Konsumbedürfnisse im Inland zu befriedigen.

Während sich das zeitliche Profil zwischen Wert- und Volumenproduktivität unterscheidet, zeigt die Durchschnittsbetrachtung über den Gesamtzeitraum 1992 bis 2015 nahezu identische Zuwachsraten für die Gesamtwirtschaft (Abbildung 7.2.3). Zugleich wird deutlich, dass sich das sektorale Profil des Produktivitätsfortschritts aus der Perspektive der Wertproduktivität gleichmäßiger darstellt. Hierin kommt zum Ausdruck, dass die bei volumenbezogener Rechnung in ihrer Produktivität stärker zule-
genden Sektoren typischerweise ihre stärker expandierenden Produktionsmengen (die somit relativ weniger knapp werden) nur mit relativen Preisrückgängen absetzen.

Insbesondere der Produktivitätskern „Information und Kommunikation“ schneidet nach dem Wertproduktivitätskonzept deutlich schwächer ab (bleibt aber immer noch überdurchschnittlich), während die Produktivitätsbrachen Baugewerbe, Finanz- und Versicherungsdienstleister sowie sonstige Dienstleister anders als bei volumenorientierter Betrachtung deutlich am Produktivitätsfortschritt teilhaben. Lediglich die Unternehmensdienstleister bleiben auch bei diesem Produktivitätsmaß Schlusslicht mit einem nahezu unveränderten Produktivitätsrückgang im Durchschnitt des betrachteten Zeitraums.

Abbildung 7.2.3: Einfluss der Preisbereinigung auf die sektorale Arbeitsstundenproduktivität in Deutschland

Quelle: Statistisches Bundesamt, Fachserie 18, Reihe 1.2; eigene Berechnungen.
Literatur

Anhang

Tabelle A-5.2.1: Sektorbeiträge zum Arbeitsproduktivitätswachstum in Deutschland – 10 Sektoren

Tabelle A-5.2.2: Branchenbeiträge zum gesamtwirtschaftlichen Arbeitsproduktivitätswachstum in Deutschland – 31 Branchen

Tabelle A-5.2.3: Entwicklung von Arbeitsproduktivität und Totaler Faktorproduktivität in Deutschland – 31 Branchen

Tabelle A-5.2.4: Branchen mit höchstem / geringstem Wachstum der Arbeitsproduktivität und der Totalen Faktorproduktivität in Deutschland

Tabelle A-5.2.5: Klassifikation der Wirtschaftszweige nach WZ 2008 (10 Sektoren, 37 Branchen) – gleichzeitig nach EU KLEMS

Tabelle A-5.2.6: Klassifikation der Wirtschaftszweige nach WORLD KLEMS (10 Sektoren, 21 Branchen)

Tabelle A-6.4.1: Anteile der IKT-Kapitaldienste an den realen Kapitaldiensten insgesamt in IKT-intensiven Branchen in Deutschland und den Vergleichsländern 1995-2005 (Prozent)

Tabelle A-6.5.1: Schätzergebnisse Arbeitsproduktivität und Beschäftigungsanteile verschiedener Alterskohorten

Tabelle A-6.5.2: Schätzergebnisse TFP und Beschäftigungsanteile verschiedener Alterskohorten
Tabelle A-5.2.1:
Sektorbeiträge zum Arbeitsproduktivitätswachstum in Deutschland 1991-2013 (10 Sektoren)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alle Wirtschaftssektoren</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arbeitsproduktivitätswachstum</td>
<td>2,18</td>
<td>2,05</td>
<td>1,61</td>
<td>0,70</td>
<td>1,05</td>
</tr>
<tr>
<td>Gesamtheit der Sektorbeiträge</td>
<td>1,80</td>
<td>1,45</td>
<td>1,51</td>
<td>0,85</td>
<td>1,13</td>
</tr>
<tr>
<td>davon: Kapitalintensität</td>
<td>0,84</td>
<td>0,25</td>
<td>0,79</td>
<td>0,33</td>
<td>0,30</td>
</tr>
<tr>
<td>Totalle Faktorproduktivität</td>
<td>0,96</td>
<td>1,19</td>
<td>0,72</td>
<td>0,52</td>
<td>0,83</td>
</tr>
<tr>
<td>Reallokationseffekt</td>
<td>0,38</td>
<td>0,61</td>
<td>0,10</td>
<td>-0,15</td>
<td>-0,07</td>
</tr>
<tr>
<td>Land- und Forstwirtschaft, Fischerei (A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anteil an Bruttowertschöpfung</td>
<td>1,11</td>
<td>1,05</td>
<td>0,91</td>
<td>0,74</td>
<td>0,75</td>
</tr>
<tr>
<td>Sektorbeitrag zum Produktivitätswachstum</td>
<td>-0,06</td>
<td>0,06</td>
<td>0,03</td>
<td>0,01</td>
<td>0,02</td>
</tr>
<tr>
<td>davon: Kapitalintensität</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,01</td>
</tr>
<tr>
<td>Totalle Faktorproduktivität</td>
<td>-0,06</td>
<td>0,05</td>
<td>0,02</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>Sektorbeitrag zum Reallokationseffekt</td>
<td>0,13</td>
<td>0,07</td>
<td>0,06</td>
<td>0,01</td>
<td>0,03</td>
</tr>
<tr>
<td>Produzierendes Gewerbe ohne Baugewerbe (B-E)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anteil an Bruttowertschöpfung</td>
<td>28,52</td>
<td>25,95</td>
<td>25,67</td>
<td>25,70</td>
<td>25,85</td>
</tr>
<tr>
<td>Sektorbeitrag zum Produktivitätswachstum</td>
<td>0,92</td>
<td>0,80</td>
<td>0,72</td>
<td>0,57</td>
<td>0,17</td>
</tr>
<tr>
<td>davon: Kapitalintensität</td>
<td>0,66</td>
<td>0,20</td>
<td>0,18</td>
<td>0,07</td>
<td>-0,17</td>
</tr>
<tr>
<td>Totalle Faktorproduktivität</td>
<td>0,26</td>
<td>0,60</td>
<td>0,55</td>
<td>0,50</td>
<td>0,34</td>
</tr>
<tr>
<td>Sektorbeitrag zum Reallokationseffekt</td>
<td>-0,16</td>
<td>-0,05</td>
<td>-0,08</td>
<td>-0,04</td>
<td>0,08</td>
</tr>
<tr>
<td>Baugewerbe (F)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anteil an Bruttowertschöpfung</td>
<td>6,38</td>
<td>5,96</td>
<td>4,48</td>
<td>4,08</td>
<td>4,38</td>
</tr>
<tr>
<td>Sektorbeitrag zum Produktivitätswachstum</td>
<td>-0,06</td>
<td>0,02</td>
<td>0,02</td>
<td>-0,02</td>
<td>0,01</td>
</tr>
<tr>
<td>davon: Kapitalintensität</td>
<td>0,01</td>
<td>0,02</td>
<td>0,00</td>
<td>-0,01</td>
<td>0,00</td>
</tr>
<tr>
<td>Totalle Faktorproduktivität</td>
<td>-0,08</td>
<td>0,01</td>
<td>0,02</td>
<td>-0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>Beitrag zum Reallokationseffekt</td>
<td>-0,08</td>
<td>0,09</td>
<td>0,15</td>
<td>-0,03</td>
<td>-0,01</td>
</tr>
<tr>
<td>Handel, Verkehr und Gastgewerbe (G-I)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anteil an Bruttowertschöpfung</td>
<td>16,01</td>
<td>15,93</td>
<td>16,25</td>
<td>16,22</td>
<td>15,79</td>
</tr>
<tr>
<td>Sektorbeitrag zum Produktivitätswachstum</td>
<td>0,16</td>
<td>0,29</td>
<td>0,58</td>
<td>0,08</td>
<td>0,23</td>
</tr>
<tr>
<td>davon: Kapitalintensität</td>
<td>0,11</td>
<td>0,07</td>
<td>0,08</td>
<td>0,07</td>
<td>0,06</td>
</tr>
<tr>
<td>Totalle Faktorproduktivität</td>
<td>0,05</td>
<td>0,21</td>
<td>0,49</td>
<td>0,01</td>
<td>0,17</td>
</tr>
<tr>
<td>Sektorbeitrag zum Reallokationseffekt</td>
<td>0,04</td>
<td>0,01</td>
<td>0,08</td>
<td>-0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>Information und Kommunikation (J)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anteil an Bruttowertschöpfung</td>
<td>3,68</td>
<td>4,19</td>
<td>4,58</td>
<td>4,53</td>
<td>4,65</td>
</tr>
<tr>
<td>Sektorbeitrag zum Produktivitätswachstum</td>
<td>0,19</td>
<td>0,28</td>
<td>0,05</td>
<td>0,22</td>
<td>0,26</td>
</tr>
<tr>
<td>davon: Kapitalintensität</td>
<td>0,07</td>
<td>-0,01</td>
<td>0,00</td>
<td>0,00</td>
<td>-0,02</td>
</tr>
<tr>
<td>Totalle Faktorproduktivität</td>
<td>0,12</td>
<td>0,28</td>
<td>0,05</td>
<td>0,22</td>
<td>0,27</td>
</tr>
<tr>
<td>Sektorbeitrag zum Reallokationseffekt</td>
<td>0,00</td>
<td>0,03</td>
<td>0,02</td>
<td>0,01</td>
<td>0,02</td>
</tr>
</tbody>
</table>
Tabelle A-5.2.1 (Fortsetzung)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Finanz- und Versicherungsdienstleistungen (K)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anteil an Bruttowertschöpfung</td>
<td>4,85</td>
<td>4,56</td>
<td>4,85</td>
<td>4,93</td>
<td>4,35</td>
</tr>
<tr>
<td>Sektorbetrag zum Produktivitätswachstum</td>
<td>0,06</td>
<td>0,04</td>
<td>-0,21</td>
<td>0,03</td>
<td>0,01</td>
</tr>
<tr>
<td>davon: Kapitalintensität</td>
<td>0,06</td>
<td>0,03</td>
<td>0,03</td>
<td>0,02</td>
<td>0,02</td>
</tr>
<tr>
<td>Totale Faktorproduktivität</td>
<td>0,00</td>
<td>0,00</td>
<td>-0,24</td>
<td>0,02</td>
<td>0,00</td>
</tr>
<tr>
<td>Sektorbetrag zum Reallokationseffekt</td>
<td>0,00</td>
<td>0,00</td>
<td>-0,02</td>
<td>-0,02</td>
<td>-0,01</td>
</tr>
<tr>
<td>Grundstücks- und Wohnungswesen (L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anteil an Bruttowertschöpfung</td>
<td>9,68</td>
<td>10,97</td>
<td>11,11</td>
<td>11,37</td>
<td>11,35</td>
</tr>
<tr>
<td>Sektorbetrag zum Produktivitätswachstum</td>
<td>0,19</td>
<td>-0,02</td>
<td>0,39</td>
<td>0,15</td>
<td>0,30</td>
</tr>
<tr>
<td>davon: Kapitalintensität</td>
<td>-0,10</td>
<td>-0,10</td>
<td>0,33</td>
<td>0,15</td>
<td>0,37</td>
</tr>
<tr>
<td>Totale Faktorproduktivität</td>
<td>0,29</td>
<td>0,08</td>
<td>0,06</td>
<td>0,00</td>
<td>-0,07</td>
</tr>
<tr>
<td>Sektorbetrag zum Reallokationseffekt</td>
<td>0,38</td>
<td>0,38</td>
<td>-0,12</td>
<td>0,02</td>
<td>-0,19</td>
</tr>
<tr>
<td>Unternehmensdienstleister (M-N)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anteil an Bruttowertschöpfung</td>
<td>9,29</td>
<td>10,15</td>
<td>10,68</td>
<td>10,63</td>
<td>10,75</td>
</tr>
<tr>
<td>Sektorbetrag zum Produktivitätswachstum</td>
<td>0,02</td>
<td>-0,21</td>
<td>-0,13</td>
<td>-0,29</td>
<td>-0,02</td>
</tr>
<tr>
<td>davon: Kapitalintensität</td>
<td>-0,04</td>
<td>-0,01</td>
<td>0,11</td>
<td>0,00</td>
<td>-0,01</td>
</tr>
<tr>
<td>Totale Faktorproduktivität</td>
<td>0,06</td>
<td>-0,20</td>
<td>-0,24</td>
<td>-0,29</td>
<td>0,00</td>
</tr>
<tr>
<td>Sektorbetrag zum Reallokationseffekt</td>
<td>0,09</td>
<td>0,11</td>
<td>0,01</td>
<td>-0,03</td>
<td>-0,03</td>
</tr>
<tr>
<td>Öffentl. Dienstleister, Erzieh., Gesundheit (O-Q)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anteil an Bruttowertschöpfung</td>
<td>16,44</td>
<td>17,04</td>
<td>17,18</td>
<td>17,58</td>
<td>18,00</td>
</tr>
<tr>
<td>Sektorbetrag zum Produktivitätswachstum</td>
<td>0,32</td>
<td>0,21</td>
<td>0,07</td>
<td>0,10</td>
<td>0,15</td>
</tr>
<tr>
<td>davon: Kapitalintensität</td>
<td>0,04</td>
<td>0,03</td>
<td>0,03</td>
<td>0,01</td>
<td>0,04</td>
</tr>
<tr>
<td>Totale Faktorproduktivität</td>
<td>0,28</td>
<td>0,17</td>
<td>0,04</td>
<td>0,09</td>
<td>0,11</td>
</tr>
<tr>
<td>Sektorbetrag zum Reallokationseffekt</td>
<td>-0,02</td>
<td>-0,02</td>
<td>-0,01</td>
<td>-0,05</td>
<td>0,00</td>
</tr>
<tr>
<td>Sonstige Dienstleister (R-T)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anteil an Bruttowertschöpfung</td>
<td>4,05</td>
<td>4,21</td>
<td>4,29</td>
<td>4,23</td>
<td>4,12</td>
</tr>
<tr>
<td>Sektorbetrag zum Produktivitätswachstum</td>
<td>0,04</td>
<td>-0,01</td>
<td>-0,02</td>
<td>-0,01</td>
<td>0,00</td>
</tr>
<tr>
<td>davon: Kapitalintensität</td>
<td>0,02</td>
<td>0,01</td>
<td>0,02</td>
<td>0,02</td>
<td>0,02</td>
</tr>
<tr>
<td>Totale Faktorproduktivität</td>
<td>0,02</td>
<td>-0,02</td>
<td>-0,04</td>
<td>-0,02</td>
<td>-0,01</td>
</tr>
<tr>
<td>Sektorbetrag zum Reallokationseffekt</td>
<td>-0,01</td>
<td>-0,02</td>
<td>0,00</td>
<td>-0,01</td>
<td>0,01</td>
</tr>
</tbody>
</table>

Quelle: Statistisches Bundesamt, Fachserie 18, Reihe 1.4; eigene Berechnungen.
Tabelle A-5.2.2:
Branchenbeiträge zum gesamtwirtschaftlichen Arbeitsproduktivitätswachstum in Deutschland 1991-2013 (31 Branchen)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Arbeitsproduktivitätswachstum</td>
<td>1,662</td>
<td>2,010</td>
<td>1,676</td>
<td>0,586</td>
<td>1,092</td>
</tr>
<tr>
<td>Gesamtheit der Branchenbeiträge</td>
<td>1,714</td>
<td>1,822</td>
<td>1,470</td>
<td>0,832</td>
<td>0,824</td>
</tr>
<tr>
<td>davon: Kapitalintensität</td>
<td>1,077</td>
<td>0,552</td>
<td>0,594</td>
<td>0,300</td>
<td>-0,121</td>
</tr>
<tr>
<td>Totale Faktorproduktivität</td>
<td>0,637</td>
<td>1,270</td>
<td>0,877</td>
<td>0,533</td>
<td>0,945</td>
</tr>
<tr>
<td>Reallokationseffekt</td>
<td>-0,052</td>
<td>0,189</td>
<td>0,206</td>
<td>-0,247</td>
<td>0,268</td>
</tr>
</tbody>
</table>

A Land- und Forstwirtschaft, Fischerei
- Anteil an Bruttowertschöpfung: 1,502, 1,465, 1,271, 1,044, 1,072
- Branchenbeitrag zum AP-Wachstum: -0,078, 0,077, 0,035, 0,019, 0,024
- davon: Kapitalintensität: 0,000, 0,001, 0,007, 0,004, 0,009
- Totale Faktorproduktivität: -0,078, 0,076, 0,028, 0,015, 0,015
- Reallokationseffekt: 0,166, 0,091, 0,076, 0,019, 0,037

B Bergbau und Gewinnung von Steinen und Erden
- Anteil an Bruttowertschöpfung: 0,886, 0,581, 0,323, 0,297, 0,309
- Branchenbeitrag zum AP-Wachstum: 0,064, -0,005, -0,007, 0,020, -0,011
- davon: Kapitalintensität: 0,024, 0,010, 0,000, 0,001, 0,001
- Totale Faktorproduktivität: 0,039, -0,015, -0,007, 0,019, -0,012
- Reallokationseffekt: -0,013, -0,005, 0,003, -0,000, -0,003

C10_C12 Herstellung von Nahrungs- und Futtermitteln, Getränkeherstellung, Tabakverarbeitung
- Anteil an Bruttowertschöpfung: 2,906, 2,734, 2,570, 2,406, 2,310
- Branchenbeitrag zum AP-Wachstum: -0,025, 0,014, -0,030, -0,026, 0,084
- davon: Kapitalintensität: 0,034, -0,008, -0,007, -0,008, -0,006
- Totale Faktorproduktivität: -0,059, 0,022, -0,023, -0,018, 0,090
- Reallokationseffekt: 0,002, -0,001, 0,002, 0,002, 0,003

C13_C15 Herstellung von Textilien, Bekleidung, Leder, Lederverwaren und Schuhen
- Anteil an Bruttowertschöpfung: 1,026, 0,744, 0,589, 0,468, 0,418
- Branchenbeitrag zum AP-Wachstum: 0,060, 0,025, 0,022, 0,009, -0,001
- davon: Kapitalintensität: 0,021, 0,004, 0,003, -0,002, -0,005
- Totale Faktorproduktivität: 0,039, 0,021, 0,019, 0,011, 0,004
- Reallokationseffekt: 0,074, 0,017, 0,012, 0,004, 0,001

C16_18 Herstellung von Holzwaren, Papier und Druckerzeugnissen
- Anteil an Bruttowertschöpfung: 2,336, 2,192, 1,927, 1,618, 1,433
- Branchenbeitrag zum AP-Wachstum: 0,054, 0,081, 0,045, 0,033, 0,025
- davon: Kapitalintensität: 0,021, 0,020, 0,009, 0,000, -0,006
- Totale Faktorproduktivität: 0,033, 0,061, 0,036, 0,032, 0,031
- Reallokationseffekt: 0,000, -0,001, -0,001, 0,002, 0,002

C19 Kokerei und Mineralölverarbeitung
- Anteil an Bruttowertschöpfung: 0,201, 0,275, 0,347, 0,326, 0,301
- Branchenbeitrag zum AP-Wachstum: -0,072, 0,017, -0,004, -0,014, -0,071
- davon: Kapitalintensität: 0,012, 0,002, 0,004, 0,002, -0,008
- Totale Faktorproduktivität: -0,084, 0,016, -0,008, -0,017, -0,063
- Reallokationseffekt: -0,012, -0,005, -0,013, -0,002, 0,003

C20 Herstellung von chemischen Erzeugnissen
- Anteil an Bruttowertschöpfung: 2,849, 2,661, 2,465, 2,455, 2,397
- Branchenbeitrag zum AP-Wachstum: 0,224, 0,127, 0,095, 0,054, -0,104
- davon: Kapitalintensität: 0,089, 0,053, 0,038, 0,003, -0,033
- Totale Faktorproduktivität: 0,135, 0,074, 0,057, 0,051, -0,071
- Reallokationseffekt: -0,072, -0,037, -0,036, -0,010, 0,025
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C21</td>
<td>Anteil an Bruttowertschöpfung</td>
<td>0,875</td>
<td>0,888</td>
<td>1,067</td>
<td>1,245</td>
<td>1,272</td>
</tr>
<tr>
<td></td>
<td>Branchenbeitrag zum AP-Wachstum</td>
<td>0,076</td>
<td>0,037</td>
<td>0,084</td>
<td>0,017</td>
<td>0,013</td>
</tr>
<tr>
<td></td>
<td>davon: Kapitalintensität</td>
<td>0,035</td>
<td>0,024</td>
<td>0,013</td>
<td>0,013</td>
<td>-0,011</td>
</tr>
<tr>
<td></td>
<td>Totale Faktorproduktivität</td>
<td>0,041</td>
<td>0,013</td>
<td>0,071</td>
<td>0,004</td>
<td>0,023</td>
</tr>
<tr>
<td></td>
<td>Reallocationsfekt</td>
<td>-0,024</td>
<td>-0,013</td>
<td>0,001</td>
<td>0,001</td>
<td>0,018</td>
</tr>
<tr>
<td>C22_C23</td>
<td>Herstellung von Gummi-, Kunststoff-, Glaswaren, Keramik u.Ä.</td>
<td>3,004</td>
<td>2,864</td>
<td>2,558</td>
<td>2,358</td>
<td>2,338</td>
</tr>
<tr>
<td></td>
<td>Anteil an Bruttowertschöpfung</td>
<td>0,135</td>
<td>0,058</td>
<td>0,077</td>
<td>0,039</td>
<td>0,028</td>
</tr>
<tr>
<td></td>
<td>davon: Kapitalintensität</td>
<td>0,048</td>
<td>0,020</td>
<td>0,012</td>
<td>-0,006</td>
<td>-0,021</td>
</tr>
<tr>
<td></td>
<td>Totale Faktorproduktivität</td>
<td>0,087</td>
<td>0,037</td>
<td>0,065</td>
<td>0,044</td>
<td>0,049</td>
</tr>
<tr>
<td></td>
<td>Reallocationsfekt</td>
<td>-0,006</td>
<td>-0,003</td>
<td>-0,003</td>
<td>-0,000</td>
<td>0,001</td>
</tr>
<tr>
<td>C24_C25</td>
<td>Metallerzeugung und -bearbeitung, Herstellung von Metallerzeugnissen</td>
<td>4,339</td>
<td>4,055</td>
<td>4,111</td>
<td>3,977</td>
<td>3,944</td>
</tr>
<tr>
<td></td>
<td>Anteil an Bruttowertschöpfung</td>
<td>0,137</td>
<td>0,137</td>
<td>0,031</td>
<td>0,020</td>
<td>0,078</td>
</tr>
<tr>
<td></td>
<td>davon: Kapitalintensität</td>
<td>0,029</td>
<td>0,008</td>
<td>0,001</td>
<td>0,001</td>
<td>-0,027</td>
</tr>
<tr>
<td></td>
<td>Totale Faktorproduktivität</td>
<td>0,108</td>
<td>0,129</td>
<td>0,030</td>
<td>0,019</td>
<td>0,106</td>
</tr>
<tr>
<td></td>
<td>Reallocationsfekt</td>
<td>0,001</td>
<td>-0,000</td>
<td>-0,002</td>
<td>-0,002</td>
<td>0,003</td>
</tr>
<tr>
<td>C26</td>
<td>Herstellung von Datenverarbeitungsgeräten, elektronischen und optischen Erzeugnissen</td>
<td>2,208</td>
<td>2,040</td>
<td>2,169</td>
<td>1,980</td>
<td>1,857</td>
</tr>
<tr>
<td></td>
<td>Anteil an Bruttowertschöpfung</td>
<td>0,102</td>
<td>0,221</td>
<td>0,206</td>
<td>0,178</td>
<td>0,104</td>
</tr>
<tr>
<td></td>
<td>davon: Kapitalintensität</td>
<td>0,089</td>
<td>0,022</td>
<td>0,033</td>
<td>0,010</td>
<td>-0,017</td>
</tr>
<tr>
<td></td>
<td>Totale Faktorproduktivität</td>
<td>0,014</td>
<td>0,198</td>
<td>0,174</td>
<td>0,168</td>
<td>0,121</td>
</tr>
<tr>
<td></td>
<td>Reallocationsfekt</td>
<td>-0,067</td>
<td>-0,012</td>
<td>-0,018</td>
<td>-0,008</td>
<td>0,017</td>
</tr>
<tr>
<td>C27</td>
<td>Herstellung von elektrischen Ausrüstungen</td>
<td>2,850</td>
<td>2,547</td>
<td>2,396</td>
<td>2,331</td>
<td>2,390</td>
</tr>
<tr>
<td></td>
<td>Anteil an Bruttowertschöpfung</td>
<td>0,090</td>
<td>0,081</td>
<td>0,004</td>
<td>0,049</td>
<td>-0,053</td>
</tr>
<tr>
<td></td>
<td>davon: Kapitalintensität</td>
<td>0,099</td>
<td>0,007</td>
<td>0,004</td>
<td>-0,005</td>
<td>-0,020</td>
</tr>
<tr>
<td></td>
<td>Totale Faktorproduktivität</td>
<td>-0,009</td>
<td>0,074</td>
<td>-0,000</td>
<td>0,054</td>
<td>-0,032</td>
</tr>
<tr>
<td></td>
<td>Reallocationsfekt</td>
<td>-0,047</td>
<td>-0,009</td>
<td>-0,011</td>
<td>-0,006</td>
<td>0,013</td>
</tr>
<tr>
<td>C28</td>
<td>Maschinenbau</td>
<td>4,596</td>
<td>4,380</td>
<td>4,568</td>
<td>4,683</td>
<td>4,872</td>
</tr>
<tr>
<td></td>
<td>Anteil an Bruttowertschöpfung</td>
<td>0,180</td>
<td>0,079</td>
<td>0,082</td>
<td>-0,055</td>
<td>-0,045</td>
</tr>
<tr>
<td></td>
<td>davon: Kapitalintensität</td>
<td>0,083</td>
<td>0,012</td>
<td>0,017</td>
<td>0,004</td>
<td>-0,045</td>
</tr>
<tr>
<td></td>
<td>Totale Faktorproduktivität</td>
<td>0,097</td>
<td>0,067</td>
<td>0,065</td>
<td>-0,059</td>
<td>-0,000</td>
</tr>
<tr>
<td></td>
<td>Reallocationsfekt</td>
<td>-0,030</td>
<td>-0,006</td>
<td>-0,014</td>
<td>0,002</td>
<td>0,039</td>
</tr>
<tr>
<td>C29_C30</td>
<td>Fahrzeugbau</td>
<td>4,695</td>
<td>4,539</td>
<td>5,063</td>
<td>5,656</td>
<td>6,175</td>
</tr>
<tr>
<td></td>
<td>Anteil an Bruttowertschöpfung</td>
<td>0,063</td>
<td>-0,036</td>
<td>0,209</td>
<td>0,328</td>
<td>0,119</td>
</tr>
<tr>
<td></td>
<td>davon: Kapitalintensität</td>
<td>0,124</td>
<td>0,008</td>
<td>0,060</td>
<td>0,081</td>
<td>-0,024</td>
</tr>
<tr>
<td></td>
<td>Totale Faktorproduktivität</td>
<td>-0,060</td>
<td>-0,044</td>
<td>0,149</td>
<td>0,247</td>
<td>0,144</td>
</tr>
<tr>
<td></td>
<td>Reallocationsfekt</td>
<td>-0,070</td>
<td>0,032</td>
<td>-0,016</td>
<td>-0,063</td>
<td>0,089</td>
</tr>
<tr>
<td>C31_C33</td>
<td>Herstellung von Möbeln, sonstigen Waren, Reparatur und Installation von Maschinen und Ausrüstungen</td>
<td>2,139</td>
<td>1,977</td>
<td>1,981</td>
<td>2,037</td>
<td>2,098</td>
</tr>
<tr>
<td></td>
<td>Anteil an Bruttowertschöpfung</td>
<td>0,043</td>
<td>0,080</td>
<td>0,073</td>
<td>-0,009</td>
<td>0,001</td>
</tr>
<tr>
<td></td>
<td>davon: Kapitalintensität</td>
<td>0,007</td>
<td>0,001</td>
<td>0,001</td>
<td>-0,004</td>
<td>-0,001</td>
</tr>
<tr>
<td></td>
<td>Totale Faktorproduktivität</td>
<td>0,036</td>
<td>0,079</td>
<td>0,072</td>
<td>-0,005</td>
<td>0,001</td>
</tr>
<tr>
<td></td>
<td>Reallocationsfekt</td>
<td>0,022</td>
<td>0,006</td>
<td>0,004</td>
<td>-0,001</td>
<td>-0,000</td>
</tr>
</tbody>
</table>
Tabelle A-5.2.2 (Fortsetzung)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Anteil an Bruttowertschöpfung</td>
<td>2,509</td>
<td>2,343</td>
<td>2,418</td>
<td>3,036</td>
<td>3,139</td>
<td></td>
</tr>
<tr>
<td>Branchenbeitrag zum AP-Wachstum</td>
<td>0,128</td>
<td>0,181</td>
<td>0,081</td>
<td>0,064</td>
<td>-0,098</td>
<td></td>
</tr>
<tr>
<td>davon: Kapitalintensität</td>
<td>0,093</td>
<td>0,086</td>
<td>0,034</td>
<td>0,012</td>
<td>-0,029</td>
<td></td>
</tr>
<tr>
<td>Totale Faktorproduktivität</td>
<td>0,035</td>
<td>0,095</td>
<td>0,046</td>
<td>0,052</td>
<td>-0,069</td>
<td></td>
</tr>
<tr>
<td>Reallokationseffekt</td>
<td>-0,042</td>
<td>-0,067</td>
<td>-0,028</td>
<td>0,000</td>
<td>0,008</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E</th>
<th>Wasserversorgung; Abwasser- und Abfallentsorgung und Beseitigung von Umweltverschmutzungen</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Anteil an Bruttowertschöpfung</td>
<td>1,262</td>
<td>1,364</td>
<td>1,398</td>
<td>1,450</td>
<td>1,484</td>
<td></td>
</tr>
<tr>
<td>Branchenbeitrag zum AP-Wachstum</td>
<td>-0,072</td>
<td>-0,045</td>
<td>0,019</td>
<td>-0,002</td>
<td>0,033</td>
<td></td>
</tr>
<tr>
<td>davon: Kapitalintensität</td>
<td>0,011</td>
<td>0,021</td>
<td>0,015</td>
<td>0,001</td>
<td>-0,013</td>
<td></td>
</tr>
<tr>
<td>Totale Faktorproduktivität</td>
<td>-0,083</td>
<td>-0,066</td>
<td>0,004</td>
<td>-0,003</td>
<td>0,046</td>
<td></td>
</tr>
<tr>
<td>Reallokationseffekt</td>
<td>0,013</td>
<td>-0,002</td>
<td>-0,004</td>
<td>0,001</td>
<td>0,008</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>F</th>
<th>Baugewerbe</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Anteil an Bruttowertschöpfung</td>
<td>8,688</td>
<td>8,310</td>
<td>6,277</td>
<td>5,765</td>
<td>6,230</td>
<td></td>
</tr>
<tr>
<td>Branchenbeitrag zum AP-Wachstum</td>
<td>-0,087</td>
<td>0,034</td>
<td>0,028</td>
<td>-0,023</td>
<td>0,012</td>
<td></td>
</tr>
<tr>
<td>davon: Kapitalintensität</td>
<td>0,020</td>
<td>0,023</td>
<td>0,001</td>
<td>-0,009</td>
<td>-0,003</td>
<td></td>
</tr>
<tr>
<td>Totale Faktorproduktivität</td>
<td>-0,107</td>
<td>0,011</td>
<td>0,026</td>
<td>-0,014</td>
<td>0,015</td>
<td></td>
</tr>
<tr>
<td>Reallokationseffekt</td>
<td>-0,084</td>
<td>0,099</td>
<td>0,174</td>
<td>-0,033</td>
<td>-0,007</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>G</th>
<th>Handel; Instandhaltung und Reparatur von Kraftfahrzeugen</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Anteil an Bruttowertschöpfung</td>
<td>13,910</td>
<td>14,294</td>
<td>14,472</td>
<td>14,372</td>
<td>13,711</td>
<td></td>
</tr>
<tr>
<td>Branchenbeitrag zum AP-Wachstum</td>
<td>0,082</td>
<td>0,249</td>
<td>0,610</td>
<td>0,052</td>
<td>0,192</td>
<td></td>
</tr>
<tr>
<td>davon: Kapitalintensität</td>
<td>0,110</td>
<td>0,070</td>
<td>0,054</td>
<td>0,029</td>
<td>0,048</td>
<td></td>
</tr>
<tr>
<td>Totale Faktorproduktivität</td>
<td>-0,028</td>
<td>0,179</td>
<td>0,556</td>
<td>0,023</td>
<td>0,144</td>
<td></td>
</tr>
<tr>
<td>Reallokationseffekt</td>
<td>0,013</td>
<td>-0,000</td>
<td>0,062</td>
<td>0,014</td>
<td>0,022</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H</th>
<th>Verkehr und Lagerei</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Anteil an Bruttowertschöpfung</td>
<td>5,841</td>
<td>5,750</td>
<td>6,115</td>
<td>6,479</td>
<td>6,665</td>
<td></td>
</tr>
<tr>
<td>Branchenbeitrag zum AP-Wachstum</td>
<td>0,251</td>
<td>0,215</td>
<td>0,222</td>
<td>0,121</td>
<td>0,045</td>
<td></td>
</tr>
<tr>
<td>davon: Kapitalintensität</td>
<td>0,089</td>
<td>0,068</td>
<td>0,062</td>
<td>0,061</td>
<td>0,014</td>
<td></td>
</tr>
<tr>
<td>Totale Faktorproduktivität</td>
<td>0,162</td>
<td>0,147</td>
<td>0,160</td>
<td>0,060</td>
<td>0,031</td>
<td></td>
</tr>
<tr>
<td>Reallokationseffekt</td>
<td>0,050</td>
<td>0,017</td>
<td>0,003</td>
<td>-0,001</td>
<td>-0,001</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>I</th>
<th>Gastgewerbe</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Anteil an Bruttowertschöpfung</td>
<td>1,997</td>
<td>2,167</td>
<td>2,166</td>
<td>2,064</td>
<td>2,061</td>
<td></td>
</tr>
<tr>
<td>Branchenbeitrag zum AP-Wachstum</td>
<td>-0,054</td>
<td>-0,029</td>
<td>-0,025</td>
<td>-0,051</td>
<td>0,054</td>
<td></td>
</tr>
<tr>
<td>davon: Kapitalintensität</td>
<td>0,000</td>
<td>-0,000</td>
<td>0,000</td>
<td>-0,000</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td>Totale Faktorproduktivität</td>
<td>-0,054</td>
<td>-0,029</td>
<td>-0,026</td>
<td>-0,051</td>
<td>0,054</td>
<td></td>
</tr>
<tr>
<td>Reallokationseffekt</td>
<td>-0,068</td>
<td>-0,048</td>
<td>0,023</td>
<td>-0,034</td>
<td>0,021</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J58_J60</th>
<th>Verlagswesen, audiovisuelle Medien und Rundfunk</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Anteil an Bruttowertschöpfung</td>
<td>1,575</td>
<td>1,781</td>
<td>1,783</td>
<td>1,706</td>
<td>1,763</td>
<td></td>
</tr>
<tr>
<td>Branchenbeitrag zum AP-Wachstum</td>
<td>0,059</td>
<td>0,060</td>
<td>-0,004</td>
<td>0,013</td>
<td>0,033</td>
<td></td>
</tr>
<tr>
<td>davon: Kapitalintensität</td>
<td>0,031</td>
<td>0,048</td>
<td>0,017</td>
<td>0,006</td>
<td>0,002</td>
<td></td>
</tr>
<tr>
<td>Totale Faktorproduktivität</td>
<td>0,028</td>
<td>0,012</td>
<td>-0,021</td>
<td>0,007</td>
<td>0,031</td>
<td></td>
</tr>
<tr>
<td>Reallokationseffekt</td>
<td>-0,003</td>
<td>-0,008</td>
<td>-0,008</td>
<td>-0,001</td>
<td>0,002</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J61</th>
<th>Telekommunikation</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Anteil an Bruttowertschöpfung</td>
<td>2,189</td>
<td>2,319</td>
<td>2,245</td>
<td>1,947</td>
<td>1,543</td>
<td></td>
</tr>
<tr>
<td>Branchenbeitrag zum AP-Wachstum</td>
<td>0,236</td>
<td>0,349</td>
<td>0,112</td>
<td>0,231</td>
<td>0,090</td>
<td></td>
</tr>
<tr>
<td>davon: Kapitalintensität</td>
<td>0,092</td>
<td>0,062</td>
<td>0,028</td>
<td>0,066</td>
<td>0,027</td>
<td></td>
</tr>
<tr>
<td>Totale Faktorproduktivität</td>
<td>0,144</td>
<td>0,287</td>
<td>0,084</td>
<td>0,166</td>
<td>0,064</td>
<td></td>
</tr>
<tr>
<td>Reallokationseffekt</td>
<td>-0,046</td>
<td>-0,071</td>
<td>-0,038</td>
<td>-0,080</td>
<td>-0,046</td>
<td></td>
</tr>
<tr>
<td>J62_J63</td>
<td>Informationstechnologische Dienstleistungen, Informationsdienstleistungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anteil an Bruttowertschöpfung</td>
<td>1,244</td>
<td>1,741</td>
<td>2,391</td>
<td>2,748</td>
<td>3,298</td>
<td></td>
</tr>
<tr>
<td>Branchenbeitrag zum AP-Wachstum</td>
<td>0,000</td>
<td>0,076</td>
<td>0,025</td>
<td>0,141</td>
<td>0,295</td>
<td></td>
</tr>
<tr>
<td>davon: Kapitalintensität</td>
<td>0,014</td>
<td>0,021</td>
<td>0,026</td>
<td>0,012</td>
<td>0,024</td>
<td></td>
</tr>
<tr>
<td>Totale Faktorproduktivität</td>
<td>-0,013</td>
<td>0,055</td>
<td>-0,002</td>
<td>0,129</td>
<td>0,271</td>
<td></td>
</tr>
<tr>
<td>Reallokationseffekt</td>
<td>0,012</td>
<td>0,031</td>
<td>0,017</td>
<td>0,010</td>
<td>0,021</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>Finanz- und Versicherungsdienstleister</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anteil an Bruttowertschöpfung</td>
<td>6,593</td>
<td>6,365</td>
<td>6,792</td>
<td>6,963</td>
<td>6,187</td>
<td></td>
</tr>
<tr>
<td>Branchenbeitrag zum AP-Wachstum</td>
<td>0,086</td>
<td>0,049</td>
<td>-0,293</td>
<td>0,046</td>
<td>0,019</td>
<td></td>
</tr>
<tr>
<td>davon: Kapitalintensität</td>
<td>0,085</td>
<td>0,044</td>
<td>0,037</td>
<td>0,024</td>
<td>0,024</td>
<td></td>
</tr>
<tr>
<td>Totale Faktorproduktivität</td>
<td>0,002</td>
<td>0,005</td>
<td>-0,330</td>
<td>0,022</td>
<td>-0,005</td>
<td></td>
</tr>
<tr>
<td>Reallokationseffekt</td>
<td>-0,004</td>
<td>-0,001</td>
<td>-0,026</td>
<td>-0,029</td>
<td>-0,012</td>
<td></td>
</tr>
<tr>
<td>M69_M71</td>
<td>Freiberufliche und technische Dienstleister</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anteil an Bruttowertschöpfung</td>
<td>5,601</td>
<td>6,375</td>
<td>6,582</td>
<td>6,377</td>
<td>6,196</td>
<td></td>
</tr>
<tr>
<td>Branchenbeitrag zum AP-Wachstum</td>
<td>-0,004</td>
<td>-0,013</td>
<td>-0,082</td>
<td>-0,226</td>
<td>-0,125</td>
<td></td>
</tr>
<tr>
<td>davon: Kapitalintensität</td>
<td>-0,016</td>
<td>-0,045</td>
<td>-0,010</td>
<td>-0,007</td>
<td>-0,002</td>
<td></td>
</tr>
<tr>
<td>Totale Faktorproduktivität</td>
<td>-0,216</td>
<td>-0,088</td>
<td>-0,072</td>
<td>-0,219</td>
<td>-0,124</td>
<td></td>
</tr>
<tr>
<td>Reallokationseffekt</td>
<td>0,112</td>
<td>0,119</td>
<td>0,037</td>
<td>0,008</td>
<td>-0,007</td>
<td></td>
</tr>
<tr>
<td>M72</td>
<td>Forschung und Entwicklung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anteil an Bruttowertschöpfung</td>
<td>0,724</td>
<td>0,827</td>
<td>0,925</td>
<td>0,963</td>
<td>1,032</td>
<td></td>
</tr>
<tr>
<td>Branchenbeitrag zum AP-Wachstum</td>
<td>-0,004</td>
<td>0,014</td>
<td>0,003</td>
<td>-0,000</td>
<td>-0,027</td>
<td></td>
</tr>
<tr>
<td>davon: Kapitalintensität</td>
<td>0,002</td>
<td>-0,005</td>
<td>0,010</td>
<td>-0,000</td>
<td>-0,010</td>
<td></td>
</tr>
<tr>
<td>Totale Faktorproduktivität</td>
<td>-0,006</td>
<td>0,019</td>
<td>-0,007</td>
<td>-0,000</td>
<td>-0,017</td>
<td></td>
</tr>
<tr>
<td>Reallokationseffekt</td>
<td>0,009</td>
<td>0,016</td>
<td>0,003</td>
<td>0,011</td>
<td>0,021</td>
<td></td>
</tr>
<tr>
<td>M73_M75</td>
<td>Sonst. freiberufl., wissenschaftl., techn. Dienstl.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anteil an Bruttowertschöpfung</td>
<td>1,806</td>
<td>1,811</td>
<td>1,603</td>
<td>1,398</td>
<td>1,371</td>
<td></td>
</tr>
<tr>
<td>Branchenbeitrag zum AP-Wachstum</td>
<td>-0,055</td>
<td>-0,124</td>
<td>-0,122</td>
<td>-0,025</td>
<td>0,050</td>
<td></td>
</tr>
<tr>
<td>davon: Kapitalintensität</td>
<td>-0,111</td>
<td>-0,071</td>
<td>-0,021</td>
<td>0,003</td>
<td>0,015</td>
<td></td>
</tr>
<tr>
<td>Totale Faktorproduktivität</td>
<td>0,055</td>
<td>-0,053</td>
<td>-0,101</td>
<td>-0,028</td>
<td>0,035</td>
<td></td>
</tr>
<tr>
<td>Reallokationseffekt</td>
<td>0,054</td>
<td>0,047</td>
<td>0,012</td>
<td>0,001</td>
<td>-0,000</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>Sonstige Unternehmensdienstleister</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anteil an Bruttowertschöpfung</td>
<td>4,502</td>
<td>5,143</td>
<td>5,850</td>
<td>6,289</td>
<td>6,682</td>
<td></td>
</tr>
<tr>
<td>Branchenbeitrag zum AP-Wachstum</td>
<td>-0,009</td>
<td>-0,043</td>
<td>0,003</td>
<td>-0,145</td>
<td>0,059</td>
<td></td>
</tr>
<tr>
<td>davon: Kapitalintensität</td>
<td>0,047</td>
<td>0,034</td>
<td>0,116</td>
<td>-0,009</td>
<td>-0,027</td>
<td></td>
</tr>
<tr>
<td>Totale Faktorproduktivität</td>
<td>-0,057</td>
<td>-0,077</td>
<td>-0,113</td>
<td>-0,137</td>
<td>0,086</td>
<td></td>
</tr>
<tr>
<td>Reallokationseffekt</td>
<td>0,007</td>
<td>0,002</td>
<td>-0,006</td>
<td>-0,046</td>
<td>-0,021</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Kunst, Unterhaltung und Erholung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anteil an Bruttowertschöpfung</td>
<td>1,682</td>
<td>1,771</td>
<td>1,843</td>
<td>1,855</td>
<td>1,916</td>
<td></td>
</tr>
<tr>
<td>Branchenbeitrag zum AP-Wachstum</td>
<td>-0,029</td>
<td>-0,013</td>
<td>-0,032</td>
<td>-0,014</td>
<td>0,027</td>
<td></td>
</tr>
<tr>
<td>davon: Kapitalintensität</td>
<td>-0,001</td>
<td>-0,008</td>
<td>0,000</td>
<td>0,000</td>
<td>0,005</td>
<td></td>
</tr>
<tr>
<td>Totale Faktorproduktivität</td>
<td>-0,034</td>
<td>-0,006</td>
<td>-0,038</td>
<td>-0,015</td>
<td>0,021</td>
<td></td>
</tr>
<tr>
<td>Reallokationseffekt</td>
<td>0,004</td>
<td>0,005</td>
<td>-0,000</td>
<td>-0,002</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>Sonstige Dienstleister a.n.g.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anteil an Bruttowertschöpfung</td>
<td>3,465</td>
<td>3,694</td>
<td>3,736</td>
<td>3,704</td>
<td>3,534</td>
<td></td>
</tr>
<tr>
<td>Branchenbeitrag zum AP-Wachstum</td>
<td>0,079</td>
<td>-0,010</td>
<td>0,005</td>
<td>-0,009</td>
<td>-0,023</td>
<td></td>
</tr>
<tr>
<td>davon: Kapitalintensität</td>
<td>0,038</td>
<td>0,020</td>
<td>0,023</td>
<td>0,017</td>
<td>0,018</td>
<td></td>
</tr>
<tr>
<td>Totale Faktorproduktivität</td>
<td>0,041</td>
<td>-0,029</td>
<td>-0,018</td>
<td>-0,026</td>
<td>-0,041</td>
<td></td>
</tr>
<tr>
<td>Reallokationseffekt</td>
<td>-0,003</td>
<td>-0,005</td>
<td>0,001</td>
<td>-0,004</td>
<td>0,009</td>
<td></td>
</tr>
</tbody>
</table>

Ohne Grundstücks- und Wohnungswesen (L), Öffentl. Dienstleister, Erziehung, Gesundheit (O-Q) und Private Haushalte (T).

Quelle: Statistisches Bundesamt, Fachserie 18, Reihe 1.4.; eigene Berechnungen.
Tabelle A-5.2.3: Entwicklung von Arbeitsproduktivität und Totaler Faktorproduktivität in Deutschland 1991-2013 (31 Branchen)

<table>
<thead>
<tr>
<th>Branchen</th>
<th>Arbeitsproduktivität</th>
<th>Totaler Faktorproduktivität</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Land- und Forstwirtschaft, Fischerei</td>
<td></td>
</tr>
<tr>
<td>Arbeitsproduktivität</td>
<td>5,23</td>
<td>5,25</td>
</tr>
<tr>
<td>Totaler Faktorproduktivität</td>
<td>5,23</td>
<td>5,19</td>
</tr>
<tr>
<td>B</td>
<td>Bergbau und Gewinnung von Steinen und Erden</td>
<td></td>
</tr>
<tr>
<td>Arbeitsproduktivität</td>
<td>7,19</td>
<td>-0,93</td>
</tr>
<tr>
<td>Totaler Faktorproduktivität</td>
<td>4,44</td>
<td>-2,60</td>
</tr>
<tr>
<td>C10_C12</td>
<td>Herstellung von Nahrungs- und Futtermitteln, Getränkeherstellung, Tabakverarbeitung</td>
<td></td>
</tr>
<tr>
<td>Arbeitsproduktivität</td>
<td>-0,86</td>
<td>0,52</td>
</tr>
<tr>
<td>Totaler Faktorproduktivität</td>
<td>2,03</td>
<td>-0,80</td>
</tr>
<tr>
<td>C13_C15</td>
<td>Herstellung von Textilien, Bekleidung, Lederwaren und Schuhen</td>
<td></td>
</tr>
<tr>
<td>Arbeitsproduktivität</td>
<td>5,84</td>
<td>3,35</td>
</tr>
<tr>
<td>Totaler Faktorproduktivität</td>
<td>3,79</td>
<td>2,79</td>
</tr>
<tr>
<td>C16_C18</td>
<td>Herstellung von Holzwaren, Papier und Druckerzeugnissen</td>
<td></td>
</tr>
<tr>
<td>Arbeitsproduktivität</td>
<td>2,31</td>
<td>3,69</td>
</tr>
<tr>
<td>Totaler Faktorproduktivität</td>
<td>1,42</td>
<td>2,79</td>
</tr>
<tr>
<td>C19</td>
<td>Kokerei und Mineralölvoranlage</td>
<td></td>
</tr>
<tr>
<td>Arbeitsproduktivität</td>
<td>-35,84</td>
<td>6,28</td>
</tr>
<tr>
<td>Totaler Faktorproduktivität</td>
<td>41,77</td>
<td>5,72</td>
</tr>
<tr>
<td>C20</td>
<td>Herstellung von chemischen Erzeugnissen</td>
<td></td>
</tr>
<tr>
<td>Arbeitsproduktivität</td>
<td>7,87</td>
<td>4,77</td>
</tr>
<tr>
<td>Totaler Faktorproduktivität</td>
<td>4,74</td>
<td>2,80</td>
</tr>
<tr>
<td>C21</td>
<td>Herstellung von pharmazeutischen Erzeugnissen</td>
<td></td>
</tr>
<tr>
<td>Arbeitsproduktivität</td>
<td>8,66</td>
<td>4,18</td>
</tr>
<tr>
<td>Totaler Faktorproduktivität</td>
<td>4,65</td>
<td>1,51</td>
</tr>
<tr>
<td>C22_C23</td>
<td>Herstellung von Gummi-, Kunststoff-, Glaswaren, Keramik u.ä.</td>
<td></td>
</tr>
<tr>
<td>Arbeitsproduktivität</td>
<td>4,50</td>
<td>2,02</td>
</tr>
<tr>
<td>Totaler Faktorproduktivität</td>
<td>2,89</td>
<td>1,31</td>
</tr>
<tr>
<td>C24_C25</td>
<td>Metallerzeugung und -bearbeitung, Herstellung von Metallerzeugnissen</td>
<td></td>
</tr>
<tr>
<td>Arbeitsproduktivität</td>
<td>3,17</td>
<td>3,38</td>
</tr>
<tr>
<td>Totaler Faktorproduktivität</td>
<td>2,49</td>
<td>3,17</td>
</tr>
<tr>
<td>C26</td>
<td>Herstellung von Datenverarbeitungsgeräten, elektronischen und optischen Erzeugnissen</td>
<td></td>
</tr>
<tr>
<td>Arbeitsproduktivität</td>
<td>4,63</td>
<td>10,81</td>
</tr>
<tr>
<td>Totaler Faktorproduktivität</td>
<td>0,61</td>
<td>9,73</td>
</tr>
<tr>
<td>C27</td>
<td>Herstellung von elektrischen Ausrüstungen</td>
<td></td>
</tr>
<tr>
<td>Arbeitsproduktivität</td>
<td>3,16</td>
<td>3,18</td>
</tr>
<tr>
<td>Totaler Faktorproduktivität</td>
<td>-0,33</td>
<td>2,89</td>
</tr>
<tr>
<td>C28</td>
<td>Maschinenbau</td>
<td></td>
</tr>
<tr>
<td>Arbeitsproduktivität</td>
<td>3,91</td>
<td>1,80</td>
</tr>
<tr>
<td>Totaler Faktorproduktivität</td>
<td>2,10</td>
<td>1,53</td>
</tr>
<tr>
<td>C29_C30</td>
<td>Fahrzeugbau</td>
<td></td>
</tr>
<tr>
<td>Arbeitsproduktivität</td>
<td>1,35</td>
<td>-0,79</td>
</tr>
<tr>
<td>Totaler Faktorproduktivität</td>
<td>-1,29</td>
<td>-0,97</td>
</tr>
<tr>
<td>C31_C33</td>
<td>Herstellung von Möbeln, sonstigen Waren, Reparatur und Installation von Maschinen und Ausrüstungen</td>
<td></td>
</tr>
<tr>
<td>Arbeitsproduktivität</td>
<td>2,03</td>
<td>4,03</td>
</tr>
<tr>
<td>Totaler Faktorproduktivität</td>
<td>1,70</td>
<td>4,00</td>
</tr>
<tr>
<td>D</td>
<td>Energieversorgung</td>
<td></td>
</tr>
<tr>
<td>Arbeitsproduktivität</td>
<td>5,10</td>
<td>7,71</td>
</tr>
<tr>
<td>Totaler Faktorproduktivität</td>
<td>1,40</td>
<td>4,03</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>-5,74</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Totale Faktorproduktivität</td>
</tr>
<tr>
<td>F</td>
<td>Baugewerbe</td>
<td>Arbeitsproduktivität</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Totale Faktorproduktivität</td>
</tr>
<tr>
<td>G</td>
<td>Handel; Instandhaltung und Reparatur von Kraftfahrzeugen</td>
<td>Arbeitsproduktivität</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Totale Faktorproduktivität</td>
</tr>
<tr>
<td>H</td>
<td>Verkehr und Lagerei</td>
<td>Arbeitsproduktivität</td>
</tr>
<tr>
<td>I</td>
<td>Gastgewerbe</td>
<td>Arbeitsproduktivität</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Totale Faktorproduktivität</td>
</tr>
<tr>
<td>J58_J60</td>
<td>Verlagswesen, audiovisuelle Medien und Rundfunk</td>
<td>Arbeitsproduktivität</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Totale Faktorproduktivität</td>
</tr>
<tr>
<td>J61</td>
<td>Telekommunikation</td>
<td>Arbeitsproduktivität</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Totale Faktorproduktivität</td>
</tr>
<tr>
<td>J62_J63</td>
<td>Informationstechnologische Dienstleistungen, Informationsdienstleistungen</td>
<td>Arbeitsproduktivität</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Totale Faktorproduktivität</td>
</tr>
<tr>
<td>K</td>
<td>Finanz- und Versicherungsdienstleister</td>
<td>Arbeitsproduktivität</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Totale Faktorproduktivität</td>
</tr>
<tr>
<td>M69_M71</td>
<td>Freiberufliche und technische Dienstleister</td>
<td>Arbeitsproduktivität</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Totale Faktorproduktivität</td>
</tr>
<tr>
<td>M72</td>
<td>Forschung und Entwicklung</td>
<td>Arbeitsproduktivität</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Totale Faktorproduktivität</td>
</tr>
<tr>
<td>M73_M75</td>
<td>Sonst.freiberufl., wissenschaftl., techn. Dienstl.</td>
<td>Arbeitsproduktivität</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Totale Faktorproduktivität</td>
</tr>
<tr>
<td>N</td>
<td>Sonstige Unternehmensdienstleister</td>
<td>Arbeitsproduktivität</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Totale Faktorproduktivität</td>
</tr>
<tr>
<td>R</td>
<td>Kunst, Unterhaltung und Erholung</td>
<td>Arbeitsproduktivität</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Totale Faktorproduktivität</td>
</tr>
<tr>
<td>S</td>
<td>Sonstige Dienstleister a.n.g.</td>
<td>Arbeitsproduktivität</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Totale Faktorproduktivität</td>
</tr>
</tbody>
</table>

Ohne Grundstücks- und Wohnungswesen (L), Öffentl. Dienstleister, Erziehung, Gesundheit (O-Q) und Private Haushalte (T).

Quelle: Statistisches Bundesamt, Fachserie 18, Reihe 1.4; eigene Berechnungen.
Tabelle A-5.2.4:
Branchen mit höchstem / geringstem Wachstum der Arbeitsproduktivität und der totalen Faktorproduktivität in Deutschland 1991-2013

Arbeitsproduktivität

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>J61</td>
<td>13,157</td>
<td>0,299</td>
<td>C26</td>
</tr>
<tr>
<td>C26</td>
<td>8,062</td>
<td>0,231</td>
<td>C29_C30</td>
</tr>
<tr>
<td>D</td>
<td>6,550</td>
<td>0,175</td>
<td>C20</td>
</tr>
<tr>
<td>C21</td>
<td>6,169</td>
<td>0,170</td>
<td>C21</td>
</tr>
<tr>
<td>C20</td>
<td>6,149</td>
<td>0,168</td>
<td>J62_J63</td>
</tr>
</tbody>
</table>

Totale Faktorproduktivität

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>J61</td>
<td>9,797</td>
<td>0,223</td>
<td>C24_C25</td>
</tr>
<tr>
<td>C20</td>
<td>3,659</td>
<td>0,119</td>
<td>C20</td>
</tr>
<tr>
<td>C13_C15</td>
<td>3,235</td>
<td>0,116</td>
<td>C21</td>
</tr>
<tr>
<td>C31_C33</td>
<td>2,977</td>
<td>0,101</td>
<td>C13_C15</td>
</tr>
</tbody>
</table>

Zur Erläuterung der Branchencodes vgl. Tabelle A-5.2.4.

Quelle: Statistisches Bundesamt, Fachserie 18, Reihe 1.4.; eigene Berechnungen.
Tabelle A-5.2.5:
Klassifikation der Wirtschaftszweige nach WZ 2008, ISIC Rev.4 (10 Sektoren, 37 Branchen)

<table>
<thead>
<tr>
<th>Code</th>
<th>Sektor</th>
<th>Code</th>
<th>Branche</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Land- und Forstwirtschaft, Fischerei</td>
<td>A</td>
<td>Land- und Forstwirtschaft, Fischerei</td>
</tr>
<tr>
<td>B-E</td>
<td>Produzierendes Gewerbe ohne Baugewerbe</td>
<td>B</td>
<td>Bergbau und Gewinnung von Steinen und Erden</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C10_C12</td>
<td>Herstellung von Nahrungs- und Futtermitteln, Getränkeherstellung, Tabakverarbeitung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C13_C15</td>
<td>Herstellung von Textilien, Bekleidung, Leder, Lederwaren und Schuhen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C16_C18</td>
<td>Herstellung von Holzwaren, Papier und Druckerzeugnissen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C19</td>
<td>Kokerei und Mineralötleitung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C20</td>
<td>Herstellung von chemischen Erzeugnissen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C21</td>
<td>Herstellung von pharmazeutischen Erzeugnissen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C22_C23</td>
<td>Herstellung von Gummi-, Kunststoff-, Glaswaren, Keramik u.Ä.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C24_C25</td>
<td>Metallerzeugung und -bearbeitung, Herstellung von Metallerzeugnissen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C26</td>
<td>Herstellung von Datenverarbeitungsgeräten, elektronischen und optischen Erzeugnissen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C27</td>
<td>Herstellung von elektrischen Ausrüstungen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C28</td>
<td>Maschinenbau</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C29_C30</td>
<td>Fahrzeugbau</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C31_C33</td>
<td>Herstellung von Möbeln, sonstigen Waren, Reparatur und Installation von Maschinen und Ausrüstungen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D</td>
<td>Energiewirtschaft</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E</td>
<td>Wasserversorgung; Abwasser- und Abfallsammlung und Beseitigung von Umweltverschmutzungen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>Baugewerbe</td>
</tr>
<tr>
<td>G-I</td>
<td>Handel, Verkehr, Gastgewerbe</td>
<td>G</td>
<td>Handel; Instandhaltung und Reparatur von Kraftfahrzeugen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H</td>
<td>Verkehr und Lagerei</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I</td>
<td>Gastgewerbe</td>
</tr>
<tr>
<td>J</td>
<td>Information und Kommunikation</td>
<td>J58_J60</td>
<td>Verlagswesen, audiovisuelle Medien und Rundfunk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J61</td>
<td>Telekommunikation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J62_J63</td>
<td>Informationstechnologische Dienstleistungen, Informatikdienstleistungen</td>
</tr>
<tr>
<td>K</td>
<td>Finanz- und VersicherungsDL</td>
<td>K</td>
<td>Finanz- und Versicherungsdienstleister</td>
</tr>
<tr>
<td>L</td>
<td>Grundstücks- und Wohnungswesen</td>
<td>L</td>
<td>Grundstücks- und Wohnungswesen</td>
</tr>
<tr>
<td>M-N</td>
<td>Unternehmensdienstleister</td>
<td>M69_M71</td>
<td>Freiberufliche und technische Dienstleister</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M72</td>
<td>Forschung und Entwicklung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M73_M75</td>
<td>Sonst. freiberuf., wissenschaftl., techn. Dienstleistungen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N</td>
<td>Sonstige Unternehmensdienstleister</td>
</tr>
<tr>
<td>O-Q</td>
<td>Öffentliche Verwaltung, Verteidigung, Sozialversicherung, Erziehung Und Unterricht, Gesundheits- Und Sozialwesen</td>
<td>O</td>
<td>Öffentliche Verwaltung, Verteidigung; Sozialversicherung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P</td>
<td>Erziehung und Unterricht</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Q86</td>
<td>Gesundheitswesen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Q87_Q88</td>
<td>Heime und Sozialwesen</td>
</tr>
<tr>
<td>R-T</td>
<td>Sonstige Dienstleister</td>
<td>R</td>
<td>Kunst, Unterhaltung und Heilung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S</td>
<td>Sonstige Dienstleister a.n.g.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T</td>
<td>Private Haushalte mit Hauspersonal, Herstellung von Waren und Erbringung von Dienstleistungen durch private Haushalte für den Eigenbedarf ohne ausgeprägten Schwerpunkt</td>
</tr>
</tbody>
</table>

Quelle: Statistisches Bundesamt (2008); eigene Darstellung.
Tabelle A-5.2.6:
Klassifikation der Wirtschaftszweige nach ISIC Rev.3 (9 Sektoren, 25 Branchen)

<table>
<thead>
<tr>
<th>Code</th>
<th>Sektor</th>
<th>Code</th>
<th>Branche</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-B</td>
<td>Land- und Forstwirtschaft, Fischerei</td>
<td>A-B</td>
<td>Land- und Forstwirtschaft, Fischerei und Fischzucht</td>
</tr>
<tr>
<td>C-E</td>
<td>Produzierendes Gewerbe ohne Bau- gewerbe</td>
<td>C</td>
<td>Bergbau und Gewinnung von Steinen und Erden</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D15_D16</td>
<td>Ernährungsgewerbe, Tabakverarbeitung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D17_D19</td>
<td>Textilgewerbe, Bekleidungsgewerbe, Ledergewerbe</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D20_D22</td>
<td>Holz- und Papiergewerbe</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D23</td>
<td>Kokerei, Mineralöverarbeitung, Herstellung und Verar- bietung von Spalt- und Brutstoffen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D24</td>
<td>Herstellung von chemischen Erzeugnissen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D25_D26</td>
<td>Herstellung von Gummi- und Kunststoffwaren, Glas, Ke- ramik, Steine und Erden</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D27_D28</td>
<td>Metallerzeugung und -bearbeitung, Herstellung von Met- allerzeugnissen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D29</td>
<td>Maschinenbau</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D30_D33</td>
<td>Herstellung von elektrischen und elektronischen Geräte</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D34_D35</td>
<td>Herstellung von Kraftwagen und Kraftwagenteilen, Sonsti- ger Fahrzeugbau</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E</td>
<td>Energie- und Wasserversorgung</td>
</tr>
<tr>
<td>F</td>
<td>Baugewerbe</td>
<td>F</td>
<td>Baugewerbe</td>
</tr>
<tr>
<td>G-I</td>
<td>Handel, Verkehr, Gastgewerbe</td>
<td>G</td>
<td>Handel; Instandhaltung und Reparatur von Kraftfahrzeu- gen und Gebrauchsgütern</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H</td>
<td>Gastgewerbe</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I60_I63</td>
<td>Nachrichtenübermittlung (Post and Telecommunications)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I64</td>
<td>Verkehr</td>
</tr>
<tr>
<td>J-F</td>
<td>Finanz- und Versicherungsdienstleistungen</td>
<td>J-F</td>
<td>Finanz- und Versicherungsdienstleistungen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K70</td>
<td>Grundstücks- und Wohnungswesen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K71_K74</td>
<td>Unternehmensdienstleister</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K71_K74</td>
<td>Vermietung beweglicher Sachen ohne Bedienungs- personal, Datenverarbeitung und Datenbanken, Forschung und Entwicklung, Erbringung von wirtschaftlichen Dienst- leistungen, anderweitig nicht genannt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L-N</td>
<td>Öffentliche Verwaltung, Verteidigung, Sozialversicherung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>Öffentliche Verwaltung, Verteidigung, Sozialversicherung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M</td>
<td>Erziehung und Unterricht</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N</td>
<td>Gesundheits-, Veterinär- und Sozialwesen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>O-P</td>
<td>Sonstige Dienstleister</td>
</tr>
<tr>
<td></td>
<td></td>
<td>O</td>
<td>Sonstige Dienstleister</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P</td>
<td>Private Haushalte mit Hauspersonal</td>
</tr>
</tbody>
</table>

Quelle: United Nations Statistics Division, Classifications Registry; eigene Darstellung.
Tabelle A-6.3.1:
IKT-Intensität IKT-intensiver Wirtschaftszweige in Deutschland und den Vergleichsländern 1995-2005 (Prozent)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemie/Pharma</td>
<td>7.3</td>
<td>10.7</td>
<td>12.4</td>
<td>12.3</td>
<td>24.5</td>
<td>30.4</td>
<td>9.0</td>
<td>20.5</td>
<td>26.1</td>
<td>7.4</td>
<td>10.7</td>
<td>12.2</td>
<td>6.8</td>
<td>9.1</td>
<td>9.1</td>
<td>7.1</td>
<td>10.8</td>
<td>13.2</td>
</tr>
<tr>
<td>Maschinenbau</td>
<td>12.0</td>
<td>17.0</td>
<td>20.9</td>
<td>21.6</td>
<td>40.2</td>
<td>44.5</td>
<td>15.4</td>
<td>31.7</td>
<td>47.1</td>
<td>11.5</td>
<td>19.5</td>
<td>22.7</td>
<td>7.5</td>
<td>14.1</td>
<td>16.7</td>
<td>9.0</td>
<td>14.8</td>
<td>18.4</td>
</tr>
<tr>
<td>Fahrzeugbau</td>
<td>11.4</td>
<td>16.9</td>
<td>22.5</td>
<td>20.8</td>
<td>36.2</td>
<td>41.7</td>
<td>15.0</td>
<td>21.1</td>
<td>25.9</td>
<td>13.1</td>
<td>18.4</td>
<td>20.7</td>
<td>13.9</td>
<td>20.8</td>
<td>24.0</td>
<td>7.3</td>
<td>11.8</td>
<td>15.9</td>
</tr>
<tr>
<td>Sonst. Verarb. Gewerbe</td>
<td>23.2</td>
<td>33.3</td>
<td>38.3</td>
<td>16.2</td>
<td>30.3</td>
<td>41.3</td>
<td>12.0</td>
<td>21.2</td>
<td>40.7</td>
<td>7.5</td>
<td>11.4</td>
<td>13.4</td>
<td>10.6</td>
<td>17.3</td>
<td>18.2</td>
<td>7.1</td>
<td>12.5</td>
<td>17.5</td>
</tr>
<tr>
<td>Großhandel</td>
<td>16.4</td>
<td>26.5</td>
<td>33.8</td>
<td>22.8</td>
<td>42.7</td>
<td>62.2</td>
<td>26.4</td>
<td>43.1</td>
<td>50.7</td>
<td>10.0</td>
<td>18.1</td>
<td>22.4</td>
<td>5.2</td>
<td>11.2</td>
<td>12.9</td>
<td>4.7</td>
<td>9.6</td>
<td>13.4</td>
</tr>
<tr>
<td>Einzelhandel</td>
<td></td>
<td></td>
<td></td>
<td>12.0</td>
<td>22.9</td>
<td>35.9</td>
<td>20.6</td>
<td>27.7</td>
<td>40.7</td>
<td>3.9</td>
<td>6.9</td>
<td>8.3</td>
<td>8.7</td>
<td>17.5</td>
<td>20.9</td>
<td>10.1</td>
<td>19.4</td>
<td>24.5</td>
</tr>
<tr>
<td>Finanzgewerbe</td>
<td>23.6</td>
<td>37.4</td>
<td>48.5</td>
<td>29.5</td>
<td>51.7</td>
<td>69.3</td>
<td>32.0</td>
<td>45.6</td>
<td>63.2</td>
<td>23.1</td>
<td>32.7</td>
<td>36.5</td>
<td>28.8</td>
<td>55.6</td>
<td>69.6</td>
<td>37.1</td>
<td>50.5</td>
<td>64.9</td>
</tr>
<tr>
<td>Unternehmens-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25.7</td>
<td>32.7</td>
<td>34.3</td>
<td>6.4</td>
<td>15.5</td>
<td>25.0</td>
<td>28.7</td>
<td>38.4</td>
<td>42.1</td>
</tr>
<tr>
<td>-dienstleistungen</td>
<td>18.5</td>
<td>33.6</td>
<td>44.3</td>
<td>36.1</td>
<td>64.6</td>
<td>77.8</td>
<td>33.2</td>
<td>56.1</td>
<td>70.8</td>
<td>25.7</td>
<td>32.7</td>
<td>34.3</td>
<td>6.4</td>
<td>15.5</td>
<td>25.0</td>
<td>28.7</td>
<td>38.4</td>
<td>42.1</td>
</tr>
</tbody>
</table>

Anteile der IKT-Kapitaldienste an den realen Kapitaldiensten insgesamt in IKT-intensiven Wirtschaftszweigen.

Quelle: EU KLEMS; eigene Berechnungen.
<table>
<thead>
<tr>
<th>Alterskohorte</th>
<th>Direkter Ansatz</th>
<th>Polynom-Ansatz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Punkt</td>
<td>Std</td>
</tr>
<tr>
<td>15-19</td>
<td>18.86</td>
<td>-</td>
</tr>
<tr>
<td>20-24</td>
<td>-31.70</td>
<td>23.45</td>
</tr>
<tr>
<td>25-29</td>
<td>10.06</td>
<td>19.01</td>
</tr>
<tr>
<td>30-34</td>
<td>-18.02</td>
<td>16.81</td>
</tr>
<tr>
<td>35-39</td>
<td>20.05</td>
<td>17.20</td>
</tr>
<tr>
<td>40-44</td>
<td>-20.53</td>
<td>21.67</td>
</tr>
<tr>
<td>45-49</td>
<td>3.62</td>
<td>17.09</td>
</tr>
<tr>
<td>50-54</td>
<td>12.42</td>
<td>19.05</td>
</tr>
<tr>
<td>55-59</td>
<td>1.14</td>
<td>18.87</td>
</tr>
<tr>
<td>60-64</td>
<td>-0.58</td>
<td>25.71</td>
</tr>
<tr>
<td>65+</td>
<td>4.67</td>
<td>26.11</td>
</tr>
</tbody>
</table>

Anm.: Jeweils mit festen länder- und zeitspezifischen Effekten.

Quelle: Eigene Berechnungen.

Tabelle A-6.5.2:
Schätzergebnisse TFP und Beschäftigungsanteile verschiedener Alterskohorten

<table>
<thead>
<tr>
<th>Alterskohorte</th>
<th>Direkter Ansatz</th>
<th>Polynom-Ansatz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Punkt</td>
<td>Std</td>
</tr>
<tr>
<td>15-19</td>
<td>24.57</td>
<td>-</td>
</tr>
<tr>
<td>20-24</td>
<td>-21.45</td>
<td>21.81</td>
</tr>
<tr>
<td>25-29</td>
<td>13.53</td>
<td>17.00</td>
</tr>
<tr>
<td>30-34</td>
<td>-25.75</td>
<td>16.92</td>
</tr>
<tr>
<td>35-39</td>
<td>20.73</td>
<td>15.21</td>
</tr>
<tr>
<td>40-44</td>
<td>-22.93</td>
<td>20.06</td>
</tr>
<tr>
<td>45-49</td>
<td>-0.44</td>
<td>16.90</td>
</tr>
<tr>
<td>50-54</td>
<td>14.39</td>
<td>16.62</td>
</tr>
<tr>
<td>55-59</td>
<td>-4.46</td>
<td>18.06</td>
</tr>
<tr>
<td>60-64</td>
<td>13.34</td>
<td>20.55</td>
</tr>
<tr>
<td>65+</td>
<td>-11.53</td>
<td>24.41</td>
</tr>
</tbody>
</table>

Anm: Jeweils mit festen länder- und zeitspezifischen Effekten.

Quelle: Eigene Berechnungen.